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Reduction of L∞-algebras of observables on multisymplectic

manifolds

Casey BLACKER ∗, Antonio Michele MITI † and Leonid RYVKIN ‡

Abstract

We introduce a novel symplectic reduction scheme for C∞(M,ω) that extends in a straight-
forward manner to the multisymplectic setting. Specifically, we exhibit a reduction of the
L∞-algebra of observables on a premultisymplectic manifold (M,ω) in the presence of a com-
patible Lie algebra action g yM and subset N ⊆M . In the symplectic setting, this reproduces
the Dirac, Śniatycki–Weinstein, and Arms–Cushman–Gotay reduced Poisson algebra whenever
the Marsden–Weinstein quotient exists. We examine our construction in the context of vari-
ous examples, including multicotangent bundles and multiphase spaces, and conclude with a
discussion of applications to classical field theories and quantization.
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Introduction

It is well known that under suitable regularity conditions a symplectic Hamiltonian action G y

(M,ω) with moment map µ :M → g∗ determines a canonical symplectic structure on the reduced
space M0 = µ−1(0)/G [MW74, Mey73]. By association, we may consider the Poisson algebra
C∞(M,ω) to reduce to C∞(M0, ω0). It turns out that the conditions under which the existence of
(M0, ω0) is ensured are more restrictive than those admitting a natural analogue of C∞(M0, ω0). A
symplectic observable reduction scheme is a procedure for defining a reduced algebra of observables
C∞(M,ω)0 without assuming the existence of (M0, ω0).

In this paper, we adapt these ideas to the multisymplectic setting, that is, to the setting of a
smooth manifold M equipped with a closed and nondegenerate (n + 1)-form ω ∈ Ωn+1(M). In
particular, given an multisymplectic Hamiltonian action G y (M,ω) and an associated covariant
moment map µ ∈ Ωn−1(M, g∗), we reduce the L∞-algebra of observables Ham∞(M,ω) to obtain
a reduced space Ham∞(M,ω) that canonically includes in Ham∞(M0, ω0) whenever the geometric
reduced space (M0, ω0) exists. In fact, our construction is rather more general than this. We define a
reduction of Ham∞(M,ω) with respect any Lie algebra action g yM and subset N ⊆M satisfying
mild compatibility conditions.

In the symplectic (i.e. 1-plectic) setting, our construction agrees with the Dirac, Śniatycki–
Weinstein, and Arms–Cushman–Gotay reduction schemes whenever the Marsden–Weinstein reduced
space (M0, ω0) exists and, in this situation, returns the Poisson algebra C∞(M0, ω0). However, we
emphasize that even in the symplectic case our construction is distinct from each these reduction
schemes.

We now review a few terminological conventions of symplectic reduction that carry over in a
natural way to the multisymplectic setting:

• A reduction scheme is said to be geometric when it produces a reduced symplectic manifold
(M0, ω0).
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• It is said to be algebraic, or observable, when it returns a reduced space of observables
C∞(M,ω)0, without necessarily exhibiting an underlying reduced symplectic manifold.

In mechanical terms, the former is a reduction of states, while the latter is a reduction of observables.
Every reduction scheme we consider involves in an essential way a subset N ⊆M . Traditionally,

N is the vanishing locus of a family of constraint functions ϕa ∈ C∞(M). Such a scheme may
additionally utilize an action GyM , historically encoding a group of symmetries of a generalized
momentum phase space. This brings us to a second distinction:

• We call a reduction scheme constraints-based when it takes as input an admissible subset
N ⊆M .

• We call a constraints-based reduction scheme symmetry-based if it additionally takes as input
a compatible Lie group action Gy (M,ω).

Finally, we make a distinction based on the smoothness conditions imposed on the constraint
set N ⊆M :

• A reduction scheme is regular when the constraint set N ⊆ M is required to be a smoothly
embedded submanifold.

• Otherwise, it is singular.

For example, the Marsden–Weinstein reduction is a regular symmetry-based geometric reduction
scheme, while the Arms–Cushman–Gotay reduction is a singular geometric symmetry-based scheme.

In Table 1 we indicate a few instances of symplectic reduction schemes, arranged according to
the classification above.

constraints-based symmetry-based

geometric
reduction

Arms–Gotay–Jennings [AGJ90]
Marsden–Weinstein [MW74]
Arms–Cushman–Gotay [ACG91]

observable
reduction

Dirac [Dir64]
Śniatycki–Weinstein [ŚW83]
L∞ [§3]

Table 1: Some well-known symplectic reduction schemes.

Reduction has its origins in mechanics, specifically in the problem of reducing the degrees of
freedom of a mechanical system with symmetries. In this regard, it is rooted in the work of Euler and
Lagrange on motions of the rigid body. We refer to [MW01, CMR01] for a historical review. The
manifestation of these ideas in symplectic geometry is the celebrated Marsden–Weinstein–Meyer
theorem [MW74, Mey73], which we review in Subsection 1.1.

Insofar as it is possible to formally extend the symplectic formalism to continuous physical sys-
tems, by defining a presymplectic structure on the infinite-dimensional space of solutions of the field
equations, such a procedure encounters various technicalities, not least, from a mathematical per-
spective, those arising from considerations of infinite-dimensional manifolds. The covariant formal-
ism avoids these issues by working not with a space of solutions, but rather on a finite-dimensional
multiphase space associated to the configuration bundle. We refer to [Kij73, GIMM98, GIM04, H1́2]
for background on the mathematical physics that precipitated much of the development of the mul-
tisymplectic formalism.
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The underlying ideas of symplectic reduction have been extended throughout differential geome-
try. Indeed, the range of adaptations includes Poisson manifolds [MR86, Wil02], contact structures
[dLLV19, Wil02], cosymplectic manifolds [Alb89], polysymplectic manifolds [MRRSVn15], higher
Poisson structures [BMAR19], Courant algebroids and generalized complex structures [BCG07,
SX08, Vai07], and quasi-Hamiltonian G-spaces [AMM98].

The question of multisymplectic reduction is first addressed in [Śni04], where an extension of the
Marsden–Weinstein quotient is defined for multiphase spaces associated to classical field theories.
The prospect of a general multisymplectic is given in [MW01, OR04] and a more thorough examina-
tion in [EEMLRR18]. Building on this work, a reduction for general multisymplectic Hamiltonian
G-spaces is proposed in [Bla21]. We note that an interesting alternative perspective, reflecting a
mechanical notion of reduction and distinct from the Marsden–Weinstein quotient in the symplectic
setting, appears in [dLGR+22, Definition 4.2].

While the smooth functions on a symplectic manifold naturally possess the structure of a Poisson
algebra, the space of observables Ham∞(M,ω) on an n-plectic manifold (M,ω) exhibits the rather
more technical structure of an L∞-algebra, or homotopy Lie algebra. The L∞-algebra structure of
Ham∞(M,ω) was first identified in [Rog12] and has since become an object of interest in its own
right, for example, in its role in the construction of homotopy moment maps [CFRZ16, FLGZ15,
SZ16, Her18].

Summary and results

We define a symmetry-based observable reduction scheme in the multisymplectic setting. The
parameters of the reduction consist of a suitably compatible (pre-)multisymplectic manifold (M,ω),
constraint set N ⊆M , and Lie algebra action g yM . The result is an L∞-algebra Ham∞(M,ω)N .

Key features of this reduction include:

• The reduction is applicable for any subset N ⊆M , without conditions on smoothness or type
of singularity.

• The action g y M is required to preserve N in a weak sense: It is the ideal of functions
vanishing on N , rather than N itself, that must be preserved.

• The action need not preserve ω: It suffices for ω to satisfy a strictly weaker condition of
reducibility.

The reduction naturally applies to constraint sets N ⊆M induced by covariant moment maps,
and hence also induces a symmetry-based observable reduction scheme that interacts with geometric
multisymplectic reduction. Perhaps surprisingly, our construction exhibits novel behavior even in
the symplectic setting.

The paper is organized as follows:
We begin in Section 1 with a review of classical symplectic reduction with respect to a moment

map, and a survey of three approaches to the observable reduction of symplectic manifolds. In
addition to contextualizing our reduction scheme in terms of symplectic predecessors, this exposition
will serve as a reference in Subsection 4.1 for comparison with our new multisymplectic reduction
scheme.

In Section 2 we provide a brief review of multisymplectic geometry, including (pre-)multisymplectic
manifolds (M,ω), and their observable L∞-algebras Ham∞(M,ω). We conclude this section by re-
viewing covariant moment maps and geometric multisymplectic reduction.
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In Section 3 we present our main construction. Here we introduce the notions of reducibility
for differential forms, vector fields, and multisymplectic observables. We prove that the space of
reducible observables Ham∞(M,ω)[N ] is an L∞-algebra and show that the space of observables
IHam∞

(N) that should vanish after reduction is an L∞-ideal. Hence their quotient is a well-defined
L∞-algebra:

Definition 3.21. The reduction of Ham∞(M,ω) with respect to g y (N ⊆M) is the L∞-algebra

Ham∞(M,ω)N =
Ham∞(M,ω)[N ]

IHam∞
(N)

.

We then turn to symmetry-based multisymplectic observable reduction. We show that the
level sets of a covariant moment map give admissible initial data for our reduction procedure and
compare the reduced space of observables with the geometric reduction (MN , ωN ). Whenever the
latter exists, we have:

3.38:

Theorem 3.38. The geometric reduction map

rN : Ham∞(M,ω)[N ] → Ham∞(MN , ωN )

(v, α) 7→ (vN , αN )

α 7→ αN

is a strict L∞-morphism with kernel IHam∞
(N). In particular, there is a natural inclusion of L∞-

algebras

Ham∞(M,ω)N =
Ham∞(M,ω)[N ]

IHam∞
(N)

r̄N
−֒−→ Ham∞(MN , ωN ).

In Section 4 we turn to interesting and illuminating classes of examples of reduction. We first
look at the important special case of symplectic manifolds. First, we show that our reduction scheme
applied to the Poisson algebra C∞(M,ω) is canonically Poisson.

Theorem 4.1. If g y M is tangent to N ⊆ M , and if the symplectic structure ω ∈ Ω2(M) is
reducible, then the reduction L∞(M,ω)N inherits a natural Poisson structure from C∞(M,ω).

