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Abstract

We propose a new class of fourth- and sixth-order schemes in time for parabolic and hyper-

bolic equations. The method follows the compact scheme methodology by elaborating implicit

relations between the approximations of the function and its derivatives. We produce a series

of A-stable methods with low dispersion and high accuracy. Several benchmarks for linear and

non-linear Ordinary Differential Equations demonstrate the effectiveness of the method. Then

a second set of numerical benchmarks for Partial Differential Equations such as convection-

diffusion, Schrödinger equation, wave equation, Bürgers, and Euler system give the numerical

evidences of the superior advantage of the method with respect to the traditional Runge-Kutta

or multistep methods.

Keywords: Compact scheme; Structural equation; Time discretization; Very high order;

A-stability; Dispersion.

1. Introduction

Very high-order numerical methods for non-stationary Partial Differential Equations (PDEs)

mainly focus on the space discretization to provide accurate and eligible discrete solutions, be-

ing the time variable usually discretized through a Runge-Kutta (RK) method or a linear

multistep formulation. The focus of this work, however, is precisely the discretization in time

where its assessment is not just a question of accuracy (method order), but also its stability,
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dissipation, dispersion (spectral resolution and phase deviation, fundamental for propagation

of waves [15]), and all the computational aspects (running time, memory cost, scalability, and

nowadays, the energy cost to carry out the simulation).

There is a large literature for such standard methods which we sum up in the following short

notes. Gauss RK method are all A-stable with good accuracy but suffer from a large disper-

sion and huge computational cost [19]. There are very few low cost A-stable Singly Diagonally

RK methods, reaching at most the fourth-order of accuracy, and they present a poor spectral

resolution due to a large dispersion [16]. On the other, implicit multistep methods (Backward

Differentiation, Adams-Moulton) are A-stable up to the second order but do not produce stable

solutions for oscillatory problems (linear Ordinary Differential Equations (ODEs) with imagi-

nary coefficients) [5], or simply have a bounded stability region [16] (A-stability is not fulfilled).

Implicit-Explicit RK method is another way to reduce the computational cost for problems

involving two very different regimes but the dispersion is still an issue to overcome [27].

High-order discretizations in time involving several orders of derivatives have been proposed

since the sixties to provide better accuracy and absolute stability. The key idea is very similar

to the compact scheme principle, and consists in reducing the stencil of the neighbour nodes by

adding information on the nodes such as the first-, second-, or higher derivatives. However, very

few connections have been highlighted between compact schemes used in the PDE community

and the implicit block multistep multi-derivative methods used in the ODE community.

The first numerical scheme in time involving second-order derivatives dates back to the

ENIAC era with the so-called Clippinger and Dimsdale method (also mentioned as Iterative

Simpson method) first presented in an unpublished lecture notes in 1949, unveiled in a 1952’s

technical note [1] and in the 1958 handbook of Grabbe, Ramo, and Woolridge [2] (chapter 14, p.

14-60). In the early 60s’, Lambert and Mitchell introduced and developed in 1962 the multistep

multi-derivative method [3, 4, 6] while Shampine and Watts and, independently, Axelsson

introduced the block implicit one-step methods with first-order derivatives in 1969 [7, 8, 9]. At

last, the implicit block multistage multi-derivative method has been suggested by Hairer and

Warner in 1973 where the higher-order derivatives for future time steps are considered in the

generic formulation [10]. Actually, implicit one-step method can be formally interpreted as an

implicit Runge-Kutta scheme but, paraphrasing Watts and Shampine [9], intermediate values
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in the RK method are rough approximations of the solution at the intermediate stages while

the implicit block method delivers high accurate approximations even at the intermediate time

steps. We particularly mention the two-point and three-point implicit block [23, 25] that turns

to be close to the schemes we shall propose in the present study.

Implicit block multi-derivative has been extended to second-order or higher-order differ-

ential equations [18, 20] and provides a very efficient scheme while preserving the stability.

Curiously, and up to the authors’ knowledge, there were no applications of the implicit block

method in the context of the PDEs, for instance an ODE system deriving from a simple finite

difference in space of parabolic or hyperbolic operators such as the heat equation, transport,

or Bürgers equation.

Since their beginning in the seventies [11], compact schemes have received important con-

tributions to develop very high-order methods by combining function values and its derivatives

over local stencils. For instance, a very good state of the art of the method is given by [13]

in the late eighties. The high spectral resolution property for hermitian compact schemes has

been studied by [14] and, at last, the extension to higher-order combined schemes was proposed

by [17]. It is noticeable that the two approaches encompass in a common framework. Writing

the two-point implicit block second-derivative method for the Initial Value Problem [12] is very

similar to the three-point implicit compact combined scheme for the steady-state non-linear

convection reaction Boundary Value Problem [17].

We propose in the present study to revisit and adapt some compact schemes in time in

the context of the non-stationary partial differential equation in one-dimensional space. Most

of the proposed schemes have a corresponding version as multi-points implicit block multi-

derivative methods in the ODE context, being their application to PDEs advantageous since

they provide very accurate A-stable methods. Moreover, they enjoy nice properties such as

low dispersion in comparison with the popular schemes.

There exists several recent methods that take advantage of the first- or second-derivative.

Consider the EDO φ′ = f(t, φ), the Two-Derivative Runge-Kutta methods (TDRK) [22, 24, 26]

is an extension of the traditional RK method by adding new degrees of freedom with the

second-derivative. Our method is very different since, on the contrary to the TDRK, we do

not systematically substitute the time derivative φ′ with f(t, φ) and the second derivative φ′′
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with ∂zf(t, φ)y′ + ∂tf(t, φ). Indeed, we consider the first- and second-derivatives φ′, φ′′ as

unknowns together with φ. Moreover, we provide the same order of accuracy for φ, φ′, and φ′′.

The remaining sections of the article are organised as follows. Section 2 is dedicated to

the construction and analysis of the new numerical schemes. In particular, we check the A-

stability of the methods and assess the dispersion property. The numerical methods are tested

in the context of ODEs in Section 3 to evaluate the accuracy, the stability, and the effective

dispersion. Then we proceed in Section 4 with parabolic and hyperbolic problems. Applying

a finite difference discretization in space of order eight, we are dealing with a differential

system in time, where the new methods are applied. We assess the convergence, order in time,

stability, and dispersion property for linear and non-linear problems. The article ends with the

conclusions in Section 5.

2. Design and analysis of the compact schemes

We first consider the generic scalar first-order ODE problem

φ′(t) = f(φ(t), t), t ∈ (0, T ], (1)

together with the initial condition φ(0) = φ0, with T > 0 the final time and f ≡ f(z, t) a

regular function in R × (0, T ]. The key idea is to decompose a scheme into two subsystems

of equations. The Physical Equations (PE) rely on the function and its derivatives at a node

by applying the physical relations. Notice that there is no connection of information with

the other nodes, since the physics is constituted of local operators. On the other hand, the

Structural Equations (SE) rely on linear relations between the function and its derivatives

over a stencil and fully connects a node with the neighbours. These relations are “physics”

independent, since they are established independently of the problem. We address the two

issues in the following sections.

2.1. Physical and Structural Equations

Let N ∈ N, tn = n∆t with n = 0, . . . , N and T = N∆t, and tn+ 1
2

= (n + 1
2
)∆t with

n = 0, . . . , N − 1. We seek approximations Zn, Dn, and Sn for φ(tn), φ′(tn), and φ′′(tn),
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respectively, solution of equation (1). To mimic relation (1), we impose that the approximations

satisfy the so-called Physical Equation (PE1) given by

Dn = f(Zn, tn), n = 1, . . . , N. (2)

Moreover, computing the derivative of equation (1) with respect to time, we obtain

φ′′(t) = ∂zf(φ(t), t))φ′(t) + ∂tf(φ(t), t)),

which provides the second Physical Equation (PE2) given by

Sn = ∂zf(Zn, tn)Dn + ∂tf(Zn, tn), n = 1, . . . , N. (3)

We now aim at establishing relations between the discrete values Zn, Dn, and Sn and the

discrete values at the next time step Zn+1, Dn+1, and Sn+1. Such relations are called Structural

Equations since they only depend on the structure of the grid and not on the nature of the

problem. To this end, we introduce the functional

En(a;φ) = a0φ(tn) + a 1
2
φ(tn+ 1

2
) + a1φ(tn+1)+

b0φ
′(tn) + b 1

2
φ′(tn+ 1

2
) + b1φ

′(tn+1)+ (4)

c0φ
′′(tn) + c 1

2
φ′′(tn+ 1

2
) + c1φ

′′(tn+1),

where

a =
(
a0, a 1

2
, a1, b0, b 1

2
, b1, c0, c 1

2
, c1

)
∈ R9,

and derive the Structural Equations by determining the coefficients imposing the functional

to be zero for some polynomial functions. We represent the generic stencil of the involved

data in a Structural Equation in Fig. 1. The scheme is compact in the sense that we establish

implicit relations between the function approximations and its derivatives (approximations of

the function, first- and second-derivatives) at tn+ 1
2

and tn+1.
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Figure 1: Stencil: known data ( ), data to compute ( ).
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Figure 2: Stencil: known data ( ), data to compute ( ), discarded data ( ).

2.2. The compact scheme [1ZD]

To design the [1ZD] scheme, we impose a 1
2

= b 1
2

= 0 and c0 = c 1
2

= c1 = 0. Hence the

functional is reduced to (cf. Fig. 2)

En(a;φ) = a0φ(tn) + a1φ(tn+1) + b0φ
′(tn) + b1φ

′(tn+1).

We seek coefficients a0, a1, b0, b1 such that En(a;φ) = 0 for polynomials φ(t) = tα, α = 0, 1, 2,

deducing a solution (up to a multiplicative constant) which is given by

a0 =
1

∆t
, a1 = − 1

∆t
, b0 =

1

2
, b1 =

1

2
,

that provide the Structural Equation

Dn+1 +Dn

2
− Zn+1 − Zn

∆t
= 0. (5)
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The [1ZD] scheme is given by combining the Physical Equation (2) at time tn+1 and the

Structural Equation (5), and reads: given (Zn, Dn), compute (Zn+1, Dn+1) such that

Dn+1 − f(Zn+1, tn+1) = 0,

Dn+1 +Dn

2
− Zn+1 − Zn

∆t
= 0.

