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3D Skeleton-based Human Motion Prediction
with Manifold-Aware GAN

Baptiste Chopin, Naima Otberdout, Mohamed Daoudi, Senior, IEEE, Angela Bartolo

Abstract—In this work we propose a novel solution for 3D skeleton-based human motion prediction. The objective of this task consists
in forecasting future human poses based on a prior skeleton pose sequence. This involves solving two main challenges still present in
recent literature; (1) discontinuity of the predicted motion which results in unrealistic motions and (2) performance deterioration in
long-term horizons resulting from error accumulation across time. We tackle these issues by using a compact manifold-valued
representation of 3D human skeleton motion. Specifically, we model the temporal evolution of the 3D poses as trajectory, what allows
us to map human motions to single points on a sphere manifold. Using such a compact representation avoids error accumulation and
provides robust representation for long-term prediction while ensuring the smoothness and the coherence of the whole motion. To
learn these non-Euclidean representations, we build a manifold-aware Wasserstein generative adversarial model that captures the
temporal and spatial dependencies of human motion through different losses. Experiments have been conducted on CMU MoCap and
Human 3.6M datasets and demonstrate the superiority of our approach over the state-of-the-art both in short and long term horizons.
The smoothness of the generated motion is highlighted in the qualitative results.

Index Terms—Human motion prediction, manifold-valued representation, manifold-aware Wasserstein GAN.

✦

1 INTRODUCTION

T HE problem of forecasting future human motion play a vital
role in many applications in computer vision and robotics,

such as human-robot interaction [1], autonomous driving [2] and
computer graphics [3]. In this work, we propose a predictive
model for short and long-term future 3D skeleton poses given
an initial prior history. Addressing this issue involves two main
challenges: How to represent the temporal evolution of the human
motion to ensure the smoothness of the predicted sequences? and
how to take the spatial correlations between human joints into
account to avoid implausible poses?

Because of the explosion of deep learning and the availability
of large scale datasets for human motion analysis, deep learning
models have been widely exploited to address the problem
of human motion prediction and especially Recurrent Neural
Networks (RNN) [4], [5], [6], [7]. Indeed, RNN-based approaches
achieved good advance in term of accuracy, however, the motions
predicted with these methods present significant discontinuities
due to the frame-by-frame regression process that discourage
the global smoothness of the motion. In addition, recurrent
models suffer from error accumulation across time, which
increase error and worsen long-term forecasting performance. To
remedy this, more recent works avoid these models and explore
feed-forward networks instead. Including CNN [8], GNN [9]
and fully-connected networks [10]. Thanks to their hierarchical
structure, feed-forward networks can better deal with the spatial
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correlations of human joints than RNNs. However, an additional
strategy is required to encode the temporal information when
using these models. To face this issue, an interesting idea was to
model the human motion as trajectory [11], [12].
In this work, we follow the idea of modeling motions as
trajectories in time but in a different context from the previous
work. Among the benefits of our representation, the possibility
to map these trajectories to single compact points on a manifold,
which helps preserving the continuity and the smoothness of
the predicted motions. Besides, the compact representation
avoids the problem of the error accumulation across time
and makes our approach suitable for long-term prediction as
illustrated in Figure 4. Nevertheless, the challenge here is
that the resulting representations are manifold-valued data that
cannot be manipulated with traditional generative models in a
straightforward manner. To face this challenge, we introduce in
this paper, a manifold-aware Wasserstein Generative Adversarial
Networks (WGAN) that predict future skeleton poses given the
input prior motion sequence that is encoded as a manifold-valued
data. The spatial dependencies between human joints are taken
into consideration in our method through additional loss functions
that add more constraints on the predicted skeleton poses to
ensure their plausibility. An overview of our prediction process is
illustrated in Figure 1.
The contribution of this work can be summarized as follows:
(1) To the best of our knowledge, we are the first to propose an
approach that exploits compact manifold-valued representation
for human motion prediction. By doing so, we model both the
temporal and the spatial dependencies involved in human motion,
resulting in smooth motions and plausible poses in long-term
horizons. (2) We propose a predictive manifold-aware WGAN for
motion prediction. (3) We propose a new loss function based on
Gram matrix of the 3D poses that avoids predicting implausible
poses. (4) Experimental results on Human 3.6M and the CMU
MoCap datasets show quantitatively and visually the effectiveness
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of our method for short-term and long-term prediction.

We presented some preliminary ideas of this work in [13].
With respect to [13], this paper provides more theoretical details
about the proposed approach, it includes also new figures
and more discussion. Furthermore, we present in this paper
more results that further demonstrate the superiority of our
solution over the state-of-the-art. While in [13], we compared the
approaches based on joints position, we present here a new metric
to evaluate the smoothness and the temporal evolution of the
predicted motion. We provide a new qualitative evaluation for our
ablation study to highlight the importance of the different losses
of our method. We also demonstrate in this paper the ability
of our method to predict longer sequences by recursive generation.

2 RELATED WORK

Human Motion Prediction with Deep Learning. Given that
the task of human motion prediction is a temporal dependent
problem, recurrent models (RNN) were the first potential solution
to be investigated, hence several works applied RNN and their
variants to tackle this task. In [4], the authors proposed a model
that incorporates a nonlinear encoder and decoder before and after
recurrent layers. Their approach suffers from error accumulation
and discontinuity between the last frame of the prior and the
first frames of the generated sequence. Moreover, their approach
only capture the temporal dependencies but ignore the spatial
correlations between articulations. To deal with this problem,
[5] proposed a Structural-RNN model relying on high-level
spatio-temporal graphs. [6] take a different direction to minimize
the error accumulation effect in RNNs; they used a feed forward
network for pose filtering and a RNN for temporal filtering.
However, this strategy only minimizes the accumulated error
that still exists and deteriorates the performance of recurrent
models in long-term prediction. Alternatively, more recent works
exploit feed-forward networks. To model the temporal evolution
with these models, various strategies have been suggested. In
[8], [10], convolution across time was exploited to model the
temporal dependencies with convolution networks, while [11]
adopt Discrete Cosine Transform to encode the motion as
trajectory. Graph neural networks were also applied for motion
prediction [5], [9] as a suitable tool to model the spatial
correlations involved between the articulations.
In this paper, we take a completely different direction and we
propose to deal with human motion by exploiting a manifold-
valued representation with generative adversarial models.

Generative Adversarial Networks (GANs): GANs have
been also exploited to address the problem of human motion
prediction in [14] and [15], however, in order to model the
temporal dependencies involved, they build their generator on
RNN structures. In this way, the error accumulation problem is
present in their model which may deteriorate its performance
in the long-term. In our work we completely discard recurrent
models by adopting a compact representation of the human
motion.
Motivated by the interest of manifold-valued images in a variety
of applications, [16] proposed manifold-aware WGAN. Inspired
from this work, we build a manifold-aware WGAN that predict the
future points of a poses trajectory given previous pose sequence.