We then establish that, while the L∞-reduction procedure is distinct from the Dirac, Śniatycki–
Weinstein, and Arms–Cushman–Gotay schemes, the all coincide whenever the Marsden–Weinstein
quotient exists:

Theorem 4.13. Let Gy(M,ω) be a symplectic Hamiltonian action and suppose that 0 ∈ g∗ is
a regular value of the moment map µ : M → g∗. If G y M is free and proper, then the [L∞],
[ŚW], [D], and [ACG] reductions are equal. In particular, each is isomorphic to the Poisson algebra
C∞(M0, ω0) of smooth functions on the Marsden–Weinstein reduced space.

In Subsection 4.2 we compute the L∞-reduction for a simple but illustrative example in which
the symplectic form is merely reducible but not invariant.

In Subsections 4.3 and 4.4 we consider the celebrated examples of multicotangent bundles and
multiphase spaces, which underlie the covariant Hamiltonian approach to classical field theories.
Even in this natural and motivating setting, a complete description of the reduced space appears
to be highly nontrivial. In spite of this, we show that a particular natural class of observables
associated to the underlying covariant configuration bundle is always reducible:
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Theorem 4.17. If v ∈ X(M) preserves Xg(E), and if v ∈ X(E) is (E → Σ)-projectable, then
(ṽ, ιṽθ) ∈ Ham

0
∞(Λn

1T
∗E,ω) is reducible.

Our theoretical development is supplemented in Subsection 4.5 with explicit computations of
reducible observables for a particular scalar field theory.

We conclude in Section 5 with a discussion of three topics for future development. First, we
consider the setting of spaces of connections under the action of a gauge group, following [CFRZ16,
Section 10]. Second, we consider the application of our work to the historical source for multisym-
plectic geometry, classical field theory. Finally, we consider the extension of our methods and results
to multisymplectic quantization.

Notation and conventions

Our sign conventions are chosen to be broadly consistent with [CFRZ16].
All manifolds are assumed to be C∞ and paracompact. We denote by GyM the smooth action

of a Lie group on a manifold. Except where explicitly stated otherwise, all actions are on the left.
Induced actions on spaces of forms G y Ω(M) are given in the usual manner by inverse pullback.
The induced infinitesimal action g yM is the assignment of fundamental vector fields

· : g X(M)
ξ ξ

where

ξ
x
=

d

dt
exp (−tξ)x

∣∣∣
t=0

∀x ∈M.

Consequently, ξ 7→ ξ is a Lie algebra homomorphism. We write Lξ and ιξ for Lξ and ιξ throughout.

On a pre-n-plectic manifold (M,ω), a Hamiltonian form α ∈ Ωn−1(M) and any associated
Hamiltonian vector field vα ∈ X(M) are related by the identity dα = −ιvαω. The relation between
a ω and a premultisymplectic potential θ ∈ Ωn(M) is ω = dθ.

The Leibniz bracket on Ωn−1
ham(M,ω) is given by {α, β} = Lvαβ. In particular, in the symplectic

setting the Poisson bracket is {f, h} = ω(vf , vh). Consequently, the assignment of Hamiltonian
vector fields C∞(M,ω)→ X(M) is a Lie algebra homomorphism.

We denote by αξ = 〈α, ξ〉 the contraction of a g∗-valued form α ∈ Ω(M, g∗) with an element
ξ ∈ g. Consequently, ad∗ξαζ = −α[ξ,ζ] where ad∗ : g y g∗ is the coadjoint action.

A comprehensive glossary of symbols is provided in Table 2.
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symbol meaning reference

C∞(M,ω) Poisson algebra of observables sec. 1
IN constraints ideal in C∞(M) def. 1.7
Iµ momentum ideal def. 1.9
N (S) normalizer of S ⊆ C∞(M,ω) thm. 1.13
FN first-class function set def. 1.16
O(N) Dirac observables def. 1.18
SG fixed-point set of Gy S subsec. 1.5

ω (pre)multisymplectic form def. 2.1
µ covariant moment map def. 2.13, 1.1
µ̃ comoment map def. 2.14, 1.2
X(M,ω) multisymplectic vector fields def. 2.3
Xham(M,ω) Hamiltonian vector fields def. 2.4
L∞(M,ω) associated L∞-algebra def. 2.7
ς(k) total Koszul sign def. 2.7
lk kth multibracket of L∞(M,ω) def. 2.7
Ham∞(M,ω) L∞-algebra of observables def. 2.8
l̃k kth observable multibracket def. 2.8
{ , } Leibniz bracket on Ωn−1

ham(M,ω) def. 2.11
θ multisymplectic potential lem. 2.15, subsec. 4.3
(Mφ, ωφ) reduction of (M,ω) at level φ thm. 2.16

XN (M) vector fields tangent to N def. 3.1
IX(N) vanishing ideal in X(M) def. 3.1
g y (N ⊆M) action tangent to N def. 3.2
IΩ(N) vanishing de Rham ideal def. 3.8
Ω(M)[N ] reducible forms def. 3.10
X(M)[N ] reducible vector fields def. 3.12
Xg(M) fundamental submodule def. 3.12
Ham∞(M,ω)[N ] reducible observables def. 3.16
IHam∞

(N) vanishing observable ideal def. 3.19
Ham∞(M,ω)N L∞-reduction along N def. 3.21
Ham∞(M,ω)φ L∞-reduction at level φ def. 3.26
g fundamental distribution lem. 3.30, rem. 3.13
rN geometric reduction map def. 3.32
(MN , ωN ) reduction of (M,ω) along N thm. 3.34
[Ham∞, R] residue defect def. 3.42

Q Casimir functions def. 4.3
Λk
1T

∗E multiphase space subsec. 4.4

Table 2: Index of notation.
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1 Reduction of observables in the symplectic setting

Fix a smooth manifold M and an arbitrary closed subset N ⊆ M . We often refer to N as a
constraint set since, in the context of time-evolving mechanical systems, it can be interpreted as
the subspace of the phase space consisting of Cauchy data admissible by the physical constraints.

A (constraints-based) reduction scheme of (M,ω) with respect to N is a procedure yielding a
symplectic structure on a certain smooth quotient of N (geometric reduction) or a certain Poisson
algebra (observable reduction). The latter could be eventually interpreted as representing the alge-
bra of “smooth functions” over a certain topological space; however, it can happen that the reduced
Poisson algebra does not arise from a symplectic structure on the reduced space. Hence, while a
geometric reduction always implies an observable reduction, the converse is not true in general.

Our main interest will be the reduction with respect to symmetries (i.e. symmetry-based). In
this case, we will be concerned with constraint sets induced by Hamiltonian group actions, namely
N = µ−1(0) with µ :M → g∗ a moment map associated to the action.

When µ−1(0) ⊆ M is not a submanifold, or when the action G y µ−1(0) fails to be free and
proper, the reduced space (M0, ω0) prescribed by the Marsden–Weinstein reduction theorem may
not exist.

One approach to addressing this pathology is to turn our attention from the underlying sym-
plectic space (M,ω) to the Poisson algebra of observables C∞(M,ω). As we shall see, there are
various natural constructions of a reduced space of observables even in the absence of a reduced
space of points. We will designate such constructions observable reduction schemes.

This section reviews some well-known approaches to reduction in the symplectic (1-plectic)
setting, namely the Marsden–Weinstein [MW74], Śniatycki–Weinstein [ŚW83], Dirac [Dir64], Arms–
Cushman–Gotay [ACG91], and Arms–Gotay–Jennings [AGJ90] reduction schemes.

Throughout this section, (M,ω) denotes a symplectic manifold and C∞(M,ω) the associated
Poisson algebra, that is the (unital, associative, commutative) algebra of smooth functions C∞(M)
endowed with the Lie bracket {·, ·} given by

{f1, f2} = ω(vf1 , vf2) = Lvf1
(f2)

for any fi ∈ C∞(M) with associated Hamiltonian vector field vfi . We note that this bracket is
indeed Poisson: In addition to the Jacobi identity it satisfies the Leibniz rule,

{h, f1 f2} = {h, f1}f2 + f1{h, f2}

for all h, f1, f2 ∈ C∞(M).

1.1 Reduction of symplectic manifolds

Before turning to observable reduction schemes, we first recall the original Marsden–Weinstein
reduction theorem for symplectic Hamiltonian actions [MW74].

Let GyM be the action of a Lie group on a symplectic manifold (M,ω). We call this a
symplectic action when ω is preserved by G, and it is in this setting that the action may additionally
admit a moment map.

Definition 1.1. A moment map for Gy(M,ω) is a smooth map µ :M → g∗ such that

i. dµξ = −ιξω for all ξ ∈ g,
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ii. µ :M → g∗ is G-equivariant,

where µξ = 〈µ, ξ〉 is the contraction on g∗ ⊗ g and where Gy g∗ is the coadjoint action.

By inverting the order of arguments, the moment map induces a Lie algebra homomorphism

µ̃ : g→ C∞(M,ω)

ξ 7→ µξ.

Thus, every moment map encodes a comoment map, defined as follows.

Definition 1.2. A comoment map for Gy(M,ω) is a linear map µ̃ : g→ C∞(M,ω) satisfying

i. d µ̃(ξ) = −ιξω

ii. µ̃([ξ, ζ]) = {µ̃(ξ), µ̃(ζ)}

for all ξ, ζ ∈ g.

Remark 1.3. Condition ii. of Definition 1.1 expresses the equivariance of µ with respect to GyM
and the coadjoint action Gy g∗. This property implies that µ̃ is a Lie algebra homomorphism
(condition ii. of Definition 1.2). The converse is true when G is a connected group.

Remark 1.4 (comoment maps as lifts). An action admitting a moment map acts infinitesimally
by Hamiltonian vector fields. The comoment map assigns to each ξ ∈ g a Hamiltonian function
µξ ∈ C∞(M) associated to the fundamental field ξ. In this setting, G y M is said to be a
Hamiltonian action.

More algebraically, µ̃ is a lift in the category of Lie algebras of the fundamental action ξ 7→ ξ
by the assignment of Hamiltonian vector fields f 7→ vf .

g X(M)

C∞(M,ω)

ξ ξ

α

vα

µ̃

The Marsden–Weinstein symplectic reduction scheme is a rule that associates to each suitably
compatible

i. symplectic Hamiltonian action Gy (M,ω),
ii. moment map µ :M → g∗, and
iii. element λ ∈ g∗,

a reduced symplectic manifold (Mλ, ωλ).