We here obtain the popular A-stable Crank-Nicholson method, that we tag by [CN]. Indeed,

considering the linear equation φ′ = λφ with λ ∈ C, then one has

Zn+1 = A(ß)Zn, A(ß) =
2 + ß

2− ß
,

with A the transfer function and ß = λ∆t. We check that |A(ß)| ≤ 1 if Re(λ) ≤ 0 and deduce

that the scheme enjoys the A-stability property.

2.3. The compact scheme [2ZD]

We introduce an intermediate point at tn+ 1
2

together with the associated approximations

Zn+ 1
2

and Dn+ 1
2

but cancelling the second-derivative terms, that is, considering c0 = c 1
2

=

c1 = 0. The functional then reads (cf. Fig. 3)

En(a;φ) = a0φ(tn) + a 1
2
φ(tn+ 1

2
) + a1φ(tn+1) + b0φ

′(tn) + b 1
2
φ′(tn+ 1

2
) + b1φ

′(tn+1).

Prescribing En(a;φ) = 0 for polynomials φ(t) = tα, α = 0, . . . , 4, leads to the fourth-order

Structural Equation

−6
Zn+1 − Zn

∆t
+ (Dn + 4Dn+ 1

2
+Dn+1) = 0. (6)

Moreover, if one relaxes the constraints by cancelling the relation En(a; t4) = 0, we obtain a

second Structural Equation (SE2) that reads

−4
Zn − 2Zn+ 1

2
+ Zn+1

∆t
+ (Dn+1 −Dn) = 0. (7)
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Figure 3: Stencil: known data ( ), data to compute ( ), discarded data ( ).

We then combine the Physical Equation (2) at time tn+ 1
2

and tn+1 together with the two

Structural Equations (6)-(7). Assuming that Zn, Dn are known, we aim at computing Zn+ 1
2
,

Dn+ 1
2
, Zn+1, Dn+1 using the [2ZD] scheme

−Zn+1 − Zn
∆t

+
Dn + 4Dn+ 1

2
+Dn+1

6
= 0,

−
Zn − 2Zn+ 1

2
+ Zn+1

∆t
+
Dn+1 −Dn

4
= 0,

Dn+ 1
2
− f(Zn+ 1

2
, tn+ 1

2
) = 0,

Dn+1 − f(Zn+1, tn+1) = 0.

The scheme is equivalent to the one-step implicit block method of Shampine and Watts [8,

9], Axelsson [7] for first-order ODE.

Linear stability of scheme [2ZD] . To study the linear stability of the scheme, we consider the

linear differential equation φ′ = λφ, i.e. f(z, t) = λz, λ ∈ C. By substituting the derivative in

the Structural Equations, we get

−6(Zn+1 − Zn) + λ∆t(Zn + 4Zn+ 1
2

+ Zn+1) = 0,

−4(Zn − 2Zn+ 1
2

+ Zn+1) + λ∆t(Zn+1 − Zn) = 0.

Setting ß = λ∆t, we rewrite the problem as the linear system6− ß −4ß

4− ß −8

Zn+1

Zn+ 1
2

 =

 6 + ß

−ß− 4

Zn,
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and, using the Cramer’s method, we get

Zn+1 = A(ß)Zn, Zn+ 1
2

= B(ß)Zn,

with

A(ß) =
12 + 6ß + ß2

12− 6ß + ß2 , B(ß) =
24− ß2

24− 12ß + 2ß2 .

Stability is then achieved for the sub-domain

R = {ß ∈ C; |A(ß)| ≤ 1}.

Proposition 2.1. Assume that λ ∈]−∞, 0]. Then the scheme is unconditionally stable, and

we have |Zn| ≤ |Z0|.

Proof. Assume that λ ∈]−∞, 0]. We have

A(ß) =
3 + (ß + 3)2

3 + (ß− 3)2
∈]0, 1].

Hence, |Zn+1| ≤ |Zn| and by induction |Zn| ≤ |Z0|. We conclude that the scheme is uncondi-

tionally stable.

Extending the stability region to the whole left half-plane, we have the following result.

Proposition 2.2. We have R = {ß ∈ C; Re(ß) ≤ 0}, i.e. the scheme is A-stable.

Proof. We determine the boundary of R using the equation

|A(ß)| =
∣∣∣∣3 + (ß + 3)2

3 + (ß− 3)2

∣∣∣∣ = 1.

Considering the conjugate expression, we obtain the equivalent condition

ß(12 + ß̄
2
) + ß̄(12 + ß2) = 0,

which indicates that the real part is null, i.e. Re(ß(12 + ß̄
2
)) = 0. Setting ß = x + iy, we get
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Figure 4: Stencil: known data ( ), data to compute ( ), discarded data ( ).

the equivalent relation x(12 + x2 + y2) = 0. Hence, the imaginary axis is the boundary of the

stability region R, obtaining the conclusion.

2.4. The compact scheme [1ZDS]

Another way to provide a fourth-order scheme consists in introducing the second derivative.

To this end, we cancel the coefficients a 1
2

= b 1
2

= c 1
2

= 0 and the functional (4) reads (cf. Fig. 4)

En(a;φ) = a0φ(tn) + a1φ(tn+1) + b0φ
′(tn) + b1φ

′(tn+1) + c0φ
′′(tn) + c1φ

′′(tn+1).

We impose En(a;φ) = 0 for φ(t) = tα, α = 0, . . . , 4, and we get the Structural Equation (SE1)

12
Zn − Zn+1

(∆t)2
+ 6

Dn +Dn+1

∆t
+ (Sn − Sn+1) = 0. (9)

Together with the two Physical Equations (2)-(3) at point tn+1, we get the compact scheme

[1ZDS]. Given approximations Zn,Dn, Sn of φ and its derivatives at time tn, we aim at deter-

mining the approximations Zn+1, Dn+1, Sn+1 at time tn+1 such that

12
Zn − Zn+1

(∆t)2
+ 6

Dn +Dn+1

∆t
+ (Sn − Sn+1) = 0,

Dn+1 − f(Zn+1, tn+1) = 0,

Sn+1 − ∂zf(Zn+1, tn+1)Dn+1 + ∂tf(Zn+1, tn+1) = 0.

We recover the multistep multi-derivative method proposed by Lambert and Mitchell [3, 4,

6].
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Linear stability of scheme [1ZDS] . Taking f(z) = λz with λ ∈ C and denoting ß = λ∆t,

substitution in the Structural Equation (SE1) gives

12(Zn − Zn+1) + 6ß(Zn + Zn+1) + ß2(Zn − Zn+1) = 0

which is equivalent to

Zn+1

(
12− 6ß + ß2

)
= Zn

(
12 + 6ß + ß2

)
⇒ Zn+1 = A(ß)Zn

with

A(ß) =
3 + (ß + 3)2

3 + (ß− 3)2
∈ ]0, 1].

The noticeable point is that function A is exactly the same as the [2ZD], hence we get the

same A-stability property.

2.5. The compact scheme [2ZDS]

We introduce once again the intermediate point at tn+ 1
2

now dealing with the full func-

tional (4) with nine coefficients.

Since we require two Structural Equations, we then prescribe En(a;φ) = 0 for functions

φ(t) = tα, α = 0, . . . , 6, that provide two sets of coefficients up to a multiplicative constant.

The two Structural Equations then read

16
Zn+1 − 2Zn+ 1

2
+ Zn

(∆t)2
− 3

Dn+1 −Dn

∆t
+
Sn+1 − 8Sn+ 1

2
+ Sn

6
= 0,

30
Zn+1 − Zn

(∆t)2
−

7Dn+1 + 16Dn+ 1
2

+ 7Dn

∆t
+
Sn+1 − Sn

2
= 0.

Additionally, the Physical Equations (2)-(3) at point tn+ 1
2

and tn+1 have to be fulfilled.

Assuming that Zn, Dn, Sn are known, we aim at computing Zn+ 1
2
, Dn+ 1

2
, Sn+ 1

2
, Zn+1, Dn+1,
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Sn+1 given by the [2ZDS] scheme

16
Zn+1 − 2Zn+ 1

2
+ Zn

(∆t)2
− 3

Dn+1 −Dn

∆t
+
Sn+1 − 8Sn+ 1

2
+ Sn

6
= 0,

30
Zn+1 − Zn

(∆t)2
−

7Dn+1 + 16Dn+ 1
2

+ 7Dn

∆t
+
Sn+1 − Sn

2
= 0,

Dn+ 1
2
− f(Zn+ 1

2
) = 0,

Sn+ 1
2
− ∂zf(Zn+ 1

2
, tn+ 1

2
)Dn+ 1

2
− ∂tf(Zn+ 1

2
, tn+ 1

2
) = 0,

Dn+1 − f(Zn+1) = 0,

Sn+1 − ∂zf(Zn+1, tn+1)Dn+1 − ∂tf(Zn+1, tn+1) = 0.

We obtain a scheme that corresponds to a two-step implicit block method recently developed

for the ODEs’ framework [25].

Linear stability of scheme [2ZDS] . Taking f(z) = λz with λ ∈ C, substitution in the Struc-

tural Equations (SE1) and (SE2) gives

16(Zn+1 − 2Zn+ 1
2

+ Zn)− 3ß(Zn+1 − Zn) +
ß2

6
(Zn+1 − 8Zn+ 1

2
+ Zn) = 0,

30(Zn+1 − Zn)− ß(7Zn+1 + 16Zn+ 1
2

+ 7Zn) +
ß2

2
(Zn+1 − Zn) = 0,

which can be rewritten in the matriz form32 + 4ß2

3
−16 + 3ß− ß2

6

−16ß 30− 7ß + ß2

2

Zn+ 1
2

Zn+1

 =

16 + 3ß + ß2

6

30 + 7ß + ß2

2

Zn.
Expressions for Zn+ 1

2
and Zn+1 are then given by

Zn+ 1
2

=
π1(ß)

π0(ß)
Zn, Zn+1 =

π2(ß)

π0(ß)
Zn,
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with

π0(ß) =
2ß4 − 36ß3

3
+ 104ß2 − 480ß + 960,

π1(ß) =
ß2
(
ß2 − 96

)
6

+ 960,

π2(ß) =
2ß4 + 36ß3

3
+ 104ß2 + 480ß + 960.