However, our model is different from the one proposed in [16] in
two ways. Firstly, instead of unsupervised image generation from
a vector noise, our model addresses the problem of predicting
future manifold-valued representations from a manifold-valued
inputs. In addition, we propose different objective functions to
train our model on the task at hand.

Modeling Human Motions as Trajectories on a Rieman-
nian Manifold: While our present work is the first that explores
the benefit of manifold-valued trajectories for human motion pre-
diction, representing 3D human poses and their temporal evolution
as trajectories on a manifold was adopted in many recent works
for action recognition. Different manifolds were considered in
different studies [17], [18], [19]. More related to our work,
in [20], a human action is interpreted as a parametrized curve and
is seen as a single point on the sphere by computing its Square
Root Velocity Function (SRVF). Accordingly, different actions
were classified based on the distance between their associated
points on the sphere. All papers mentioned above show the effec-
tiveness of motion modeling as a trajectory in action recognition.
Motivated by this fact, we show in this paper the interest of
using such representation to address the recent challenges that
still encountered in human motion prediction.

3 HUMAN MOTION MODELING

Two 3D skeleton representations were adopted for human motion
prediction; angles based and 3D coordinates based representations.
The first one models each joint by its rotation in term of Euler
angles, while the second representation uses the 3D coordinates
of the joints. More recently, [9], showed in their experiments that
the angles based representation where two different sets of angles
can represent the exact same pose, leads to ambiguous results
and cannot provide a fair and reliable comparison. Motivated
by this, we use 3D joint coordinates to represent our skeleton
poses. The proposed approach relies on the representation of the
human motions as points belonging to a hypersphere. However,
the challenge encountered when working with such representation
is the non-linearity of the hypersphere space which is a manifold.
Accordingly, and following the state-of-the-art [16], [21] we used
the term ”manifold-valued data” to refer to our human motion
representation and ”manifold-aware GAN” to refer to the version
of the generative adversarial model that learns to generate points
on the hypersphere manifold.

3.1 Representation of Pose Sequences as Trajectories
in Rn

Let k be the number of joints that compose the skeleton, we
represent Pt the pose of the skeleton at frame t by a n-dimensional
tuple: Pt = [x1(t), y1(t), z1(t) . . . xk(t), yk(t), zk(t)]

T , The
pose Pt encodes the positions of k distinct joints in 3 dimensions.
Consequently, an action sequence of length T frames, can be
described as a sequence {P1, P2 . . . , PT }, where Pi ∈ Rn and
n = 3× k.
This sequence represents the evolution of the action over time and
can be considered as a result of sampling a continuous curve in
Rn. Based on this consideration, we model in what follows, each
pose sequence of a skeleton, as a continuous curve in Rn that
describes the continuous evolution of the sequence over time.
Let us represent the curve describing a pose sequence by a
continuous parameterized function α(t) : I = [0, 1] → Rn. In
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Fig. 1: Overview of the human motion training and prediction processes. Given a pose sequence history represented as a curve, then mapped
to a single point in a hypersphere. The predictor maps the input point to a tangent space, then feeds it to the network G that predicts the future
motion as a vector in Tµ(C). During training a discriminator is used to compare the mapped points from the ground truth to the generated
ones. Exponential operator maps this vector to C, before transforming it to a curve representing a motion. The predicted motion is transformed
into a 3D human pose sequence corresponding to the future poses of the prior ones.

this work, we formulate the problem of human motion prediction
given the first consecutive frames of the action as the problem
of predicting the possible next points of the curve describing
these first frames. More formally, the problem of predicting the
future poses {Pτ+1, Pτ+2, . . . , PT }, given the first τ consecutive
skeleton poses {P1, P2, . . . , Pτ}, where τ < T , is formulated
as the problem of predicting α(t)t=τ+1...T given α(t)t=1...τ ,
such that, α(t) is the continuous function representing the curve
associated to the pose sequence {P1, P2, . . . , PT }.

3.2 Representation of Human Motions as Elements in a
Hypersphere C
For the purpose of modeling and studying our curves, we adopt
square-root velocity function (SRVF) proposed in [22]. It was
successfully exploited for human action recognition [20], 3D face
recognition [23] and facial expression generation [21]. Conve-
niently for us, this function maps each curve α(t) to one point
in a hypersphere which provides a compact representation of the
human motion. Specifically, for a given curve α(t) : I → Rn, the
square-root velocity function (SRVF) q(t) : I → Rn is defined
by the formula

q(t) =


α̇(t)√
∥α̇(t)∥

, if ∥α̇(t)∥ ≠ 0

0, if ∥α̇(t)∥ = 0
(1)

where, ∥ · ∥ is the Euclidean 2-norm in Rn. We can easily recover
the curve (i.e, pose sequence) α(t) from the generated SRVF (i.e,
dynamic information) q(t) by,

α(t) =

∫ t

0
∥q(s)∥q(s)ds+ α(0) , (2)

where α(0) is the skeleton pose at the initial time step which
corresponds in our case to the final time step of the history. In

order to remove the scale variability of the curves, we scale them
to be of length 1. Consequently, the SRVF corresponding to these
curves are elements of a unit hypersphere in the Hilbert manifold
L2(I,Rn) as explained in [22]. We will refer to this hypersphere
as C, such that, C = {q : I→ Rn| ∥q∥ = 1} ⊂ L2(I,Rn) . Each
element of C represents a curve in Rn associated with a human
motion. As C is a hypersphere, the geodesic length between two
elements q1 and q2 is defined as:

dC(q1, q2) = cos−1(⟨q1, q2⟩) . (3)

4 ARCHITECTURE AND LOSS FUNCTIONS

Given a set of m action sequences {{P1, P2, . . . PT }i}mi=1 of
T consecutive skeleton poses. Let us consider the first τ poses
(τ < T ) as the actions history represented by their corresponding
SRVFs {qiτ}mi=1, and the last (T − τ) skeleton configurations as
the future poses {qiT }mi=1 to be predicted.
Motivated by the success of generative adversarial networks, we
aim to exploit these generative models to learn an approximation
of the function Φ : C → C that predicts the (T − τ) future
poses from their associated τ prior ones. This can be achieved
by learning the distribution of SRVFs data corresponding to
future poses, on their underlying manifold i.e., hypersphere. As
stated earlier, SRVFs representations are manifold-valued data that
cannot be used directly by classical GANs. This is due to the fact
that the distribution of data having values on a manifold is quite
different from the distribution of those lying on Euclidean space.
[16], exploited the tangent space of the involved manifold and
propose a manifold-aware WGAN that generates random data on
a manifold. Inspired from this work, we propose a manifold-aware
WGAN for motion prediction, to which we refer as PredictiveMA-
WGAN, that can predict the future poses from the past ones. This
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is achieved by using the prior poses as input condition to the
MA-WGAN. This condition is also represented by its SRVF; as a
result PredictiveMA-WGAN takes manifold-valued data as input
to predict its future, which is also a manifold-valued data.

