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Abstract

Solving ill-posed inverse problems can be done
accurately if a regularizer well adapted to the na-
ture of the data is available. Such regularizer can
be systematically linked with the distribution of
the data itself through the maximum a posteri-
ori Bayesian framework. Recently, regularizers
designed with the help of deep neural networks
received impressive success. Such regularizers
are typically learned from voluminous training
data. To reduce the computational burden of this
task, we propose to adapt the compressive learn-
ing framework to the learning of regularizers
parametrized by deep neural networks (DNN).
Our work shows the feasibility of batchless learn-
ing of regularizers from a compressed dataset. In
order to achieve this, we propose an approxima-
tion of the compression operator that can be cal-
culated explicitly for the task of learning a regu-
larizer by DNN. We show that the proposed regu-
larizer is capable of modeling complex regularity
prior and can be used to solve the denoising in-
verse problem.

1 Introduction

1.1 Modeling the problem

In this work, we are interested in solving the denoising in-
verse problem arising in signal processing. We aim at find-
ing an accurate estimate x̂ of the original signal x ∈ Rd
from the observed noisy signal y ∈ Rd. A general formu-
lation of the forward model is

y = x+ ε, (1)

where the measurement noise ε is independent of the sig-
nal of interest. It is assumed to be additive white Gaus-
sian noise (AWGN) of standard deviation σ, i.e. ε ∼

N (0, σ2Id). Recovering x from its degraded version y
by inverting the observation model is usually an ill-posed
problem as the solution of the problem is not unique or sta-
ble. One needs to use additional (prior) information about
the unknown signal x so that the estimation problem ad-
mits meaningful solutions. Hence, common strategies for
solving inverse problems often define an estimator which
minimizes an appropriate function of the form

x̂ ∈ arg min
x

F (x) + λR(x), (2)

where F is the data fidelity term making the solution con-
sistent with the observation y and R is the regularization
term weighted by λ > 0 that incorporates prior ensur-
ing the stability of the solution (Demoment (1989)). The
choice of regularization depends on the statistics of the sig-
nal of interest which is not always available in real-life ap-
plications.

The maximum a posteriori (MAP) Bayesian framework
provides a useful tool to interpret such methods. From a
probabilistic point of view, we consider the problem as a
stochastic model:

y = x+ ε, x ∼ µ, ε ∼ N (0, σ2Id), (3)

where µ denotes a prior probability law (of density µ(·))
of the unknown data x. In this framework, the probability
density of the likelihood of y given x is given by p(y|x) ∼

e−
‖y−x‖22

2σ2 . Using Bayes’ rule, the posterior distribution of
x given by y is derived by

p(x|y) ∝ p(y|x)µ(x). (4)

The MAP estimator corresponds to:

x̂MAP = arg max
x

p(x|y)

∝ arg min
x

‖y − x‖22 − λlog(µ(x))
(5)

for an appropriate choice of λ. In this context, the regu-
larizer is related to the prior distribution of the data, i.e.,
R(x) = −log(µ(x)).

It is not an easy task to accurately estimate the prior µ(x),
especially in high-dimensional spaces. Classical Bayesian
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approaches, e.g. in image processing, rely on explicit pri-
ors such as total variation ( Rudin et al. (1992); Cham-
bolle (2004); Louchet and Moisan (2013)), Markov ran-
dom field (MRF) ( Blake et al. (2011); Roth and Black
(2005)) or Gaussian mixture models (GMM) ( Zoran and
Weiss (2011); Yu et al. (2011)). Recently, researchers have
proposed and studied the use of deep neural networks to
design the regularizer. The methods such as the total deep
variation (Kobler et al. (2020, 2021)), adversarial regular-
izers ( Lunz et al. (2018); Prost et al. (2021)), as well as the
Plug & Play approach and its extensions (Venkatakrishnan
et al. (2013); Zhang et al. (2021); Hurault et al. (2021)) de-
liver remarkably accurate results.

However, such models are typically learned from volumi-
nous training data. Estimating their parameters from such a
large-scale dataset is a serious computational challenge (in
both time and memory requirements).