Proposition 2.3. Assume that λ ∈]−∞, 0]. Then the scheme in unconditionally stable, and

we have |Zn| ≤ |Z0|.

Proof. Since ß ≤ 0, we deduce that |π2(ß)| ≤ |π0(ß)|, thus |Zn+1| ≤ |Zn|. The final inequality

is simply obtained by induction and we conclude that the scheme is unconditionally stable.

Proposition 2.4. We have R = {ß ∈ C; Re(ß) ≤ 0}, i.e. the scheme is A-stable.

Proof. We determine the boundary of R with the equation

|π2(ß)| = |π0(ß)| .

And using the conjugate expression, we obtain the equivalent condition

Re(ß)
(
(ßß̄)3 + 156(ßß̄)2 + 6240(ßß̄) + 57600

)
+ 2 Re(ß)3

(
20(ßß̄) + 720

)
= 0.

Setting ß = x+ iy with x, y ∈ R we get the equivalent relation

x
(
x6 + y6 + 3x2y4 + 3x4y2 + 196x4 + 36y4 + 232x2y2 + 7680x2 + 1920y2 + 57600

)
= 0.

The polynomial of degree 6 is a sum of monomials of order pair with an independent term, so

this equation is equivalent to x = 0. Hence, the imaginary axis is the boundary of the stability

region R, thus the conclusion.

2.6. An original compact scheme [2ZDS’] and its extension [2ZDS’’]

Each previous scheme has an equivalent expression in the context of ODE methods. The

common feature is the systematic usage of a Physical Equation to substitute the first- or
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second-derivatives. We here propose an original scheme that does not have any equivalent

with respect to the ODE methods. We consider two additional Structural Equations in place

of the Physical Equations (PE2). The [2ZDS’] scheme reads

16
Zn+1 − 2Zn+ 1

2
+ Zn

(∆t)2
− 3

Dn+1 −Dn

∆t
+
Sn+1 − 8Sn+ 1

2
+ Sn

6
= 0,

30
Zn+1 − Zn

(∆t)2
−

7Dn+1 + 16Dn+ 1
2

+ 7Dn

∆t
+
Sn+1 − Sn

2
= 0,

−8
Zn+1 − 2Zn+ 1

2
+ Zn

(∆t)2
+
Dn+1 −Dn

∆t
+ Sn+ 1

2
= 0,

12
Zn+1 − Zn

(∆t)2
− 2

Dn+1 + 4Dn+ 1
2

+Dn

∆t
= 0,

Dn+1 − f(Zn+1) = 0,

Dn+ 1
2
− f(Zn+ 1

2
) = 0.

Two Physical Equations are stated for the first-derivatives, but not for the second-derivatives.

We then obtain a prediction for Sn+ 1
2

and Sn+1.

We elaborate an alternative scheme, tagged [2ZDS’’], by reevaluating a new approximation

for Sn+1 using (PE2), but performed a posteriori. The resolution of the non-linear system does

not involve the second Physical Equation, but its application a posteriori strongly improves

the second derivative accuracy and the stability.

Linear stability of scheme [2ZDS’’] . To assess the stability, we take f(z) = λz and one has

Dn+α = λZn+α, α = 0, 1
2
, 1 (notice that we also have Sn = λ2Zn but such relation do not hold

any longer for n+ 1
2

and n+ 1). Substituting in the four Structural Equations, we have

16(Zn+1 − 2Zn+ 1
2

+ Zn)− 3ß(Zn+1 − Zn) +
ß2

6

(
Sn+1

λ2
− 8

Sn+ 1
2

λ2
+ Zn

)
= 0,

30(Zn+1 − Zn)− ß(7Zn+1 + 16Zn+ 1
2

+ 7Zn) +
ß2

2

(
Sn+1

λ2
− Zn

)
= 0,

−8(Zn+1 − 2Zn+ 1
2

+ Zn) + ß(Zn+1 − Zn) + ß2
Sn+ 1

2

λ2
= 0,

12(Zn+1 − Zn)− 2ß(Zn+1 + 4Zn+ 1
2

+ Zn) = 0.
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Reformulating the problem under the matrix form
−32 16− 3ß −4

3
ß2 1

6
ß2

−16ß 30− 7ß 0 1
2
ß2

16 −8 + ß ß2 0

−8ß 12− 2ß 0 0




Zn+ 1

2

Zn+1

1
λ2
Sn+ 1

2

1
λ2
Sn+1

 =


−16− 3ß− 1

6
ß2

30 + 7ß + 1
2
ß2

8 + ß

12 + 2ß

Zn,

and now using Crammer’s rule, we compute Zn+1 in function of Zn and get Zn+1 = A(ß)Zn

with the transfer function given by

A(ß) =
4
3
ß3 + 32

3
ß2 + 40ß + 64

8
3
ß2 − 24ß + 64

.

The stability condition is given by the condition |A(ß)| ≤ 1 and Fig. 5 displays the level-set

|A(ß)| = 1 together with the [RK4] one for the sake of comparison. When ß is pure imaginary

number (ß = iκ for κ ∈ R), we have that |A(ß)| ≥ 1, where |A(ß)| = 1 if and only if ß = 0.

−10 −8 −6 −4 −2 0
−7

−5

−3

−1

1

3

5

7

−1 0
−3

−2

−1

0

1

2

3

Figure 5: Stability region for the [2ZDS’’] scheme ( ) and comparison with the [RK4] stability region ( ).

2.7. Diffusion and dispersion analysis

To assess the diffusion and dispersion of the schemes, we consider the ODE φ′ = iκφ, κ > 0,

with solution φ(t) = exp(iκt). Assume that Zn = exp(iκn∆t) is the exact solution. Applying

the numerical scheme we obtain the approximation at tn+1 given by Zn+1 = χ exp(iκ(n+1)∆t),
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where χ ∈ C represents the deviation with respect to the exact solution. The ideal situation

corresponds to χ = 1 but in practice the deviation χ depends on ω = κ∆t. We characterize the

numerical error in two ways: arg(χ) quantifies the dispersion while |χ| quantifies the diffusion.

We recall that the transfer function A(ß) has been defined for the stability issue by Zn+1 =

A(ß)Zn. Taking the particular case ß = iκ∆t = iω, we get the relation

χ(ω) = A(iω) exp(−iω).

Hence we easily deduce the χ function for the five schemes considered above:

• For [1ZD], the function χ reads

χ(ω) =
2 + iω

2− iω
exp(−iω).

• For [2ZD] and [1ZDS], the χ function is the same and reads

χ(ω) =
12 + i6ω − ω2

12− i6ω − ω2
exp(−iω).

• For [2ZDS] , we obtain

χ(ω) =
2ω4 − 36iω3 − 312ω2 + 1440iω + 2880

2ω4 + 36iω3 − 312ω2 − 1440iω + 2880
exp(−iω).

• For [2ZDS’’], we finally get

χ(ω) =
−4iω3 − 32ω2 + 120iω + 192

−8ω2 − 72iω + 192
exp(−iω).

We plot in Fig. 6 the dispersion curve arg(χ) (left panel) and the diffusion curve |χ| (right

panel) in function of ω on the interval [0, 2π]. We underline the very good performance of

the [2ZDS’’] and the excellent behaviour of [2ZDS] to prevent from phase deviation. All the

centred schemes present no dissipation (|χ| = 1), except the [2ZDS’’]method that produces

an amplification of the signal corresponding to an anti-diffusive scheme.
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Figure 6: Left panel: dispersion curves arg(χ) in function of ω for schemes [CN] ( ), [2ZD] ( ),
[2ZDS] ( ), and [2ZDS’’] ( ). The [2ZDS] clearly achieves an excellent spectral resolution even for large
values ω. Right Panel: dissipation curves for |χ| in function of ω for schemes [CN], [2ZD], [2ZDS] ( )
and [2ZDS’’] ( ). All the centred schemes are non-dissipative except scheme [2ZDS’’] that presents an
anti-diffusion behaviour.

3. Benchmarking for ordinary differential equations

To assess the errors and the convergence rate at the final time, we define

E(N) = |ZN − φ(T )|,

where ZN is the numerical approximation at time t = N∆t = T while the rate of convergence

between two numerical solutions φN1 and φN2 reads

O(N1, N2) =

∣∣∣ log
[
E(N1)/E(N2)

]∣∣∣
| logN1/N2|

.

Since we will consider that solutions are regular we assess the error all along the timeline in

L∞ norm given by

E∞(N) =
N

max
n=0

∣∣Zn − φ(tn)
∣∣,
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where Zn is the numerical approximation at time t = tn. We derive the rate of convergence by

O∞(N1, N2) =

∣∣∣ log
[
E∞(N1)/E∞(N2)

]∣∣∣∣∣ logN1/N2

∣∣ .

The equivalent expressions for D and S are also considered.

The parts of the convergence tables regarding D and S for scheme [CN] and S for scheme

[2ZD] are computed a posteriori and printed in blue.

3.1. Benchmark ODE1

We consider the linear equation φ′ = −φ in (0, T ] with φ(0) = 1 to assess the numerical

diffusion. We carry out numerical simulations up to the final time T = 1 with N = 2, 4, 6, 8

using the five schemes [2ZD], [1ZDS], [2ZDS], [2ZDS’], and [2ZDS’’] and compare them

with the exact solution φ(t) = exp(−t). We report in Table 1 the errors at the final time to-

gether with the convergence order. The expected fourth-order for the [2ZD], [1ZDS], [2ZDS’],

and [2ZDS’’] is achieved while we obtain an effective sixth-order of convergence with the

[2ZDS] scheme for Z, D, and S. Notice the difference of the convergence rate between the

original [2ZDS’] scheme and its extension [2ZDS’’].

3.2. Benchmark ODE2

To assess the spectral resolution of the scheme, we consider the linear equation φ′ = −i2kπφ

in (0, T ] with φ(0) = 1 where k ∈ N is the wave number and i the imaginary unit. We evaluate

the dispersion between the numerical approximation and the exact solution φ(t) = exp(i2kπt).

