
HAL Id: hal-03814256
https://hal.science/hal-03814256v1

Submitted on 13 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rewriting Logic Semantics and Symbolic Analysis for
Parametric Timed Automata

Jaime Arias, Kyungmin Bae, Carlos Olarte, Laure Petrucci, Peter Csaba
Ölveczky, Fredrik Rømming

To cite this version:
Jaime Arias, Kyungmin Bae, Carlos Olarte, Laure Petrucci, Peter Csaba Ölveczky, et al.. Rewriting
Logic Semantics and Symbolic Analysis for Parametric Timed Automata. [Research Report] LIPN.
2022. �hal-03814256�

https://hal.science/hal-03814256v1
https://hal.archives-ouvertes.fr

Rewriting Logic Semantics and Symbolic Analysis for Parametric

Timed Automata∗

Jaime Arias1, Kyungmin Bae2, Carlos Olarte1, Peter Csaba Ölveczky3, Laure Petrucci1,
and Fredrik Rømming3

1LIPN, CNRS UMR 7030, , Université Sorbonne Paris Nord
2Pohang University of Science and Technology

3University of Oslo

October 13, 2022

Abstract

This paper presents a rewriting logic semantics for parametric timed automata (PTAs) and shows that
symbolic reachability analysis using Maude-with-SMT is sound and complete for the PTA reachability
problem. We then refine standard Maude-with-SMT reachability analysis so that the analysis terminates
when the symbolic state space of the PTA is finite. We show how we can synthesize parameters with
our methods, and compare their performance with Imitator, a state-of-the-art tool for PTAs. The prac-
tical contributions are two-fold: providing new analysis methods for PTAs—e.g. allowing more general
state properties in queries and supporting reachability analysis combined with user-defined execution
strategies—not supported by Imitator, and developing symbolic analysis methods for real-time rewrite
theories.
Keywords. Timed automata, rewriting logic, symbolic analysis, parameter synthesis

Contents

1 Introduction 2

2 Preliminaries 3

3 A Rewriting Logic Semantics for PTA 6
3.1 The PTA to Rewrite Theory Transformation . 6
3.2 Correctness of the [[]] Transformation . 9

4 Symbolic Reachability Analysis 11
4.1 Symbolic Reachability Analysis . 12
4.2 Soundness and Completeness . 12
4.3 Symbolic Reachability Analysis with Folding . 14

5 Parameter Synthesis and Analysis 16
5.1 Reachability and EF-synthesis . 17
5.2 Strategies . 18

∗To appear in the proceedings of the 8th International Workshop on Formal Techniques for Safety-Critical Systems
(FTSCS’22).

1

6 Benchmarks 18

7 Related Work 19

8 Concluding Remarks 20

1 Introduction

Many, if not most, safety-critical computer systems, e.g. in robotics, microelectronics circuits, avionics, and
automotive and aerospace systems, are time-critical systems whose correctness depends on time and on the
correct values of their parameters. Timed automata [AD94] are a popular formalism for modeling real-time
systems, and the timed automaton tool Uppaal [DLL+15] has been applied to a wide range of safety-
critical applications, including automotive [LMT15, LPY01], airborne [CKJ+22], and fire fighting [WWG+15]
systems.

Parametric timed automata (PTA) [AHV93] extend timed automata to the case where the values of some
system parameters are unknown. The formal modeling, parameter synthesis, and analysis of PTAs are sup-
ported by the state-of-the-art Imitator tool [And21], which has been applied to a number of systems, including
protocols [HRSV02, KP12, JLR15], an asynchronous circuit commercialized by ST-Microelectronics [CEFX09],
and a distributed architecture for the flight control system of spacecraft designed at ASTRIUM Space Trans-
portation [FSLM12].

Timed automata are nevertheless a somewhat restricted formalism—to ensure that key properties are
decidable—that does not support well features like unbounded data structures, user-defined data types,
different forms of communications, dynamic object creation and deletion, and so on.

Rewriting logic [Mes92] and its associated tool Maude [CDE+07] are on the other side of the expressive-
ness spectrum, and support the above features. The Real-Time Maude tool [ÖM08, ÖM07] extends Maude to
real-time systems and has been used to analyze a wide range of systems where the above features are needed.
Such applications include state-of-the-art 50-page multicast and IETF protocols [ÖMT06, LÖ09], scheduling
protocols with unbounded queues [ÖC06], state-of-the-art wireless sensor network protocols [ÖT09], MANET
protocols [LÖM16], turning control algorithms for aircraft [BKMÖ15], human multitasking [BMÖ19], large
cloud-based transaction systems [BGG+18, GÖ14], and so on (see [Ölv14] for a dated overview). In partic-
ular, thanks to its expressiveness, Real-Time Maude has been applied as a semantic framework and formal
analysis backend in which a number of modeling languages, such as (subsets of) Ptolemy II [BÖF+12],
AADL [ÖBM10], a language developed at DOCOMO Labs [ADY+09], and others have been given a formal
semantics and formal analysis capabilities [Ölv11].

However, Real-Time Maude only supports concrete execution of real-time systems, where time advances
by a concrete value in each step. Many behaviors (those where time advances by other values) are therefore
not analyzed in dense-time systems, and hence Real-Time Maude analysis is in general unsound [ÖM06]. One
way to provide sound and complete formal analysis for real-time systems in (Real-Time) Maude is to perform
symbolic execution that has recently been enabled by combining rewriting logic with SMT solving [RMM17],
and implemented in the Maude-SE tool [YB20].

In this paper we define a rewriting logic semantics for PTAs by mapping a PTA A into a rewriting logic
theory [[A]], and showing that A and [[A]] are bisimilar (Section 3). More importantly, we show in Section 4
that symbolic execution with Maude-with-SMT gives us sound and complete reachability analysis methods for
[[A]]. However, straight-forward Maude-with-SMT execution of [[A]] generates a new SMT variable whenever
time advances, which leads to nontermination when the desired states are unreachable. We therefore show in
Section 4 that “folding” symbolic states solves this problem, and implement a reachability analysis command
for Maude-with-SMT that terminates whenever the parametric zone graph of the PTA is finite.

Section 5 shows how we can synthesize parameters that guarantee that a desired reachability property
is satisfied. We also show how we can combine our methods and Maude’s strategy language to perform
symbolic reachability analysis when the PTA execution follows a user-defined strategy.

2

In Section 6 we compare the performance of Imitator, “standard” Maude-with-SMT reachability analysis,
and our new reachability command on a number of PTAs taken from the PTA benchmark library [AMvdP21].

The contributions of this work are the following. First, it provides new analysis methods for PTA that are
not provided by Imitator. For example, we can analyze PTAs that behave according to a certain execution
strategy, defined using Maude’s strategy language, and we illustrate in this paper that this can be useful
for PTAs. Our approach also allows us to tackle properties that Imitator cannot handle, by permitting
state properties not only on the locations but also on the values of clocks and parameters. Second, Maude
provides meta-programming facilities that allow us to quickly implement and prototype new analysis methods
for PTAs, instead of having to hardcode them in a tool. Third, Maude provides full (explicit-state) LTL
and LTLR model checking, and Real-Time Maude provides timed CTL model checking [LÁÖ15]; when
these methods are extended to the symbolic case, we would get full (timed and untimed) temporal logic
checking for PTA, which is not provided by either Imitator or Uppaal. Fourth, and maybe most important,
this work is the first step investigating how real-time systems can be efficiently symbolically analyzed using
Maude-with-SMT, with the goal of providing sound and complete symbolic analysis methods for (Real-Time)
Maude. This would also automatically equip a number of modeling languages with such sound and complete
formal analysis methods.

The companion repository of this paper [ABO+22] contains the rewrite theories, examples, and bench-
marks presented here, as well as a tool for translating Imitator files into Maude.

2 Preliminaries

This section gives background to bisimulations [CGP01], parametric timed automata [AHV93], rewriting
logic [Mes92], rewriting modulo SMT [RMM17], and Maude [CDE+07] and its strategy language [CDE+22].

Transition Systems and Bisimulations. A transition system A is a triple (A, a0,→A), where A is a
set of states, a0 ∈ A is the initial state, and →A ⊆ A×A is a transition relation. A function h : A→ B is a
bisimulation from A to B iff: (i) h(a0) = b0; and (ii) for each a ∈ A, if a →A a′ then h(a) →B h(a

′), and if
h(a) →B b then there exists a′′ ∈ A with a→A a′′ and h(a′′) = b.

Parametric Timed Automata (PTA) Let X be a set of real-valued clocks (e.g. x, y) and P a set of
rational-valued parameters (e.g. p, q). A linear term over parameters (plt) is an expression (

∑
i αipi) + β,

where pi ∈ P and αi, β ∈ Q. A (diagonal) inequality has the form x1 − x2 ▷◁ plt , with xi ∈ X ∪ {0} and
▷◁ ∈ {<,≤,=,≥, >}. Examples are x− y ≤ 2p+ q, x > q − 1 and 2 ≤ p. A (convex) constraint (or zone) is
a conjunction of inequalities. We write C for the set of zones.

A parametric timed automaton (PTA) A is a tuple A = (Σ, L, ℓ0, X, P, I, E), where Σ is a finite set of
actions, L is a finite set of locations, ℓ0 ∈ L is the initial location, X is a set of clocks, and P is a set
of parameters. I : L → C denotes an invariant for each location and E is a set of transitions of the form
(ℓ, g, σ,R, ℓ′), with source ℓ ∈ L, target ℓ′ ∈ L, guard g ∈ C, action σ ∈ Σ, and clock reset R ⊆ X.

A parameter valuation is a function v : P → Q≥0 and a clock valuation is a function w : X → R≥0. For
d ∈ R≥0 the clock valuation w + d is defined (w + d)(x) := w(x) + d. For a clock reset R ⊆ X the clock

valuation w[R] is defined w[R](x) := 0 if x ∈ R and w(x) otherwise. We write 0⃗ for the clock valuation s.t.
∀x ∈ X : 0⃗(x) = 0. We extend parameter valuations to linear terms. We write v, w |= (xi − xj ▷◁ plt) iff
w(xi)− w(xj) ▷◁ v(plt), and v, w |= Z iff v, w |= e for each inequality e in the zone Z.

Given a parameter valuation v, we write v(A) for the timed automaton (TA) obtained by replacing each
parameter p in invariants and guards by v(p). The concrete semantics of a PTA A is derived from that of
the TA v(A), and is defined as a timed transition system with states (ℓ, w), initial state (ℓ0, 0⃗) (we assume
that 0⃗ |= I(ℓ0)), and transitions −→ =

d−→ ;
e−→, where continuous time delay (

d−→) and discrete transitions
(

e−→) are defined as

• If d ∈ R≥0 and w + d |= I(ℓ), then (ℓ, w)
d−→ (ℓ, w + d).

• If e = (ℓ, g, σ,R, ℓ′) ∈ E and w |= g and w[R] |= I(ℓ′) then (ℓ, w)
e−→ (ℓ′, w[R]).

3

idle add sugar

x2 ≤ p2
preparing coffee

x2 ≤ p3

done

x1 ≤ 10

bStart
x1 := 0
x2 := 0

x1 ≥ p1
bSugar
x1 := 0

x2 = p2
cup

x2 = p3
coffee
x1 := 0

bStart
x1 := 0
x2 := 0

x1 = 10
sleep

Figure 1: A coffee machine (CM) modeled as a PTA.

Example 1. The PTA in Fig. 1—with 4 locations, 2 clocks (x1 and x2) and 3 parameters (p1, p2, p3)—models
a simple coffee machine. Invariants are displayed inside dotted boxes.