4.1 Network Architecture
PredictiveMA-WGAN consists of two networks trained in an
adversarial manner: the predictor G and the discriminator D. The
first network G adjust its parameters to learn the distribution PqT

of the future poses qT conditioned on the input prior ones qτ ,
while D tries to distinguish between the real future poses qT
and the predicted ones q̂T . During the training of these networks,
we iteratively map the SRVF data back and forth to the tangent
space using the exponential and the logarithm maps, defined in a
particular point on the hypersphere.

The predictor network is composed of multiple upsampling
and downsampling blocks. It takes as input the prior poses qτ
and output the predicted future poses q̂T . A fully connected layer
with 36864 output channels and five upsampling blocks with 512,
256, 128, 64 and 1 output channels, process the input prior pose.
These upsampling blocks are composed of the nearest-neighbor
upsampling followed by a 3 × 3 stride 1 convolution and a Relu
activation. The Discriminator D contains three downsampling
blocks with 64, 32 and 16 output channels. Each block is a 3× 3
stride 1 Conv layer followed by batch normalization and Relu
activation. These layers are then followed by two fully connected
(FC) layers of 1024 and 1 outputs. The first FC layer uses Leaky
ReLU and batch normalization.

4.2 Loss Functions
In general, the objective of the training consists in minimizing
the Wasserstein distance between the distribution of the predicted
future poses Pq̂T and that of the real ones PqT provided by the
dataset. Toward this goal we make use of the following loss
functions:

Adversarial loss – We propose an adversarial loss for predict-
ing manifold-valued data from their history. The predictor takes
a manifold-value data qτ as input rather than a random vector as
done in [16], which requires to map these data to a tangent space
using the logarithm map before feeding them to the network. Our
adversarial loss is the following:

La =EqT∼PqT

[
D

(
logµ(qT )

)]
−EG(logµ(qτ ))∼Pq̂T

[
D

(
logµ

(
expµ(G(logµ(qτ )))

))]
+λEq̃∼Pq̃

[
(∥∇q̃D(q̃)∥ − 1)

2
]
,

(4)

where the exponential map, expµ(.): Tµ(C) 7→ C has a simple
expression:

expµ(s) = cos(∥s∥)µ+ sin(∥s∥) s

∥s∥
,

and the inverse exponential map also called logarithm map
logµ(q): C 7→ Tµ(C) is given by:

logµ(q) =
dC(q, µ)

sin(dC(q, µ))
(q − cos(dC(q, µ))µ)

where dC(., .) is the geodesic distance defined by (3). The
last term of La represents the gradient penalty proposed in [24].

q̃ is a random sample following the distribution Pq̃ , which
is sampled uniformly along straight lines between pairs of
points sampled from the real distribution PqT and the generated
distribution Pq̂T . It is given by: q̃ = (1 − a) logµ(qT ) +
a logµ(expµ(G(logµ(qτ )))), where ∇q̃D(q̃) is the gradient with
respect to q̃, and 0 ⩽ a ⩽ 1.
The reference point µ of the tangent space used in our training
is set to the mean of the training data. For a given set of
training trajectories q1, . . . , qm. The mean is given by the Karcher
mean [25] in C,

µ = argmin
qi∈C

m∑
i=1

d2C(µ, qi) (5)

where {qi}mi=1 is m training data. We present a commonly used
algorithm for finding Karcher mean for a given set of curves [26].
This approach, presented in Algorithm 1. This computation is
based on an iterative calculation which converges to the optimal
solution which is the mean.

Algorithm 1: Karcher mean on C
Input: Given SRVFs {q1, q2 · · · qN},
ϵ = 0.9, τ : threshold which is a very small number
Output: µj : mean of {qi}i=1:N

1- µ0: initial estimate of Karcher mean, for example one
could just take µ0 = q1, j=0

repeat
for i← 1 to N do

2- Compute vi =
θi

sin(θi)
(q∗i − cos(θi)µj), where

cos(θi) = ⟨µj , q
∗
i ⟩

3- Compute the average direction v = 1
n

∑n
i=1 vi

4- Move µj in the direction of v by ϵ:
µj+1 = cos(ϵ∥v∥)µj + sin(ϵ∥v∥) v

∥v∥

5- j=j+1
until ∥v∥ < τ ;

Reconstruction loss – In order to predict motions close to
their ground truth, we add a reconstruction loss Lr . This loss
function quantifies the similarities in the tangent space Tµ(C)
between the tangent vector logµ(qT ) of the ground truth qT and
its associated reconstructed vector logµ(expµ(G(logµ(qτ )))). It
is given by,

Lr = ∥logµ(expµ(G(logµ(qτ ))))− logµ(qT )∥1 , (6)

where ∥.∥1 denotes the L1-norm.
Skeleton integrity loss – We propose a new loss function

Ls that minimizes the distance between the predicted poses and
their ground truth as a remedy to the generation of abnormal
skeleton poses. Indeed, the aforementioned loss functions rely
only on the SRVF representations, which imposes constraints
only on the dynamic information. However, to capture the spatial
dependencies between joints that avoid implausible poses, we need
to impose constraints on the predicted poses directly instead of
their motions. By doing so, we predict dynamic changes that fit
the initial pose and result in a long-term plausibility. The proposed
loss function is based on the Gram matrix of the joint configuration
P , G = PPT , where P can be seen as k × 3 matrix. Let Gi, Gj

be two Gram matrices, obtained from joint poses Pi, Pj ∈ Rk×3.
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The distance between Gi and Gj can be expressed [27, p. 328]
as:

∆(Gi, Gj) = tr (Gi) + tr (Gj)− 2
3∑

i=1

σi , (7)

where tr(.) denotes the trace operator, and {σi}3i=1 are the
singular values of PT

j Pi. The resulting loss function is,

Ls =
1

m

1

τ

m∑
i=1

τ∑
t=1

∆(Pi,t, P̂i,t) , (8)

where m represents the number of training samples, τ is the length
of the predicted sequence, P is the ground truth pose and P̂ is the
predicted one.

Bone length loss – To ensure the realness of the predicted
poses, we impose further restrictions on the length of the bones.
This is achieved through a loss function that forces the bone length
to remain constant over time. Considering bi,j,t and b̂i,j,t the j-
th bones at time t from the ground truth and the predicted i-th
skeleton, respectively, we compute the following loss :

Lb =
1

m

1

τ

1

B

m∑
i

τ∑
t=1

B∑
j

∥bi,j,t − b̂i,j,t∥ , (9)

with B the number of bones in the skeleton representation.
Global loss – PredictiveMA-WGAN is trained using a

weighted sum of the four loss functions La, Lr, Ls and Lb

introduced above, such that,

L = β1La + β2Lr + β3Ls + β4Lb. (10)

The parameters βi are the coefficients associated to different
losses, they are set empirically in our experiments.