Theorem 1.5 (Marsden–Weinsten symplectic reduction [MW74], see also [Mey73]). Consider a
symplectic action on the symplectic manifold (M,ω), with moment map µ : M → g∗. Let λ ∈ g∗

be a regular value of µ, denote by N = µ−1(λ) the corresponding smoothly embedded level set.
Assume also the action of the isotropy subgroup Gλ restricted to N to be free and proper, denote
as Mλ = µ−1(λ)/Gλ the corresponding quotient manifold. Then there is a unique symplectic form
ωλ ∈ Ω2(Mλ) satisfying j∗ω = π∗ωλ, where j : µ−1(λ) → M is the embedding of N in M and
π : µ−1(λ)→Mλ is the canonical quotient.
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Definition 1.6. The symplectic manifold (Mλ, ωλ) provided by Theorem 1.5 is called the Marsden–
Weinstein symplectic reduction of (M,ω) with respect to the Hamiltonian action Gy(M,ω).

1.2 Smooth structures on singular sets

In rough strokes, the Marsden–Weinstein reduction is a two-step process:

i. first, we restrict to a constraint set N ⊆M ,

ii. then, we descend to the quotient N/G.

At each stage, we rely on the assumption that N ⊆M is a smoothly embedded submanifold.
Several alternative reduction procedures have been introduced to account for the less well-

behaved situation where N is not smooth but is, for example, the preimage of a singular value of a
moment map (hence the name singular reductions).

To avoid the technicalities of making sense of smoothness in the singular setting, is convenient
to adopt a more algebraic viewpoint.

Let M be a smooth manifold and N ⊆M an arbitrary subset. The algebra of smooth functions
that vanish on N is instrumental in giving an algebraic characterization of the arbitrary subset N .

Definition 1.7 (constraints ideal). We define a constraint to be a smooth function vanishing on
the constraint set N . The space of such functions defines an associative algebra ideal in C∞(M),

IN =
{
f ∈ C∞(M)

∣∣∣ f |N = 0
}
.

An application of a smooth version of Urysohn’s lemma provides that IN determines the closure
of the subset N ⊆ M . Specifically, p ∈ N̄ if and only if h(p) = 0 for every h ∈ IN . In particular,
denoting by N̄ the closure of N , we have that IN = IN̄ .

Finally, observe that when M is endowed with a symplectic structure ω, the associative ideal
IN ⊆ C

∞(M) is not generally a Lie subalgebra of C∞(M,ω).

Remark 1.8. There are several ways to specify a notion of smoothness for a possibly singular subset
N of the manifold M . For instance, arbitrary constraint sets could be framed as smooth varieties
[ACG91, §6], as Sikorski’s differential spaces [Sik72a, Sik72b] (see [CŚ01, §3] for a quick review and
[Sta11] for a more comprehensive account), or as stratified spaces [SL91]. All of these frameworks
pass by prescribing what is the algebra of smooth functions on the subset N ⊆ M , namely given
by the algebra of Whitney [Whi34] smooth function

C∞(N) = C∞(M)/IN .

Note that, when N ⊆M is smoothly embedded, C∞(N) can be interpreted as the algebra of smooth
functions in the usual sense thus the above identification can be interpreted as the isomorphism
induced by restriction map C∞(M)→ C∞(N) (with kernel given by IN ).

Similarly, given a smooth action GyM , the algebra of smooth functions on the orbit spaces
M/G and N/G can be given as

C∞(M/G) = C∞(M)G , C∞(M/G) = C∞(M)G/IGN .

In Section 3.1 we will extend this reasoning to differential forms and fields as a way to introduce
the notion of tangency along the singular set N .
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1.3 [ŚW] reduction

The Śniatycki–Weinstein reduction is a symmetry-based observable reduction scheme defined for
any singular constraint set [ŚW83].

Such a procedure is guaranteed to produce a reduced Poisson algebra out of the regular Poisson
structure naturally associated with the symplectic manifold on which the group acts. Furthermore,
in the case in which a geometric reduction does exist, such reduced Poisson algebra coincides with
the canonical Poisson structure associated with the geometrically reduced symplectic manifold.

Let (M,ω) be a symplectic manifold and G a connected Lie group with Lie algebra g and dual
g∗. Consider a Hamiltonian action Gy(M,ω) with moment map µ :M → g∗.

The [ŚW] reduction procedure is based on the ideal generated by the momenta µξ.

Definition 1.9 (momentum ideal). The momentum ideal is the associative ideal Iµ ⊆ C∞(M)
generated by the momenta µξ for any ξ ∈ g. Namely

Iµ =
〈
µξ

〉asso.

ξ∈g
=

{
n∑

i=1

fi µξi

∣∣∣∣∣ n ≥ 0, fi ∈ C
∞(M), ξi ∈ g, 1 ≤ i ≤ n

}
.

Remark 1.10 (momenta as constraints). We call N = µ−1(0) the constraints locus of the moment
map µ. This is a subset of M , in general not a smooth submanifold, defined as the zero-level set of
all possible momenta (regarded as constraints). In general, Iµ includes in the ideal IN ⊆ C∞(M)
of smooth functions vanishing along N , see Lemma 1.22 below.

Lemma 1.11. Iµ ⊆ C
∞(M,ω) is a G-stable Poisson subalgebra.

Proof. Every element of Iµ is a linear combination of products fµξ for f ∈ C∞(M) and ξ ∈ g. Two
applications of the Leibniz rule yield

{fµξ, hµζ} = fh {µξ, µζ}+ q

for some q ∈ Iµ. Since the equivariance of µ is equivalent to the condition {µξ, µζ} = µ[ξ,ζ], see e.g.
[dS08, §22.1], we conclude that the Poisson bracket lies in Iµ.

For x ∈M , we have
(g · µξ) (x) = µξ(g

−1 · x) = µg−1·ξ(x)

where the second equality follows from the equivariance of µ. Therefore, G preserves Iµ.

Remark 1.12. Observe that the G-invariant Poisson subalgebra Iµ need not be a Lie algebra ideal
with respect to the Poisson bracket. On the other hand, if we restrict to the Poisson subalgebra of
G-invariant functions C∞(M)G, it follows that IGµ = Iµ ∩ C

∞(M)G is a Poisson ideal since

{µξi , h} = Lξih = 0 ∀h ∈ C∞(M)G .

From Lemma 1.11, it follows that the action of G on C∞(M) induces an action on the quotient
algebra C∞(M)/Iµ such that the projection algebra morphism ρ : C∞(M) ։ C∞(M)/Iµ is G-
equivariant.
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Theorem 1.13 (Śniatycki–Weinsten reduction [ŚW83]). Consider a Hamiltonian action on the
symplectic manifold (M,ω) and let µ : M → g∗ be the corresponding moment map. Denote by
N = µ−1(0) the constraint set given as the zero locus of the moment map. The space of G-invariant
elements of the quotient algebra C∞(M)/Iµ, denoted as (C∞(M)/Iµ)

G, forms a Poisson algebra
together with the binary operator obtained by pushing forward the Poisson structure of C∞(M,ω)
by the canonical projection [ · ] : C∞(M,ω) → C∞(M)/Iµ. Furthermore, we have an isomorphism
of Poisson algebras 1

(
C∞(M)

Iµ

)G
∼=
N (Iµ)

Iµ
,

where N (Iµ) is the Lie algebra normalizer of Iµ in C∞(M,ω), that is,

N (Iµ) =
{
f ∈ C∞(M)

∣∣∣ {f, Iµ} ⊆ Iµ
}
. (1)

Definition 1.14. The Poisson algebra (C∞(M)/Iµ)
G of Theorem 1.13 is called the Śniatycki–

Weinstein reduction of C∞(M,ω) with respect to the Hamiltonian action Gy(M,ω).

Remark 1.15 (observable reduction at nonzero orbits). In the case of the [MW] reduction, the shifting
trick of Guillemin and Sternberg [GS90] establishes the equivalence of the geometric reduction at
any λ ∈ g∗ with the reduction at 0 for a suitably modified symplectic Hamiltonian action constructed
out of the coadjoint orbit of λ. A similar equivalence has been extended in [Arm96] to the case of
not necessarily free and proper actions. We thus restrict our attention to the observable reduction
at 0 ∈ g without loss of meaningful generality.

1.4 [D] reduction

The Dirac reduction is a constraints-based observable reduction scheme defined on singular con-
straint sets satisfying a so-called first class condition. Let (M,ω) be a symplectic manifold.

Definition 1.16 (first class function). The function f ∈ C∞(M) is said to be first class if its
Poisson bracket with any constraint vanishes on N . That is, the set of first class functions is

FN =
{
f ∈ C∞(M)

∣∣∣ {f, IN} ⊆ IN
}
.

Equivalently, FN is the Lie algebra normalizer of the subspace IN ⊆ C∞(M). By virtue of the
Jacobi identity, it follows that FN is a Poisson subalgebra of C∞(M,ω). Elements of FN ∩ IN are
called first class constraints. Those constraints that not are first class are said to be second class.

Definition 1.17 (first class constraint set). A closed subset N ⊆ M is said to be a first class set
if every associated constraint is first class, i.e. if IN ⊆ FN .

According to the Dirac’s theory of constraints [Dir64] (see also [Śni83]), it is useful to consider
a certain subclass of well behaved functions.

Definition 1.18 (Dirac observable). We call a function f ∈ C∞(M) a Dirac observable if its
Poisson bracket with any first class constraint vanishes on N . Formally, the set of Dirac observables
is

O(N) = {f ∈ C∞(M) | {f, FN ∩ IN} ⊆ IN} .
1Observe that the quotient on the left-hand side is meant in the sense of associative algebras while the one on the

right-hand side is a quotient in the category of Lie algebras.
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Remark 1.19. In general, FN ⊆ O(N) and O(N) is not a Lie subalgebra of C∞(M). When N is
first class, O(N) = FN , in particular Dirac observables form a Poisson subalgebra of C∞(M).

Theorem 1.20 (Dirac reduction ([Dir64],[AGJ90, Prop. 3.1])). Consider a first class constraint
set N . The quotient associative algebra O(N)/IN forms a Poisson algebra together with the binary
operator

{[h], [k]} = [{h, k}] ∀h, k ∈ O(N),

obtained by pushing-forward the Poisson structure of O(N) along the canonical projection [ · ] :
O(N)→ O(N)/IN .

Definition 1.21. The Poisson algebra O(N)/IN obtained by Theorem 1.20 is called the Dirac
reduction of C∞(M,ω) with respect to N .