The machine can initially be idle for an arbitrarily long time. Then, whenever the user presses the button
bStart, the PTA enters location add sugar, resetting both clocks. The machine can remain in this location
as long as the invariant (x2 ≤ p2) is satisfied; there, the user can add a dose of sugar by pressing the button
bSugar, provided the guard (x1 ≥ p1) is satisfied, which resets x1. Then, p2 time units after the bStart
button was last pushed, a cup is delivered (action cup), and the coffee is being prepared; p3 time units after
the last bStart button push, the coffee (action coffee) is delivered. After 10 time units, the machine returns
to the idle mode—unless a user again requests coffee by pushing bStart.

The parametric zone graph (PZG) provides a symbolic semantics for a PTA. A single PZG treats all
parameter valuations symbolically. Although the PZG avoids the uncountably infinite timed transition
system, it may be (countably) infinite. We define the following operations on zones:

Time elapse: Z↗ def
= {(v, w + d) | d ∈ R≥0 ∧ v, w |= Z}

Clock reset: Z[R]
def
= {(v, w[R]) | v, w |= Z}

The PZG is a transition system where each abstract state consists of a location and a non-empty zone. The
PZG of A = (Σ, L, ℓ0, X, P, I, E) is (S, s0,⇒), with S ⊆ L×C, initial state s0 = (ℓ0, (

∧
x∈X x = 0)↗ ∩ I(ℓ0)).

A transition step (ℓ, Z) ⇒ (ℓ′, Z ′) exists if for some (ℓ, g, σ,R, ℓ′) ∈ E we have Z ′ = ((Z ∩ g)[R] ∩ I(ℓ′))↗ ∩
I(ℓ′) ̸= ∅. We write ⇒∗ for the reflexive-transitive closure of ⇒.

Example 2. Figure 2 presents the beginning of the parametric zone graph of the coffee machine in Example 1.

Rewrite Theories. An order-sorted signature Σ is a triple (S,≤, F) with S a set of sorts, ≤ a partial
order on S, and F a set of function symbol declarations f : s1 × · · · × sn → s, for n ≥ 0. We denote by TΣ,s

the set of ground (i.e. not containing variables) Σ-terms of sort s, and by TΣ(X)s the set of Σ-terms of sort
s over a set X of sorted variables. TΣ(X) and TΣ denote all terms and ground terms, respectively.

A substitution θ : X → TΣ(X) maps each variable to a term of the same sort. tθ denotes the term
obtained by simultaneously replacing each variable x in t with θ(x).

An order-sorted equational theory is a pair E = (Σ, E), where Σ is an order-sorted signature and E is a
set of (conditional) equations of the form t = t′ if ψ, where t, t′ ∈ TΣ(X)s for some sort s ∈ Σ and ψ is a
conjunction of equations. We write u =E u′ iff (Σ, E) ⊢ (∀X) u = u′ [Mes97].

A rewrite theory [Mes92] is a tuple R = (Σ, E, L,R), where (Σ, E) is an equational theory, L is a set
of labels, and R is a set of labeled (conditional) rewrite rules of the form l : q −→ r if ψ, where l ∈ L,
q, r ∈ TΣ(X)s for some sort s ∈ Σ, and ψ is a conjunction of equations and rewrites.

t −→R t′ is a (one-step) rewrite if there is a rule l : q −→ r if ψ, a subterm u of t, and a substitution θ
such that u =E qθ and t′ is obtained from t by replacing the subterm u with rθ, provided vθ = v′θ holds for
each equation v = v′ in ψ. We denote by −→∗

R the reflexive-transitive closure of −→R.

4

id
le

x1 = x2

x2 ≥ 0
p1 ≥ 0
p2 ≥ 0
p3 ≥ 0

a
d

d
su

g
a
r x1 = x2

0 ≤ x2 ≤ p2
p1 ≥ 0
p3 ≥ 0

a
d

d
su

g
a
r x1 ≥ 0

p1 + x1 ≤ x2 ≤ p2
p1 ≥ 0
p3 ≥ 0

p
re

p
a
ri

n
g

co
ff

ee

x1 = x2

p2 ≤ x2 ≤ p3
p1 ≥ 0
p2 ≥ 0

· · · · · ·

bStart

bS
ug
ar

cup

Figure 2: The PZG of the coffee machine example CM .

A rewrite theory R is called topmost iff there is a sort State at the top of one of the connected components
of the poset (S,≤) such that for each rule l : q −→ r if ψ, both q and r have the top sort State, and no
operator has sort State or any of its subsorts as an argument sort.

Rewriting with SMT A built-in theory E0 of (Σ, E) is a first-order theory with a signature Σ0 ⊆ Σ,
where each sort s in Σ0 is minimal in Σ and for each operator f : w −→ s in Σ\Σ0, s /∈ Σ0 and f has no other
subsort-overloaded typing in Σ0. Satisfiability of a constraint in E0 is assumed to be decidable using the
SMT theory TE0 which is consistent with (Σ, E): for t1, t2 ∈ TΣ0 , if t1 =E t2, then TE0 |= t1 = t2 [RMM17].

A constrained term is a pair ϕ ∥ t of a constraint ϕ in E0 and a term t ∈ TΣ(X0) over variables X0 ⊆ X
of the built-in sorts in E0 [RMM17, BR19]. A constrained term ϕ ∥ t symbolically represents all instances of
the pattern t such that ϕ holds:
Jϕ ∥ tK = {t′ | t′ =E tθ and TE0

|= ϕθ for ground θ : X0 −→ TΣ0
}.

A symbolic rewrite on constrained terms symbolically represents a (possibly infinite) set of system tran-
sitions. Let R be a topmost theory such that for each rule l : q −→ r if ψ, extra variables not occurring
in the left-hand side q are in X0, and ψ is a constraint in a built-in theory E0. Then, a one-step symbolic
rewrite ϕ ∥ t⇝R ϕ′ ∥ t′ holds iff there exist a rule l : q −→ r if ψ and a substitution θ : X −→ TΣ(X0) such
that (1) t =E qθ, (2) t′ =E rθ, (3) TE0

|= (ϕ ∧ ψθ) ⇔ ϕ′, and (4) ϕ′ is TE0
-satisfiable. We denote by ⇝∗

R the
reflexive-transitive closure of ⇝R.

If ϕt ∥ t⇝∗ ϕu ∥ u is a symbolic rewrite, then there exists a “concrete” rewrite t′ −→∗ u′ with t′ ∈ Jϕt ∥ tK
and u′ ∈ Jϕu ∥ uK. Conversely, for any concrete rewrite t′ −→∗ u′ with t′ ∈ Jϕt ∥ tK, there exists a symbolic
rewrite ϕt ∥ t⇝∗ ϕu ∥ u with u′ ∈ Jϕu ∥ uK.

Maude. Maude [CDE+07] is a language and tool supporting the specification and analysis of rewrite
theories. We use Maude to specify rewrite theories, and summarize its syntax below:

mod M is ... endm --- Rewrite theory M
pr R . --- Importing a theory R
sorts S ... Sk . --- Declaration of sorts S1,..., Sk
subsort S1 < S2 . --- Subsort relation
vars X1 ... Xm : S . --- Logical variables of sort S
op f : S1 ... Sn -> S . --- Operator S1 x ... x Sn -> S
op c : -> T . --- Constant c of sort T
ceq t = t’ if c . --- Conditional equation
crl [l] : q => r if c . --- Conditional rewrite rule

5

Maude provides a number of analysis methods, including computing the normal form (“value”) of an ex-
pression (command red), simulation by rewriting, and explicit-state reachability analysis and LTL model
checking. The command

smt-search [n, m]: t =>* t′ such that Φ .

symbolically searches for n states, reachable from t ∈ TΣ(X0) within m steps, that match the pattern
t′ ∈ TΣ(X) and satisfy the constraint Φ in E0. More precisely, it searches for a constrained term ϕu ∥ u such
that true ∥ t⇝∗ ϕu ∥ u and for some θ : X −→ TΣ(X), u =E t′θ and TE0 |= ϕu ⇒ Φθ. The parameters [n,m]

are optional.
Maude provides built-in sorts Boolean, Integer, and Real for the SMT theories of Booleans, integers,

and reals. Rational constants of sort Real are written n/m (e.g., 0/1).
Maude supportsmeta-programming, where a Maude moduleM (resp. a term t) can be (meta-)represented

as a Maude term M of sort Module (resp. as a Maude term t of sort Term) in Maude’s META-LEVEL module.
Sophisticated analysis commands and model/module transformations can then be easily defined as ordi-
nary Maude functions on such (meta-)terms. For this purpose, Maude provides built-in functions such as
metaReduce, metaRewrite, metaMatch, and metaCheck.

Maude-SE [YB20] extends Maude with additional functionality for rewriting modulo SMT, including
witness generation for smt-search. It uses two theory transformations to implement symbolic rewrit-
ing [RMM17]. In essence, a rewrite rule l : q −→ r if ψ is transformed into a constrained-term rule

l : PHI ∥ q −→ (PHI and ψ) ∥ r if smtCheck(PHI and ψ)

where PHI is a Boolean variable, and smtCheck invokes the underlying SMT solver to check the satisfiability
of an SMT condition. This rule is executable if the extra SMT variables in (var(r) ∪ var(ψ)) \ var(q) are
considered constants.

Strategy Language. Maude’s strategy language [CDE+22] allows us to define strategies for applying the
rewrite rules. The command srew t using str rewrites the term t according to the strategy str and returns
all its results. Basic strategies include the application of a rule l once anywhere in the term (strategy l, and
top(l) for rewriting at the top of term using rule l; all denotes all rules), idle (identity), fail (empty
set), and match P s.t. C, which checks whether the current term matches the pattern P subject to the
(optional) condition C. Compound strategies can then be defined using constructs such as: concatenation
(α ;β), disjunction (α | β), iteration (α∗), and α or-else β, which executes β if α fails.

3 A Rewriting Logic Semantics for PTA

This section presents a rewriting logic semantics for PTA by defining in Section 3.1 a theory transformation
[[]] mapping a PTA A into a rewrite theory [[A]]. Section 3.2 provides a bisimulation result relating the
concrete semantics of A and a rewrite relation induced by [[A]].

3.1 The PTA to Rewrite Theory Transformation

We fix A to be the PTA (Σ, L, ℓ0, X, P, I, E) with n = |X| clocks (x1, . . . , xn), m = |P | parameters
(p1, . . . , pm), and k = |L| locations {ℓ1, · · · , ℓk}. The idea is to represent a concrete state (ℓ, w) of the
PTA A as a Maude term

[ℓ : w(xi) ; . . . ; w(xn)] < P1 ; . . . ; Pm >

where the Pi are variables. A state (ℓ, w) in the TA v(A) (i.e. the PTA A whose parameters are instantiated
with the parameter valuation v) then has the form

[ℓ : w(xi) ; . . . ; w(xn)] < v(p1) ; . . . ; v(pm) >.

To avoid consecutive steps that advance time, which can be combined into one such step, we use ”delayed”
states

6

< ℓ : w(xi) ; . . . ; w(xn) > < P1 ; . . . ; Pm >

where time cannot advance any further.
Each transition in A is modeled by a rewrite rule. For example, in the coffee machine in Fig. 1, the

transition bSugar is modeled by the rewrite rule

crl [add_sugar-bSugar] :
< add_sugar : X1 ; X2 > < P1 ; P2 ; P3 > =>
[add_sugar : 0/1 ; X2] < P1 ; P2 ; P3 >
if (X1 >= P1 and X2 <= P2) = true .