The algorithm 2 summarizes the main steps of our approach.
It is divided in two stages, first we outline the steps needed to train
our model, then we present the prediction stage, where the trained
model is used to predict future poses of a given sequence.

5 EXPERIMENTS

We evaluate the proposed approach with extensive experiments on
two popular datasets. In this part we show and discuss our results.

5.1 Datasets and Pre-processing
Human 3.6M [28]. it is a database that contains 11 subjects
performing 15 different actions (Walking, Phoning, Taking pho-
tos. . . ). It is one of the largest dataset and the most commonly
used for evaluating human motion prediction with 3D skeletons.
Following the protocol set by previous approaches [7], [29] we
train our model on 6 subjects and test it on the specific clips of the
5th subject. In the same way as [29] out of the 32 skeletal joints
we only use 17, we remove the joints that correspond to duplicate
joints, hands and feet.

For Human3.6M we take the database processed by [5]
formatted in exponential map and we use their code to convert
them to Cartesian coordinates. During our preprocessing step we
down sample the sequence from 50 fps to 25 fps and then perform
a normalization by subtracting the mean, dividing by the norm
and subtracting the coordinates of the root joint (hips). In the
dataset proposed by [5] each class of each subject is composed
of 2 long sequences. We divide those into smaller sequence for
short term prediction (60 frames) and long term prediction (75

Algorithm 2: PredictiveMAWGAN algorithm

// Training
Data: {qiτ}mi=1: SRVFs of training prior poses, {qiT }mi=1:

real future poses, θ0 : initial parameters of G, η0 :
initial parameters of D, ϵ: learning rate, K: batch
size, λ: balance parameter of gradient penalty, ζ:
iterations number.

Result: θ: generator learned parameters.
1 for i = 1 . . . ζ do
2 Sample a mini-batch of K random prior poses

{qjτ}Kj=1 ∼ Pqτ ;
3 Sample a mini-batch of K real future poses;

{qjT }Kj=1 ∼ PqT ;
4 Dη ← ∆η(L),L is given by Eq. 10;
5 η ← η + ϵ.AdamOptimizer(η,Dη);
6 Sample a mini-batch of K random prior poses;

{qjτ}Kj=1 ∼ Pqτ ;
7 Compute {Gθ(logµ(qjτ ))}Kj=1;
8 Gθ ← ∆θ(−Dη

(
logµ

(
expµ(Gθ(logµ(qτ ))

))
))

9 θ ← θ + ϵ.AdamOptimizer(θ,Gθ);

// Prediction
Data: θ: generator learned parameters,

{Pi}τi=1: Prior poses of a testing sequence.
Result: {P̂i}Ti=τ+1: Predicted future poses.

10 Compute qτ from {Pi}τi=1 with Eq. 1;
11 Compute q̂T = expµ(Gθ(logµ(qτ ))) using the learned

parameters θ;
12 Transform q̂T into pose sequence {P̂i}Ti=τ+1 using Eq. 2,

with α(0) = Pτ

frames), following [8]. When generating these smaller sequence
we avoid overlap, e.g. when generating sequence for long term
prediction (75 frames) the first sequence contains the frames 1 to
75, the second frames 76 to 150 and so on. This leaves us with
3480 training samples and 812 testing samples for short-term
prediction and 2769 training samples and 644 testing samples for
long-term prediction.

CMU Motion Capture (CMU MoCap). CMU Mocap dataset 1 is
a database that contains 5 categories of motion, each containing
several actions. Following [8], we keep only 8 actions: ’basket-
ball’, ’basketball signal’, ’directing traffic’,’jumping’, ’running’,
’soccer’, ’walking’ and ’washing window’. We keep the same joint
configuration as for Human3.6M and preprocess the data the same
way. This leads to 2871 training samples and 704 test samples
for short-term prediction and 2825 training samples and 677 test
samples for long-term prediction.

5.2 Implementation Details

We train our network with a batch size of 64 on 500 epochs and
with a learning rate of 10−4 using the Adam optimizer [30].
We use β1 = 1, β2 = 1, β3 = 10 and β4 = 10 for the
loss coefficients. Our Implementation run on a PC with a Nvidia
Quadro RTX 6000 GPU, two 2.3Ghz processors and 64Go of
RAM using Tensorflow 2.2.

1. http://mocap.cs.cmu.edu

http://mocap.cs.cmu.edu
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5.3 Evaluation Metrics and Baselines

We use state-of the art methods for motion prediction that were
based on 3D coordinate representation for our comparison. This
includes RNN based method (Residual sup). [7], CNN based
method (ConvSeq2Seq) [8] and graph models; (FC-GCN) [9] and
(LDRGCN) [29].

The zero velocity baseline introduced by [7] is a very simple
baseline that use the last observed frame at t = τ as the
value for all the predicted frames, we also compare ourselves to
this baseline. The result of LDRGCN are those reported by the
authors for the method trained with data in 3D coordinate space.
Concerning FC-GCN, ConvSeq2Seq and Residual sup., the results
are those reported by [9] using 3D coordinate data for training.
We report the results presented by [29] for long-term prediction
(1000ms) results on Human 3.6M, since they are not provided in
[9]. The long term results for Residual sup. are not available, we
did not include it in our results.

We base our quantitative evaluation on the Mean Per Joint
Position Error (MPJPE) [28] in millimeter following the state-of-
the-art [29]. The metric compare the 3D coordinates of the ground
truth with the predicted motions. It is given by,

MPJPE =

√√√√ 1

∆t

1

k

τ+∆t∑
t=τ+1

k∑
j=1

∥pt,j − p̂t,j∥2 , (11)

where pt,j = [xj(t), yj(t), zj(t)] are the coordinates of joint j
at time t from the ground truth sequence, p̂t,j the coordinates
from the generated sequence, k the total number of joints in
the skeleton, τ the number of frames in prior sequence and ∆t
the number of predicted frames at which the sequence is evaluated.

While MPJPE evaluates the generated samples based on joints
positions, it is not enough to assess the evolution of the motion. To
complete our assessment we further compare our method with the
other approaches based on the evolution along time of the speed
of the predicted sequences, we refer to this metric as MPJS (Mean
Per Joint Speed). It is computed as follows,

MPJS(t) =
1

k

1

M

M∑
i=1

k∑
j=1

∥pi,t−1,j − pi,t,j∥ , (12)

with pi,t−1,j and pi,t,j the the coordinates of joint j at time t-1
and t respectively, k the number of joint in the skeleton and M the
total number of samples in the test set.