1.2 Compressive learning

One possibility to reduce the computational resources of
the learning task consists in using the compressive learn-
ing (CL) framework (Keriven et al. (2018); Gribonval et al.
(2020, 2021a,b,c)). The main idea of this framework,
coined as sketching, is to compress the whole data collec-
tion into a fixed-size representation, a so-called sketch of
data, such that enough information relevant to the consid-
ered learning task is captured. Then the learned parame-
ters are estimated as a near-minimizer of a non-linear least-
square problem built with the sketch. The size of sketch
m is chosen proportional to the intrinsic complexity of the
learning task. Meanwhile, the cost of inferring the parame-
ters of interest from the sketch does not depend on the num-
ber of data in the initial collection. Hence, it is possible to
exploit arbitrarily large datasets in the sketching framework
without demanding more computational resources.

More precisely, during the sketching phase, a huge collec-
tion of n d-dimensional data vectors X = {xi}ni=1 is sum-
marized into a single m-dimensional (m � n) vector ẑ
with:

ẑ =
1

n

n∑
i=1

Φ(xi) = S(µ̂n), (6)

where µ̂n := 1
n

∑n
i=1 δxi the empirical probability distri-

bution of the data, δxi is the Dirac measure at xi and the
function Φ : Rd → Rm is called the feature map (typi-
cally random Fourier moments). The operator S is a linear
operator such that the feature map Φ(·) is integrable with
respect to µ, i.e.

Sµ := EX∼µΦ(X). (7)

Then an estimate of the distribution µ (or of distributional
parameters θ of interest) is computed by solving the opti-

mization problem:

µ∗ = arg min
µ

‖ẑ − Sµ‖22. (8)

In practice, this ”sketch matching” problem can be gen-
erally solved by greedy compressive learning Orthogonal
Matching Pursuit (OMP) algorithm and its extension CL-
OMP with replacement (Keriven et al. (2018)). When the
distribution µ is a Gaussian mixture model (GMM) in high-
dimension space with flat tail covariances, the problem can
also be solved by the low-rank OMP algorithm (Shi et al.
(2022)). These results show that the prior model learned
from the compressed patch dataset with low-rank OMP can
be used to perform image denoising.

These greedy algorithms are suitable for any sketching op-
erator S and any distribution density µ, as long as the
sketch Sµ and its gradient with respect to the distribu-
tional parameters θ of interest have a closed-form expres-
sion. That is to say, the core of the OMP-based algorithms
is computing the expression of Sµ and ∇θSµ. However,
real-life data tends to be complex and needs to be modeled
with complex distributions. In this case, the sketching fea-
ture map is not always integrable with respect to the prior
density of the data or it may not have a closed-form. This
limits the advantages of using the sketching framework in
practice.

In this paper, we aim at recovering a good approximation
of the probability distribution of any unknown data from
its sketch (i.e. beyond Gaussian mixtures). As neural net-
works have great expressive power (Hornik et al. (1989);
Pan and Srikumar (2016)), we propose to tackle the prob-
lems by adapting the sketching framework to neural net-
works. More precisely, we propose to define the regularizer
Rθ parameterized by a DNN, precisely a ReLU network fθ,
that is,

Rθ(·) = ‖fθ(·)‖22. (9)

Such a regularization corresponds to the parametric distri-
bution density µθ ∝ e−‖fθ(·)‖22 . Thus it can be viewed as a
generalized Gaussian distribution, where the bilinear form
induced by the covariance matrix is replaced by a network.
Due to the fact that neural networks have good generaliza-
tion properties, the proposed regularization should be ca-
pable of encoding complex probability distributions. We
aim to apply the sketching framework to such parametric
densities. Unfortunately, a direct practical application of
existing tools is not possible as closed-form expressions of
Sµ are not available for sketching operator S based on ran-
dom Fourier features.

1.3 Contributions and outline

In this work, we show the feasibility of learning regulariz-
ers parametrized by a DNN from a compressed database.
Once the network is trained, the regularizer can be used for
inverse problems such as denoising.
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To do so, we propose to approximate the sketching oper-
ator Sµ by a discrete version Sdµ that can be calculated
with closed-form expressions, and such that the approxi-
mation still permits to apply the sketch matching estima-
tion method. The approximation is performed on a grid of
the domain where the data is located.