Such a reduction can be interpreted geometrically regarding the above Poisson algebra as the set
of “smooth” functions on the reduced topological space N/ ∼ where q ∼ p if and only if h(q) = h(p)
for all Dirac observables h. That means that states q, p ∈ N are identified whenever they cannot
be distinguished by means of the measurable quantities of O(N).

Assume that N is the zero locus of a moment map µ associated to a certain group action GyM .
We can consider at the same time the associative ideal generated by momenta Iµ =

〈
µξ

〉asso.

ξ∈g
and

the ideal of vanishing functions on N . In general Iµ 6= IN , more precisely we have the following
chain of inclusions.

Lemma 1.22. Let µ :M → g∗ be a moment map for the symplectic action Gy(M,ω). Denote by
N = µ−1(0) the zero locus of the moment map and by Iµ and IN the ideals of Definitions 1.9 and
1.7 respectively. We have the following diagram in the category of vector spaces

IN

C∞(M)G ∩ IN Iµ FN ∩ IN O(N)

C∞(M)G N (Iµ) N (IN ) = FN

C∞(M,ω) C∞(M)

(asso.)
ideal

(Pois.) ideal

(Pois.)ideal

where solid (resp. dashed) arrows denote Poisson (resp. associative) algebra morphisms.

Proof. According to Lemma 1.11 Iµ ⊆ C∞(M,ω) is a Poisson subalgebra. By the definition of
the normalizer, N (Iµ) is the largest Lie subalgebra of C∞(M,ω) such that Iµ ⊆ N (Iµ) is a Lie
algebra ideal. The Jacobi identity yields {FN , FN} ⊆ FN , from which it follows that FN is a Poisson
subalgebra. Similarly, FN ∩ IN is a Lie ideal in FN = N (IN ). The assumption N = µ−1(0) provides
that Iµ is a Poisson subalgebra of first order constraints. By construction, IN is an associative ideal
and both FN and IN lie in O(N). The proof that Iµ ⊆ FN is an inclusion of Poisson algebras can
be found in [AGJ90, Prop. 5.1]. The property of C∞(M)G to be a Lie subalgebra follows from the
Jacobi identity for the Poisson bracket of C∞(M). The commutation of the uppermost square is
the trivial pullback given by the intersection operation in the category of vector spaces.
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We remark that some of the above inclusions are generally strict, for example, it is possible that
Iµ 6= FN ∩ IN 6= IN (see [AGJ90, §7]).

Proposition 1.23 ([ŚW] vs. [D]). If the hypotheses of Theorems 1.13 and 1.20 hold, and if Iµ = IN ,
then the Śniatycki–Weinstein and Dirac reduced Poisson algebras coincide.

Proof. Consider a Hamiltonian group action Gy(M,ω) with moment map µ. When N = µ−1(0)
is first class, the diagram of Lemma 1.22 condenses to the following open square in the category of
Poisson algebras:

Iµ N (Iµ)
N (Iµ)
Iµ

IN FN = O(N) O(N)
IN

In light of the equality FN = N (IN ), the rows above are identical when Iµ = IN .

Remark 1.24 (on the technical condition Iµ = IN ). As discussed in [ŚW83, Thm. 1] and [AGJ90,
Cor. 6.2], when 0 is a weekly regular point, the momenta ideal and the constraint ideal with respect
to N = µ−1(0) coincide. In particular, when N ⊆M is a smoothly embedded submanifold we have
that Iµ = IN .

Understanding the relationship between IN and Iµ in general is a nontrivial problem in C∞

algebraic geometry. The special case of compact group actions is discussed in [AGJ90, §5,§6]. The
case of free actions on paracompact manifolds is discussed in [Śni05, Lem. 2].

1.5 [ACG] reduction

The Arms–Cushman-Gotay reduction is another symmetry-based observable reduction scheme de-
fined on singular constraint sets [ACG91]. For any subset S ⊆ C∞(M), we denote by SG the
subspace of G-fixed elements.

Definition 1.25. The Poisson algebra C∞(M)G/IGN is called the Arms–Cushman–Gotay reduction
of C∞(M,ω) with respect to the Hamiltonian action Gy(M,ω).

Remark 1.26. Despite introducing the ACG reduction exclusively in terms of observables, this
scheme also admits a suitable interpretation as a geometric reduction of the symplectic space.
Namely, the ACG reduction is isomorphic to the unique Poisson structure induced on the space of
smooth functions on the variety N/G, interpreting C∞(N/G) as in Remark 1.8, from C∞(M) by
the following commutative diagram of suitably smooth mappings

N M

N/G M/G

,

see [ACG91, Thm. 1] for further details. In the case of proper action, the latter Poisson struc-
ture is proved to be non degenerate [ACG91, Thm2]. Hence, according to this interpretation, the
ACG reduction scheme has been introduced as the universal symplectic reduction of the symplectic
manifold (M,ω).
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Proposition 1.27 ([ACG] vs. [ŚW] ([AGJ90, Thm. 6.1])). Consider an Hamiltonian group action
Gy(M,ω). When IGµ

∼= IGN , there is a natural embedding of the ACG reduced Poisson algebra into
the SW reduction. When N (Iµ) ∼= C∞(M)G+ Iµ, there is a natural surjection from the ŚW reduced
Poisson algebra to the ACG reduction. If both conditions applies, the two reduced Poisson algebras
are isomorphic.

Proof. When we consider a Hamiltonian group action Gy(M,ω) and a constraint set N = µ−1(0),
i.e. when Theorem 1.13 applies, we have the following commutative diagram in the category of
Poisson algebras, where the dashed arrows indicate morphisms of associative algebras only.

Iµ C∞(M)
C∞(M)

Iµ

Iµ N (Iµ)

(
C∞(M)

Iµ

)G N (Iµ)

Iµ

IGµ C∞(M)G
C∞(M)G

IGµ

C∞(M)G + Iµ
Iµ

IGN C∞(M)G
C∞(M)G

IGN

(asso.) ideal

ρ

(Lie) ideal

ρ ∼

(Lie) ideal

q ρ ∼

(Lie) ideal

ρ

The top two squares encode the definition of the [ŚW] reduced Poisson algebra and the observation
that Iµ is a normal Lie subalgebra of ρ−1

[
(C∞(M)/Iµ)G

]
, where ρ is the canonical projection on the

quotient (see [ŚW83, Lem. 2] or Theorem 1.13 above). The preimage

N
(
Iµ
)
=

{
f ∈ C∞(M)

∣∣ {f, Iµ} ⊆ Iµ
}

is the Lie algebra normalizer of Iµ in C∞(M,ω). We denoted by IGµ the intersection of the momen-
tum ideal with the vector space of G-invariant smooth functions. Observe that C∞(M)G ⊆ N

(
Iµ
)
.

The middle two squares encode the second isomorphism theorem for Lie algebras. Finally, the bot-
tom two squares express the relation between the two quotients computed with respect to an ideal
I and a certain smaller ideal I ′ ⊆ I.

Overall we end up with the following morphisms of Poisson algebras

[ŚW] ←֓
C∞(M)G

IGµ
։ [ACG] ,

where the left (resp. right) mapping is an isomorphism when N (Iµ) ∼= C∞(M)G + Iµ (resp. IGµ =

IGN ).

Remark 1.28. When the acting group G is compact, we can make use of the averaging trick to
conclude that (C∞(M)/Iµ)

G ∼= C∞(M)G/IGµ (see [AGJ90, Prop. 5.12] or [Śni05, Prop. 5] for
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details) hence N (Iµ) = C∞(M)G + Iµ and Proposition 1.27 applies. In the case of compact group
action the ACG reduction coincide with the Arms–Gotay–Jennings reduction [AGJ90, Thm. 6.1]
with respect to the zero-level set of a moment map. The latter, in its more general incarnation,
is a purely constraints-based reduction scheme defined on singular sets that satisfy mild technical
conditions. For example, the constraint set N must be strongly isotropic and locally conical (see
[AGJ90, §3] for further details).

Remark 1.29. In [Śni05] can be found a more general account of symplectic observables reduction
schemes by framing them as two-steps procedures akin to the Marsden–Weinstein theorem. In
particular, taking N = µ−1(λ) for a possibly nonzero λ ∈ g∗, and denoting by Iµ the associative
ideal generated by {µξ − λ}ξ∈g, we obtain the commutative square

C∞(M)G

IGµ

(
C∞(M)

Iµ

)Gλ

C∞(M)G

IG
N

(
C∞(M)

IN

)Gλ

where the solid (resp. dashed) arrows denote Poisson (resp. associative) morphisms, the top-right
node encodes the SW reduction, and the bottom-left node gives the ACG reduction (see Remarks
1 to 3 and Equation (11) in [Śni05] for complete details).

2 Review of multisymplectic geometry

In this section we provide relevant background on multisymplectic geometry. Our aim is to define
the associated L∞-algebra L∞(M,ω) and the L∞-algebra of observables Ham∞(M,ω), and to recall
the geometric multisymplectic reduction procedure of Theorem 2.16.

2.1 Multisymplectic manifolds and the L∞-algebra of observables

Fix a smooth manifold M .

Definition 2.1 (multisymplectic manifold [CID99]). A pre-n-plectic structure on M is a closed (n+
1)-form ω ∈ Ωn+1(M). Without reference to the degree n+1, we say that ω is a premultisymplectic
structure on M . If additionally ω is nondegenerate in the sense that

ω♭ : TM → ΛnT ∗M

v 7→ ιvω

is an inclusion of vector bundles, then we call ω an n-plectic or a multisymplectic structure on M .

Symplectic manifolds, manifolds equipped with volume forms, multicotangent bundles, and mul-
tiphase spaces, which we will discuss in the sequel, are all examples of multisymplectic manifolds.

Multisymplectic manifolds form a category with morphisms given as follows.

Definition 2.2. A multisymplectic map is a smooth map of multisymplectic manifolds Ψ : (M,ω)→
(M ′, ω′) such that Ψ∗ω′ = ω. A multisymplectomorphism is a multisymplectic diffeomorphism.
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The multisymplectomorphisms thus comprise the global symmetry group of (M,ω). The in-
finitesimal symmetries are given as follows.

Definition 2.3. We say that v ∈ X(M) is a multisymplectic vector field when Lvω = 0. We denote
the space of multisymplectic vector fields by X(M,ω).

Observe that v is multisymplectic precisely when dιvω = Lvω = 0, that is, precisely when ιvω
is closed. As in the symplectic setting, we distinguish those vector fields v for which ιvω is exact.