We take k = 5 for the first case (benchmark ODE2a) and a higher frequency k = 10 for the

second case (benchmark ODE2b). Errors and convergence orders are reported in Tables 2 and

3, for each case respectively. The Crank-Nicholson scheme has been added for the sake of

comparison. As expected, the [CN]provides a second-order scheme while the three compact

schemes [2ZD], [1ZDS], and [2ZDS’] guarantee a fourth-order of accuracy. At last, the very

efficient [2ZDS]delivers an effective sixth-order scheme that highlights the capacity to strongly

reduce the dispersion. To confirm the dispersion assessment, we plot in Fig. 7 with k = 10 the

solution over the whole interval [0, T ] to assess the phase deviation between the exact solution

and the approximation.
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3.3. Benchmark ODE3

We proceed with a non-linear case φ′ = λφ(φ − 1) with stiff variations controlled by pa-

rameter λ ∈ R. The solution is the sigmoid function φ(t) = 1
1+exp(−λt) that presents a strong

variation around t = 0 when λ is large. We solve the ODE by prescribing φ0 = φ(−1) and

computing the solution over the interval [−1, 1] using a Picard fixed point at each time step.

The aim of the benchmark is to assess the robustness and accuracy of the solution after the

sharp transition that takes place at t = 0. Several values for λ have been tested but we only

report the two representative cases with λ = 5 (benchmark ODE3a) and λ = 10 (benchmark

ODE3b). We plot in Fig. 8 the computed values for Z, D, and S and draw the exact solution

and its derivatives.

Errors and convergence orders are reported in Tables 4 and 5 for the two situations, respec-

tively. Notice that we compute the L∞ norm over the whole time interval to measure the error

at the transition. Expected orders of convergences are achieved and we observe the strong im-

pact of the value of λ on the errors. Indeed, benchmark ODE3a produces lower errors of three

magnitude orders comparing with benchmark ODE3b on the same meshes. Note also that now

that the errors of schemes [2ZD] and [1ZDS] are slightly different due to the non-linear nature

of the benchmark.

3.4. Benchmark ODE4

We explore the system case and consider the first-order plane waves equation system φ′ = αψ,

ψ′ = −αφ,

leading to the second-order linear equation φ′′+α2φ = 0, where α ∈ R. Assuming that φ(0) = 1

and ψ(0) = 0, the exact solution reads φ(t) = cos(αt).

We consider a low frequency case α = 2.1π (benchmark ODE4a) and a high frequency

case α = 10.1π (benchmark ODE4b) to check the ability of the schemes to catch the correct

solution with low phase deviations. Tables 6 and 7 report the errors and convergence orders

at the final time T = 1 for the five schemes. We just mention that no stability problems have

been detected for the two conditionally stable schemes [2ZDS’] and [2ZDS’’]. On the other
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hand, we perfectly recover the expected orders for the function and its derivatives. Of course,

the high frequency case provides pronounced errors for N = 5, 10 (particularly the second

derivative). Indeed, if the time step ∆t is larger than the characteristic time 1/α, we cannot

“physically” catch the curved (we need at least 2 or 3 nodes in a complete revolution).

4. Benchmarking for partial differential equations

We extend the technology to PDEs, using a semi-discretization in space to provide a ODE

system in time. Considering the one-dimensional case in space, we seek function φ = φ(x, t)

solution of

∂tφ+ ∂xF (φ) = f, in [0, L]× (0, T ],

where F is the physical flux, f is the source term, and T > 0 is the final time. Since the

focus of this work are time schemes, we eliminate boundary conditions issues considering that

function φ is a L-periodic function in space. The equation is equipped with an initial condition

φ(x, 0) = φ0(x), x ∈ [0, L]. To achieve the discretization in space, we use the very simple

centred finite difference method. To this end, let I ∈ N and L = I∆x. We denote xi = i∆x,

i ∈ Z, a uniform discretization of the real axis. Due to L-periodicity, we have φi+I = φi, for

all i ∈ Z, hence the relevant data is only given by components φi, i = 1, . . . , I.

For any time t, functions Zi(t), Di(t), and Si(t) are the approximations of φ(xi, t), ∂tφ(xi, t),

and ∂ttφ(xi, t), respectively, while vector Z(t) = [Z1(t), . . . , ZI(t)]
T gathers all the components

(and similarly D(t) and S(t)).

Regarding time discretization, let N ∈ N, ∆t = T/N , and tn = n∆t. Therefore Zi,n states

for an approximation of φ(xi, tn) at point xi and time tn, and we collect all the approximations

in space with vector Zn = [Z1,n, . . . , ZI,n]T. Similarly, one has Dn = [D1,n, . . . , DI,n]T and

Sn = [S1,n, . . . , SI,n]T.

The point is to extend the high-order schemes for ODEs to the more general situation of

PDEs. Basically the semi-discretization provides a semi-discrete linear or non-linear system

D(t) = F̂ (Z(t), t),
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where F̂ : RI → RI characterizes the space operator discretization. Moreover, we prescribe the

periodic boundary condition since we only focus on the time scheme and discard the additional

difficulties related to the boundary conditions.

4.1. Linear convection-diffusion equation

We start with the simple linear convection-diffusion problem

∂tφ− κ∂xxφ+ u∂xφ = f, in [0, L]× (0, T ], (10)

where u ∈ R and κ ≥ 0 are the velocity and diffusive coefficients, respectively. We tag this

equation as PE1 (physical equation 1). A second physical equation (PE2) is obtained by

deriving PE1 with respect to time and reads

∂ttφ− κ∂xx(∂tφ) + u∂x(∂tφ) = ∂tf. (11)

At the semi-discrete level, equations (10)-(11) give

D(t)− κAdiffZ(t) + uAconvZ(t)− f(t) = 0,

S(t)− κAdiffD(t) + uAconvD(t)− f ′(t) = 0,

where matrices Adiff and Aconv entries correspond to the finite discretization with a 9-point

eighth-order centred scheme including the periodic condition for the diffusion and the convec-

tion operators. Source term vectors are given by

f(t) =


f(x1, t)

. . .

f(xI , t)

 , f ′(t) =


∂tf(x1, t)

. . .

∂tf(xI , t)

 .

In addition to the physical equations PE1 and PE2, we consider the vector version of the

Structural Equations by simply repeating the same linear combinations in time, for each node,

since such relations are independent of i. By that way, we straightforward extend to vectors Zn,

Dn, and Sn the schemes [2ZD], [1ZDS], and [2ZDS]. As examples, we detail two representative
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situations with [2ZD] and [1ZDS].

• [2ZD]The two-stage ZD compact scheme is given by

Dn+ 1
2

+ AZn+ 1
2
− fn+ 1

2
= 0,

Dn+1 + AZn+1 − fn+1 = 0,

−6
Zn+1 − Zn

∆t
+ (Dn + 4Dn+ 1

2
+Dn+1) = 0,

−4
Zn − 2Zn+ 1

2
+ Zn+1

∆t
+ (Dn+1 −Dn) = 0,

with A = −κAdiff + uAconv. Vectors Z0 and D0 are the given initial functions. The

problem recasts in the matrix formulation,
A Id 0 0

0 0 A Id

0 4∆tId −6Id ∆tId

8Id 0 −4Id ∆tId




Zn+ 1

2

Dn+ 1
2

Zn+1

Dn+1

 =


0 0

0 0

−6Id −∆tId

4Id ∆tId


Zn
Dn

+


fn+ 1

2

fn+1

0

0

 ,

where the 4I× 4I matrix gathers the convective and diffusive matrices together with the

Structural Equations.

• [1ZDS]The one-stage ZDS compact scheme is given by

Dn+1 + AZn+1 − fn+1 = 0,

Sn+1 + ADn+1 − f ′n+1 = 0,

12
Zn − Zn+1

∆t2
+ 6

Dn +Dn+1

∆t
+ (Sn − Sn+1) = 0,

where Z0, D0, and S0 are given initial functions. The problem recast in the matrix

formulation,
A Id 0

0 A Id

12Id −6∆tId ∆t2Id



Zn+1

Dn+1

Sn+1

 =


0 0 0

0 0 0

12Id 6∆tId ∆t2



Zn

Dn

Sn

+


fn+1

f ′n+1

0

 ,
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where the 3I× 3I matrix gathers the convective and diffusive matrices together with the

Structural Equations.

All the other schemes follow a similar matrix construction.

To carry out the numerical simulations, the domain is the academic interval [0, 1] and

we compute the solution until T = 1. The space discretization corresponds to a eighth-

order method with I = 40. We manufactured a regular solution φ(x, t) = sin(2π(x − 2.1t))

and compute the associated right hand-side term. Besides the ZDS schemes’ family, we also

consider in some benchmarks the classical [RK4] scheme to check the stability. The parts of the

convergence tables regarding D and S for scheme [RK4] and S for scheme [2ZD] are computed

a posteriori and printed again in blue (this notation is also followed on the other benchmarks).

The first benchmark PDE-CONVDIF1 concerns the pure convective case with u = 1 and

κ = 0. Table 8 reports the errors and convergence rates. Observed fourth-order and sixth-

order of accuracy are in line with the ODE case and prove that the time schemes produce the

optimal orders.

The second benchmark PDE-CONVDIF2 deals with a combination of convection and dif-

fusion terms with u = 1 and κ = 1. Table 9 evidences that the application of the diffusion do

not produce stability problems and the optimal orders are preserved.

The third benchmark PDE-CONVDIF3 tackles the pure diffusive case, which is a more

demanding situation for explicit schemes due to the Courant-Friedrichs-Lewy (CFL) condition.

Indeed, we have carried out the same simulation for the conditionally stable explicit scheme

[RK4] and we show in Table 10 that [RK4] is unstable until N = 3700 whereas stability is

recovered for N = 3800. Such large number of time-steps negatively affect the computation

costs. On the other hand, schemes [2ZD], [1ZDS], and [2ZDS] are always stable, and Table 11

provides the errors for N = 20, 25, 30, and 35. It is noticeable that scheme [RK4]with

N = 3800 provides an error around 1E−10 which we attribute to the error in space together

with the conditioning of the global matrix. Notice that we asymptotically reach the same error

for N = 670 with the fourth-order scheme and N = 40 with the sixth-order scheme.
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4.2. Linear Schrödinger equation

The linear Schrödinger equation represents a challenging issue for both the accuracy and

the spectral resolution. Low dispersion is of major importance since the wave function is highly

variable and one has to preserve all the frequencies for the sake of conservation (probability,

density, momentum, energy). Curiously, most authors focus on the space discretization by

developing low dispersion compact schemes [21], but the time discretization is a more critical

issue since the frequency increases as the square of the wave length. Consequently, very low

dispersion schemes in time is a fundamental issue.