To find an estimate of the distribution µθ (of density ∝
e−‖fθ(·)‖22 ), we adapt the sketch matching problem with our
approximate sketching operator in the following way:

θ∗ ∈ arg min
θ∈Θ

‖Sdµθ(p)− ẑ‖22 , (10)

where Θ is a set were the DNN inducing the regularizer
Rθ(·) = ‖fθ(·)‖22 can be parametrized (i.e. weights and
bias). This problem can be solved practically with gradient
descent based methods.

There are various advantages of our proposed approach.

As we do not need the original dataset during the train-
ing process, then the training procedure does not need to
build batches of data. As a consequence, each gradient
descent iteration in the training incorporates information
from the whole original database. Once the empirical
sketch has been computed (in a single pass, possibly in
parallel), the dataset can be removed from memory. This
reduces the memory complexity of the learning task. More-
over, the Jacobian ∇Sµ can be computed efficiently with
back-propagation.

Our approach overcomes the limits of greedy learning al-
gorithms of the original sketching framework: regardless
of the complexity of the data distribution, the proposed
sketching operator allows us to always have a closed form
expression of Sdµθ. Thus, the sketching is no longer lim-
ited to the distribution densities for which the Fourier trans-
form is explicit.

As a result, the learned regularizer can be used to solve in-
verse problems. The effectiveness of the proposed scheme
is tested on synthetic examples and real dataset. Due to
the limitations of our approximation of the sketching oper-
ator, the feasibility is illustrated on 2-D and 3-D data with
possibly complex distributions. Our work thus opens the
broader open question of designing closed form sketching
operators in high dimension.

The rest of this article is organized as follows. We start by
introducing the sketching framework, ReLU networks and
some related works in section 2. In section 3, we then de-
scribe the proposed framework: the adaptation of the com-
pressive learning framework to the learning of regularizers
parameterized by ReLU networks. We explain in Section 4
how is solved the denoising variational problem (5). Sec-
tion 5 illustrates the performance of the proposed methods
on both synthetic data and real-life data. Finally, conclu-
sions are drawn in section 7.

2 Background, related works

2.1 Sketching

Sketching is a statistical compressive learning technique.
Let D be the set of probability measures over Rd. We sup-
pose that the data samples xi are modeled as i.i.d. random
vectors having an unknown probability distribution with
density µX ∈ D. We define the linear sketching opera-
tor S that maps the probability distribution µX to the m-
dimensional sketch vector z:

S :D → Cm

z = SµX :=

∫
Rd
µX (x)Φ(X)dx.

(11)

When the transformation (sketching feature map) Φ(·) is
built with random frequencies of the Fourier transform, for
l = 1, . . . ,m, the l-th component of the sketch is

zl =

∫
Rd
e−j<ωl,x>µX (x)dx, (12)

where {ωl}ml=1 ∈ Rd are d-dimensional frequencies drawn
at random. Taking a statistical perspective, the components
zl can be seen as samples of the characteristic function of
µX . Accordingly, the empirical sketch ẑ can be computed
from the samples of the database as

ẑl =
1

n

n∑
i=1

e−j<ωl,xi> l = 1, . . . ,m. (13)

It was shown (Keriven et al. (2018); Gribonval et al. (2020,
2021b)) that when the probability distribution µ has a low
dimension structure, e.g. a GMM, one can recover it (with
high probability) from enough randomly chosen samples
of its Fourier transform. The required size of the sketch is
typically of the order of the number of parameters we need
to estimate.