Furthermore, for each location ℓ ∈ L, we add a “tick” rewrite rule that advances the time in all clocks,
modeling “idling” in that location. The tick rule for, e.g., location add sugar is

crl [add_sugar-tick] :
[add_sugar : X1 ; X2] < P1 ; P2 ; P3 > =>
< add_sugar : X1 + T ; X2 + T > < P1 ; P2 ; P3 >
if (X2 + T <= P2 and T >= 0/1) = true [nonexec] .

Since time can advance by any amount T where x2 + T ≤ p2, this time increase is modeled by introducing
a new variable T in the right-hand side of the rule, thus making this rule not directly executable in Maude
([nonexec], see Section 4).

The rewrite theory [[A]] defines the sorts Location and State, with subsorts of State, NState (”Non-
delayed state”) and DState (”delayed state”), as follows:

pr REAL . --- SMT rational/real numbers
sorts State NState DState Location . --- Sorts for states
subsorts NState DState < State .
--- Constants for locations
ops ℓ1 · · · ℓk : -> Location .
--- States of the system
op <_:_; . . . ;_> <_; . . . ;_> : Location Real . . . Real︸ ︷︷ ︸

n+m

-> DState .

op [_:_; . . . ;_] <_; . . . ;_> : Location Real . . . Real︸ ︷︷ ︸
n+m

-> NState .

[[A]] defines SMT-variables to represent clock valuations, parameter valuations, and time elapse:

vars X1 . . . Xn : Real . --- Clock valuations
vars P1 . . . Pm : Real . --- Parameter valuations
var T : Real . --- Time elapse

We define two functions [[]]b and [[]]e for translating parametric guards and invariants to terms, where

[[true]]b = true [[b1 ∧ b2]]b = [[b1]]b and [[b2]]b

and for each inequality relation in {≥,≤,=, >,<}, we have, e.g.: [[e1 ≤ e2]]b = [[e1]]e <= [[e2]]e and [[e1 =
e2]]b = [[e1]]e === [[e2]]e. For arithmetic expressions, we define:

[[e1 + e2]]e = [[e1]]e + [[e2]]e [[xR
i]]e = Xi if xi ̸∈ R

[[e1 − e2]]e = [[e1]]e - [[e2]]e [[xi]]e = Xi

[[e1e2]]e = [[e1]]e * [[e2]]e [[xd
i]]e = Xi + T

[[p/q]]e = p/q if p, q ∈ N [[pi]]e = Pi

[[xR
i]]e = 0/1 if xi ∈ R

[[]] maps each transition (ℓ, g, σ,R, ℓ′) ∈ E, to the following conditional rewrite rule ℓ-σ:

crl [ℓ-σ] : < ℓ : X1 ; . . . ; Xn > < P1 ; . . . ; Pm >

=> [ℓ′ : [[xR
1]]e ; . . . ; [[xR

n]]e] < P1 ; . . . ; Pm >

if [[g ∧ I(ℓ′)[xi/x
R
i]]]b = true .

where I(ℓ′)[xi/x
R
i] denotes substituting xRi for xi in the expression I(ℓ′) for each i. Furthermore, for each

ℓ ∈ L, [[]] adds a conditional rewrite rule ℓ-tick:

crl [ℓ-tick] : [ℓ : X1 ; . . . ; Xn] < P1 ; . . . ; Pm >

7

=> < ℓ : X1 + T ; . . . ; Xn + T > < P1 ; . . . ; Pm >

if ([[I(ℓ)[xi/x
d
i]]]b and T >= 0/1) = true [nonexec] .

Example 3. [[]] transforms the PTA CM in Fig. 1 to the rewrite theory [[CM]] below.

mod PTA-COFFEE is
pr REAL .
sorts State NState DState Location .
subsorts NState DState < State .

--- ---------------------------
vars X1 X2 : Real .
vars P1 P2 P3 : Real .
var T : Real .
--- ---------------------------

--- Configurations
ops idle add_sugar preparing_coffee done : -> Location [ctor] .
op <_:_;_> <_;_;_> : Location Real Real Real Real Real

-> DState [ctor] .
op [_:_;_] <_;_;_> : Location Real Real Real Real Real

-> NState [ctor] .

crl [idle-bStart] :
< idle : X1 ; X2 > < P1 ; P2 ; P3 > =>
[add_sugar : 0/1 ; 0/1] < P1 ; P2 ; P3 >
if (true and 0/1 <= P2) = true .

crl [idle-tick] :
[idle : X1 ; X2] < P1 ; P2 ; P3 > =>
< idle : X1 + T ; X2 + T > < P1 ; P2 ; P3 >
if (true and T >= 0/1) = true [nonexec] .

crl [add_sugar-bSugar] :
< add_sugar : X1 ; X2 > < P1 ; P2 ; P3 > =>
[add_sugar : 0/1 ; X2] < P1 ; P2 ; P3 >
if (X1 >= P1 and X2 <= P2) = true .

crl [add_sugar-cup] :
< add_sugar : X1 ; X2 > < P1 ; P2 ; P3 > =>
[preparing_coffee : X1 ; X2] < P1 ; P2 ; P3 >
if (X2 === P2 and X2 <= P3) = true .

crl [add_sugar-tick] :
[add_sugar : X1 ; X2] < P1 ; P2 ; P3 > =>
< add_sugar : X1 + T ; X2 + T > < P1 ; P2 ; P3 >
if (X2 + T <= P2 and T >= 0/1) = true [nonexec] .

crl [preparing_coffee-coffee] :
< preparing_coffee : X1 ; X2 > < P1 ; P2 ; P3 > =>
[done : 0/1 ; X2] < P1 ; P2 ; P3 >
if (X2 === P3 and 0/1 <= 10/1) = true .

crl [preparing_coffee-tick] :
[preparing_coffee : X1 ; X2] < P1 ; P2 ; P3 > =>
< preparing_coffee : X1 + T; X2 + T > < P1;P2;P3 >
if (X2 + T <= P3 and T >= 0/1) = true [nonexec] .

crl [done-sleep] :
< done : X1 ; X2 > < P1 ; P2 ; P3 > =>
[idle : X1 ; X2] < P1 ; P2 ; P3 >
if (X1 === 10/1 and true) = true .

crl [done-bStart] :
< done : X1 ; X2 > < P1 ; P2 ; P3 > =>
[add_sugar : 0/1 ; 0/1] < P1 ; P2 ; P3 > .
if (true and 0/1 <= P2) = true .

crl [done-tick] :
[done : X1 ; X2] < P1 ; P2 ; P3 > =>
< done : X1 + T ; X2 + T > < P1 ; P2 ; P3 >
if (X1 + T <= 10/1 and T >= 0/1) = true [nonexec] .

endm

8

3.2 Correctness of the [[]] Transformation

In this section we relate A and [[A]] by a bisimulation. Since a transition in A consists of a delay followed
by a discrete transition, we define a corresponding rewrite relation 7→[[A]] combining a “tick” rule application
with a “transition” rule application. We then show that these respective relations in the concrete semantics
of v(A) and in [[A]] are bisimilar w.r.t. initial state [ℓ0 : 0/1 ; . . . ; 0/1] < v(p1) ; . . . ; v(pm) >.

Definition 1. Let A = (Σ, L, ℓ0, X, P, I, E) be a PTA and t1, t2, t3 be terms of [[A]]. We write t1 7→[[A]] t3
if there exists a t2 such that t1 −→ t2 is a one-step rewrite applying an ℓ-tick rule in [[A]] for some ℓ ∈ L
and t2 −→ t3 is a one-step rewrite applying an ℓ -σ rule of [[A]] for some ℓ ∈ L and σ ∈ Σ. Furthermore, we
write t1 7→∗

[[A]] t2 to indicate that there exists a sequence of 7→[[A]] rewrites from t1 to t2.

Let v be a parameter valuation. (TΣ,NState)v denotes the set of E-equivalence classes of ground terms of
sort NState with parameter valuations v, and S denotes the set of concrete states of v(A). We define a map
[[]]v : S → (TΣ,NState)v, relating concrete states in A to states (of sort NState) in [[A]], where for all concrete
states (ℓ, w) ∈ S,

[[(ℓ, w)]]v = [ℓ : [[w(x1)]]e ; . . . ; [[w(xn)]]e] < [[v(p1)]]e ; . . . ; [[v(pm)]]e >.

Before proving the main theorem of this section, we need some lemmas.

Lemma 1. For all sets of clocks X, zones Z, parameter valuations v, and clock valuations w,

v, w′ |= Z iff [[Z[xi/x
′
i]]]bθ holds

in the following cases:

1. w′ = w, x′i = xi, and
θ = {Xi 7→ [[w(xi)]]e, Pi 7→ [[v(pi)]]e}.

2. w′ = (w + d), d ∈ R≥0, x
′
i = xdi , and

θ = {Xi 7→ [[w(xi)]]e, Pi 7→ [[v(pi)]]e, T 7→ [[d]]e}.

3. w′ = w[R], R ⊆ X, x′i = xRi , and
θ = {Xi 7→ [[w(xi)]]e, Pi 7→ [[v(pi)]]e}.

Proof. By induction on Z.

• Base case: E.g. if Z is the inequality xi − xj ≥
∑

i(αipi) + β, then for each combination of w′, x′i, θ:

1. w(xi)− w(xj) ≥
∑

i(αiv(pi)) + β holds iff [[Z]]eθ = [[w(xi)]]e - [[w(xj)]]e >= [[α0]]e * [[v(p0)]]e +

. . . + [[αm]]e * [[v(pm)]]e + [[β]]e holds.

2. w(xi) + d− w(xj) + d ≥ ∑
i(αiv(pi)) + β holds iff [[Z[xi/x

d
i]]]eθ =

[[w(xi)]]e + [[d]]e - [[w(xj)]]e + [[d]]e
>= [[α0]]e * [[v(p0)]]e + . . . + [[αm]]e *

[[v(pm)]]e + [[β]]e

3. w[R](xi)− w[R](xj) ≥
∑

i(αiv(pi)) + β holds iff [[Z[xi/x
R
i]]]eθ = [[w(xi) if xi ∈ R else 0]]e -

[[w(xj) if xj ∈ R else 0]]e >= [[α0]]e * [[v(p0)]]e +

. . . + [[αm]]e * [[v(pm)]]e + [[β]]e

All the above statements hold since their left hand and right hand denote the “same” expression.
Although one in mathematics, and the other in Maude.

9

• Induction: Let Z = Z1 ∧ Z2. By definition v, w′ |= Z1 ∧ Z2 iff v, w′ |= Z1 and v, w′ |= Z2. We can
assume the induction hypotheses that v, w′ |= Zi iff [[Zi[xi/x

′
i]]]bθ holds (i.e., evaluates to true) for

i ∈ {1, 2}. Since [[(Z1∧Z2)[xi/x
′
i]]]bθ equals [[Z1[xi/x

′
i]∧Z2[xi/x

′
i]]]bθ, by definition of [[]]b, this is equal

to ([[Z1[xi/x
′
i]]]b and [[Z2[xi/x

′
i]]]b)θ, which again, since a substitution is a homomorphic extension of

a variable substitution, equals [[Z1[xi/x
′
i]]]bθ and [[Z2[xi/x

′
i]]]bθ, which by the induction hypotheses

equals true and true, which again is true.

Lemma 2. Let A be a PTA, v a parameter valuation, and (ℓ, w) and (ℓ′, w′) concrete states of v(A). If
(ℓ, w) −→ (ℓ′, w′), then [[(ℓ, w)]]v 7→[[A]] [[(ℓ

′, w′)]]v.