5.4 Quantitative Comparison

5.4.1 Joints position-based evaluation
To be consistent with recent works, the result are reported for short
term prediction and long term prediction. For short term prediction
we predict 10 future frames within 400ms given 10 historical
frames while we predict 25 in 1s based on 25 prior frames for long
term prediction. In Table 1 we show the comparison of our results
with recent methods that use 3D joint coordinates representation.
This representation as been proven to provide a more reliable
comparison than the angle based representation by [9]. The results
in the table show the clear superiority of our method over methods
from the state-of-the-art on both datasets. We highlight that our
approach is very competitive with the LDRGN approach for very
short term prediction (80ms and 160ms) while outperforming it

for longer prediction (320ms, 400ms and 1s). This demonstrate
that it is robust when predicting long term motions that stay close
to the ground truth.

Human3.6M average
millisecond (ms) 80 160 320 400 1000
Zero velocity 19.6 32.5 55.1 64.4 107.9
Residual sup. 30.8 57.0 99.8 115.5 -
convSeq2Seq 19.6 37.8 68.1 80.3 140.5
FC-GCN 12.2 25.0 50.0 61.3 114.7
LDRGCN 10.7 22.5 43.1 55.8 97.8
Ours 12.6 22.5 41.9 50.8 96.4

CMU MoCap average
millisecond (ms) 80 160 320 400 1000
Zero velocity 18.4 31.4 56.2 67.7 130.5
Residual sup. 15.6 30.5 54.2 63.6 96.6
convSeq2Seq 12.5 22.2 40.7 49.7 84.6
FC-GCN 11.5 20.4 37.8 46.8 96.5
LDRGCN 9.4 17.6 31.6 43.1 82.9
Ours 9.4 15.9 29.2 38.3 80.6

TABLE 1: Average error over all actions of Human3.6M and CMU
MoCap. The short-term in 80,160,320,400ms, and long-term in 1s.

In Table 2 and 3 we report the results for the literature and
for our method on all action classes of Human3.6M and CMU
Mocap datasets respectively. The baseline methods adopt a proto-
col that consist in reporting he average error on eight randomly
sampled test sequences. We found that this random sampling
can significantly affect the error and makes it hard to present a
fair comparison. To avoid this, we decided to report to run the
experiment on 8 randomly selected test sequences 100 times, we
then report the average error and the standard deviation for these
100 runs for the results of our model. With the standard deviation
we can have a better measurement of the general performance of
our architecture on different test sequences.

According to Tables 2 and 3, our method perform better than
the state-of the art, especially when dealing with long term pre-
diction, these results are consistent with the average error over all
actions classes. Interestingly our results also show that the simple
zero velocity baseline sometimes outperforms the state of the art
approach on long term prediction (e.g, Photo, Sitting and Walking
dog for Human3.6H, Soccer and Jumping for CMU MoCap). On
the other hand for short term prediction it is always outperformed
by the predictions methods. This may be an indication that the
MPJPE is not the best suited metric for the problem and a
motivation to find a better more representative metric in future
works. The results show that the previous approaches performance
decrease over time, while ours proves more robust in long term
horizons, we are show to perform better than both the zero velocity
baseline and the literature. We can notice than some classes
present a very large variance (e.g, jumping) while for other the
variance is very low (e.g, running). This is due to the number of
samples which can be be very different from a class to another
but also to the high diversity of samples for some classes. Other
classes that present less variability (e.g, walking) have a reduced
variance.

5.4.2 Motion-based evaluation
To further assess the generated sequences, we evaluate their
motion based on the MPJS introduced before. By looking at the
evolution of this metric, we can compare our generated motion
with the ground truth ones and evaluate the ability of our model
to predict motion in long term prediction. To this end we show
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Directions Discussion Eating Greeting
millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Zero velocity 16.0 27.1 46.4 53.9 83.9 17.8 29.7 51.0 59.8 103.1 13.5 21.9 37.0 43.9 83.3 26.4 43.7 70.1 80.5 124.9
Residual sup. 36.5 56.4 81.5 97.3 - 31.7 61.3 96.0 103.5 - 17.6 34.7 71.9 87.7 - 37.9 74.1 139.0 158.8 -
convSeq2Seq 22.0 37.2 59.6 73.4 118.3 18.9 39.3 67.7 75.7 123.9 13.7 25.9 52.5 63.3 74.4 24.5 46.2 90.0 103.1 191.2
FC-GCN 12.6 24.4 48.2 58.4 89.1 9.8 22.1 39.6 44.1 78.5 8.8 18.9 39.4 47.2 57.1 14.5 30.5 74.2 89.0 148.4
LDRGCN 13.1 23.7 44.5 50.9 78.3 9.4 20.3 35.2 41.2 67.4 7.6 15.9 37.2 41.7 53.8 9.6 27.9 66.3 78.8 129.7
Ours 11.1 20.9 38.8 47.0 83.5 11.9 22.7 44.8 54.6 102.2 9.0 15.9 29.1 35.0 65.3 19.6 35.1 64.0 78.2 126.8

±2.7 ±4.9 ±8.4 ±9.7 ±15.3 ±1.9 ±3.4 ±6.5 ±7.7 ±16.5 ±1.5 ±2.8 ±4.8 ±5.3 ±6.8 ±3.4 ±6.8 ±13.1 ±16.1 ±16.7

Phoning Photo Posing Purchase
millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Zero velocity 15.8 26.5 43.7 51.0 92.3 16.9 28.4 49.2 58.3 98.8 20.4 34.7 61.5 73.3 136.1 22.1 36.5 61.8 72.2 126.3
Residual sup. 25.6 44.4 74.0 84.2 - 23.6 47.4 94.0 112.7 - 27.9 54.7 131.3 160.8 - 40.8 71.8 104.2 109.8 -
convSeq2Seq 17.2 29.7 53.4 61.3 127.5 14.0 27.2 53.8 66.2 151.2 16.1 35.6 86.2 105.6 163.9 29.4 54.9 82.2 93.0 139.3
FC-GCN 11.5 20.2 37.9 43.2 94.3 6.8 15.2 38.2 49.6 125.7 9.4 23.9 66.2 82.9 143.5 19.6 38.5 64.4 72.2 127.2
LDRGCN 10.4 14.3 33.1 39.7 85.8 7.1 13.8 29.6 44.2 116.4 8.7 21.1 58.3 81.9 133.7 16.2 36.1 62.8 76.2 112.6
Ours 11.7 19.4 34.9 42.3 81.8 8.8 16.0 32.4 40.9 98.9 13.7 25.9 50.0 61.1 137.7 14.2 26.5 48.3 58.1 120.8

±2.2 ±3.6 ±6.4 ±7.6 ±9.8 ±2.0 ±3.5 ±6.9 ±8.6 ±16.1 ±3.3 ±6.3 ±11.0 ±12.7 ±12.8 ±2.5 ±4.8 ±9.8 ±12.5 ±19.0