2.2 ReLU network

A ReLU network, that we denote by fθ, is defined as a fully
connected, feed-forward network (multi-layer perceptrons)
with rectified linear unit (ReLU) activations. The ReLU
function is given by: ReLU(x) = max(x, 0). This activa-
tion has grown in popularity in feed-forward networks due
to the success of first-order gradient based heuristic algo-
rithms and the improvement in convergence to the approx-
imated function for training (Nair and Hinton (2010)). We
consider that the ReLU network has K hidden layers and
each layer indexed by k has nk neurons. Note that the out-
put layer is a linear layer without ReLU activation. As the
network is a weighted graph with bias, the network param-
eters are the weight matrices W k ∈ Rnk×nk−1 and bias
vectors bk ∈ Rnk , i.e., θ = {W k, bk}K+1

k=1 . Formally, given
n0 input data {xi}n0

i=1, nK+1 output data {yi}nK+1

i=1 , and a
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loss function L : Rn0 × RnK+1 → R+, the training task is
to determine the network parameters θ∗ such that

θ∗ = arg min
θ

L(fθ(x), y). (14)

If L is differentiable, this problem can be solved by gradi-
ent descent based methods. The gradients of the network
can be computed efficiently with back-propagation.

2.3 Related works

The sketching frameworks has been successfully applied to
parametric models including GMMs (Keriven et al. (2018);
Gribonval et al. (2021b); Shi et al. (2022)) and K-means
clustering (Keriven et al. (2018); Gribonval et al. (2021b));
classification (Schellekens and Jacques (2018)); as well as
component analytic (Sheehan et al. (2019b)). A reformula-
tion of the original sketching framework has been applied
to semi-parametric models (Sheehan et al. (2019a)). The
sketching has been also incorporated into neural networks
once (Schellekens and Jacques (2020)). Note that in their
work, the authors combine the sketching with the genera-
tive networks to generate data samples. While in our work,
we aim to cast the sketching framework to the ReLU net-
work to learn a regularizer for solving the inverse prob-
lem. In addition, the authors proposed to approximate the
sketching map by Monte-Carlo sampling. In our approach,
we propose to do the approximation with a discrete sketch-
ing operator. The sketching frameworks mentioned above
focus on data-independent approximation, i.e. the sketches
are obtained by averaging random features. In Chatalic
et al. (2022), the authors propose to perform the sketch-
ing based on a Nyström approximation, the latter is data-
dependent and shows empirically better performances for
k-means clustering and Gaussian modeling.

The sketching mentioned in our work reduces the dimen-
sionality by performing a linear ”projection” of the proba-
bility distribution of the data set {xi}ni=1. This differs from
the approach where the dimensionality reduction is carried
out on the data xi themselves like Daniely et al. (2016,
2017). The sketching framework also differs from the ”ran-
dom sketching strategies” scheme described in Williams
and Seeger (2000); Gittens and Mahoney (2013). The latter
random sketching is proposed for kernel methods. It refers
to selecting representative elements from the kernel matrix
to reduce the computational burden. Hence our method
also differs from the method proposed in Wang et al. (2021)
in which the authors designed random sketching strategies
for ReLU networks.

3 Sketching densities parametrized by DNN

In this section, we explain how we adapt the sketching
framework to estimate regularizations by DNN. Intuitively,
since ReLU networks define piecewise affine functions, we

can indeed express a ReLU network fθ as:

fθ(x) =

NR∑
γ=1

1Rγ (x)(Wγx+ bγ), (15)

where 1Rγ is the indicator function on each linear re-
gion Rγ . The domain is partitioned into NR linear re-
gions within which f corresponds to an affine function.
We characterize each linear region by the set of units
that are active in that domain. We have that Wγ =

W (K+1)W
(K)
γ · · ·W (1)

γ where W k
γ is obtained by setting

the i-th coordinate ofW k to 0 whenever the neuron i of the
k-th layer is not active.

Given a datasetX , we aim at learning, from only the sketch
z, an approximation µθ for the probability distribution µ
generating X . As considering a regularizer of the form
Rθ(·) = ‖fθ(·)‖22, it corresponds to parametric densities
of the form µθ(·) ∝ e−Rθ(·). Ideally, with the definition in
(12), the sketch would have to be calculated as

zl =

∫
Rd
e−j<ω,x>e−‖fθ(x)‖22dx

=

∫
Rd
e−j<ω,x>e−‖

∑NR
i 1Ri (x)(Wix+bi)‖22dx

=

∫
xd

· · ·
∫
x1

e−j
∑d
p=1 ωpxp

e−
∑d
p=1(

∑NR
i 1Ri (x)((Wix)p+bip))2dx1 · · · dxd.