Proof. By definition, ((ℓ, w), σ, (ℓ′, w′)) ∈ −→ if there are d,w′′ such that (ℓ, w)
d→ (ℓ, w′′)

σ→ (ℓ′, w′).

For the first step (
d→), we have (ℓ, w)

d→ (ℓ, w′′), which by definition, means that v, (w + d) |= I(ℓ). Let
t = [[(ℓ, w)]]v =

[ℓ : [[w(x1)]]e ; . . . ; [[w(xn)]]e] < [[v(p1)]]e ; . . . ; [[v(pm)]]e >.

We can apply the rule ℓ-tick to t to get u =

< ℓ : [[w(x1)]]e + [[d]]e ; . . . ; [[w(xn)]]e + [[d]]e > < [[v(p1)]]e ; . . . ; [[v(pm)]]e >

since there exists a substitution θ = {Xi 7→ [[w(xi)]]e, Pi 7→ [[v(pi)]]e, T 7→ [[d]]e}, such that (a) t =E lθ, u =E rθ,
and (b) TE0 |= ϕθ, where l, r, ϕ are the left-hand side, right-hand side, and condition of rule ℓ-tick respectively.
Note that (b) holds by Lemma 1 because ϕθ = ([[I(ℓ)[xi/x

d
i]]]b and T >= 0/1) θ holds iff v, (w + d) |= I(ℓ),

which is true by assumption.
For the second step (

σ→), we have (ℓ, w′′)
σ→ (ℓ′, w′), where w′′ = w + d and w′ = w′′[R], which means there

is a discrete transition (ℓ, g, σ,R, ℓ′) in A such that v, w′′ |= g and v, w′ |= I(ℓ′). We can apply the rule l-σ
to the above u to get u2 =

[ℓ′ : ([[w(x1)]]e + [[d]]e) if x1 ∈ R else 0/1 ; . . . ; ([[w(xn)]]e + [[d]]e) if xn ∈ R else 0/1]
< [[v(p1)]]e ; . . . ; [[v(pm)]]e >

since there exists a substitution θ = {Xi 7→ [[w′′(xi)]]e, Pi 7→ [[v(pi)]]e}, such that (a) u =E lθ, y =E rθ, and (b)
TE0

|= ϕθ, where l, r, ϕ are the left-hand side, right-hand side, and condition of rule ℓ-σ respectively. Again,
note that (b) holds by Lemma 1 because ϕθ = [[g ∧ I(ℓ′)[xi/xRi]]]bθ holds iff v, w′′ |= g and v, w′ |= I(ℓ′),
which is true by assumption.

Lemma 3. Let A be a PTA, v a parameter valuation, (ℓ, w) a concrete state of v(A), and b ∈ (TΣ,NState)v.
If [[(ℓ, w)]]v 7→[[A]] b then there exists a concrete state (ℓ′, w′) in v(A) such that (ℓ, w) −→ (ℓ′, w′) and b =
[[(ℓ′, w′)]]v.

Proof. By Definition 1, t1 7→[[A]] t3 if there exists a t2 such that t1 −→ t2 is a one-step sequential rewrite
applying an ℓ-tick rule in [[A]] for some ℓ ∈ L and t2 −→ t3 is a one-step sequential rewrite applying a ℓ-σ
rule of [[A]] for some σ ∈ Σ.

For the first step
(
ℓ-tick−→

)
, by assumption there exists a substitution θ = {Xi 7→ [[w(xi)]]e, Pi 7→ [[v(pi)]]e, T 7→

[[d]]e}, for some d ∈ R+, such that there exists a rewrite from t = [[(ℓ, w)]]v =

[ℓ : [[w(x1)]]e ; . . . ; [[w(xn)]]e] < [[v(p1)]]e ; . . . ; [[v(pm)]]e >

to u =

< ℓ : [[w(x1)]]e + [[d]]e ; . . . ; [[w(xn)]]e + [[d]]e > < [[v(p1)]]e ; . . . ; [[v(pm)]]e >

for at least one d ∈ R+. For this rewrite to be enabled, the condition ([[I(ℓ)[xi/x
d
i]]]b and T >= 0/1)θ must

hold. By Lemma 1, ([[I(ℓ)[xi/x
d
i]]]b and T >= 0/1)θ holds iff v, (w+d) |= I(ℓ). Since v, (w+d) |= I(ℓ), there

exists a concrete state (ℓ, w + d) = (ℓ, w′′) in A such that (ℓ, w)
d→ (ℓ, w + d).

For the second step
(

σ−→
)
, the term u =

10

< ℓ : [[w(x1)]]e + [[d]]e ; . . . ; [[w(xn)]]e + [[d]]e > < [[v(p1)]]e ; . . . ; [[v(pm)]]e >

above is rewritten to u2 =

[ℓ′ : ([[w(x1)]]e + [[d]]e) if x1 ∈ R else 0/1 ; . . . ; ([[w(xn)]]e + [[d]]e) if xn ∈ R else 0/1]
< [[v(p1)]]e ; . . . ; [[v(pm)]]e >

using the rule ℓ-σ in [[A]]. By definition of [[A]], there is a corresponding discrete transition (ℓ, g, σ,R, ℓ′)
in A. The matching substitution used in the rewrite is then θ = {Xi 7→ [[w′′(xi)]]e, Pi 7→ [[v(pi)]]e}. Since
this rewrite took place, θ, the condition of the rule, [[g ∧ I(ℓ′)[xi/xRi]]]bθ, must hold. By Lemma 1, ϕθ =
[[
(
g ∧ I(ℓ′)[xi/xRi]

)
]]bθ holds iff v, (w+ d) |= g and v, (w+ d)[R] |= I(ℓ′). Therefore we can apply the discrete

transition (ℓ, g, σ,R, ℓ′) in A, to go from (ℓ, w + d) to (ℓ′, (w + d)[R]). Altogether, for any PTA-rewrite

[ℓ : [[w(x1)]]e ; . . . ; [[w(xn)]]e] < [[v(p1)]]e ; . . . ; [[v(pm)]]e >

ℓ-tick−→
< ℓ : [[w(x1)]]e + [[d]]e ; . . . ; [[w(xn)]]e + [[d]]e > < [[v(p1)]]e ; . . . ; [[v(pm)]]e >

ℓ-σ−→
[ℓ′ : ([[w(x1)]]e + [[d]]e) if x1 ∈ R else 0/1 ; . . . ; ([[w(xn)]]e + [[d]]e) if xn ∈ R else 0/1]
< [[v(p1)]]e ; . . . ; [[v(pm)]]e >

there is the corresponding PTA-transition

(ℓ, w)
d→ (ℓ, w + d)

σ→ (ℓ′, (w + d)[R])

where indeed [[(ℓ, w)]]v =

[ℓ : [[w(x1)]]e ; . . . ; [[w(xn)]]e] < [[v(p1)]]e ; . . . ; [[v(pm)]]e >

and [[(ℓ, (w + d)[R])]]v =

[ℓ′ : [[w(xR
1)]]e + [[d]]e ; . . . ; [[w(xR

n)]]e + [[d]]e] < [[v(p1)]]e ; . . . ; [[v(pm)]]e >

Hence, for all b such that [[(ℓ, w)]]v 7→[[A]] b, there exists a concrete state (ℓ′, w′) in v(A) such that (ℓ, w)
−→ (ℓ′, w′) and b = [[(ℓ′, w′)]]v.

Theorem 1. Let A = (Σ, L, ℓ0, X, P, I, E) be a parametric timed automaton, v(A) = (S, s0,−→) be A’s con-
crete semantics with respect to a parameter valuation v, and [[A]] = (Σ, E, L,R). Then, [[]]v is a bisimulation
map between the transition systems (S, s0,−→) and

(
(TΣ,NState)v , [[s0]]v, 7→[[A]]

)
.

Proof. (i) By definition a0 = s0 and b0 = [[s0]]v (ii) Follows from the lemmas above.

4 Symbolic Reachability Analysis

The theory [[A]] is not directly executable in Maude, since the tick rules introduce a new variable T in
their right-hand sides. Section 4.1 describes how the rewrite theory [[A]] can be symbolically executed using
Maude-with-SMT, and we prove in Section 4.2 that symbolic executions in [[A]] correspond to transitions in
the PZG of A. A significant problem is that “standard” symbolic reachability analysis using Maude-SE adds
a new SMT variable to the symbolic state in each tick step, which leads to nontermination if the desired
states are not reachable. To solve this problem, we use “folding” [Mes20] to ignore a new symbolic state
when it is subsumed by a previously encountered one. In Section 4.3 we define and implement in Maude
such symbolic reachability analysis with folding. We prove that our procedure terminates when the PZG is
finite, and hence obtain a decision procedure for reachability when the number of states in the PZG of the
automaton is finite.

11

4.1 Symbolic Reachability Analysis

Although the tick rules are not directly executable in Maude, we can symbolically execute a rewriting-
modulo-SMT theory with the symbolic rewrite relation ⇝. For example, we have the following symbolic
rewrite in our running example:

ϕ ∥ [idle : X1 ; X2] < P1 ; P2 ; P3 > ⇝[[A]]

ϕ and T’ ≥ 0/1 ∥ < idle : X1 + T’ ; X2 + T’ > < P1 ; P2 ; P3 >

The SMT variables Xi (resp. Pi) represent the values of the clocks (resp. parameters). The variable T’ is a
fresh variable, of sort Real, created in the rewrite. This symbolic rewrite captures all the infinitely many
delays that can take place when the automaton is in state idle.

Maude-SE allows us to solve symbolic reachability problems as illustrated in the following example.

Example 4. In the module PTA-COFFEE, the command

smt-search [idle : X1 ; X2] < P1 ; P2 ; P3 > =>*
< done : X1’ ; X2’ > < P1 ; P2 ; P3 >

such that (X1 === X2 and X1 >= 0/1 and P1 >= 0/1
and P2 >= 0/1 and P3 >= 0/1) = true .

uses a breadth-first search strategy to answer the following reachability question: are there values for the
clocks and parameters such that the location done can be reached from the location idle? Note that the clocks
and the parameters are not given specific values, not even in the initial state. The symbolic term to the left
of the arrow =>*, together with the constraint in the “such that” section of the query, specify initial states
where the values of the clocks are equal (X1 === X2) but unknown, and where parameters and clocks are
all non-negative numbers. The first answer to this query includes the satisfiable constraint (syntax where)
accumulated along the path from idle to done:

Solution 1
state: < done : #3-T ; #1-T + #2-T + #3-T > <P1 ; P2 ; P3>

where X1 === X2 and X1 >= 0/1 and P1 >= 0/1 and P2 >= 0/1 and
... and #1-T:Real + #2-T:Real === P3 and
... and #3-T:Real <= 10/1 and #1-T:Real + #2-T:Real === P3

The terms #i-T are fresh SMT variables generated when the tick rules are applied. The result includes
information about the values of the clocks in location done: the value of the first clock (X1’) is #3-T ≤ 10/1,
while the second clock (X2’) is the sum of the delays accumulated in locations add-sugar, preparing-coffee
and done, and therefore X2’ >= P3.

4.2 Soundness and Completeness

This section shows that the transition system induced by the symbolic rewrite relation ⇝[[A]] is bisimilar to
the PZG of A. We start with a lemma establishing the correspondence between a zone Z and the (SMT)
boolean expression [[Z]]b. This is useful to later show that (ℓ, Z) is a valid reachable state in the PZG of A
(Z cannot be empty) iff the boolean expression in the corresponding constrained term in [[A]] is satisfiable
(and hence, reachable via ⇝[[A]]).