Definition 2.4. Consider a pre-n-plectic manifold (M,ω). We say that v ∈ X(M) is a Hamiltonian
vector field when dα = −ιvω for some α ∈ Ωn−1(M). In this case, we say that α is a Hamiltonian
form associated to v, and we write Xham(M,ω) and Ωn−1

ham(M,ω) for the spaces of Hamiltonian vector
fields and forms, respectively.

Remark 2.5. The identity dα + ιvω = 0 is known as the Hamilton–De Donder–Weyl (HDDW)
equation (see e.g. [Hél04, RW19] and references therein).

Remark 2.6. When ω is multisymplectic, the vector field v associated to α is unique. In this case,
we say that v is the Hamiltonian vector field associated to α.

Observe that

X(M,ω) = {v ∈ X(M) | ιvω ∈ Ωn
cl(M)}

Xham(M,ω) = {v ∈ X(M) | ιvω ∈ Ωn
ex(M)},

from which it follows that Hamiltonian vector fields are multisymplectic. Moreover, nondegeneracy
implies that a Hamiltonian vector field v ∈ Xham(M,ω) associated to a particular α ∈ Ωn−1

ham(M,ω)
is unique. Given v ∈ Xham(M,ω), an associated Hamiltonian form α is determined up to closed
forms.

The space Ωn−1
ham(M,ω) is not generally a Poisson algebra. However, it can be extended to

Ωn−1
ham(M,ω) ⊕ Ω≤n−2(M), which possesses a natural L∞-algebra structure. When ω is degenerate

there are in fact two distinct constructions, L∞(M,ω) and Ham∞(M,ω).

Definition 2.7 ([Rog12, Thm. 5.2], see also [BFLS98] ). Given a pre-n-plectic manifold (M,ω),
the associated L∞-algebra L∞(M,ω) = (L, {lk}k≥1) comprises

• the underlying graded vector space L, where

Li =





Ωn−1
ham(M,ω) if i = 0

Ωn−1+i(M) if 1− n ≤ i ≤ −1

0 otherwise,

(2)

• n+ 1 nontrivial multibrackets {lk : L∧k → L}1≤k≤n+1, given by

l1(α) =

{
0 if |α| = 0

dα if |α| ≤ −1,

and, for 2 ≤ k ≤ n+ 1, as

lk(α1, . . . , αk) =

{
ς(k)ι(vα1 ∧ · · · ∧ vαk

) ω if |αi| = 0 for 1 ≤ i ≤ k

0 otherwise.
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In the above equation, vαk
denotes any Hamiltonian vector field associated to αk ∈ Ωn−1

ham(M,ω)

and ς(k) = −(−1)
k(k+1)

2 is the total Koszul sign. Note that we contract multivector fields according
to the rule

ι(vα1 ∧ · · · ∧ vαk
) ω = ιvαk

. . . ιvα1
ω = ω(vα1 , . . . , vαk

, ·, · · · , ·).

Definition 2.8 (L∞-algebra of observables ([CFRZ16, 4.7])). The L∞-algebra of observables Ham∞(M,ω) =
(Ham, {l̃k}k≥1) associated to the pre-n-plectic manifold (M,ω) consists of

• the underlying graded vector space Ham, where

Ham
i =





{(v, α) | dα = −ιvω} ⊆ Xham(M,ω)⊕ Ωn−1
ham(M,ω) if i = 0

Ωn−1+i(M) if 1− n ≤ i ≤ −1

0 otherwise,

• n+ 1 nontrivial multibrackets {l̃k : Ham∧k → Ham}1≤k≤n+1, where

l̃1(α) =





0 if |α| = 0

(0,dα) if |α| = −1

dα if |α| < −1

where
l̃2((v1, α1), . . . , (v2, α2)) = ([v1, v2], ς(k)ι(v1 ∧ v2) ω)

and where, for 3 ≤ k ≤ n+ 1,

l̃k((v1, α1), . . . , (vk, αk)) = ς(k)ι(v1 ∧ · · · ∧ vk) ω

for (v1, α1), . . . , (vk, αk) ∈ Ham
0 and lk = 0 otherwise.

Remark 2.9. We briefly outline some basic definitions in homotopy algebras, tailoring the exposition
to our purposes and referring to [LM95] and [Laz14, §3] for further background material.

Recall that a L∞-algebra consists of a graded vector space L together with homogeneous, graded
skew-symmetric, multilinear maps λk : L⊗k → L (with k ≥ 1) satisfying the so-called higher Jacobi
relations, see [LM95, Def. 2.1]. We denote collectively as λ the collection {λk}k≥1 of all multilinear
maps, also called multibrackets.

Given two L∞-algebras (L, λ) and (M,µ), an L∞-morphism ψ : (L, λ) → (M,µ) is a graded
map from L to M such that µk ◦ψ⊗k = ψ ◦λk for each k ≥ 1. In particular, L∞-subalgebra of (L, λ)
is a graded vector subspace V such that the injection map j : V →֒ L is a strict L∞-morphism
(V, {λk ◦ j

⊗k}k≥1)→ (L, λ). Both the kernel and the image of a strict L∞-morphism are the kernel
and the image of the underlying graded map endowed with the L∞-algebra structure inherited from
its domain and codomain.

A (strict) L∞-ideal of (L, λ) is a graded vector subspace I ⊆ L for which λk(x, y1, . . . , yk−1) ∈ I
for every x ∈ I, yi ∈ L, and k ≥ 1. In particular, I ⊆ L is an L∞-subalgebra. Moreover, there is
a natural correspondence between strict L∞-ideals I ⊆ L and kernels of strict L∞-morphisms
ψI : L → L/I. It is readily shown that the linear quotient L/I inherits the multibrackets
λL/I,k([y1], . . . , [yk]) = [λk(y1, . . . , yk)] for any [yi] ∈ L/I.
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Expanding on this, given a short exact sequence in the category of strict L∞-algebras,

0→ N →M
π
−→ L→ 0,

we have that N ∼= ker π is an ideal and that π induces an isomorphism π̄ :M/N ∼= L. That is, the
first isomorphism theorem for Lie algebras generalizes in a straightforward manner to the setting of
strict L∞-morphisms.

We emphasize here that this discussion applies only to the case of strict L∞-morphisms. We do
not consider non-strict L∞-morphisms – including, prominently, homotopy moment maps – at any
point in this paper.

2.2 Covariant moment maps and multisymplectic reduction

In addition to extending to an L∞-algebra, the space Ωn−1
ham(M,ω) possesses a natural Leibniz al-

gebra structure. Compatibility conditions in terms of this structure are invoked in the geometric
multisymplectic reduction procedure.

Definition 2.10 (Leibniz algebra [Lod93]). A (left) Leibniz algebra comprises a vector space V and
an a bilinear map { , } : V × V → V satisfying the Leibniz equation

{α, {β, γ}} = {{α, β}, γ} + {β, {α, γ}} ,

for any α, β, γ ∈ V .

Definition 2.11 (Leibniz algebra of observables). The space Ωn−1
ham(M,ω) of Hamiltonian forms on

a multisymplectic manifold (M,ω) possesses a natural Leibniz bracket { , }, given by

{α, β} = Lvαβ

for α, β ∈ Ωn−1
ham(M,ω).

When (M,ω) is premultisymplectic, there is no Leibniz algebra structure on Ωn−1
ham(M,ω), how-

ever there still is one on Ham
0(M,ω), given by

{(u, α), (v, β)} = ([u, v],Luβ).

Remark 2.12 (on the two notions of higher observables). It is shown in [Deh17, Prop. 5.2] that a
certain natural extension of the Leibniz algebra of Definition 2.11, incorporating all forms of degree
strictly less than n − 1, and the construction of Definition 2.7 are equivalent as weak L∞-algebras
at least up to the 3-plectic case. The 2-plectic case was previously established in [BHR10].

Definition 2.13. A covariant moment map for Gy(M,ω) is a differential form µ ∈ Ωn−1(M, g∗)
such that

i. dµξ = −ιξω for all ξ ∈ g,

ii. µ : Λn−1TM → g∗ is G-equivariant,

where µξ = 〈µ, ξ〉 is the contraction on g∗ ⊗ g and where Gy g∗ is the coadjoint action.

As in the symplectic case, there is an attendant notion of a comoment map.
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Definition 2.14. A (covariant) comoment map for Gy(M,ω) is a linear map µ̃ : g→ Ωn−1
ham(M,ω)

satisfying

i. d µ̃(ξ) = −ιξω

ii. µ̃([ξ, ζ]) = {µ̃(ξ), µ̃(η)}

for all ξ, ζ ∈ g.

In parallel with the symplectic case, µ̃ is a lift in the category of Leibniz algebras of the action
g yM by the assignment of Hamiltonian vector fields.

g X(M)

Ωn−1
ham(M)

ξ ξ

α

vα

ξ 7→ µξ

To each moment map µ ∈ Ωn−1(M,ω) there is an associated comoment map

µ̃ : g Ωn−1
ham(M)

ξ µξ
,

and conversely when G is connected.
We identify one class of covariant moment map, to which we return in Subsection 4.3.

Lemma 2.15. If θ ∈ Ωn(M) is a G-invariant potential for ω, then ξ 7→ µξ = ιξθ defines a covariant
moment map for Gy (M,ω).

The main result we wish to recall in this subsection is as follows.

Theorem 2.16 (geometric multisymplectic reduction [Bla21, Thm. 1]). Let (M,ω,G, µ) be a n-
plectic Hamiltonian G-space with covariant moment map µ, let φ ∈ Ωn−1(M, g∗) be a closed form,
and let Mφ = µ−1(φ)/Gφ. If µ−1(φ) ⊆M is an embedded submanifold and G acts freely on µ−1(φ),
then there is a unique, closed ωφ ∈ Ωn+1(Mφ) satisfying j∗ω = π∗ωφ, where j : µ−1(φ)→M is the
inclusion and π : µ−1(φ)→Mφ is the quotient.

In the above theorem, we write µ−1(φ) for the equalizer {x ∈ M |µx = φx} of µ and φ. Note
that if φ is identified with its image in Λn−1T ∗M ⊗ g∗, then µ−1(φ) is indeed the preimage.