As an example, we consider in this particular benchmark the space domain [xlf, xrg] and

the classical case of a null potential in the vacuum between two infinite potentials at points xlf

and xrg. The equation reads

∂tφ− i∂xxφ = 0, in [xlf, xrg]× (0, T ], (12)

with boundary conditions φ(xlf, t) = φ(xrg, t) = 0. We tag (PE1) the first Physical equa-

tion (12) and produce the second Physical Equation (PE2) by derivation with respect to time

∂ttφ− i∂xx(∂tφ) = 0. (13)

At the semi-discrete level in space, equations (12)-(13) read

D(t)− iAZ(t) = 0,

S(t)− iAD(t) = 0,

where matrix A represents the discrete Hamiltonian operator using the eighth-order centred

finite difference method.

To carry out the benchmark PDE-SCH, we consider the initial solution

φ(x, 0) =
1

4
√
σ2π

exp

(
−
(
x− x0√

2σ

)2
)

exp
(

ikc
x

~

)
,
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being the exact solution given by

φ(x, t) =
1

4
√
σ2π

2π√
g(t)

exp

(
−(x− x0 − ~kc

m
t)2

2g(t)σ2

)
exp

(
−i

~k2
c

2m
t

)
exp(ikcx),

where g(t) = 1 + i~ t
σ2m

. Notice that we have the ik2
c term for the time whereas we just have a

ikc term for the space, hence oscillations increase faster in time than space.

All the simulations have been carried out taking ~ = 1, m = 1, x0 = 5, kc = π
4
, σ = 1, with

xlf = −30, xrg = 60, and calculating until the final time T = 5.

We plot in Fig. 9 the real and imaginary parts of φ(x, 0) (top row) and φ(x, 5) (bottom row)

using a grid with I = 800 nodes. We checked that the spatial step ∆x is smaller than the min-

imal wave length and thus avoiding under-resolution frequencies. Table 12 reports the errors

and convergence orders for the different schemes. As expected, the [2ZD] and [1ZDS] schemes

enjoy a fourth-order of accuracy, while the errors for the [2ZDS]method are stalled for N > 50

due to the lack of accuracy in space. We overcome the problem using a tenth-order in space

discretization with I = 1000, recovering the optimal sixth-order in time as can be observed in

Table 13.

The above benchmark brings to the fore a nice additional property of the compact schemes:

the asymptotic error A(∆t)α has a smaller multiplicative constant A comparing with the

constant B of the asymptotic error B(∆t)β of a conventional scheme (we mean without the

derivatives). Using higher order derivatives as unknowns is the key for reducing the magnitude

of the constant. Consequently, the conventional scheme order has to be higher than the compact

scheme to achieve the same amount of errors. Such an issue holds when blending a compact

scheme in time with a conventional scheme in space. We reinforce the argumentation with

a comparison between the explicit [RK4] and the [1ZDS] schemes. Both are of fourth-order,

but the stability condition requires that N ≥ 1500 to provide a correct approximation in the

[RK4] case. It is then noticeable that the [1ZDS] achieves the same error but with just N = 150

as shown in Table 14. It highlights the advantages of the ZDS class of schemes compared to

the traditional Runge-Kuta of the same order.
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4.3. Wave equation

Plane wave propagation is another important example where both diffusion and dispersion

are critical issues. The linear wave propagation system reads

∂tφ = c∂xψ, (14)

∂tψ = −c∂xφ, (15)

where c is the propagation speed. We tag Physical Equation 14 as PE1φ and Physical Equa-

tion 15 as PE1ψ. The second physical equations (PE2φ and PE2ψ) come from the derivative

with respect to time, and we get

∂ttφ = c∂x(∂tψ),

∂ttψ = −c∂x(∂tφ).

Denoting by A the eighth-order centred finite difference operator in space for the first-

derivative, the semi-discretization of the four Physical Equations reads

Dφ(t)− cAZφ(t) = 0,

Dψ(t) + cAZψ(t) = 0,

Sφ(t)− cADφ(t) = 0,

Sψ(t) + cADψ(t) = 0.

For example, the [2ZD]method involves the Physical Equations PE1φ and PE1ψ at time

tn+ 1
2

and tn+1 together with the two Structural Equations (6) and (7) applied twice: for Zφ

and Dφ on the one hand, for Zψ and Dψ on the other hand. Similarly, to achieve the [1ZDS],

we need the four Physical Equations at time tn+1 combined with equation (9) applied twice:

Zφ,Dφ, and Sφ for φ and Zψ,Dψ, and Sψ for ψ.

To carry out the benchmark PDE-WAV, we consider the manufactured solution φ(x, t) =

sin(2π(x + ct)) for a velocity c = 5. The domain is the simple interval [0, 1] with a grid of

I = 100 nodes. Computations are carried out up to the final time T = 1. Table 15 provides
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the errors between the numerical approximations and the exact solution, together with the

convergence order. To sum-up, the optimal orders are obtained for the different methods.

To assess the dispersion of the scheme, i.e. the phase deviation, we plot in Fig. 10 the

solution and the approximations for the [2ZD] and [2ZDS] schemes along time at point x = 0

with N = 20. We clearly observe a delay with the fourth-order scheme while the sixth-order one

perfectly match with the exact solution and demonstrate an excellent behaviour with respect

to dispersion.

4.4. Bürgers’ equation

We proceed with the scalar Bürgers’ equation to evaluate the schemes’ ability to handle non-

linear problems. We aim at computing a numerical approximation of the Physical Equation

(PE1)

∂tφ− φ∂xφ = f, in [0, L]× (0, T ], (16)

where f represents a regular source term. Derivation in time provides the second Physical

Equation (PE2)

∂ttφ− ∂tφ∂xφ− φ∂x(∂tφ) = ∂tf. (17)

At the semi-discrete level in space, equations (16)-(17) read

D(t)− Z(t)(AZ(t))− f(t) = 0,

S(t)−D(t)(AZ(t))− Z(t)(AD(t))− f ′(t) = 0,

where the product between vectors corresponds to the component-wise multiplication. Matrix

A represents the eighth-order centred finite difference operator while f(t) and f ′(t) are the

vectors of the right hand side point-wise values for f and its time derivative.

We detail the [1ZDS] scheme as an example, the other methods proceed in a very similar

way. The two Physical Equations are solved together with the Structural Equation leading to
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the non-linear system

Dn+1 − Zn+1(AZn+1)− fn+1 = 0,

Sn+1 −Dn+1(AZn+1)− Zn+1(ADn+1)− fn+1′ = 0,

12
Zn − Zn+1

∆t2
+ 6

Dn +Dn+1

∆t
+ (Sn − Sn+1) = 0.

We use a simple Picard fixed point method by computing a sequence Zn,k, Dn,k, and Sn,k

until we achieve the convergence and provide the approximations at time tn+1.

Benchmark PDE-BUR is achieved with the manufactured solution φ(x, t) = sin(2π(x −
2.1t)) on domain [0, 1], until the final time T = 1. Space discretization uses a I = 100 node

grid. We present in Table 16 errors and convergence orders. We also mention the average

number of iterations k for the Picard fixed point to solve the non-linear system at each time

step. One observes that k̄ slightly decreases with N and seems scheme independent. Moreover,

we find out the optimal order for the function and derivatives. Again the errors of schemes

[2ZD] and [1ZDS] are slightly different due to the non-linear nature of the benchmark.

4.5. Euler system

With the last benchmark, we tackle the non-linear one-dimensional Euler system which

represents a real and important problem for the CFD community. We seek regular solutions

for the density ρ, velocity u, and pressure p of the Physical Equations PE1ρ, PE1u, and PE1p

∂tρ+ u∂xρ+ ρ∂xu = fρ, (18)

∂tu+ u∂xu+
1

ρ
∂xp = fu, in [0, L]× (0, T ], (19)

∂tp+ u∂xp+ γp∂xu = fp, (20)
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where fρ, fu, and fp represent source terms. A second set of Physical Equations is obtained

by computing the derivative with respect to time and give

∂ttρ+ ∂tu∂xρ+ u∂x(∂tρ) + ∂tρ∂xu+ ρ∂x(∂tu) = ∂tfρ, (21)

∂ttu+ ∂tu∂xu+ u∂x(∂tu)− ∂tρ

ρ2
∂xp+

1

ρ
∂x(∂tp) = ∂tfu, (22)

∂ttp+ ∂tu∂xp+ u∂x(∂tp) + γ∂tp∂xu+ γp∂x(∂tu) = ∂tfp. (23)

At the space discrete level, equations (18)-(20) read

Dρ(t) + Zu(t)(AZρ(t)) + Zρ(t)(AZu(t))− fρ(t) = 0,

Du(t) + Zu(t)(AZu(t)) +
1

Zρ(t)
(AZp(t))− fu(t) = 0,

Dp(t) + Zu(t)(AZp(t)) + γZp(t)(AZu(t))− fp(t) = 0,

where matrix A corresponds to the eighth-order centred finite differences in space. Of course,

expressions of products and fractions are performed component-wise. Equations for the sys-

tem (21)-(23) read

Sρ(t) +Du(t)(AZρ(t)) + Zu(t)(ADρ(t)) +Dρ(t)(AZu(t)) + Zρ(t)(ADu(t))− f ′ρ(t) = 0,

Su(t) +Du(t)(AZu(t)) + Zu(t)(ADu(t)) +
Dρ(t)

(Zρ(t))2
(AZp(t)) +

1

Zρ(t)
ADp(t)− f ′u(t) = 0,

Sp(t) +Du(t)AZp(t) + Zu(t)ADp(t) + γDp(t)AZu(t) + γZp(t)ADu(t)− f ′p(t) = 0.

The introduction of the scheme in time is achieved in a very similar way to the Bürgers’

case. We do not repeat for the sake of simplicity. The Picard fixed point is implemented and

enables to compute all the approximations at time tn+1, being given the approximation at time

tn.