Lemma 4. For any zone Z, Z ̸= ∅ iff [[Z]]b is satisfiable.

Proof. For the (⇒) side, we know that there exists v and w s.t. v, w |= Z (making true all the inequalities
in Z). By the definition of [[]]b, we can show that the valuation (v, w) is a witness for satisfiability of [[Z]]b.
For the (⇐) side, a witness for [[Z]]b must necessarily give values to all the clock variables and parameters.
This witness is the needed valuations v, w showing that Z is not empty.

Next we define operations on constrained terms corresponding to those on zones. We use {ℓ : e1; . . . ; en}
to denote either [ℓ : e1; . . . ; en] or < ℓ : e1; . . . ; en >. TZ is the set of terms of the form

ϕ ∥ {ℓ : e1; . . . ; en} <P1; . . . ; Pm >

12

where Pi are variables, ei expressions (possibly containing SMT variables) and ϕ must contain at least one
inequality for each variable occurring after the symbol ∥ (e.g. #1-T ≥ 0/1). We use U and V to range over
elements in TZ .

Definition 2. Given R ⊆ X, we use eRi to denote the expression 0/1 if xi ∈ R and ei if xi ̸∈ R. Let
U = ϕ ∥ {ℓ : e1; · · · ; en}<P1; · · · ; Pm>. We define the following operations on TZ − terms:

• Reset: U [R]
def
= ϕ ∥ {ℓ : eR1 ; . . . ; eRn } < P1; . . . ; Pm >

• Time elapse: U↗ def
= (ϕ and T ≥ 0/1) ∥ {ℓ : e1 + T; . . . ; en + T} < P1; . . . ; Pm > where T is a fresh

variable (not occurring in ϕ).

• Conjunction: Let G be a boolean expression such that var(G) ⊆ var(U). Then,

U ∧G def
= (ϕ and G) ∥ {ℓ : e1; . . . ; en} < P1; . . . ; Pm >.

• Instantiation: Given a clock valuation w and a parameter valuation v,

U{v, w} def
= (ϕ and ψ) ∥ {ℓ : e1; . . . ; en} < P1; . . . ; Pm >

where ψ is the boolean expression

e1 === [[w(x1)]]e and · · · and en === [[w(xn)]]e and

P1 === [[v(p1)]]e and · · · and Pm === [[v(pm)]]e.

U{v, w} equates (===) the expressions of the clocks with the values given by w (similarly for the param-
eters). Hence, U{v, w} agrees with the values assigned by v and w.

Definition 3 (Relation ∼). Define ∼ ⊆ (L× C)× TZ as follows:

(ℓ, Z) ∼ U = ϕ ∥ < ℓ : e1; . . . ; en > < P1; . . . ; Pm >

whenever for all v and w, we have (v, w |= Z) iff the boolean expression in U{v, w} is satisfiable.

Intuitively, a state (ℓ, Z) in the PZG of A is related to the symbolic state U whenever the locations are
the same and the valuations that belong to the zone Z are consistent with the values making the constraint
ϕ in U true.

The following lemmas show that the operations on zones agree with those in Definition 2.

Lemma 5 (Reset). Let R ⊆ X, Z ̸= ∅, and assume that (ℓ, Z) ∼ U where

U = ϕ ∥ < ℓ : e1; . . . ; en > < P1; . . . ; Pm >

Then, (ℓ, Z[R]) ∼ U [R].

Proof. Since (ℓ, Z) ∼ U , for all v, w, the constraint in U{v, w} is satisfiable iff v, w |= Z. If xi ∈ R, then
eRi = 0/1. Consider a clock valuation w′ s.t. v, w′ |= Z[R]. It must be the case that w′ = w[R] and
w′(xi) = 0 for all xi ∈ R. Since the constraint ϕ and ψ (see Definition 2) in U{v, w} is satisfiable, so it is
ϕ and ψ and 0/1 === 0/1. On the other side, if xi ∈ R, 0/1 = [[w′(xi)]]e is satisfiable iff w′(xi) = 0.

Lemma 6 (Time elapse). Let Z ̸= ∅, and assume that (ℓ, Z) ∼ U where

U = ϕ ∥ < ℓ : e1; . . . ; en > < P1; · · · ; Pm >

Then, (ℓ, Z↗) ∼ U↗.

13

Proof. By definition, v, w + T |= Z↗ whenever v, w |= Z (and T ≥ 0). The result follows by noticing that
the expression ei in U is replaced by ei+T in U↗ (and the inequality T ≥ 0 is added to the constraint) .

Lemma 7 (Conjunction). Let G be a guard or an invariant, Z ̸= ∅, U = ϕ ∥ < ℓ : e1; . . . ; en > < P1; . . . ; Pm >

and assume that (ℓ, Z) ∼ U . Then, (ℓ, Z ∩G) ∼ U ∧ ([[G]]b[Xi/ei]).

Recall that the relation ⇒ on the PZG captures, in one step, a discrete transition followed by a delay
transition. Hence, a state (ℓ, Z) is ready to perform a discrete transition leading to (ℓ′, Z ′) where Z ′ =

((Z ∩ g)[R]∩ I(ℓ′))↗ ∩ I(ℓ′) (if Z ′ is not empty). Let
2
⇝[[A]] be the application of a ℓ-σ rule followed by a tick

rule, and let
2
⇝

∗
[[A]] be its reflexive and transitive closure. The following Theorem shows that ⇒ on the PZG

is bisimilar to
2
⇝[[A]] on constrained terms.

Theorem 2. Let A be a PTA. ∼ is a bisimulation between the transition systems (C, s0,⇒) and (TZ , ϕ0 ∥
t0,

2
⇝[[A]]) where t0 = < ℓ0 : T; . . . ; T > < P1; . . . ; Pm > and ϕ0 = (Pi ≥ 0/1 and T ≥ 0/1 and [[I(ℓ0)]]b[Xi/T]).

Proof. Let U = ϕ ∥ t be a term in TZ . If t is of sort NState, U† denotes the corresponding term ϕ ∥ t′
where t′ is of sort DState (changing [ℓ : e1; · · · ; en] to <ℓ : e1; · · · ; en>). Similarly, if t is of sort DState, U†

denotes the corresponding term ϕ ∥ t′ where t′ is of sort NState.
Let U = ϕ ∥ ⟨ℓ : e1; · · · ; en⟩⟨P1; · · · ; Pm⟩ and (ℓ, Z) s.t. (ℓ, Z) ∼ U . The result follows from lemmas

5, 6 and 7 and noticing that U ⇝[[A]]

(
(U ∧ g)[R] ∧ I(ℓ′)

)†
⇝[[A]]

(
(U ∧ g)[R] ∧ I(ℓ′)

)↗

∧ I(ℓ′), where,

g = [[g]]b[ei/Xi], and similarly for the invariants. Note also that Lemma 4 guarantees that a given transition
is enabled in (ℓ, Z) iff it is also enabled at U whenever (ℓ, Z) ∼ U .

4.3 Symbolic Reachability Analysis with Folding

Many PTAs A generate finite PZGs (so reachability analysis should terminate for both positive and negative
queries), while the number of symbolic states generated by smt-search of the corresponding [[A]] is infinite.
The problem is that the search command stops exploring from a symbolic state only if it has already visited
the same state. In many cases, due to the fresh variables created, symbolic states representing the same set
of concrete states are not the same, even though they are logically equivalent, as exemplified below.

Example 5. Consider the automaton in Fig. 3a. After each iteration i between ℓ0 and ℓ1, we have y−x ≥ 5i
and hence, infinitely many different symbolic states. After 10 iterations, the constraint y ≥ 50 is satisfiable
and the state bad can be reached. In this case, the command

smt-search [l0 : 0/1;0/1]< > =>* <bad : X’;Y’>< >

finds a solution to this reachability problem.
Now consider the automaton in Fig. 3b, where the location bad cannot be reached. The execution of

the command smt-search [l0 : 0/1]<> =>* <bad : X’><> does not terminate, since the following symbolic
states (omitting some details for readability) appear while exploring the state space:

s0 : 0/1 ≤ #0-T ∥ ⟨ℓ0 : #0-T⟩
s1 : ϕ0 and 5/1 ≤ #0-T and 10/1 ≥ #0-T + #1-T ∥ ⟨ℓ1 : #0-T + #1-T⟩
s2 : ϕ1 and 0/1 ≤ #2-T ∥ ⟨ℓ0 : #2-T⟩
s3 : ϕ2 and 5/1 ≤ #2-T and 10/1 ≥ #2-T + #3-T ∥ ⟨ℓ1 : #2-T + #3-T⟩
· · ·

where ϕi is the constraint in the state si. Note that Js0K = Js2K and Js1K = Js3K (i.e. s0 represents the same
set of concrete states as s2). However, the constrained term s0 is not equivalent to s2 and the smt-search

command keeps exploring the successor states of s2. Note also that, due to the definition of⇝, the constraints
are always accumulated. For instance, ϕ2 includes inequalities about #0-T and #1-T that are no longer used
in the expression representing the value of the clock x.

14

ℓ0 ℓ1 10 ≥ x bad

5 ≤ x

x ≥ 11

y ≥ 50

x := 0

(a) Automaton with two clocks.

ℓ0 ℓ1
10 ≥ x

bad

5 ≤ x

x ≥ 11
x := 0

(b) Automaton with one clock.

Figure 3: Automata in Example 5.

We have therefore implemented our own symbolic reachability analysis command, which is based on the
subsumption mechanism in [Mes20]. Essentially, we stop searching from a symbolic state if, during the
search, we have already encountered another state that subsumes it. More precisely, let U = ϕu ∥ tu and
V = ϕv ∥ tv. We define U ⊑ V , meaning that U is less general than V , if there is a substitution θ making
tu and tvθ equal and the implication ϕu ⇒ ϕvθ holds. In that case, JUK ⊆ JV K [Mes20]. Hence, during the
search procedure, if a term U is reached and some term V has already been visited s.t. U ⊑ V , the state U
will not be further explored. It is known that such reachability analysis with folding is sound and generates
no spurious counterexample [BEM13].

The syntax of the implemented command is

red reachability((ϕ ∥ t), ℓ, bound) .

The second and third parameters are optional. This command computes all the reachable symbolic states,
using folding, starting from ϕ ∥ t until either: (1) no new states can be reached; (2) the location ℓ is reached;
or (3) the search exceeds the depth bound.

We could quickly implement a prototype of our new symbolic reachability analysis algorithm using
Maude’s meta-programming features. For instance, the function metaMatch applied to two terms U and V
returns the set of substitutions θ such that U equals V θ, and the function metaCheck can be used to delegate
to the SMT solver the task of checking whether the formula ¬(ϕu ⇒ ϕvθ) is unsatisfiable (and hence, the
implication valid). Details about the implementation can be found in the companion repository [ABO+22].

Example 6. For the automaton in Fig. 3b, the command

red reachability((X >= 0/1) || < l0 : X > < >) .

computes the set of reachable states starting from location ℓ0, with any non-negative initial clock value. The
result is:

X >= 0/1 || < l0: X > < > ;; --- State 1
X >= 0/1 and 5/1 <= X and 10/1 >= X and #1-T >= 0/1

and 10/1 >= X + #1-T || < l1: X + #1-T > < > --- State 2

In contrast to smt-search, the above command terminates and shows that there are only two (distinct)
reachable symbolic states, and that the location bad is not reachable.