The notion of covariant moment map turns out to be the right prerequisite for geometric reduc-
tion in the multisymplectic setting. Perhaps unexpectedly, this is also the case for L∞-reduction,
as we will see in the following section.
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Ideal of functions vanishing on N
IN

Vector fields tangent to N
XN (M)

Forms vanishing along N
IΩ(N)

Reducible forms
Ω(M)[N ]

Fundamental C∞-module plus
vector fields vanishing along N

Xg(M) + IX(N)

Reducible vector fields
X(M)[N ]

Reducible observables
Ham∞(M,ω)[N ]

Vanishing ideal of observables
IHam∞

(N)

Observable reduced space
Ham∞(M,ω)N

used to define

⊆

⊆

⊆

associative ideal

Lie algebra

differential ideal

differential graded subalgebraLie subalgebra

Lie ideal

L∞-subalgebra

L∞-ideal

L∞-algebra

Figure 1: Auxiliary spaces in the construction of Ham∞(M,ω)N .

3 Reduction of L∞(M,ω) and Ham∞(M,ω)

In this section we present our main construction: The reduction of the L∞-algebra of observables
Ham∞(M,ω) along a subset N ⊆M by an admissible action g yM . We define this L∞-algebra in
terms of a network of auxiliary spaces, as indicated in Figure 1. As we aim for maximal generality,
with the mildest possible geometric conditions, these intermediate spaces possess a rather algebraic
character. Lemma 3.30 recharacterizes these spaces in a sufficiently regular setting.

In Subsection 4.1 we show that in the 1-plectic setting our reduced L∞-algebra Ham∞(M,ω)φ
coincides with the Poisson algebra of observables C∞(Mφ, ωφ) on the symplectic reduced space
when the conditions of the Marsden–Weinstein reduction theorem are met.

3.1 Preliminaries

Fix a subset N ⊆M . Recall that the IN denotes the ideal of functions vanishing on N .

Definition 3.1. We say that a vector field u ∈ X(M) is tangent to N when u IN ⊆ IN . The space
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of vector fields tangent to N is denoted

XN (M) = {u ∈ X(M) | u IN ⊆ IN}

and the space of vector fields vanishing along N is written

IX(N) = {u ∈ X(M) | uC∞(M) ⊆ IN} .

We say that u, v ∈ X(M) are equal along N whenever u− v ∈ IX(N).

Definition 3.2. We say that the Lie algebra action g y M is tangent to N when ξ ∈ X(M) is
tangent to N for all ξ. In this case, we write g y (N ⊆M).

Remark 3.3. If g yM is induced by an action GyM preserving N ⊆M , then g yM is tangent
to N . Indeed, Gy (N ⊆M) implies that every integral curve γ of ξ ∈ X(M) that meets N at any
point remains on N . In particular, each f ∈ IN vanishes along γ so that ξf = 0 along N .

Lemma 3.4. XN (M) ⊆ X(M) is a Lie subalgebra and IX(N) ⊆ XN (M) is a Lie ideal.

Proof. If u, v ∈ XN (M) then vIN ⊆ IN yields u(vIN ) ⊆ IN . Likewise v(uIN ) ⊆ IN , and we
conclude that [u, v] IN ⊆ IN .

If additionally v ∈ IX(N), then a similar argument yields [u, v]C∞(M) ⊆ IN .

Note that our characterization of tangency is distinctly algebraic. In general, any vector field
whose flow preserves N is tangent to N , however, there can be vector fields tangent to N that do
not preserve N . Let us illustrate this with a few examples.

Remark 3.5. Let N ⊆ M be any subset. Since IN = IN̄ , any vector field tangent to the closure N̄
is tangent to N . In particular, when N ⊆ M is dense (e.g. N = Q ⊆ R = M), IN = {0} and all
vector fields on M are tangent to N .

Example 3.6. Even when N is closed, there can be vector fields which are tangent to N but whose
flows do not preserve N . Let N = (−∞, 0] ⊆ R = M . Then IN is the space of functions whose
support is in N . Applying a vector field to a function cannot increase the support, so any vector
field is tangent to N . In particular the vector field ∂x, the flow of which does not preserve N .

Remark 3.7. We have chosen the algebraic notion of tangency since it is better adapted for the
context of observable reduction. We could alternatively work with vector fields v ∈ X(M) that are
geometrically tangent to N in the sense that the flow of v locally preserves N . However, this space
is less convenient from a technical standpoint. Indeed, merely to see that the commutator of two
geometrically tangent vector fields is again geometrically tangent is far from obvious and follows
from [Sus73]. This said, we note that both notions of tangency coincide when N ⊆ M is a closed
embedded submanifold.

Definition 3.8. Define the vanishing de Rham ideal of N to be the differential ideal IΩ(N) ⊆ Ω(M)
generated by all α ∈ Ωk(M), k ≥ 0, for which

α(u1, . . . , uk) ∈ IN

whenever u1, . . . , uk ∈ XN (M).
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As with the case for vector fields, we say that α ∈ Ω(M) vanishes along N whenever α ∈ IΩ(N),
and that α, β ∈ Ω(M) are equal along N whenever α− β ∈ IΩ(N).

It is easy to show that IΩ(N) ⊆ Ω(M) is an ideal with respect to the wedge product. We now
show that it is closed under the exterior derivative.

Lemma 3.9. For all v ∈ XN (M), the space IΩ(N) is closed under i. ιv, ii. d and iii. Lv.

Proof. Fix a homogeneous element α ∈ IΩ(N) of degree k, and suppose that u0, . . . , uk ∈ X(M) are
tangent to N .

i. The identity ιuk
. . . ιu2ιv α = 0 on N is immediate.

ii. We have

dα(u0, . . . , uk) =
∑

i

(−1)iui α(u0, . . . , ûi, . . . , uk)

+
∑

i<j

(−1)i+jα([ui, uj ], u0, . . . , ûi, . . . , ûj , . . . , uk),

where each term in the first sum vanishes on N as α(u0, . . . , ûi, . . . , uk) ∈ IN and the same
happens for each term in the second sum by Lemma 3.4.

iii. This follows from i., ii. and the identity Lv = dιv + ιvd.

With the notation of Definition 3.2, consider a Lie algebra action g y (N ⊆M).

Definition 3.10. We call α ∈ Ω(M) a reducible form with respect to g y (N ⊆M) when

i. Lξα ∈ IΩ(N), and

ii. ιξα ∈ IΩ(N),

for every ξ ∈ g. We write Ω(M)[N ] for the space of reducible forms.

Lemma 3.11. Ω(M)[N ] is closed under d.

Proof. Fix a reducible form α ∈ Ωk(M). Since IΩ(N) is closed under d by Lemma 3.9, it follows
that

Lξdα = dLξα

and
ιξdα = Lξα− dιξα

both lie in IΩ(N).

Definition 3.12. We say that v ∈ X(M) is a reducible vector field with respect to g y (N ⊆ M)
when

i. v is tangent to N , and

ii. [v, ξ] ∈ Xg(M) + IX(N) for all ξ ∈ g.
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where Xg(M) denotes the C∞(M)-submodule of X(M) generated by the fundamental vector fields
ξ for all ξ ∈ g. We denote the space of reducible vector fields by X(M)[N ].

We note that condition ii. of Definition 3.12 is equivalent to

ii.′ [v, ξ] ∈ Xg(M) along N for all ξ ∈ g.

Remark 3.13. More algebraically, v is reducible when it preserves both IN and Xg(M) + IX(N).
The latter space may be understood as a generalization of the space of vector fields tangent to the
fundamental distribution g = {ξ

x
| ξ ∈ g, x ∈ M} along N . Indeed, in the setting of free actions,

Γ(g) and Xg(M) coincide.

Lemma 3.14. X(M)[N ] ⊆ X(M) is a Lie subalgebra.

Proof. Let u, v ∈ X(M)[N ]. Lemma 3.4 asserts that [u, v] is tangent to N , and it remains only
to establish condition ii. of Definition 3.14. Thus fix ξ ∈ g and consider the identity [[u, v], ξ] =
[[u, ξ], v] + [u, [v, ξ]]. Condition ii. now follows if u satisfies

[
u,Xg(M) + IX(N)

]
⊆ Xg(M) + IX(N),

and similarly for v. We proceed in two steps:

• First we establish [u,Xg(M)] ⊆ Xg(M) + IX(N). Let w =
∑k

i=1 fiξi for some ξi ∈ g. We have

[u,w] =
[
u,

∑
ifiξi

]
=

k∑

i=1

[u, fiξi] =

k∑

i=1

fi[u, ξi] + (uf)ξ
i
.

Terms of the form fi[u, ξi] evidently lie in the C∞(M)-module Xg(M) + IX(N), while those
of type (uf)ξ

i
lie in Xg(M).

• Now we show [u, IX(N)] ⊆ Xg(M) + IX(N). Here we apply the fact that [XN (M), IX(N)] ⊆
IX(N). This follows as for any f ∈ C∞(M), u ∈ XN (M), and w ∈ IX(N), we have [u,w]f =
uwf − wuf ∈ u In −wC

∞(M) ⊆ IN .

Lemma 3.15. Xg(M) + IX(N) ⊆ X(M)[N ] is a Lie ideal.

Proof. First note that the inclusion does indeed obtain. Since Lemmas 3.4 and 3.14 imply that
IX(N) ⊆ X(M)[N ] is a Lie ideal, it suffices to show that [X(M)[N ],Xg(M)] ⊆ Xg(M)+ IX(N). Thus
let v ∈ X(M)[N ], f ∈ C

∞(M), and ξ ∈ g. We have

[v, fξ] = f [v, ξ] + (vf)ξ ∈ Xg(M) + IX(N)

since [v, ξ] ∈ Xg(M)+IX(N) by Definition 3.14, since Xg(M)+IX(N) is closed under multiplication
by C∞(M), and since (vf)ξ ∈ Xg(M). The result follows as this inclusion extends to arbitrary
terms

∑
i fiξi ∈ Xg(M) by linearity.
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3.2 Reducible observables

Suppose that g y (N ⊆M) and that the premultisymplectic form ω ∈ Ωn+1(M) is reducible.

Definition 3.16. We will say that α ∈ Ham
<0
∞ (M,ω) is a reducible observable with respect to

g y (N ⊆ M) whenever α is a reducible form, and that (v, α) ∈ Ham
0
∞(M,ω) is a reducible

observable whenever

i. v is a reducible vector field, and

ii. α is a reducible form.

We denote the space of reducible observables by Ham∞(M,ω)[N ].

Even when the form is multisymplectic, conditions i. and ii. are independent.