The Benchmark PDE-EUL is carried out with the manufactured regular functions

ρ(x, t) = sin(2π(x− 2.1t)) + 3, u(x, t) = sin(2π(x− 2.2t)), p(x, t) = sin(2π(x− 2.3t)) + 2,

over the domain [0, 1] until the final time T = 1. Discretization in space is given with a grid of
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I = 100 nodes. Tables 17, 18, and 19 report the errors and the convergence orders for density,

velocity, and pressure, respectively, considering the different time schemes. We also give the

average number of Picard iterations k̄ for solving the non-linear problem at each time step. We

check that optimal orders in time are achieved with a small number of iterations to perform

the fixed point procedure.

5. Conclusion

Time discretization is usually a background topic and does not deserve enough attention.

Topics such as wave propagation, Schrödinger equation, and electromagnetism involve high

variation in time, which require high accuracy, low dispersion, and A- stable schemes. The

present study introduces the compact scheme paradigm, almost used in space discretization, to

design a new class of discretization schemes in time. We prove that we both achieve very high

accuracy and low dispersion, while most of the methods enjoy the A-stability property. Bench-

marks, combining the traditional finite difference method in space together with our proposed

schemes, give evidences of the advantage of the structural and physical equations’ combination.

The concept will be extended to higher derivatives and to consider time dependent boundary

conditions.
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Table 1: Benchmark ODE1.

time scheme N Z D S

E O E O E O

[2ZD]

2 3.24E−05 — 3.24E−05 — 3.24E−05 —
4 2.00E−06 4.02 2.00E−06 4.02 2.00E−06 4.02
6 3.95E−07 4.01 3.95E−07 4.01 3.95E−07 4.01
8 1.25E−07 4.00 1.25E−07 4.00 1.25E−07 4.00

[1ZDS]

2 3.24E−05 — 3.24E−05 — 3.24E−05 —
4 2.00E−06 4.02 2.00E−06 4.02 2.00E−06 4.02
6 3.95E−07 4.01 3.95E−07 4.01 3.95E−07 4.01
8 1.25E−07 4.00 1.25E−07 4.00 1.25E−07 4.00

[2ZDS]

2 9.64E−09 — 9.64E−09 — 9.64E−09 —
4 1.49E−10 6.02 1.49E−10 6.02 1.49E−10 6.02
6 1.31E−11 6.01 1.31E−11 6.01 1.31E−11 6.01
8 2.32E−12 6.00 2.32E−12 6.00 2.32E−12 6.00

[2ZDS’]

2 1.55E−05 — 1.55E−05 — 3.77E−03 —
4 9.88E−07 3.98 9.88E−07 3.98 9.51E−04 1.99
6 1.96E−07 3.99 1.96E−07 3.99 4.23E−04 2.00
8 6.20E−08 4.00 6.20E−08 4.00 2.38E−04 2.00

[2ZDS’’]

2 1.08E−05 — 1.08E−05 — 1.08E−05 —
4 5.82E−07 4.22 5.82E−07 4.22 5.82E−07 4.22
6 1.09E−07 4.13 1.09E−07 4.13 1.09E−07 4.13
8 3.37E−08 4.09 3.37E−08 4.09 3.37E−08 4.09
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Table 2: Benchmark ODE2a.

time scheme N Z D S

E O E O E O

[CN]

20 1.36E+00 — 4.28E+01 — 1.34E+03 —
30 1.89E+00 — 5.94E+01 — 1.87E+03 —
200 6.43E−02 1.78 2.02E+00 1.78 6.35E+01 1.78
300 2.87E−02 1.99 9.00E−01 1.99 2.83E+01 1.99

[2ZD]

20 2.27E−01 — 7.13E+00 — 2.24E+02 —
30 4.91E−02 3.78 1.54E+00 3.78 4.84E+01 3.78
200 2.65E−05 3.97 8.33E−04 3.97 2.62E−02 3.97
300 5.24E−06 4.00 1.65E−04 4.00 5.18E−03 4.00

[1ZDS]

20 2.27E−01 — 7.13E+00 — 2.24E+02 —
30 4.91E−02 3.78 1.54E+00 3.78 4.84E+01 3.78
200 2.65E−05 3.97 8.33E−04 3.97 2.62E−02 3.97
300 5.24E−06 4.00 1.65E−04 4.00 5.18E−03 4.00

[2ZDS]

20 6.74E−04 — 2.12E−02 — 6.65E−01 —
30 6.42E−05 5.80 2.02E−03 5.80 6.34E−02 5.80
200 7.79E−10 5.97 2.45E−08 5.97 7.69E−07 5.97
300 6.85E−11 6.00 2.15E−09 6.00 6.76E−08 6.00

[2ZDS’]

20 8.63E−03 — 2.71E−01 — 7.94E+01 —
30 9.94E−04 5.33 3.12E−02 5.33 2.92E+01 2.47
200 2.44E−07 4.38 7.68E−06 4.38 5.76E−01 2.07
300 4.77E−08 4.03 1.50E−06 4.03 2.55E−01 2.00

[2ZDS’’]

20 7.31E−02 — 2.30E+00 — 7.22E+01 —
30 1.37E−02 4.13 4.30E−01 4.13 1.35E+01 4.13
200 6.65E−06 4.02 2.09E−04 4.02 6.56E−03 4.02
300 1.31E−06 4.00 4.12E−05 4.00 1.30E−03 4.00
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Table 3: Benchmark ODE2b.

time scheme N Z D S

E O E O E O

[CN]

20 1.88E+00 — 1.18E+02 — 7.44E+03 —
30 1.54E+00 0.50 9.68E+01 0.50 6.08E+03 0.50
200 5.04E−01 0.59 3.17E+01 0.59 1.99E+03 0.59
300 2.28E−01 1.96 1.43E+01 1.96 8.99E+02 1.96

[2ZD]

20 1.56E+00 — 9.77E+01 — 6.14E+03 —
30 1.18E+00 0.67 7.44E+01 0.67 4.67E+03 0.67
200 8.45E−04 3.82 5.31E−02 3.82 3.34E+00 3.82
300 1.67E−04 3.99 1.05E−02 3.99 6.61E−01 3.99

[1ZDS]

20 1.56E+00 — 9.77E+01 — 6.14E+03 —
30 1.18E+00 0.67 7.44E+01 0.67 4.67E+03 0.67
200 8.45E−04 3.82 5.31E−02 3.82 3.34E+00 3.82
300 1.67E−04 3.99 1.05E−02 3.99 6.61E−01 3.99

[2ZDS]

20 5.28E−02 — 3.32E+00 — 2.08E+02 —
30 6.72E−03 5.09 4.22E−01 5.09 2.65E+01 5.09
200 9.93E−08 5.86 6.24E−06 5.86 3.92E−04 5.86
300 8.75E−09 5.99 5.50E−07 5.99 3.45E−05 5.99

[2ZDS’]

20 1.03E+00 — 6.47E+01 — 5.63E+03 —
30 6.57E−02 6.79 4.13E+00 6.79 4.76E+02 6.09
200 5.50E−06 4.95 3.45E−04 4.95 1.31E+01 1.90
300 1.07E−06 4.03 6.75E−05 4.03 5.78E+00 2.01

[2ZDS’’]

20 7.65E+00 — 4.81E+02 — 3.02E+04 —
30 5.67E−01 6.42 3.56E+01 6.42 2.24E+03 6.42
200 2.13E−04 4.16 1.34E−02 4.16 8.42E−01 4.16
300 4.21E−05 4.01 2.64E−03 4.01 1.66E−01 4.01
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Figure 7: Benchmark ODE2b: real (left) and imaginary (right) parts of φ (top), φ′ (middle), and φ′′ (bottom):
exact solution φ(t) ( ), exact solution at t = i

N ( ), [CN] numerical solution at t = i
N ( ), [2ZD] numerical

solution at t = i
N ( ), and [2ZDS]numerical solution at t = i

N ( ), N = 20 and i = 0, . . . , N .
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Table 4: Benchmark ODE3a.

time scheme N k̄ Z D S

E∞ O∞ E∞ O∞ E∞ O∞

[2ZD]

5 18.00 7.69E−03 — 1.81E−02 — 3.32E−02 —
10 12.10 4.80E−04 4.00 1.05E−03 4.11 5.99E−03 2.47
20 9.60 3.01E−05 4.00 7.22E−05 3.86 3.65E−04 4.04
30 8.67 5.93E−06 4.00 1.41E−05 4.03 7.17E−05 4.01
40 8.00 1.87E−06 4.02 4.48E−06 3.99 2.26E−05 4.01

[1ZDS]

5 25.60 3.09E−03 — 7.09E−03 — 1.91E−02 —
10 15.70 1.97E−04 3.97 4.55E−04 3.96 1.07E−03 4.15
20 11.60 1.28E−05 3.95 2.80E−05 4.02 1.31E−04 3.03
30 10.10 2.69E−06 3.84 5.50E−06 4.01 2.44E−05 4.15
40 9.47 8.50E−07 4.01 1.74E−06 4.00 8.17E−06 3.80

[2ZDS]

5 21.40 1.47E−04 — 3.39E−04 — 6.58E−04 —
10 13.90 8.19E−07 7.49 1.92E−06 7.46 6.64E−06 6.63
20 10.85 1.75E−08 5.55 2.74E−08 6.13 1.79E−07 5.21
30 9.63 1.42E−09 6.18 2.29E−09 6.12 1.51E−08 6.10
40 8.97 2.38E−10 6.21 3.98E−10 6.08 2.44E−09 6.33

[2ZDS’]

5 15.20 1.56E−03 — 7.73E−03 — 6.29E−01 —
10 12.00 4.81E−05 5.02 1.11E−04 6.12 7.69E−02 3.03
20 9.90 3.04E−06 3.99 7.02E−06 3.99 1.85E−02 2.05
30 9.00 6.01E−07 4.00 1.45E−06 3.88 8.17E−03 2.02
40 8.62 1.90E−07 4.00 4.67E−07 3.95 4.58E−03 2.01

[2ZDS’’]

5 15.20 1.44E−03 — 3.34E−03 — 1.20E−02 —
10 12.00 5.47E−05 4.72 1.26E−04 4.72 3.51E−04 5.09
20 9.90 3.20E−06 4.10 7.12E−06 4.15 3.28E−05 3.42
30 9.00 6.76E−07 3.83 1.39E−06 4.04 5.99E−06 4.19
40 8.62 2.13E−07 4.01 4.36E−07 4.02 2.04E−06 3.75
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Table 5: Benchmark ODE3b.