Formally, the command reachable computes, iteratively, the folding reachable transition system (T f
Z , U0,

2f
⇝[[A]]

) [EM07, BM14] where T f
Z is defined as

⋃
i∈N Si, S0 = {U0} and Sn+1 = {U | ∃V ∈ Un s.t. V

2
⇝[[A]]

U and U ̸⊑ V ′ for any V ′ ∈ Sk≤n}; and
2f
⇝[[A]]=

⋃
n∈N(−→n) where −→0= ∅ and −→n+1= {(U, V) ∈ Sn ×⋃

0≤i≤n+1 Si | ∃V ′.U
2
⇝[[A]] V

′ and V ′ ⊑ V }.

Theorem 3 (Termination). If the PZG (C, s0,⇒) of a PTA A is a finite transition system, then (T f
Z , U0,

2f
⇝[[A]]

) is also a finite transition system.

Proof. Suppose, to obtain a contradiction, that the transition system (T f
Z , U0,

2f
⇝[[A]]) has infinitely many

15

states. Since the number of locations is finite, there must be a cycle1 (ℓ0, Z0) ⇒∗ (ℓk−1, Zk−1) ⇒ (ℓ0, Z0) in
the PZG that is simulated (∼) in the transition system of [[A]] as

V0
2
⇝

∗
[[A]] Vk−1

2
⇝[[A]] Vk

2
⇝

∗
[[A]] V2k−1

2
⇝[[A]] V2k

2
⇝

∗
[[A]] · · ·

where: for all i ≥ 0, (ℓi mod k, Zi mod k) ∼ Vi; and Vjk ̸⊑ Vik for 0 ≤ i < j. In each cycle, from Vik to
Vk(i+1), k new fresh variables are created. Assume that the clock expressions in V0 are (x0, x1, · · · , xn). Let
∆i = T i

1 + · · ·+T i
k−1+T

i+1
0 be the sequence of k fresh variables created when moving from Vik+1 to Vk(i+1).

Moreover, for any of such sequences, let ∆[p] be the suffix of ∆ with p elements and ∆[−p] the prefix with
k − p elements. As explained below, the position p will be the last position in the sequence where a given
clock was reset. Since the relation⇝ is deterministic, in the sense that rules always add the same constraint
(using fresh variables when needed), the expression for a clock xi when it is reset or not is, respectively:

Iter/State. Reset Non-reset Constraint

0 (V0) xi + T 0
0 xi + T 0

0

1 (Vk) ∆1
p xi + T 0

0 +∆1 Gk−1(k − 1) ∧ I0(k)
2 (V2k) ∆2

p xi + T 0
0 +∆1 +∆2 Gk−1(2k − 1) ∧ I0(2k)

· · ·

where Gk−1((k − 1)) denotes the guard of the transition from location ℓk−1 to ℓ0 evaluated using the
clock expressions in the state Vk−1. Similarly, I0(k) is the invariant at location ℓ0 evaluated with the clock
expressions in the state Vk. Recall that the last element in ∆1 if T 2

0 and it corresponds to the variable
created due to the delay in state Vk.

Now we build a unifier θ between Vk and V2k as follows. If every clock is reset, at least once at some
point in the sequence, we choose the clock expression with the smallest p and θ maps each variable in ∆1[p]
to the corresponding one in ∆2[p]. Note that such a θ unifies also the clock expressions with smaller suffixes
(and bigger p). If none of the clocks is reset, then θ matches the last element of ∆1 with T 2

0 +
∑

∆2 (and
the remaining variables as expected). This intuitively corresponds to “extending” the delay T 2

0 (at state
Vk) with the sum of all the delays of the cycle, including the one in V2k. Finally, in the case of reset and
non-reset clocks, the variables in the reset clocks are unified as in the first case (choosing the smallest p),
and for a non-reset clock xi, the subsequence xi + T 0

0 +∆1[−p] is unified with xi + T 0
0 +∆1 +∆2[−p] as in

the second case, matching the last element T ′ in ∆1[−p] with T ′ +∆2[−p].
Let ψ be a valuation for the variables in the constraint C2k (state V2k). From ψ, we can build the

corresponding parameter (v) and clock (w) valuation. Since both Vk and V2k are related to (ℓ0, Z0) via
∼, C2k{v, w} and Ck{v, w} both eval to true. Since Gk−1(2k − 1)ψ evals to true, so does Gk−1(k − 1)θψ.
Similarly for the invariants. Hence, ψ is also a valuation making true C2k and the implication Ck ⇒ C2kθ
holds. We have V2k ⊑ Vk, thus a contradiction.

Our new reachability analysis command therefore terminates whenever the PZG is finite. Furthermore,
it terminates when Imitator terminates with default settings since they both use subsumption, so generate
the same part of the PZG. However, Imitator also uses heuristics that may synthesize parameters even if the
PZG is infinite.

5 Parameter Synthesis and Analysis

Our executable rewriting-modulo-SMT semantics for PTAs gives us the possibility of applying different
formal analysis methods for rewrite theories to PTAs. Section 5.1 shows how various parameter synthesis
and parametric reachability problems can be solved with our methods, and Section 5.2 exemplifies how we

1ℓ0 is not intended to be the initial location. The index 0 has been used to simplify the notation.

16

can use Maude’s strategy language to analyze a PTA with a given strategy. In both cases we also provide
model checking for PTA properties that go beyond those handled by state-of-the-art tools such as Imitator.

5.1 Reachability and EF-synthesis

This section shows how the smt-search and reachability commands can solve important synthesis and
parametric reachability problems for PTAs.

A state predicate is a boolean expression whose atomic propositions are locations (e.g. the formula add -

sugar holds if the current location is add sugar) and inequalities on clocks and parameters (e.g. x1 ̸= x2).

Definition 4. Let A be a PTA and ϕ a state predicate. The EF-emptiness problem asks: “is the set
of parameter valuations v such that there exists a reachable state (ℓ, w) in v(A) satisfying ϕ empty?”. EF-
synthesis is the problem of computing parameter valuations v such that a run of v(A) reaches a state satisfying
ϕ. The safety synthesis problem AG¬ϕ is the problem of computing the set of parameter valuations for which
states satisfying ϕ are unreachable.

The search commands provide semi-decision procedures (the number of symbolic states can be infinite
and the synthesis problem is undecidable) for solving the above synthesis problems. We add [[ℓ]]b = L == ℓ
(for a variable L of sort Location) to the definition of [[]]b. The command

smt-search [1] [ℓ0 : 0/1 ; ... ; 0/1] < P1 ; ... ; Pm > =>*
< L:Location : X1’ ; ... ; Xn’ > < P1 ; ... ; Pm >
such that [[ϕ]]b and P1 >= 0/1 and ... and Pm >= 0/1 .

then tries to find a path from ℓ0 to an arbitrary location L satisfying ϕ. The resulting constraint, if any, is
an answer to the synthesis problem EFϕ. The command reachability can be used similarly.

EF-emptiness is obtained when the EF-synthesis terminates without finding a path. Finally, the safety
synthesis problem AG¬ϕ can be solved by finding all solutions for EFϕ and then negating the resulting
constraint.

Example 7. Let ϕ be the output of the smt-search command in Example 4. Since ϕ is satisfiable, there are
values for the parameters such that done is reachable and the answer to the EF-emptiness problem EF(done) is
false. The obtained constraint also gives us an answer to the corresponding EF-synthesis problem as follows.
Since the result of the parameter synthesis only concerns the relations on the parameters, we are interested in
the formula ϕ′ = ∃X.ϕ, where X includes all the variables in ϕ, but not the parameters. Using a quantifier
elimination procedure, ϕ′ can be simplified to 0 ≤ p2 ∧ p2 ≤ p3 ∧ 0 ≤ p1. (We are currently using the tactic
qe of the Z3 theorem prover to automate this step). This means that done is reachable whenever p2 ≤ p3.

The EF-synthesis problem EF(x1 ̸= x2 ∧ preparing coffee), asking whether location preparing coffee

is reachable with different values for the clocks, can be answered by:

smt-search [idle : 0/1 ; 0/1] < P1 ; P2 ; P3 > =>*
< L : X1’ ; X2’ > < P1 ; P2 ; P3 >

such that (L == preparing_coffee and X1’ =/== X2’ and
P1 >= 0/1 and P2 >= 0/1 and P3 >= 0/1) = true .

The resulting constraint, after removing the existential quantifiers, determines that p1 ≤ p2 ≤ p3.
Finally, consider the safety synthesis problem AG¬(x1 > x2). As explained above, we need to compute the

solutions for EF(x1 > x2). This PTA has infinitely many symbolic states, since each extra iteration adding
more sugar further constrains the values for p1 and p2. The command

smt-search [1,10] [idle : 0/1 ; 0/1] < P1 ; P2 ; P3 > =>*
< L : X1’ ; X2’ > < P1 ; P2 ; P3 >

such that X1’ > X2’ and P1 >= 0/1 and P2 >= 0/1 and P3 >= 0/1.

searches for states where the first clock is strictly greater than the second one. Maude does not find any
solution to this query in 10 steps. If we add the condition 2/1 * P1 > P2, the number of symbolic states is
finite (at most one dose of sugar is possible). smt-search, without depth bound, does not terminate. However,
the new command reachability halts, finding 9 (different) symbolic states, with none of them satisfying
X1’ > X2’. Therefore, when 2× p1 > p2, there is no valuation reaching a state where x1 > x2.

17

It is worth remarking that Imitator only supports properties over locations but not over clocks. Uppaal
allows such properties, but does not support parameter synthesis. Our work therefore provides new analysis
capabilities for PTAs.

5.2 Strategies

We can use Maude’s strategy language to analyze PTAs with different execution strategies. As exemplified
below, such strategies can be defined on constrained terms to restrict the reachable symbolic states in

(TZ , ϕ0 ∥ t0, 2
⇝[[A]]).

Example 8 (Strategies). The answer p2 ≤ p3 to the synthesis problem EF(done) in Example 7 does not
constrain p1. This is due to the possibility of moving from idle to done without adding sugar. What if the
same PTA needs to be analyzed under the assumption that at least one dose of sugar is required? Instead of
manually modifying the PTA—which is error-prone and raises questions about whether the different models
are consistent—we can define the following strategy to analyze our model when some sugar is required:

--- Strategy declarations
strat with-sugar : Nat @ State . --- Str. with parameter
strat add-sugar : Nat @ State .
--- Strategy definitions
sd with-sugar(N) :=

match C || < done : X1; X2> < P1 ; P2 ; P3 > --- Stop at done
or-else --- in location add_sugar, add sugar if needed
match C || < add_sugar : X1 ; X2 > < P1 ; P2 ; P3 > s.t.
validity(C implies X1 === X2) ; add-sugar(N) ; with-sugar(N)

or-else --- otherwise, apply any rule
all ; with-sugar(N) .

--- Adding n doses of sugar
sd add-sugar(0) := idle . --- No more sugar
sd add-sugar(s(N)) := add_sugar ; add_sugar-tick ; add-sugar(N).

The strategy with-sugar(N): (i) tests if the current location is done and stops if that is the case; (ii) if
the location is add sugar, it checks whether the accumulated constraint C implies that the two clocks have
the same value (validity(F) uses the SMT solver to check whether the formula not F is unsatisfiable); if
so, the strategy add-sugar(N) is applied, forcing N iterations in the location add sugar; (iii) otherwise, the
other rules of the system (all) are applied.

The command below returns a boolean expression that, after simplification, entails p1 ≤ p2 ≤ p3.

srew P1 >= 0/1 and P2 >= 0/1 and P3 >= 0/1 || [idle : 0/1 ; 0/1] < P1 ; P2 ; P3 > using with-sugar(1) .