Sitting Sitting Down Smoking Waiting
millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Zero velocity 14.6 23.9 40.9 48.4 94.7 19.5 32.4 53.5 61.8 112.2 14.9 24.6 41.7 49.3 84.0 17.0 28.2 48.9 57.8 99.4
Residual sup. 34.5 69.9 126.3 141.6 - 28.6 55.3 101.6 118.9 - 19.7 36.6 61.8 73.9 - 29.5 60.5 119.9 140.6 -
convSeq2Seq 19.8 42.4 77.0 88.4 132.5 17.1 34.9 66.3 77.7 177.5 11.1 21.0 33.4 38.3 52.2 17.9 36.5 74.9 90.7 205.8
FC-GCN 10.7 24.6 50.6 62.0 119.8 11.4 27.6 56.4 67.6 163.9 7.8 14.9 25.3 28.7 44.3 9.5 22.0 57.5 73.9 157.2
LDRGCN 9.2 23.1 47.2 57.7 106.5 9.3 21.4 46.3 59.3 144.6 8.1 13.4 24.8 24.9 43.1 9.2 17.6 47.2 71.6 127.3
Ours 10.4 17.9 33.1 40.7 97.7 15.8 28.2 52.9 64.5 125.2 7.9 14.3 25.2 30.4 63.4 11.4 20.3 38.8 47.2 94.0

±2.8 ±3.5 ±5.3 ±6.4 ±14.0 ±3.4 ±5.1 ±9.3 ±11.5 ±23.3 ±1.6 ±2.7 ±4.5 ±5.2 ±9.7 ±3.1 ±4.3 ±7.6 ±9.0 ±13.7

Walking Dog Walking Walking Together Average
millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Zero velocity 26.9 42.3 69.2 79.5 119.2 28.1 49.2 86.0 100.3 149.1 23.5 39.2 65.4 75.6 111.3 19.6 32.5 55.1 64.4 107.9
Residual sup. 60.5 101.9 160.8 188.3 - 23.8 40.4 62.9 70.9 - 23.5 45.0 71.3 82.8 - 30.8 57.0 99.8 115.5 -
convSeq2Seq 40.6 74.7 116.6 138.7 210.2 17.1 31.2 53.8 61.5 89.2 15.0 29.9 54.3 65.8 149.8 19.6 37.8 68.1 80.3 140.5
FC-GCN 32.2 58.0 102.2 122.7 185.4 8.9 15.7 29.2 33.4 50.9 8.9 18.4 35.3 44.3 102.4 12.2 25.0 50.0 61.3 114.7
LDRGCN 25.3 56.6 87.9 99.4 143.2 8.9 14.9 25.4 29.9 45.8 8.2 18.1 31.2 39.4 79.2 10.7 22.5 43.1 55.8 97.8
Ours 19.3 34.2 65.6 77.5 117.8 12.0 21.1 35.6 42.4 68.2 11.6 19.7 34.5 41.8 63.4 12.6 22.5 41.9 50.8 96.4

±5.9 ±9.5 ±17.8 ±19.7 ±23.7 ±1.1 ±1.7 ±2.9 ±3.8 ±5.3 ±1.1 ±1.6 ±3.0 ±3.8 ±6.4

TABLE 2: Motion prediction results measured with Equation 11 on Human3.6M dataset. Short-term results are reported within 80, 160, 320,
400ms, and long-term in 1s. Best results in bold while state-of-the-art best results that fit in our confidence interval are also written bold.

Basketball Basketball signal Directing traffic Jumping
millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Zero velocity 20.3 34.6 62.2 75.0 143.5 6.4 11.0 19.9 24.2 50.5 26.6 41.9 69.1 81.9 155.3 21.4 36.3 63.2 75.2 138.8
Residual sup. 18.4 33.8 59.5 70.5 106.7 12.7 23.8 40.3 46.7 77.5 15.2 29.6 55.1 66.1 127.1 36.0 68.7 125.0 145.5 195.5
convSeq2Seq 16.7 30.5 53.8 64.3 91.5 8.4 16.2 30.8 37.8 76.5 10.6 20.3 38.7 48.4 115.5 22.4 44.0 87.5 106.3 162.6
FC-GCN 14.0 25.4 49.6 61.4 106.1 3.5 6.1 11.7 15.2 53.9 7.4 15.1 31.7 42.2 152.4 16.9 34.4 76.3 96.8 164.6
LDRGCN 13.1 22.0 37.2 55.8 97.7 3.4 6.2 11.2 13.8 47.3 6.8 16.3 27.9 38.9 131.8 13.2 32.7 65.1 91.3 153.5
Ours 9.1 16.6 34.7 44.5 108.4 3.3 5.9 11.5 14.7 44.7 19.6 31.3 54.8 66.1 155.5 12.5 22.7 44.4 55.8 120.4

±0.7 ±1.5 ±3.5 ±4.4 ±5.1 ±1.1 ±2.0 ±3.7 ±4.7 ±15.0 ±16.7 ±23.2 ±34.4 ±37.4 ±52.1 ±2.0 ±3.8 ±7.4 ±9.6 ±21.0

Running Soccer Walking Wash window
millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Zero velocity 30.6 52.8 94.1 112.2 242.6 10.3 17.5 31.8 39.0 79.4 18.3 31.2 55.1 66.2 137.7 12.3 21.1 37.8 45.7 90.9
Residual sup. 15.6 19.4 31.2 36.2 43.3 20.3 39.5 71.3 84.0 129.6 8.2 13.7 21.9 24.5 32.2 8.4 15.8 29.3 35.4 61.1
convSeq2Seq 14.3 16.3 18.0 20.2 27.5 12.1 21.8 41.9 52.9 94.6 7.6 12.5 23.0 27.5 49.8 8.2 15.9 32.1 39.9 58.9
FC-GCN 25.5 36.7 39.3 39.9 58.2 11.3 21.5 44.2 55.8 117.5 7.7 11.8 19.4 23.1 40.2 5.9 11.9 30.3 40.0 79.3
LDRGCN 15.2 19.7 23.3 35.8 47.4 10.3 21.1 42.7 50.9 91.4 7.1 10.4 17.8 20.7 37.5 5.8 12.3 27.8 38.2 56.6
Ours 12.4 19.7 32.3 39.0 68.9 4.9 7.9 14.2 18.0 53.1 8.1 13.6 22.1 26.1 32.4 5.5 9.8 19.2 24.3 61.3

±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.3 ±0.6 ±1.2 ±1.6 ±4.5 ±0.0 ±0.0 ±0.0 ±0.0 ±1.8 ±0.8 ±1.4 ±2.5 ±3.1 ±8.4

TABLE 3: Motion prediction results measured with Equation 11 on CMU dataset. Short-term results are reported within 80, 160, 320, 400ms,
and long-term in 1s. Best results in bold while state-of-the-art best results that fit in our confidence interval are also written bold.