(16)

However, to the best of our knowledge, there is no analytic
expression of such Fourier transform (Fourier transform on
polygons). To tackle this issue, we consider approximat-
ing the continuous Fourier transform on a set of discrete
points. This can be done by approximating the integral in
the Fourier transform as a Riemann sum. The Riemann
sum approximation can be expressed in terms of the dis-
crete Fourier transform.

To be specific, we define an approximation Sd : Rd → Cm
of the sketching operator S such that Sdµθ(ω) ≈ Sµ(ω)
for a given frequency ω. The approximated sketch z̃ then
has components:

z̃l = |∆Ω|
∑
pi∈Ω

e−j<ωl,pi>µθ(pi)

= |∆Ω|
∑
pi∈Ω

e−j<ωl,pi>e−‖fθ(pi)‖22 ,
(17)

where pi is a point in the d-dimensional cell Ω with vol-
ume |∆Ω|. Of course, the major pitfall of this approxima-
tion is the limitation for applications in high dimension as
the number of points grows with respect to the dimension
d. The required boundedness (or approximate boundedness
such as in the Gaussian case) of the data is a valid assump-
tion in many practical applications in signal and image pro-
cessing.
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As a consequence, given N points {pi}Ni=1 on the grid
where the dataset X lives and the empirical sketch defined
as (6), we consider a ReLU network sketch matching prob-
lem as finding the network parameters θ∗ in the set Θ of
possible parametrizations, such that

θ∗ = arg min
θ∈Θ

L (z̃θ, ẑ)

= arg min
θ∈Θ

‖z̃θ − ẑ‖22

= arg min
θ∈Θ

‖Sdµθ − ẑ‖22

(18)

With the discretization, if µθ is differentiable at point pi,
the gradient of Sdµθ with respect to the parameters θ can
be computed easily by

∇Sdµθ(pi) = Sd∇µθ(pi)

= −2|∆Ω|
∑
pi∈Ω

e−j<ω,pi>e−‖fθ(pi)‖22fθ(pi)∇fθ(pi),

(19)

where the gradient of the network ∇fθ(pi) can be easily
computed using the automatic differentiation. Note that the
discretization is used only in the estimation of the regular-
izer from the sketch. It thus only impacts the calculation
time and memory requirement of the estimation of the reg-
ularizer and not the size of the compressed dataset itself.

4 Denoising

With the learned regularization term, one can solve the vari-
ational problem (5) by minimizing the following function:

G(x) = ‖x− y‖22 + λRθ(x)

= ‖x− y‖22 + λ‖fθ(x)‖22.
(20)

The optimization problem can be solved by gradient de-
scent based methods. Let xt the data at iteration t, the step
writes

xt = xt−1 − η
(
(y − xt−1) + λ∇Rθ(xt−1)

)
(21)

where η > 0 is the learning rate. Similarly, we can compute
the gradient by using automatic differentiation.

Also, note that this denoising method can easily be ex-
tended to other linear inverse problems, such as interpo-
lation and deconvolution by including the corresponding
forward measurement operator.

5 Experimental results with synthetic data

To validate the proposed framework, we first test it against
2-D and 3-D synthetic problems. The used training datasets
are made of n = 1000 samples which are generated from:
a spiral with parameters: the radius of circular curve R=

0.3 to 1, spiral length L = 2π, i.e. {(Ri, Li)}ni=1, where
Ri ∼i.i.d. Li

2π and Li ∼i.i.d. U([0, 2π)); and a zero-mean
GMM of 2 Gaussians. The proposed approach is imple-
mented with the PYTORCH framework. The source code
to reproduce the experiments is available at Anonymous
(2022). It contains parts of code taken from the Python
Compressive Learning toolbox (Schellekens (2020)).

For the 2-D experiments, we compress the datasets into
sketches of size m = 100. The network fθ is designed
as a ReLU network with 3 fully connected hidden layers
with 64, 128, and 256 neurons in each layer respectively.
To train the network, we use the Adam optimizer (Kingma
and Ba (2014)) with a learning rate of value 10−6. The
number of points on the grid is set to N = 20d where d
denotes the data dimension. For comparison, we propose
to learn the regularizer on the non compressed dataset us-
ing the same network with the following learning objective
function:

θ′ = arg min
θ

N∑
i=1

∥∥‖fθ(pi)‖22 − disti∥∥2

2
, (22)

where disti = minj ‖xj−pi‖22 is the distance between the
data xj and its nearest grid point. This objective function
imposes a regularizer that is close to the function ”distance
to the model”. Note that for the non compressive learning,
as we do not go through a (implicit) model of the density,
we explicitly give the distance value, which is not neces-
sary when using our proposed sketched method.