Solution 1 result State : ... #1-T >= P1 and #1-T <= P2 ... || <done : 0/1 ; #5-T + #6-T + #7-T> < P1 ; P2 ; P3 >

Maude’s strategy language has not been used before in real-time systems specified in Maude or in rewriting
with SMT. The example above shows that combining such techniques can lead to a novel mechanism to
analyze PTAs. In particular, it is possible to perform reachability analyses on execution traces of the PTA
that adhere to a given strategy. Furthermore, the resulting constraint determines the values of the parameters
that enable such traces.

6 Benchmarks

In this section we compare the performance of Imitator, standard Maude-SE smt-search, and our pro-
totype implementation of the command reachability on a number of PTAs in the PTA benchmark li-
brary [AMvdP21]. We compare the time it takes for the three methods to solve the synthesis problem EF(ℓ)
for different locations ℓ in the automaton, where all the queries have positive solutions. Figure 4 shows the
execution times of Imitator and Maude (with red circles for smt-search and blue circles for reachability) in
log-scale. Table 1 describes the PTAs considered in Fig. 4 (the complete set of benchmarks can be found in
[ABO+22]).

18

Model Clocks Parameters Actions Locations Transitions

gear-1000 2 3 6 4074 4073

blowup-200 3 5 4 702 800

Pipeline KP12 2 3 5 6 11 100 244

RCP 6 5 16 95 198

Table 1: Benchmarks considered.

0.1 1 10 100 1000 10k 100k 1M

0.1

1

10

100

1000

10k

100k

1M Method
no-collapsing
collapsing

Maude (ms)

Im
it
at

or
 (

m
s)

0.1 1 10 100 1000 10k 100k 1M

0.1

1

10

100

1000

10k

100k

1M Method
no-collapsing
collapsing

Maude (ms)

Im
it
at

or
 (

m
s)

0.1 1 10 100 1000 10k 100k 1M

0.1

1

10

100

1000

10k

100k

1M Method
no-collapsing
collapsing

Maude (ms)
Im

it
at

or
 (

m
s)

0.1 1 10 100 1000 10k 100k 1M

0.1

1

10

100

1000

10k

100k

1M Method
no-collapsing
collapsing

Maude (ms)

Im
it
at

or
 (

m
s)

Figure 4: Execution times of Imitator and Maude in log-scale. From left to right, we consider the benchmarks
(see Section 6): gear-1000, blowup-200, Pipeline KP12 2 3, RCP.

7 Related Work

Formal Analysis of Parametric Timed Automata. Since most analysis and parameter synthesis problems
are undecidable for PTAs [And19], approaches to address them have focused on heuristics. The state-
of-the-art PTA tool, Imitator [And21], uses techniques such as subsumption [NPvdP18] and convex zone
merging [AFS13] to provide efficient bounded and unbounded reachability, EF-synthesis, deadlock checking,
minimal-time reachability synthesis, and robustness analysis for PTAs.

As shown in Section 6, the PTA-specific Imitator tool generally has better performance than our Maude-
with-SMT-based analysis. In addition, although our reachability command terminates whenever the PZG
of the PTA is finite, additional heuristics implemented in Imitator allow it sometimes to terminate even
when the PZG is infinite (and Maude will loop). Imitator also provides methods for liveness and robustness
that we do not yet support for [[A]]. On the other hand, in this paper we show how we can analyze PTAs
with user-defined strategies, and allow state properties that not only include locations but also conditions
on clocks and parameters, which are not supported by Imitator.

There are very few parameter synthesis tools for PTAs. The algorithms described in [BBBC16] perform
time-bounded model-checking. Roméo [LRST09] provides parameter synthesis for parametric timed Petri
nets instead of PTAs.

Rewriting Semantics for Timed Automata. The paper [ÖM02] gives a formal semantics for timed automata
using (real-time) rewrite theories. In contrast, our paper targets parametric timed automata, and provides
a more elaborate “analysis-friendly” semantics than the one in [ÖM02], which was never meant/optimized
for execution.

Analysis of Rewriting-based Real-Time Systems. As explained in the introduction, because of its expres-
siveness and generality, rewriting logic—in particular the Real-Time Maude [ÖM08, ÖM07] extension of
Maude—has been applied to a wide range of real-time systems [Ölv14] and has provided formal semantics
and formal analysis to a number of modeling languages [Ölv11]. However, Real-Time Maude does not support
symbolic analysis methods: when it applies a tick rule, it advances time by a given concrete value. Therefore,
most system behaviors are not covered by the formal analysis, which is hence only sound for a restricted
class of time-deterministic systems [ÖM06], and is not sound for timed automata. In contrast, in this paper

19

we develop sound and complete symbolic analysis methods for a certain class of “time-nondeterministic”
systems, namely, PTAs. Furthermore, the techniques seem general and should be applicable to other classes
of real-time rewrite theories, which will be investigated in future work.

Rewriting with SMT has also been applied to formally analyze cyber-physical systems such as virtually
synchronous systems [LKBÖ21] and soft agents [NT22]. They focus on hybrid systems with continuous
dynamics, and do not consider parametric timed automata.

8 Concluding Remarks

A wide range of sophisticated real-time systems can be formalized in rewriting logic and formally analyzed in
(Real-Time) Maude, which is also a suitable semantic framework and formal analysis backend for industrial
modeling languages. So far Real-Time Maude has only provided explicit-state analysis methods, which are
not sound for many real-time systems, including timed automata. It is clear that symbolic methods are
needed for sound and efficient analysis of real-time systems. The recent integration of Maude and SMT
solving has made symbolic analysis in Maude possible.

In this paper we take the first steps towards providing sound and efficient symbolic analysis methods
for real-time rewrite theories by developing sound and complete analysis methods for parametric timed
automata (PTAs), specified as rewrite theories. Since standard Maude-with-SMT reachability analysis does
not terminate for real-time systems when the desired states are unreachable, we develop and implement (a
prototype of) a general “folding”-based symbolic reachability analysis method and show that it terminates
when the reachable symbolic state space of the PTA is finite. We show how our methods can be used to
solve important parameter synthesis problems for PTAs. We also provide analysis methods for PTAs that
are not supported by the Imitator tool, including symbolic reachability analysis combined with user-defined
analysis strategies, and allowing clocks and parameters in state propositions. Furthermore, our executable
semantics together with Maude’s meta-programming features provide an environment where new analysis
methods for PTAs can be quickly developed and tested before being hard-coded into the Imitator tool.

In future work we should: develop symbolic methods for larger classes of real-time rewrite theories;
develop a useful timed strategy language; and extend Maude’s and Real-Time Maude explicit-state LTL and
timed CTL model checkers to the symbolic setting. These extensions will then also provide powerful new
analysis methods for PTAs.

Acknowledgments. We thank the anonymous FTSCS reviewers for their insightful comments. Arias,
Olarte, Ölveczky, Petrucci and Rømming acknowledge support from CNRS under the project ESPRiTS. Bae
was supported in part by the National Research Foundation of Korea (NRF) grants funded by the Korea
government (MSIT) (No. 2021R1A5A1021944 and No. 2022R1F1A1074550).

References

[ABO+22] Jaime Arias, Kyungmin Bae, Carlos Olarte, Peter Csaba Ölveczky, Laure Petrucci, and Fredrik
Rømming. pta2maude, 2022.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–
235, 1994.

[ADY+09] Musab AlTurki, Dinakar Dhurjati, Dachuan Yu, Ajay Chander, and Hiroshi Inamura. Formal
specification and analysis of timing properties in software systems. In Marsha Chechik and
Martin Wirsing, editors, Fundamental Approaches to Software Engineering, 12th International
Conference, FASE 2009, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume 5503 of Lecture
Notes in Computer Science, pages 262–277. Springer, 2009.

20

[AFS13] Étienne André, Laurent Fribourg, and Romain Soulat. Merge and conquer: State merging
in parametric timed automata. In Dang Van Hung and Mizuhito Ogawa, editors, Automated
Technology for Verification and Analysis - 11th International Symposium, ATVA 2013, Hanoi,
Vietnam, October 15-18, 2013. Proceedings, volume 8172 of Lecture Notes in Computer Science,
pages 381–396. Springer, 2013.

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time reasoning. In
S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA,
USA, pages 592–601. ACM, 1993.

[AMvdP21] Étienne André, Dylan Marinho, and Jaco van de Pol. A benchmarks library for extended
parametric timed automata. In Frédéric Loulergue and Franz Wotawa, editors, Tests and Proofs
- 15th International Conference, TAP 2021, Held as Part of STAF 2021, Virtual Event, June
21-22, 2021, Proceedings, volume 12740 of Lecture Notes in Computer Science, pages 39–50.
Springer, 2021.

[And19] Étienne André. What’s decidable about parametric timed automata? Int. J. Softw. Tools
Technol. Transf., 21(2):203–219, 2019.

[And21] Étienne André. IMITATOR 3: Synthesis of timing parameters beyond decidability. In Alexan-
dra Silva and K. Rustan M. Leino, editors, Computer Aided Verification - 33rd International
Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I, volume 12759 of
Lecture Notes in Computer Science, pages 552–565. Springer, 2021.

[BBBC16] Peter Bezdek, Nikola Benes, Jiri Barnat, and Ivana Cerná. LTL parameter synthesis of para-
metric timed automata. In Rocco De Nicola and eva Kühn, editors, Software Engineering and
Formal Methods - 14th International Conference, SEFM 2016, Held as Part of STAF 2016, Vi-
enna, Austria, July 4-8, 2016, Proceedings, volume 9763 of Lecture Notes in Computer Science,
pages 172–187. Springer, 2016.

[BEM13] Kyungmin Bae, Santiago Escobar, and José Meseguer. Abstract logical model checking of
infinite-state systems using narrowing. In Femke van Raamsdonk, editor, 24th International
Conference on Rewriting Techniques and Applications, RTA 2013, June 24-26, 2013, Eindhoven,
The Netherlands, volume 21 of LIPIcs, pages 81–96. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2013.

[BGG+18] Rakesh Bobba, Jon Grov, Indranil Gupta, Si Liu, José Meseguer, Peter Csaba Ölveczky, and
Stephen Skeirik. Survivability: Design, Formal Modeling, and Validation of Cloud Storage
Systems Using Maude, chapter 2, pages 10–48. John Wiley & Sons, 2018.

[BKMÖ15] Kyungmin Bae, Joshua Krisiloff, José Meseguer, and Peter Csaba Ölveczky. Designing and
verifying distributed cyber-physical systems using Multirate PALS: an airplane turning control
system case study. Sci. Comput. Program., 103:13–50, 2015.

[BM14] Kyungmin Bae and José Meseguer. Infinite-state model checking of LTLR formulas using nar-
rowing. In Santiago Escobar, editor, Rewriting Logic and Its Applications - 10th International
Workshop, WRLA 2014, Held as a Satellite Event of ETAPS, Grenoble, France, April 5-6,
2014, Revised Selected Papers, volume 8663 of Lecture Notes in Computer Science, pages 113–
129. Springer, 2014.

[BMÖ19] Giovanna Broccia, Paolo Milazzo, and Peter Csaba Ölveczky. Formal modeling and analysis of
safety-critical human multitasking. Innov. Syst. Softw. Eng., 15(3-4):169–190, 2019.

21

[BÖF+12] Kyungmin Bae, Peter Csaba Ölveczky, Thomas Huining Feng, Edward A. Lee, and Stavros
Tripakis. Verifying hierarchical ptolemy II discrete-event models using Real-Time Maude. Sci.
Comput. Program., 77(12):1235–1271, 2012.