in Figures 2 the evolution of the MPJS over time steps on the
Human3.6M dataset.
Results show that the average ground truth speed vary slightly
around 9 mm/frame. The zero velocity baseline obviously show
the worst results as no motion is being produced and the speed
is always null. Both FC-GCN and ConvSeq2Seq speeds con-
tinuously decrease over time meaning that less motion is being
produced on average for long term horizon. On the other hand
our method show variations in the average produced speed up to
1s with even an increase during long term prediction. The result
from Tables 2 and 1 show that the pose error is good for long
time prediction, meaning that the increase of average speed do
not correspond to a degradation in the quality of the prediction.
This support our claim that our method is a good fit to predict
long motion that keep their spatial and temporal coherency. We

report in Figure 3 the evolution of MPJS for the CMU dataset in
the same way as for Human3.6M. We do not report the results for
FC-GCN as there was no pretrained model available and we were
unable to train their model ourselves. The results are similar to
those of Human3.6M: average speed of prediction method lower
than the ground truth, constant decrease for ConvSeq2Seq, more
variation for our method with a significant increase in long term
horizons. However we see that this time for short term prediction
ConvSeq2Seq produce an average speed closer to the ground
truth than ours. This seems to confirm the MPJPE results for
ConvSeq2Seq that show that it performs better on CMU than on
HUMAN3.6M, we still perform better for long term prediction,
showing that our method is robust to different kind of datasets.
Interestingly however all evaluated methods have average speeds
well below the values of the ground truth. While this may be
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Fig. 2: The average speed (MPJS) evolution over 1000 ms of all action
classes of the Human3.6M dataset.

Fig. 3: The average speed (MPJS) evolution over 1000 ms of all action
classes of the CMU MoCap dataset.

explained in part by the presence of sudden, high amplitude and
hard to predict motion in action classes like Direction or Greeting,
it still indicate that using losses that solely constraint the poses
during training lead to generating sequences with slower motion
since fast motions are more prone to error. This might be hint that
using losses on the speed of the motion will help produce even
better predictions.

We present in Table 4 the average MPJS for each class over
all time steps on Human3.6M. In consistency with Figure 2 this
table shows a significant difference between the ground truth
and generated motions with all methods. However, this difference
changes significantly between classes; some classes like Walking
Dog or Greeting present a high difference (6.19 and 4.89 respec-
tively when compared with our method) while other have a lower
difference like Eating or Smoking (1.93 and 1.70 respectively
when compared with our method). Furthermore, our method is
still able to outperform ConvSeq2Seq and FC-GCN on all classes
except Walking and Walking together where FC-GCN performs
better indicating a capability to better model periodical motion.
On the other hand for non-periodic motion our method outperform
FC-GCN by a large margin (Greeting, Sitting Down, etc.).

5.5 Qualitative Comparison
In this part we present some examples that illustrate the smooth-
ness of the generated motion with our method compared to the
ground truth and the baselines.
In Figure 4 we present the 3D pose sequences of a predicted
motion using a model trained for long term prediction with our
architecture. We also show the prediction of the same 3D pose
sequence by the baseline methods ConvSeq2Seq [8] and FC-
GCN [9] using their publicly available code. LDRGCN [29] is
not included as the code for his method is not yet available. We
observe that visually our method produce a realistic and smooth
motion and that our pose sequence follow more closely the ground

Ground truth ConvSeq2Seq FC-GCN Ours
Direction 5.97 2.43 2.39 3.41

Discussion 8.42 3.03 3.28 4.7
Eating 6.24 3.35 3.77 4.31

Greeting 11.54 3.41 3.82 6.65
Phoning 7.77 3.29 3.74 4.66
Photo 7.77 2.42 2.99 3.81
Posing 10.56 3.34 3.85 4.84

Purchases 10.28 2.60 3.41 4.97
Sitting 7.37 1.85 2.04 3.34

Sitting Down 9.58 2.50 2.37 4.53
Smoking 6.33 2.90 4.01 3.95
Waiting 7.98 3.37 3.56 4.63

Walking Dog 13.29 4.59 5.33 7.1
Walking 12.76 8.11 9.9 8.78

Walking together 9.95 4.95 6.87 6.59
Average 9.05 3.48 4.09 5.08

TABLE 4: Averaged MPJS over 1000 ms for all classes of Hu-
man3.6M dataset. Closer to the ground truth is better.

truth than the other methods event for long term prediction. The
motion produced by our method do not show any discontinuity,
this is the consequence of applying the predicted dynamic of the
motion to a starting pose, it prevent the discontinuity than can
appear when predicting directly the 3D poses as the other methods
do.

5.6 Motion Smoothness

In Figure 5 we show the evolution of the y coordinate from the
skeleton’s left foot over time and in Figure 6 the evolution of the
x axis of the right hand. The 25 frames samples were selected
randomly from the walking and walking together action classes
respectively from the Human3.6M dataset. We see clearly in the
figure that our method is able to generate a smooth motion in
both cases and that we are able to follow the real motion from
the ground truth, closely for the walking sample and with a small
temporal delay for walking together while for this later, the other
methods show a completely different movement.

5.7 Computation Time

We show a comparison of the computing time in Table 5 of our
method with ConvSeq2Seq and FC-GCN. This time comparison
is done for long term prediction (i.e, predicting 25 frames) with 8
sequences for each of the 15 action classes from the Human3.6M
dataset using the code provided by the author for ConvSeq2Seq
and FC-GCN. The results from Table 5 show that despite the
additional computations required to map the motion back and forth
to the tangent space compared to standard GAN architecture, we
can predict motion with a speed similar to the other two methods
and faster than ConvSeq2Seq.

total time time per sample (25 frames)
ConvSeq2Seq 3.04s ≈ 25ms

FC-GCN 1.67s ≈ 14ms
Ours 2.42s ≈ 20ms

TABLE 5: Prediction time comparison for 8 predicted samples per
action on Human3.6M.
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Fig. 4: The left frames correspond to the sequence used as a prior. From top to bottom : ground truth, the results of ConvSeq2Seq [8], FC-GCN
[9] and our method. The illustrated action corresponds to ’Walking Together’ from Human3.6M dataset. Short-term frames shown correspond
to predicted frames 1, 9 and 10 and long-term frames to frames 11, 12, 22, 23, 24 and 25.

Fig. 5: Walking action from Human3.6M. X-axis and y-axis corre-
sponds respectively to frame numbers and joint position on the y axis.

Fig. 6: Walking Together action from Human3.6M. X-axis and y-axis
corresponds respectively to frame numbers and joint position on the x
axis for the right hand joint.

5.8 Distribution Visualization

With Figure 7 we further assess the quality of the predicted
samples using the t-Distributed Stochastic Neighbor Embedding
(t-SNE) algorithm [31]. We present a 2D visualization of 677
samples of long term prediction from the CMU MoCap dataset.
The resulting representation clearly indicates that the motion from
the ground truth and the predicted motion are from very close
distributions. Moreover we can see that the different generated 3D
sequences from the same action are relatively distant from each
other, meaning for the same action class our model can predict
several motions while respecting the prior motion used for the
prediction.

(a) Predicted motions

(b) Ground truth motions

Fig. 7: 2D visualization of the predicted motions by our method and
their associated ground truth using t-SNE algorithm based on Gram
distance eq.7. Each color represents an action.