Example 3.17. Let M = R3, ω = dx ∧ dy ∧ dz. Let N = {z = 0}. Let g be the 1-dimensional
abelian Lie algebra acting by ξ = ∂y. The vector fields tangent to N are C∞(R3)-generated by
z∂z, ∂x, ∂y. The form α = yz dy is reducible, since L∂yα and ι∂yα are multiples of z. However, its
Hamiltonian vector field vα = y∂x is not reducible, since [∂y, vα] = ∂x which does not lie in Xg(M).

Lemma 3.18. Ham∞(M,ω)[N ] is an L∞-subalgebra of Ham∞(M,ω).

Proof. Lemma 3.11 implies that Ham∞(M,ω)[N ] is closed under l̃1.
Now suppose that (v1, α1), . . . , (vk, αk) ∈ Ham

0
∞(M,ω)[N ], that uk+1, . . . , un+1 ∈ XN (M), and

that ξ ∈ g. We have

ιun+1 · · · ιuk+1
Lξιvk · · · ιv1ω = (Lξω)(v1, . . . , vk, uk+1, . . . , un+1)

+ ω([ξ, v1], v2, . . . , vk, uk+1, . . . , un+1)

...

+ ω(v1, . . . , [ξ, vk], uk+1, . . . , un+1)

∈ IN

since [ξ, vi] ⊆ Xg(M) + IX(N) and ω is reducible, and

ιun+1 · · · ιuk+2
ιξ ιvk · · · ιv1ω ∈ IN

since ω is reducible. Thus, Ham∞(M,ω)[N ] is closed under l̃k for k ≥ 3.
Finally, as [v1, v2] is a Hamiltonian vector field for ιv1∧v2ω, and as [v1, v2] is reducible by Lemma

3.14, we conclude that Ham∞(M,ω)[N ] is closed under l̃2.

3.3 L∞-reduction of the space of observables

Again suppose g y (N ⊆M) and that the premultisymplectic form ω ∈ Ωn+1(M) is reducible.

Definition 3.19. The vanishing observable ideal IHam∞
(N) ⊆ Ham∞(M,ω)[N ] is linearly generated

by the subspace
IΩ(N) ∩ Ω<n−1(M) ⊆ Ham

<0
∞ (M,ω)

and all pairs (v, α) ∈ Ham
0
∞(M,ω)[N ] for which
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i. v ∈ Xg(M) + IX(N),

ii. α ∈ IΩ(N).

Lemma 3.20. IHam∞
(N) is an L∞-ideal of Ham∞(M,ω)[N ].

Proof. As Lemma 3.4 asserts that IΩ(N) is closed under d, it follows that IHam∞
(N) is closed under

l̃1.
Fix k ≥ 3. If σ1, . . . , σk ∈ Ham

0
∞(M,ω)[N ] with σi = (vi, αi), if σ1 ∈ IHam∞

(N), and if
uk+1, . . . , un+1 ∈ XN (M), then

ιun+1 · · · ιuk+1
l̃k
(
σ1, . . . , σk

)
= −ς(k) ιun+1 · · · ιuk+1

ιvk · · · ιv2 dα1 ∈ IN

since v1, . . . , vk ∈ XN (M) and since dα1 ∈ IΩ(N) by Lemma 3.4.
Now take k = 2. For any σ1, σ2 ∈ Ham

0
∞(M,ω) with σ1 ∈ IHam∞

(N), Lemma 3.15 provides
[v1, v2] ∈ Xg(M) + IX(N) from which l̃2(σ1, σ2) ∈ IHam∞

(N), as required.

Thus we arrive at the following commutative diagram of graded vector spaces, where for a graded
vector space V we write V [k] for the kth desuspension.

IHam∞
(N) Ham∞(M,ω)[N ] Ham∞(M,ω)

(
IΩ(N)

)
[n−1]⊕

(
Xg(M) + IX(N)

) (
Ω(M)[N ]

)
[n−1]⊕ X(M)[N ]

(
Ω(M)

)
[n−1]⊕ X(M)

L∞-ideal L∞-morph.

We now present our main construction.

Definition 3.21. The reduction of Ham∞(M,ω) with respect to g y (N ⊆M) is the L∞-algebra

Ham∞(M,ω)N =
Ham∞(M,ω)[N ]

IHam∞
(N)

.

Consolidating the foregoing development, the graded vector space underlying the reduced L∞-
algebra Ham∞(M,ω)N is explicitly given in degree 0 by

Ham
0
∞(M,ω)N =





(α, v) ∈ Ωn−1(M)⊕ X(M)

∣∣∣∣∣∣∣∣∣∣

ιvω = −dα
ιξα ∈ IΩ(N)
Lξα ∈ IΩ(N)
Lξv ∈ Xg + IX(N) ∀ξ ∈ g

v ∈ XN (M)







(α, v) ∈ Ωn−1(M)⊕ X(M)

∣∣∣∣∣∣

ιvω = −dα
α ∈ IΩ(N)
v ∈ Xg + IX(N)





.

An analogous procedure applies in the setting of the associated L∞-algebra L∞(M,ω).

26



Definition 3.22. We define L∞(M,ω)[N ] ⊆ L∞(M,ω) and IL∞
(N) ⊆ L∞(M,ω) to be the respec-

tive images of Ham∞(M,ω)[N ] and IHam∞
(N) under the natural projection

Ham∞(M,ω)→ L∞(M,ω)

(v, α) 7→ α

β 7→ β

for |(v, α)| = 0 and |β| < 0. That is, α ∈ L0
∞(M,ω)[N ] precisely when there exists a v ∈ X(M)

for which (v, α) ∈ Ham∞(M,ω)[N ], and similarly for IHam∞
(N). Straightforward adaptations of

the results above show that L∞(M,ω)[N ] ⊆ L∞(M,ω) is an L∞-subalgebra and that IL∞
(N) ⊆

L∞(M,ω)[N ] is an L∞-ideal. The reduction of L∞(M,ω) with respect to g y (N ⊆ M) is the
L∞-algebra

L∞(M,ω)N =
L∞(M,ω)[N ]

IL∞
(N)

.

Remark 3.23. We note that Lemmas 3.9 and 3.11 yield a reduced complex of forms

Ω(M)N =
Ω(M)[N ]

IΩ(N)

while Lemmas 3.14 and 3.15 provide a reduced space of vector fields

X(M)N =
X(M)[N ]

Xg(M) + IX(N)
.

Remark 3.24. When ω is multisymplectic, the strict L∞-morphism

L∞(M,ω)→ Ham∞(M,ω)

α 7→ (vα, α)

β 7→ β

for |α| = 0 and |β| < 0, is inverse to the natural projection of Definition 3.22 and exhibits the
isomorphism L∞(M,ω) ∼= Ham∞(M,ω), and in particular induces an identification L∞(M,ω)[N ]

∼=
Ham∞(M,ω)[N ].

However, even when ω is multisymplectic, it is not generally true that L∞(M,ω)N ∼= Ham∞(M,ω)N .
This results from the fact that the differential form components of distinct elements (vα, α), (vβ , β) ∈
Ham

0
∞(M,ω)[N ] may be identified in Ham∞(M,ω)N , while the vector field components remain dis-

tinct. That is, [α] = [β] ∈ Ω(M)N while [vα] 6= [vβ] ∈ X(M)N , so that [α] = [β] ∈ L∞(M,ω)N
while [(vα, α)] 6= [(vβ , β)] ∈ Ham∞(M,ω)N .

We return to this topic in Remark 3.41.

Remark 3.25. When g = 0 and N ⊆ M and subset, our reduction scheme defines a restriction of
Ham∞(M,ω) to an arbitrary subset N ⊆M . Indeed, in this setting the conditions that g y (N ⊆
M) and that ω is reducible are trivially satisfied. We note that the details of this multisymplectic
restriction are prefigured in [SZ16, Lemma 3.2].

As another boundary case, when N = M and g y M is any action with g ⊆ kerω, where we
recall that g = {ξ

x
| ξ ∈ g, x ∈M}, we obtain a quotient of Ham∞(M,ω). Note that the conditions

here are admissible only in the strictly premultisymplectic setting.
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3.4 L∞-reduction with respect to a covariant moment map

In Subsection 2.2 we considered the geometric reduction of an n-plectic manifold (M,ω) with respect
to a Hamiltonian action G y (M,ω) with moment map µ ∈ Ωn−1(M, g∗) and a closed form
φ ∈ Ωn−1(M, g∗). Our aim in this subsection is to apply our observable reduction scheme to this
setting.

We approach the problem in slightly greater generality. Fix a pre-n-plectic manifold (M,ω), a
premultisymplectic action g y (M,ω), a form µ ∈ Ωn−1(M, g∗) satisfying

i. dµξ = −ιξω,

ii. Lξµζ = µ[ξ,ζ],

for all ξ, ζ ∈ g, and a closed form φ ∈ Ωn−1(M, g∗). Consider the action g y Ωn−1(M, g∗) given by

ξ · α = Lξα+Ad∗ξα

and write
gφ = {ξ ∈ g | Lξφζ = φ[ξ,ζ] ∀ζ ∈ g}

for the isotropy subalgebra of φ.

Definition 3.26. The reduction of Ham∞(M,ω) with respect to the Hamiltonian action g y

(M,ω), moment map µ ∈ Ω(M, g∗), and level φ ∈ Ωcl(M, g∗), is the reduction of Ham∞(M,ω) with
respect to gφy(µ−1(φ) ⊆M). We write Ham∞(M,ω)φ = Ham∞(M,ω)µ−1(φ).

Our task is now to show that this construction is well-defined.

Lemma 3.27. The action gφ yM is tangent to µ−1(φ).

Proof. When gφ yM is induced by the action of a connected Lie group Gφ yM , the equivariance
condition

Lξ(µ − φ)ζ = (µ− φ)[ξ,ζ]

for all ξ, ζ ∈ gφ implies
(g−1)∗(µ − φ)ζ = (µ− φ)Adgζ

for all g ∈ Gφ. In particular, Gφ preserves µ−1(φ) = {x ∈M | (µ− φ)x = 0} and the result follows
by Remark 3.3.

When there is no group action, the above argument still holds since Lie’s second fundamental
theorem (see e.g. [Lee12, Thm. 20.22]) provides that we may always integrate gα y M to a local
Lie group action, and this is sufficient for our purposes here.

Lemma 3.28. The presymplectic form ω is reducible with respect to gφ y
(
µ−1(φ) ⊆M

)
.