[BR19] Kyungmin Bae and Camilo Rocha. Symbolic state space reduction with guarded terms for
rewriting modulo SMT. Sci. Comput. Program., 178:20–42, 2019.

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José
Meseguer, and Carolyn L. Talcott, editors. All About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of
Lecture Notes in Computer Science. Springer, 2007.

[CDE+22] Manuel Clavel, Francisco Durán, Steven Eker, Santiago Escobar, Patrick Lincoln, Narciso Mart́ı-
Oliet, José Meseguer, Rubén Rubio, and Carolyn Talcott. Maude Manual (Version 3.2.1). SRI
International, 2022. Available at http://maude.cs.illinois.edu.

[CEFX09] Remy Chevallier, Emmanuelle Encrenaz-Tiphène, Laurent Fribourg, and Weiwen Xu. Timed
verification of the generic architecture of a memory circuit using parametric timed automata.
Formal Methods Syst. Des., 34(1):59–81, 2009.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking, 1st Edition. MIT
Press, 2001.

[CKJ+22] Eu-teum Choi, Tae-hyung Kim, Yong-Kee Jun, Seongjin Lee, and Mingyun Han. On-the-fly
repairing of atomicity violations in arinc 653 software. Applied Sciences, 12(4), 2022.

[DLL+15] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, and Danny Bøgsted Poulsen.
Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transf., 17(4):397–415, 2015.

[EM07] Santiago Escobar and José Meseguer. Symbolic model checking of infinite-state systems using
narrowing. In Franz Baader, editor, Term Rewriting and Applications, 18th International Con-
ference, RTA 2007, Paris, France, June 26-28, 2007, Proceedings, volume 4533 of Lecture Notes
in Computer Science, pages 153–168. Springer, 2007.

[FSLM12] Laurent Fribourg, Romain Soulat, David Lesens, and Pierre Moro. Robustness analysis for
scheduling problems using the inverse method. In Ben C. Moszkowski, Mark Reynolds, and Paolo
Terenziani, editors, 19th International Symposium on Temporal Representation and Reasoning,
TIME 2012, Leicester, United Kingdom, September 12-14, 2012, pages 73–80. IEEE Computer
Society, 2012.

[GÖ14] Jon Grov and Peter Csaba Ölveczky. Formal modeling and analysis of google’s megastore in
Real-Time Maude. In Shusaku Iida, José Meseguer, and Kazuhiro Ogata, editors, Specification,
Algebra, and Software - Essays Dedicated to Kokichi Futatsugi, volume 8373 of Lecture Notes
in Computer Science, pages 494–519. Springer, 2014.

[HRSV02] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. Linear parametric
model checking of timed automata. J. Log. Algebraic Methods Program., 52-53:183–220, 2002.

[JLR15] Aleksandra Jovanovic, Didier Lime, and Olivier H. Roux. Integer parameter synthesis for real-
time systems. IEEE Trans. Software Eng., 41(5):445–461, 2015.

[KP12] Michal Knapik and Wojciech Penczek. Bounded model checking for parametric timed automata.
Trans. Petri Nets Other Model. Concurr., 5:141–159, 2012.

[LÁÖ15] Daniela Lepri, Erika Ábrahám, and Peter Csaba Ölveczky. Sound and complete timed CTL
model checking of timed kripke structures and real-time rewrite theories. Sci. Comput. Program.,
99:128–192, 2015.

22

http://maude.cs.illinois.edu

[LKBÖ21] Jaehun Lee, Sharon Kim, Kyungmin Bae, and Peter Csaba Ölveczky. Hybridsynchaadl: Mod-
eling and formal analysis of virtually synchronous cpss in AADL. In Alexandra Silva and
K. Rustan M. Leino, editors, Computer Aided Verification - 33rd International Conference,
CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I, volume 12759 of Lecture Notes
in Computer Science, pages 491–504. Springer, 2021.

[LMT15] Kim Guldstrand Larsen, Marius Mikucionis, and Jakob Haahr Taankvist. Safe and optimal
adaptive cruise control. In Roland Meyer, André Platzer, and Heike Wehrheim, editors, Correct
System Design - Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th
Birthday, Oldenburg, Germany, September 8-9, 2015. Proceedings, volume 9360 of Lecture Notes
in Computer Science, pages 260–277. Springer, 2015.

[LÖ09] Elisabeth Lien and Peter Csaba Ölveczky. Formal modeling and analysis of an IETF multicast
protocol. In Dang Van Hung and Padmanabhan Krishnan, editors, Seventh IEEE International
Conference on Software Engineering and Formal Methods, SEFM 2009, Hanoi, Vietnam, 23-27
November 2009, pages 273–282. IEEE Computer Society, 2009.

[LÖM16] Si Liu, Peter Csaba Ölveczky, and José Meseguer. Modeling and analyzing mobile ad hoc
networks in Real-Time Maude. J. Log. Algebraic Methods Program., 85(1):34–66, 2016.

[LPY01] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal design and analysis of a gear controller.
Int. J. Softw. Tools Technol. Transf., 3(3):353–368, 2001.

[LRST09] Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie Traonouez. Romeo: A
parametric model-checker for petri nets with stopwatches. In Stefan Kowalewski and Anna
Philippou, editors, Tools and Algorithms for the Construction and Analysis of Systems, 15th
International Conference, TACAS 2009, York, UK, March 22-29, 2009. Proceedings, volume
5505 of Lecture Notes in Computer Science, pages 54–57. Springer, 2009.

[Mes92] José Meseguer. Conditioned rewriting logic as a united model of concurrency. Theor. Comput.
Sci., 96(1):73–155, 1992.

[Mes97] José Meseguer. Membership algebra as a logical framework for equational specification. In
Francesco Parisi-Presicce, editor, Recent Trends in Algebraic Development Techniques, 12th
International Workshop, WADT’97, Tarquinia, Italy, June 1997, Selected Papers, volume 1376
of Lecture Notes in Computer Science, pages 18–61. Springer, 1997.

[Mes20] José Meseguer. Generalized rewrite theories, coherence completion, and symbolic methods. J.
Log. Algebraic Methods Program., 110, 2020.

[NPvdP18] Hoang Gia Nguyen, Laure Petrucci, and Jaco van de Pol. Layered and collecting NDFS with
subsumption for parametric timed automata. In 23rd International Conference on Engineering
of Complex Computer Systems, ICECCS 2018, Melbourne, Australia, December 12-14, 2018,
pages 1–9. IEEE Computer Society, 2018.

[NT22] Vivek Nigam and Carolyn L. Talcott. Automating safety proofs about cyber-physical systems
using rewriting modulo SMT. In Kyungmin Bae, editor, Rewriting Logic and Its Applications
- 14th International Workshop, WRLA@ETAPS 2022, Munich, Germany, April 2-3, 2022,
Revised Selected Papers, volume 13252 of Lecture Notes in Computer Science, pages 212–229.
Springer, 2022.

[ÖBM10] Peter Csaba Ölveczky, Artur Boronat, and José Meseguer. Formal semantics and analysis of
behavioral AADL models in Real-Time Maude. In John Hatcliff and Elena Zucca, editors,
Formal Techniques for Distributed Systems, Joint 12th IFIP WG 6.1 International Conference,
FMOODS 2010 and 30th IFIP WG 6.1 International Conference, FORTE 2010, Amsterdam,
The Netherlands, June 7-9, 2010. Proceedings, volume 6117 of Lecture Notes in Computer
Science, pages 47–62. Springer, 2010.

23

[ÖC06] Peter Csaba Ölveczky and Marco Caccamo. Formal simulation and analysis of the CASH
scheduling algorithm in Real-Time Maude. In Luciano Baresi and Reiko Heckel, editors, Fun-
damental Approaches to Software Engineering, 9th International Conference, FASE 2006, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2006,
Vienna, Austria, March 27-28, 2006, Proceedings, volume 3922 of Lecture Notes in Computer
Science, pages 357–372. Springer, 2006.

[Ölv11] Peter Csaba Ölveczky. Semantics, simulation, and formal analysis of modeling languages for em-
bedded systems in Real-Time Maude. In Gul Agha, Olivier Danvy, and José Meseguer, editors,
Formal Modeling: Actors, Open Systems, Biological Systems - Essays Dedicated to Carolyn Tal-
cott on the Occasion of Her 70th Birthday, volume 7000 of Lecture Notes in Computer Science,
pages 368–402. Springer, 2011.

[Ölv14] Peter Csaba Ölveczky. Real-Time Maude and its applications. In Santiago Escobar, editor,
Rewriting Logic and Its Applications - 10th International Workshop, WRLA 2014, Held as a
Satellite Event of ETAPS, Grenoble, France, April 5-6, 2014, Revised Selected Papers, volume
8663 of Lecture Notes in Computer Science, pages 42–79. Springer, 2014.

[ÖM02] Peter Csaba Ölveczky and José Meseguer. Specification of real-time and hybrid systems in
rewriting logic. Theor. Comput. Sci., 285(2):359–405, 2002.

[ÖM06] Peter Csaba Ölveczky and José Meseguer. Abstraction and completeness for Real-Time Maude.
In Grit Denker and Carolyn L. Talcott, editors, Proceedings of the 6th International Workshop
on Rewriting Logic and its Applications, WRLA 2006, Vienna, Austria, April 1-2, 2006, volume
174 of Electronic Notes in Theoretical Computer Science, pages 5–27. Elsevier, 2006.

[ÖM07] Peter Csaba Ölveczky and José Meseguer. Semantics and pragmatics of real-time maude. High.
Order Symb. Comput., 20(1-2):161–196, 2007.

[ÖM08] Peter Csaba Ölveczky and José Meseguer. The real-time maude tool. In C. R. Ramakrishnan
and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings, volume 4963 of Lecture Notes in Computer Science, pages 332–336. Springer, 2008.

[ÖMT06] Peter Csaba Ölveczky, José Meseguer, and Carolyn L. Talcott. Specification and analysis of
the AER/NCA active network protocol suite in real-time maude. Formal Methods Syst. Des.,
29(3):253–293, 2006.

[ÖT09] Peter Csaba Ölveczky and Stian Thorvaldsen. Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in Real-Time Maude. Theor. Comput.
Sci., 410(2-3):254–280, 2009.

[RMM17] Camilo Rocha, José Meseguer, and César A. Muñoz. Rewriting modulo SMT and open system
analysis. J. Log. Algebraic Methods Program., 86(1):269–297, 2017.

[WWG+15] Ya Wang, Rui Wang, Yong Guan, Xiaojuan Li, Hongxing Wei, and Jie Zhang. Formal modeling
and verification of the safety critical fire-fighting control system. In Sheikh Iqbal Ahamed,
Carl K. Chang, William C. Chu, Ivica Crnkovic, Pao-Ann Hsiung, Gang Huang, and Jingwei
Yang, editors, 39th Annual Computer Software and Applications Conf., COMPSAC Workshops
2015, Taichung, Taiwan, July 1-5, 2015, pages 536–541. IEEE Computer Society, 2015.

[YB20] Geunyeol Yu and Kyungmin Bae. Maude-SE: a tight integration of maude and SMT solvers.
In Preliminary proceedings of WRLA@ETAPS, pages 220–232, 2020.

24

	Introduction
	Preliminaries
	A Rewriting Logic Semantics for PTA
	The PTA to Rewrite Theory Transformation
	Correctness of the [[_]] Transformation

	Symbolic Reachability Analysis
	Symbolic Reachability Analysis
	Soundness and Completeness
	Symbolic Reachability Analysis with Folding

	Parameter Synthesis and Analysis
	Reachability and EF-synthesis
	Strategies

	Benchmarks
	Related Work
	Concluding Remarks