Figure 1 shows the experimental results of 2-D synthetic
data. The first row shows the synthetic spiral and GMM
samples for training. We compare distribution densities
learned from a compressive dataset with the proposed
framework (2nd row) and distribution densities learned
from a non compressive dataset (3rd row). In the com-
pressive approach, the dataset is compressed by a factor of
20, while producing comparable results, indicating that our
approach accomplishes its objective: learning efficiently
a probability density prior from a compressed database
(which will be evaluated when used as a regularization on
real audio data).

Figure 2 shows an experimental result of 3-D synthetic spi-
ral data. The network fθ is a ReLU network with 5 fully
connected hidden layers of 64, 128, 192, 192, and 192 neu-
rons respectively. The data is compressed to a sketch of size
m = 200. This figure demonstrates again the capacity of
our method to estimate accurate complex 3-D distribution
densities from the compressed dataset.

5.1 Denoising results

We evaluate the regularizer learned with our method on
white Gaussian noise denoising problem. Figure 3 illus-
trates the 2-D denoising results using regularizers learned
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Figure 1: The distribution densities of sample data (top)
learned from compressed dataset with sketching (middle)
and original non compressed dataset (bottom).

Figure 2: The 3-D spiral data samples (left) and the distri-
bution density learned with the proposed approach (right,
points of the learned distribution on a grid exceeding a
given threshold).

from the compressed dataset (left) and the original dataset
(right). Figure 4 shows the 3-D denoising results with dif-
ferent noise level.

Results show that regularizers trained from the com-
pressed datasets have comparable denoising performance
with the regularizers trained on their original non com-
pressed datasets.

5.2 Robustness to noise during training

To evaluate how robust our proposed method is to noise
level during the training process, we train the regularizer
on a compressed dataset of data samples generated with

Figure 3: Denoising results with regularizers learned with
the compressed (left) and the non compressed dataset
(right). The noise level is set to σ2 = .15.

Figure 4: 3-D Denoising results with densities learned from
the proposed method. The noise level is set to σ2 = 0.15
(left) and σ2 = 0.2 (right).

noise level σ2
train = 0.15. We use the same network and

training procedure as described above. Figure 5 shows the
distribution density of the sampled data learned from the
compressive noisy dataset and the denoising result. The re-
sult shows that the regularizer trained with a compressed
noisy dataset has good denoising performance. This illus-
trates that our approach is robust to low noise level. This
is easy to understand due to the fact that adding Gaussian
noise corresponds to a convolution of the density with a
Gaussian kernel, which does not change the shape of the
distribution if small enough. It is even possible to add a de-
convolution term to the distribution parameter estimation if
the noise level in the training dataset is known.
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Figure 5: Denoising result (right) with densities (middle)
learned from the compressived noisy data (left) with noise
level σ2

train = 0.15. The noise level of the data is set to
σ2 = 0.2.

5.3 Training parameters

We perform different experiments to evaluate potential fac-
tors that could affect the results. First we assess the com-
pression rate, i.e. the sketch size. Figure 6 shows the de-
noising results with regularization functions learned from
sketches of different sizes. The original dataset is com-
pressed 10 and 5 times respectively. It is shown that the
proposed approach is capable to learn distributions from
databases with high compression ratios. The number of

Figure 6: Denoising results with regularizers learned with
different sketch size (left: m = 100, right: m = 200)

frequencies {ω}ml=1 used to compute sketches affects mem-
ory storage, while the number of grid points used during
training process affects the learning time. The number of
grid points should be chosen well if we want to control
the learning time well, since the number of grid points N
grows exponentially with respect to the dimension d.

Experiments from Figure 7 also show that overparameter-
ized networks (with more layers or more neurons per layer)
can achieve better results while using less learning time and
fewer necessary grid points.