time scheme N k̄ Z D S

E∞ O∞ E∞ O∞ E∞ O∞

[2ZD]

5 100.00 1.00E+00 — 1.05E+00 — 8.00E+00 —
10 17.50 4.24E−02 4.56 1.40E−01 2.91 2.11E+00 1.92
20 11.15 2.29E−03 4.21 8.69E−03 4.01 1.15E−01 4.20
30 9.40 4.39E−04 4.07 1.79E−03 3.90 2.20E−02 4.07
40 8.75 1.37E−04 4.04 5.54E−04 4.08 6.86E−03 4.04

[1ZDS]

5 39.00 3.10E−01 — 1.40E+00 — 7.21E+00 —
10 26.70 3.29E−02 3.24 1.11E−01 3.65 1.64E+00 2.14
20 15.15 1.83E−03 4.17 7.33E−03 3.92 9.13E−02 4.17
30 12.27 3.51E−04 4.07 1.45E−03 4.00 1.75E−02 4.07
40 10.88 1.12E−04 3.96 4.40E−04 4.13 5.50E−03 4.03

[2ZDS]

5 100.00 1.00E+00 — 1.05E+00 — 8.00E+00 —
10 21.30 1.53E−04 12.67 8.73E−04 10.23 7.65E−03 10.03
20 13.30 1.44E−06 6.74 6.64E−06 7.04 6.58E−05 6.86
30 11.17 1.61E−07 5.39 5.38E−07 6.20 5.70E−06 6.03
40 10.15 3.05E−08 5.79 1.04E−07 5.70 1.25E−06 5.28

[2ZDS’]

5 42.40 1.24E−01 — 1.39E+00 — 6.19E+01 —
10 15.50 3.26E−03 5.25 3.25E−02 5.42 5.19E+00 3.57
20 11.25 6.56E−05 5.64 6.56E−04 5.63 4.00E−01 3.70
30 9.93 1.33E−05 3.94 1.33E−04 3.94 1.80E−01 1.97
40 9.25 4.22E−06 3.98 4.22E−05 3.98 1.02E−01 2.00

[2ZDS’’]

5 39.40 2.98E−02 — 2.36E−01 — 1.31E+00 —
10 15.40 6.51E−04 5.52 2.09E−03 6.82 3.25E−02 5.33
20 11.30 2.17E−04 1.58 1.00E−03 1.06 1.09E−02 1.58
30 9.93 5.85E−05 3.23 2.39E−04 3.54 2.78E−03 3.36
40 9.25 2.09E−05 3.58 8.26E−05 3.69 9.86E−04 3.60
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Table 6: Benchmark ODE4a.

time scheme N Z D S

E O E O E O

[2ZD]

5 7.41E−03 — 1.57E−01 — 3.22E−01 —
10 5.21E−04 3.83 1.06E−02 3.89 2.27E−02 3.83
20 3.33E−05 3.97 6.76E−04 3.97 1.45E−03 3.97
30 6.60E−06 3.99 1.34E−04 3.99 2.87E−04 3.99
40 2.09E−06 4.00 4.25E−05 4.00 9.11E−05 4.00

[1ZDS]

5 7.41E−03 — 1.57E−01 — 3.22E−01 —
10 5.21E−04 3.83 1.06E−02 3.89 2.27E−02 3.83
20 3.33E−05 3.97 6.76E−04 3.97 1.45E−03 3.97
30 6.60E−06 3.99 1.34E−04 3.99 2.87E−04 3.99
40 2.09E−06 4.00 4.25E−05 4.00 9.11E−05 4.00

[2ZDS]

5 1.60E−05 — 3.26E−04 — 6.98E−04 —
10 2.71E−07 5.89 5.50E−06 5.89 1.18E−05 5.89
20 4.32E−09 5.97 8.76E−08 5.97 1.88E−07 5.97
30 3.80E−10 5.99 7.72E−09 5.99 1.65E−08 5.99
40 6.77E−11 6.00 1.38E−09 6.00 2.95E−09 6.00

[2ZDS’]

5 8.82E−04 — 1.11E−02 — 1.48E+00 —
10 5.42E−05 4.02 5.12E−04 4.44 3.36E−01 2.14
20 3.39E−06 4.00 2.92E−05 4.13 8.19E−02 2.04
30 6.69E−07 4.00 5.68E−06 4.04 3.62E−02 2.01
40 2.12E−07 4.00 1.79E−06 4.02 2.04E−02 2.01

[2ZDS’’]

5 3.31E−03 — 4.33E−02 — 1.44E−01 —
10 4.06E−05 6.35 2.90E−03 3.90 1.77E−03 6.35
20 2.96E−06 3.78 1.79E−04 4.02 1.29E−04 3.78
30 9.45E−07 2.81 3.49E−05 4.03 4.11E−05 2.81
40 3.56E−07 3.40 1.09E−05 4.03 1.55E−05 3.40
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Table 7: Benchmark ODE4b.

time scheme N Z D S

E O E O E O

[2ZD]

5 1.95E+00 — 1.31E+01 — 1.96E+03 —
10 1.39E+00 0.49 3.83E+01 — 1.40E+03 0.49
20 4.61E−02 4.91 7.40E+00 2.37 4.64E+01 4.91
30 1.46E−02 2.83 1.57E+00 3.83 1.47E+01 2.83
40 5.06E−03 3.70 5.08E−01 3.91 5.09E+00 3.70

[1ZDS]

5 1.95E+00 — 1.31E+01 — 1.96E+03 —
10 1.39E+00 0.49 3.83E+01 — 1.40E+03 0.49
20 4.61E−02 4.91 7.40E+00 2.37 4.64E+01 4.91
30 1.46E−02 2.83 1.57E+00 3.83 1.47E+01 2.83
40 5.06E−03 3.70 5.08E−01 3.91 5.09E+00 3.70

[2ZDS]

5 4.43E−02 — 6.75E+00 — 4.46E+01 —
10 8.99E−03 2.30 8.38E−01 3.01 9.05E+00 2.30
20 2.23E−04 5.34 2.17E−02 5.27 2.24E−01 5.34
30 2.13E−05 5.79 2.07E−03 5.79 2.14E−02 5.79
40 3.89E−06 5.90 3.80E−04 5.90 3.92E−03 5.90

[2ZDS’]

5 8.39E+02 — 1.99E+03 — 6.90E+05 —
10 1.59E−01 12.37 1.45E+01 7.10 2.97E+02 11.18
20 7.55E−04 7.72 2.86E−01 5.66 6.35E+01 2.23
30 2.58E−04 2.65 3.31E−02 5.32 2.31E+01 2.49
40 9.49E−05 3.47 7.88E−03 4.99 1.21E+01 2.26

[2ZDS’’]

5 4.07E+01 — 1.98E+03 — 4.10E+04 —
10 2.06E+00 4.30 1.09E+01 7.50 2.08E+03 4.30
20 4.28E−02 5.59 2.03E+00 2.43 4.31E+01 5.59
30 4.51E−03 5.55 4.34E−01 3.81 4.54E+00 5.55
40 7.55E−04 6.21 1.40E−01 3.94 7.60E−01 6.21
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Table 8: Benchmark PDE-CONVDIF1.

time scheme N Z D S

E∞ O∞ E∞ O∞ E∞ O∞

[2ZD]

20 1.06E−04 — 6.68E−04 — 4.20E−03 —
25 4.37E−05 3.99 2.74E−04 3.99 1.72E−03 3.99
30 2.11E−05 3.99 1.33E−04 3.99 8.33E−04 3.99
35 1.14E−05 3.99 7.16E−05 3.99 4.50E−04 3.99

[1ZDS]

20 3.08E−04 — 1.94E−03 — 1.22E−02 —
25 1.27E−04 3.99 7.95E−04 3.99 5.00E−03 3.99
30 6.11E−05 3.99 3.84E−04 3.99 2.41E−03 3.99
35 3.30E−05 3.99 2.08E−04 3.99 1.30E−03 3.99

[2ZDS]

20 1.60E−07 — 1.00E−06 — 6.30E−06 —
25 4.18E−08 6.02 2.61E−07 6.03 1.63E−06 6.06
30 1.38E−08 6.08 8.56E−08 6.12 5.27E−07 6.19
35 5.29E−09 6.22 3.22E−08 6.33 1.99E−07 6.33

Table 9: Benchmark PDE-CONVDIF2.

time scheme N Z D S

E∞ O∞ E∞ O∞ E∞ O∞

[2ZD]

20 3.21E−04 — 1.28E−02 — 5.13E−01 —
25 1.32E−04 3.97 5.29E−03 3.97 2.12E−01 3.97
30 6.40E−05 3.99 2.56E−03 3.99 1.02E−01 3.99
35 3.46E−05 3.99 1.38E−03 3.99 5.53E−02 3.99

[1ZDS]

20 8.55E−05 — 3.42E−03 — 1.37E−01 —
25 3.52E−05 3.98 1.41E−03 3.98 5.62E−02 3.98
30 1.70E−05 3.98 6.80E−04 3.98 2.72E−02 3.98
35 9.20E−06 3.99 3.68E−04 3.99 1.47E−02 3.99

[2ZDS]

20 4.73E−08 — 1.89E−06 — 7.57E−05 —
25 1.21E−08 6.11 4.85E−07 6.10 1.95E−05 6.09
30 3.95E−09 6.14 1.60E−07 6.09 6.46E−06 6.05
35 1.51E−09 6.24 6.19E−08 6.14 2.55E−06 6.02
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Table 10: Benchmark PDE-CONVDIF3a.

time scheme N Z D S

E∞ E∞ E∞

[2ZD]

40 1.96E−05 7.73E−04 3.05E−02
3700 1.11E−10 1.46E−09 2.20E−08
3800 1.11E−10 1.46E−09 2.39E−08

[RK4]

40 — — —
3700 1.08E+47 1.12E+51 1.17E+55
3800 9.81E−11 1.59E−09 5.83E−08

[1ZDS]

40 5.22E−06 2.06E−04 8.14E−03
3700 1.11E−10 1.47E−09 2.50E−08
3800 1.11E−10 1.47E−09 2.69E−08

[2ZDS]

40 6.99E−10 2.57E−08 1.07E−06
3700 1.11E−10 1.47E−09 2.69E−08
3800 1.11E−10 1.46E−09 2.74E−08

Table 11: Benchmark PDE-CONVDIF3b.