5.9 Recursive Generation

One of the main limitation of our method is its inability to generate
sequence of lengths it has not been trained on. We can however
still generate longer sequences trough recursive generation by
predicting subsequent motion based on previous prediction. This
recursive generation can be done without specific training simply
by modifying the input during testing. However, by feeding our
prediction to the network to get further prediction we cause the
network to accumulate error over each recursive iteration. In fact
we can not reliably extend the duration of the prediction more than
2 or 3 times. For all types of motion the first and second prediction
using predicted data as input are good, the third one is usually still
good for periodic motion (e.g walking) but not for non-periodic
motion (e.g greeting). From the fourth prediction onward even
the periodic motion will start to deteriorate significantly. Non-
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Fig. 8: Exemple of recursive prediction on sample of action class
walking from the CMU MoCap Dataset for a total of 4 seconds of
prediction. On top the ground truth, on the bottom our prediction.

periodic motion will usually freeze into a static pose which is to be
expected as our prediction can only predict the end of the motion,
not infer what other motion might follow. For periodic motion the
deterioration comes from the accumulating error which will cause
the skeleton to deform. Still we are able to generate motion 3 to
4 time longer than what the network was trained on, which allows
us to tackle one of the limitation of the method in some ways.
We present in Figure 8 an example of recursive prediction on the
action class walking from the CMU MoCap dataset. The figure
shows the original prediction and the three subsequent predictions.
This shows that our model can predict motion for longer sequences
than it has been trained on as we observe significant differences
only during the third recursive prediction, the motion however still
follow walking action.

5.10 Cross-dataset capabilities
Due to differences in the skeleton formats used by Human3.6M
and CMU MoCap it is not possible to perform cross-dataset
evaluation on these datasets. We have however trained our model
on the NTU RGB+D 120 dataset [32] and then predicted motion
from data captured with a Kinect camera in real time. Qualitative
results are presented in figure 9 (in blue the ground truth and in
red the prediction). We show the prediction a person rubbing its
hands. We can see that our method is able to predict on data that
does not come from the dataset used for training. While there is a
small difference between the ground truth and our prediction we
see that we do not reproduce the discontinuities from the Kinect
and our prediction has not been influenced by the discontinuities
in the prior

5.11 Ablation Study
To show the efficiency of the different losses used by our network
especially the effect of the combination of the skeleton integrity
loss Ls and the bone length loss Lb, we perform our ablation
study using model that were trained using only the mentioned
losses. The ablation is performed on the Human3.6M dataset due
to the huge quantity of data from the dataset. The ablation results
are reported in Table 6 for short term and long term prediction
using the the average error of all actions classes at different time
steps. The results show a clear improvement when adding one of
either the skeleton integrity loss or the bone length loss compared
to using only La and Lr . Furthermore using both Ls and Lb

improve significantly the results for long term prediction while
keeping a similar accuracy for short term prediction with regard to
using only Ls or only Lb. This evidences the importance of using

both losses when doing long term prediction, it allows the model
to capture the spatial dependencies between joints and to be able
to predict plausible poses even for longer term horizons.
We show in Figure 10 the effect of the losses on the visual quality
of the prediction. We notice that excluding Ls and Lb leads to
important deformations in the upper body but the produced legs
motion is rather coherent. Adding Ls helps produce a motion
closer to the ground truth, we however still see noticeable bones
deformations (better seen as animations in the supplementary
material ) even if we are able to keep a coherent skeleton. Using
only Lb leads to a skeleton without any deformation even during
long time prediction but also to very little motion being produced.
Using both losses allows us to keep the best skeleton coherency
while producing a motion that is close to that of the ground truth.
We show in table 7 the MPJPE values for different input sequence
length for long term prediction on Human3.6M. We report the
values for sequences of 25 frames (default value used for compar-
ison with the state of the art), 15 frames, 10 frames and 5 frames.
We see that a shorter prior lead to a decrease in performance
for both short and long term prediction but this decrease is
less important for long term prediction (except for the 5 frames
prior) highlighting the ability of our network to generate accurate
prediction for long term motions. We observe that we can use
priors of 10 or 15 frame with a moderate drop in performance but
with only 5 frames the drop increase significantly especially for
long term prediction.

loss functions 80 160 320 400 1000
La + Lr 20.2 34.9 62.4 74.9 133.3

La + Lr + Ls 13.6 23.4 42.6 51.6 103.8
La + Lr + Lb 12.6 22.4 41.3 49.9 105.6

La + Lr + Ls + Lb 12.3 22.2 41.3 50.1 96.2

TABLE 6: Impact of the bone length loss and the skeleton integrity
loss on the prediction performance for short-term and long-term.

loss functions 80 160 320 400 1000
5 frames prior 14.2 25.3 47.0 56.5 104.4
10 frames prior 13.6 24.2 44.7 53.5 98.6
15 frames prior 13.3 23.6 43.7 52.4 96.8
25 frames prior 12.3 22.2 41.3 50.1 96.2

TABLE 7: Impact of the prior length on long term prediction

6 CONCLUSION AND LIMITATIONS

In this paper we presented a new and robust method to deal
with human motion prediction. In our method we represent the
temporal evolution of 3D human poses as trajectories, these
trajectories can be mapped to points on a hypersphere. To be
able to learn learn this manifold-valued representation we use a
manifold-aware Wasserstein GAN that can capture both the spatial
and temporal dependencies involved in human motion. Through
extensive experiments we prove the robustness of our method for
long term motion prediction when compared to recent literature.
With our qualitative results we confirm that we are able to predict
plausible poses and smooth motions in long term horizons.
Predicting human gait is a nice application of our predictive
networks. Our results on these classes are promising and we
believe we would obtain good results on 3D gait databases. The
two main limitations of the proposed method are the following:
the fixed length of sequence and the inability to deal with sudden
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Fig. 9: Cross database results from NTU RGB+D to Kinect real time capture. In blue the ground truth and in red the prediction. The
discontinuities from the Kinect camera are highlighted in red

Fig. 10: Impact of the bone length loss and the skeleton integrity loss
on prediction quality on a sample from action class Walking together
from Human3.6M. From top to bottom: the ground truth, neither Ls

nor Lb, only Ls, only Lb and both Ls and Lb

changes in motion. The fixed length in motion is a consequence of
the GAN architecture where the input and output sizes a fixed. We
demonstrate in our experiment that we can deal with this problem
by using recursive generation that show the ability of the model
to generate up to 4s motion for some classes when trained on 1s
sequences. The inability to deal with a sudden change of motion
is inherent to the way motion prediction is usually approached.
Indeed, we only consider the historical motion as a condition to
predict the motion but it is not always enough to get an accurate
prediction. Things like the environment, the goal of the motion and
the motion of other persons can influence the future. Taking some
of these modalities into account would surely allows for longer
and more accurate predictions.
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