Figure 7: Regularizers learned via the proposed method
with different learning parameters. Using the same number
of grid points, we have better result when the network has
more neurons. (Left) 3 hidden layers with 64, 128, 256
neurons in each layer. (Right) 3 hidden layers with 64, 128,
192 neurons in each layer.

6 Application for audio denoising

In order to evaluate the effectiveness of our approach,
we test it on the audio denoising task. The experiment
presented below is performed on recorded musical notes
(monophonic 16kHz audio snippets) from the NSynth
dataset (Engel et al. (2017)). The training data is an ex-
tracted 0.125s audio recorded from an acoustic guitar. Af-
ter filtering the normalized audio data s by two 4th-order
Butterworth (Butterworth et al. (1930)) low-pass filters h1

and h2 with a cutoff frequency of 1.5kHz and 3.75kHz,
three frequency responses are constructed with s1 = h1 ∗s,
s2 = h2 ∗ (s − s1), and s3 = s − s2. Then the fre-
quency responses are concatenated, hence the training set
is of dimension 2000 × 3; i.e. 2000 samples in dimension
3. Figure 8 shows a representation of the training dataset.
The regularizer is learned from a sketch of size m = 200,

Figure 8: The training dataset for the experiment on audio
file.

i.e. the dataset is compressed by a factor of 30. Once the
regularizer is learned, it is used to denoise the audio cor-
rupted by Gaussian white noise of noise levels σ2 = 0.1
and σ2 = 0.2. When the regularizer is used for denois-
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ing, we use the measurement signal-to-noise ratio (SNR)
(Quackenbush et al. (1988)) to evaluate its effectiveness.
The SNR is defined as

SNR = 10log10
Psignal
Pnoise

(23)

where Psignal and Pnoise are the total energy of the signal
x and noise respectively.

Figure 9 and 10 show the audio denoising result with dif-
ferent noise levels. In the two cases, we gain more than
1dB on SNR in the case of small noise and more than 3dB
SNR in case of large noise. The results show that, in ad-
dition to the original low-pass filtering effect, denoising
can be achieved in low dimensions even when temporal
consistency between individual samples is not guaranteed.
These first feasibility results for solving inverse problem
using regularizers learned from sketch are promosising if
we could use a sketching operator in higher dimensions.

Figure 9: Audio denoising performances for different noise
levels: (top) σ2 = 0.1, SNR is 12.82 for noisy data and
13.85 for denoised data; (bottom) σ2 = 0.2, SNR is 7.03
for noisy data and 10.26 for denoised data.

Figure 10: Audio denoising performance for noise level
σ2 = 0.2.

7 Conclusions

In this work, we illustrate the feasibility of adapting the
compressive learning framework to the learning of a reg-
ularizer parameterized by a DNN. We achieve this by ap-
proximating the original sketching operator with a discrete
one. With the proposed approximated sketching opera-
tor, the ”sketch matching” problem can be solved with a
gradient based algorithm. In addition, we define a new
parametrization of the regularizer to solve the inverse prob-
lem. The regularizer is defined as the squared `2-norm of a
ReLU network and learned with a compressive dataset in-
stead of the original dataset. It gathers the advantages of
sketching which reduces the learning cost and of the neural
networks which have great expressive power. Experiment
results on 2-D/3-D synthetic data and audio data show that
our method accomplish the objective of compressive learn-
ing in this context, illustrating the potential of sketched
neural networks learning. However, our method relies on
a discretization of the domain on which the data resides,
which limits its use in high-dimensional domains (e.g., for
image denoising). Future works will be needed to over-
come this limitation. We want to design a fast sketching
operator that avoid such discretization. This leads to a ma-
jor open question: can we find a sketching operator such
that any distribution parametrized by a DNN can be esti-
mated from the sketch? Does such a sketching operator
exist? Also our experiments suggest that the overparame-
terization phenomenom that begins to be well understood
in classical learning (Arora et al. (2018); Allen-Zhu et al.
(2019)), could also be well behaved in the context of com-
pressive learning. Hence understanding this regime in com-
pressive learning is a also a key question in relation to this
work.
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