time scheme N Z D S

E∞ O∞ E∞ O∞ E∞ O∞

[2ZD]

20 3.14E−04 — 1.24E−02 — 4.89E−01 —
25 1.29E−04 4.00 5.08E−03 4.00 2.01E−01 4.00
30 6.20E−05 4.01 2.45E−03 4.01 9.66E−02 4.01
35 3.34E−05 4.01 1.32E−03 4.01 5.21E−02 4.01

[1ZDS]

20 8.37E−05 — 3.31E−03 — 1.31E−01 —
25 3.42E−05 4.01 1.35E−03 4.01 5.33E−02 4.01
30 1.65E−05 4.00 6.52E−04 4.00 2.57E−02 4.00
35 8.91E−06 4.00 3.52E−04 4.00 1.39E−02 4.00

[2ZDS]

20 4.62E−08 — 1.82E−06 — 7.20E−05 —
25 1.18E−08 6.10 4.66E−07 6.11 1.84E−05 6.10
30 3.91E−09 6.07 1.53E−07 6.10 6.10E−06 6.07
35 1.55E−09 6.02 5.94E−08 6.15 2.40E−06 6.05
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Figure 9: Benchmark PDE-SCH: real (left) and imaginary (right) parts of φ(x, 0) (top) and φ(x, 5) (bottom).
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Table 12: Benchmark PDE-SCH — version 1.

time scheme N Z D S

E∞ O∞ E∞ O∞ E∞ O∞

[2ZD]

30 3.61E−04 — 2.47E−03 — 1.97E−02 —
40 1.16E−04 3.93 8.02E−04 3.92 6.40E−03 3.91
50 4.83E−05 3.95 3.33E−04 3.94 2.67E−03 3.92
60 2.35E−05 3.96 1.62E−04 3.95 1.30E−03 3.94
70 1.27E−05 3.96 8.81E−05 3.95 7.08E−04 3.94

[1ZDS]

30 3.61E−04 — 2.47E−03 — 1.97E−02 —
40 1.16E−04 3.93 8.01E−04 3.92 6.40E−03 3.91
50 4.83E−05 3.95 3.33E−04 3.94 2.67E−03 3.92
60 2.35E−05 3.96 1.62E−04 3.95 1.30E−03 3.94
70 1.27E−05 3.96 8.81E−05 3.95 7.08E−04 3.95

[2ZDS]

30 5.89E−07 — 5.29E−06 — 5.27E−05 —
40 8.53E−08 6.72 8.18E−07 6.49 8.61E−06 6.30
50 2.53E−08 5.44 1.41E−07 7.88 1.22E−06 8.75
60 3.68E−08 — 2.36E−07 — 1.74E−06 —
70 4.13E−08 — 2.78E−07 — 2.16E−06 —

Table 13: Benchmark PDE-SCH — version 2.

time scheme N Z D S

E∞ O∞ E∞ O∞ E∞ O∞

[2ZDS]

30 6.24E−07 — 5.54E−06 — 5.48E−05 —
40 1.17E−07 5.82 1.05E−06 5.77 1.06E−05 5.71
50 3.14E−08 5.90 2.84E−07 5.87 2.88E−06 5.84
60 1.05E−08 5.98 9.61E−08 5.95 9.79E−07 5.92
70 4.13E−09 6.09 3.78E−08 6.06 3.87E−07 6.03

Table 14: Benchmark PDE-SCH — version 3.

time scheme N Z D S

E∞ E∞ E∞

[RK4]
1480 2.40E+13 2.02E+16 1.70E+19
1500 5.78E−06 2.71E−05 1.58E−04

[1ZDS] 150 6.17E−06 3.02E−05 1.85E−04
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Figure 10: Benchmark PDE-WAV for x = 0 and t ∈ [0, 1]: exact solution φ(0, t) ( ), exact solution at
t = i

N ( ), [2ZD] numerical solution at t = i
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Table 15: Benchmark PDE-WAV.

time scheme N Z D S

E∞ O∞ E∞ O∞ E∞ O∞

[2ZD]

20 2.27E−01 — 7.13E+00 — 2.24E+02 —
40 1.60E−02 3.83 5.02E−01 3.83 1.58E+01 3.83
80 1.03E−03 3.96 3.23E−02 3.96 1.01E+00 3.96
160 6.47E−05 3.99 2.03E−03 3.99 6.39E−02 3.99

[1ZDS]

20 2.27E−01 — 7.13E+00 — 2.24E+02 —
40 1.60E−02 3.83 5.02E−01 3.83 1.58E+01 3.83
80 1.03E−03 3.96 3.23E−02 3.96 1.01E+00 3.96
160 6.47E−05 3.99 2.03E−03 3.99 6.39E−02 3.99

[2ZDS]

20 6.74E−04 — 2.12E−02 — 6.65E−01 —
40 1.18E−05 5.84 3.69E−04 5.84 1.16E−02 5.84
80 1.89E−07 5.96 5.93E−06 5.96 1.86E−04 5.96
160 2.97E−09 5.99 9.33E−08 5.99 2.93E−06 5.99
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Table 16: Benchmark PDE-BUR.

time scheme N k̄ Z D S

E∞ O∞ E∞ O∞ E∞ O∞

[2ZD]

30 11.00 4.39E−05 — 4.13E−04 — 1.29E−02 —
40 10.00 1.38E−05 4.02 1.31E−04 3.99 4.11E−03 3.99
50 10.00 5.64E−06 4.02 5.35E−05 4.00 1.68E−03 4.00
60 9.00 2.71E−06 4.01 2.58E−05 4.00 8.11E−04 4.01

[1ZDS]

30 13.00 7.03E−05 — 4.60E−04 — 1.24E−02 —
40 12.00 2.22E−05 4.00 1.46E−04 4.00 3.95E−03 3.99
50 11.00 9.10E−06 4.00 5.97E−05 4.00 1.62E−03 4.00
60 11.00 4.39E−06 4.00 2.88E−05 4.00 7.81E−04 3.99

[2ZDS]

30 11.97 1.63E−08 — 1.07E−07 — 2.89E−06 —
40 11.00 2.89E−09 6.01 1.89E−08 6.01 5.13E−07 6.00
50 10.98 7.56E−10 6.01 4.96E−09 6.01 1.35E−07 5.99
60 10.00 2.53E−10 6.00 1.66E−09 6.00 4.51E−08 6.01

Table 17: Benchmark PDE-EUL — density.

time scheme N k̄ Z D S

E∞ O∞ E∞ O∞ E∞ O∞

[2ZD]

20 14.00 2.37E−03 — 8.30E−02 — 5.93E+00 —
30 12.00 2.60E−04 5.45 1.31E−02 4.55 8.81E−01 4.70
40 11.00 9.41E−05 3.54 3.71E−03 4.38 2.71E−01 4.10
50 10.84 4.23E−05 3.58 1.77E−03 3.32 1.08E−01 4.12

[1ZDS]

20 15.95 1.83E−03 — 5.05E−02 — 3.08E+00 —
30 14.03 3.81E−04 3.87 1.11E−02 3.74 6.19E−01 3.96
40 14.35 1.16E−04 4.14 3.82E−03 3.70 2.58E−01 3.05
50 11.72 4.69E−05 4.06 1.79E−03 3.39 1.17E−01 3.53

[2ZDS]

20 12.45 9.23E−07 — 4.38E−05 — 3.46E−03 —
30 11.00 8.44E−08 5.90 5.06E−06 5.32 4.42E−04 5.08
40 11.00 1.45E−08 6.12 9.26E−07 5.90 8.02E−05 5.93
50 10.00 3.79E−09 6.01 2.40E−07 6.05 2.14E−05 5.92
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Table 18: Benchmark PDE-EUL — velocity.

time scheme N k̄ Z D S

E∞ O∞ E∞ O∞ E∞ O∞

[2ZD]

20 14.00 9.48E−04 — 1.76E−02 — 1.29E+00 —
30 12.00 1.66E−04 4.30 3.76E−03 3.81 2.47E−01 4.08
40 11.00 5.34E−05 3.94 9.58E−04 4.75 7.59E−02 4.10
50 10.84 2.18E−05 4.01 4.46E−04 3.43 2.81E−02 4.45

[1ZDS]

20 15.95 9.02E−04 — 1.71E−02 — 8.76E−01 —
30 14.03 1.97E−04 3.75 3.84E−03 3.68 1.99E−01 3.65
40 14.35 6.28E−05 3.98 9.19E−04 4.97 6.66E−02 3.81
50 11.72 2.58E−05 3.99 4.29E−04 3.42 3.32E−02 3.13

[2ZDS]

20 12.45 5.51E−07 — 9.90E−06 — 7.37E−04 —
30 11.00 5.06E−08 5.89 9.46E−07 5.79 9.77E−05 4.99
40 11.00 8.91E−09 6.04 1.73E−07 5.90 1.74E−05 6.01
50 10.00 2.34E−09 5.99 4.48E−08 6.06 4.64E−06 5.91

Table 19: Benchmark PDE-EUL — pressure.

time scheme N k̄ Z D S

E∞ O∞ E∞ O∞ E∞ O∞

[2ZD]

20 14.00 1.32E−03 — 5.27E−02 — 4.19E+00 —
30 12.00 2.32E−04 4.30 1.11E−02 3.85 7.88E−01 4.12
40 11.00 8.11E−05 3.65 2.82E−03 4.75 2.48E−01 4.01
50 10.84 3.18E−05 4.19 1.32E−03 3.39 9.23E−02 4.44

[1ZDS]

20 15.95 1.21E−03 — 5.09E−02 — 2.87E+00 —
30 14.03 2.40E−04 3.99 1.13E−02 3.72 6.45E−01 3.68
40 14.35 6.83E−05 4.38 2.62E−03 5.06 2.17E−01 3.79
50 11.72 2.89E−05 3.86 1.23E−03 3.39 1.08E−01 3.14

[2ZDS]

20 12.45 6.06E−07 — 2.85E−05 — 2.36E−03 —
30 11.00 5.42E−08 5.95 2.90E−06 5.64 3.14E−04 4.97
40 11.00 9.68E−09 5.99 5.32E−07 5.89 5.74E−05 5.91
50 10.00 2.53E−09 6.00 1.38E−07 6.06 1.54E−05 5.91
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