Proof. Fix ξ ∈ gα. Since g y M is premultisymplectic, the equality Lξω = 0 trivially implies
Lξω ∈ IΩ(µ

−1(φ)).
It remains to show that ιξω ∈ IΩ(µ−1(φ)). By construction, µ− φ = 0 at every point of µ−1(φ)

and thus, in particular, (µ− φ)ξ ∈ IΩ(N). As Lemma 3.9 provides that IΩ(µ−1(φ)) is closed under
d, it follows that

ιξω = dµξ = d(µ− φ)ξ ∈ IΩ(µ
−1(φ)).
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We conclude from Lemmas 3.27 and 3.28 that Definition 3.26 is indeed well-defined.

Proposition 3.29. For every ξ ∈ gφ, we have µξ−φξ ∈ IΩ(µ−1(φ)) and (ξ, µξ−φξ) ∈ IHam∞
(µ−1(φ)).

Proof. First note that ξ and µξ − φξ comprise a Hamiltonian pair as d(µ− φ)ξ = dµξ = ιξω.
We showed that (µ − φ)ξ ∈ IΩ(µ

−1(φ)) in the proof of Lemma 3.28, and that ξ is tangent to
µ−1(φ) in Lemma 3.27. The result follows as ξ is clearly an element of Xg(M) + IX(µ

−1(φ)).

3.5 Comparing geometric and L∞-reduction

The aim of this section is to compare the L∞-reduction procedure to the multisymplectic reduc-
tion scheme of Theorem 2.16. In particular, we exhibit a natural inclusion of the L∞-reduction
Ham∞(M,ω)φ into the L∞-algebra of observables Ham∞(Mφ, ωφ) associated to the reduced space
(Mφ, ωφ).

In fact, we will work in greater generality than the setting of Theorem 2.16. For the extent
of this subsection, fix a pre-n-plectic manifold (M,ω), a connected Lie group G, a smooth action
GyM , and a G-invariant closed embedded submanifold j : N →֒M such that ω is reducible and
Gy N is free and proper.

The inclusion j : N →֒M and the projection π : N ։ N/G each induce maps on the de Rham
complex as depicted below.

N M Ω(N) Ω(M)

N/G Ω(N/G)

j

π

j∗

π∗

We are now in a position to recast the auxiliary spaces of Figure 1 in a more geometric fashion.

Lemma 3.30. We have

i. XN (M) =
{
v ∈ X(M)

∣∣ v|N ∈ X(N)
}
,

ii. IX(N) =
{
v ∈ X(M)

∣∣ v|N = 0
}
,

iii. IΩ(N) = {α ∈ Ω(M) | j∗α = 0},

iv. Xg(N) = Γ(g),

where v|N = v ◦ j ∈ Γ(j∗TM) is the restriction of v ∈ X(M) to N , and where

g = {ξ
x
| ξ ∈ g, x ∈ N} ⊆ TN

is the fundamental distribution.

Proof. (i.–iii.) As N ⊆M is an embedded submanifold, it suffices to consider RdimN ⊆ RdimM and
the result now follows by a direct computation.

(iv.) Since the action is free, the fundamental vector fields associated to a basis of g are linearly
independent at every point. This implies that Xg is a regular foliation and hence generated by its
associated distribution.
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Recall that α ∈ Ω(N) is said to be g-basic when it is both g-invariant and g-horizontal. That is,

Ωbas(N) =

{
α ∈ Ω(N)

∣∣∣∣
ιξα = 0
Lξα = 0, ∀ξ ∈ g

}
.

We now show that, since G is connected, the g-basic forms on N are precisely those induced by
π : N → N/G.

Lemma 3.31. For free and proper actions Gy N , there is an isomorphism of de Rham complexes
π∗ : Ω(N/G)

∼
−→ Ωbas(N).

Proof. An application of [Tu17, Thm. 31.12] to the surjective submersion π : N → N/G provided
by the quotient manifold theorem, yields imπ∗ = Ωbas(N).

In particular, given α ∈ Ω(M)[N ], we have that j∗α is g-basic, and hence there corresponds
a unique αN ∈ Ω(N/G) for which j∗α = π∗αN . Likewise, the connectedness of G provides that
reducible vector fields are projectable along π : N → N/G, and thus we may assign to each
v ∈ X(M)[N ] a unique vN = π∗(v|N ) ∈ X(N/G).

Definition 3.32. Put MN = N/G. The geometric reduction map on forms is

rN : Ω(M)[N ] → Ω(MN )

α 7→ αN

and on vector fields is

rN : X(M)[N ] → X(MN )

v 7→ vN .

Remark 3.33. As the equality j∗α = π∗αN implies j∗dα = π∗d(αN ), it follows that d(αN ) = (dα)N ,
and consequently that rN : α 7→ αN is a map of chain complexes. Similarly, as vNf = v|N (π∗f) for
all f ∈ C∞(MN ), the map rN : v 7→ π∗(v|N ) is easily seen to be a Lie algebra homomorphism.

As π∗ preserves d the form ωN ∈ Ωn+1(MN ) is closed, and the following definition arises natu-
rally. This will be our generalization of the geometric reduced spaces (Mφ, ωφ) of Theorem 2.16.

Definition 3.34. The geometric reduction of (M,ω) is the premultisymplectic manifold (MN , ωN ).

Our aim now is to construct a strict L∞-morphism rN : Ham∞(M,ω)[N ] → Ham∞(MN , ωN ) on
the level of observables in such a way that ker rN = IHam∞

(N), so that rN descends to an inclusion

r̄N : Ham∞(M,ω)N →֒ Ham∞(MN , ωN ) .

Lemma 3.35. There is a short exact sequence of chain complexes

0→ IΩ(N) →֒ Ω(M)[N ]
rN−−→ Ω(MN )→ 0.

Proof. If α ∈ Ω(M)[N ], then αN = 0 precisely when j∗α = π∗αN = 0 by Lemma 3.31, and j∗α = 0
precisely when α ∈ IΩ(N) by Lemma 3.30. Thus ker rN = IΩ(N).

The surjectivity of rN is follows from the isomorphism π∗ : Ω(N/G)
∼
−→ Ωbas(M) and the

surjectivity of j∗ : Ω(M) ։ Ω(N).
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Lemma 3.36. There is a short exact sequence of Lie algebras

0→ Xg(M) + IX(N) →֒ X(M)[N ]
rN−−→ X(MN )→ 0.

Proof. Lemma 3.30 yields

ker rN =
{
v ∈ X(M)

∣∣ v|N is vertical w.r.t. N → N/G
}
= Xg(M) + IX(N)

and surjectivity obtains as any vector field on N/G may be lifted to N and extended to M .

We now show that the reduction maps rN of Lemmas 3.35 and 3.36 preserve Hamiltonian pairs.

Lemma 3.37. If (α, v) is a reducible Hamiltonian pair on (M,ω), then (αN , vN ) is a Hamiltonian
pair on (MN , ωN ).

Proof. This follows from the identity

π∗(ιvNωN ) = ιv|N j
∗ω = j∗(ιvω) = j∗(−dα) = π∗(−dαN )

and the injectivity of π∗ : Ω(N/G)
∼
−→ Ωbas(N).

We thus obtain our desired geometric reduction map on observables.

Theorem 3.38. The geometric reduction map

rN : Ham∞(M,ω)[N ] → Ham∞(MN , ωN )

(v, α) 7→ (vN , αN )

α 7→ αN

is a strict L∞-morphism with kernel IHam∞
(N). In particular, there is a natural inclusion of L∞-

algebras

Ham∞(M,ω)N =
Ham∞(M,ω)[N ]

IHam∞
(N)

r̄N
−֒−→ Ham∞(MN , ωN ).

Proof. Lemmas 3.35 and 3.36 together yield ker rN = IHam∞
(N), and it remains to show that rN is

a strict L∞-morphism.
For k ≥ 3 and σ1, . . . , σk ∈ Ham

0
∞(M,ω)[N ], with σi = (αi, vi), we have

π∗ l̃k(σ
1
N , . . . , σ

k
N ) = ς(k) ιvk

N
. . . ιv1

N
ωN

= ς(k) ιvk |N . . . ιv1|N j∗ω

= j∗
(
ς(k) ιvk . . . ιv1ω

)

= π∗ l̃k(σ
1, . . . , σk)N ,

from which we obtain
l̃k(σ

1
N , . . . , σ

k
N ) = l̃k(σ

1, . . . , σk)N

by the injectivity of π∗ : Ω(N/G)
∼
−→ Ωbas(N). The case k = 2 follows similarly, with the additional

observation that [v1N , v
2
N ] = [v1, v2]N .

For k = 1 and α ∈ Ham
<0
∞ (M,ω)[N ], we have

π∗ l̃1(αN ) = dj∗α = j∗dα = π∗ l̃1(α)N

and we conclude that rN is a strict L∞-morphism.

31



Remark 3.39. In this regular setting, we may define the reduced space Ham∞(M,ω)N to be the
quotient Ham∞(M,ω)[N ]/ ker rN or, equivalently, to be the image of rN in Ham∞(MN , ωN ). The
merit of Definition 3.21 is that it applies even in the singular case in which the geometric reduction
map rN of smooth manifolds fails to exist.

We will call r̄N : Ham∞(M,ω)N →֒ Ham∞(MN , ωN ) the canonical embedding. The following
corollary is immediate.

Corollary 3.40. Let (M,ω,G, µ) be a n-plectic Hamiltonian G-space with covariant moment map
µ, let φ ∈ Ωn−1(M, g∗) be a closed form, and let Mφ = µ−1(φ)/Gφ. If µ−1(φ) ⊆M is an embedded
submanifold, and if G acts freely on µ−1(φ), then there is a natural inclusion

r̄φ : Ham∞(M,ω)φ −֒→ Ham∞(Mφ, ωφ)

[σ] 7−→ σφ

of L∞-algebras of observables.

Remark 3.41. A similar argument to that of Theorem 3.38 yields a natural inclusion

r̄N : L∞(M,ω)N → L∞(MN , ωN ).

Recalling the discussion of Remark 3.24, we see that when both (M,ω) and (MN , ωN ) are multi-
symplectic, the strict L∞-morphism

r̄N
[
L∞(M,ω)N

] ∼
−−→ r̄N

[
Ham∞(M,ω)N

]

αN 7−−→ (vαN
, αN )

βN 7−−→ βN

for |αN | = 0 and |βN | < 0, provides the natural identification L∞(M,ω)N ∼= Ham∞(M,ω)N .

Lemmas 3.35 and 3.36 respectively yield isomorphisms

r̄N : Ω(M)N
∼
−→ Ω(MN )

and
r̄N : X(M)N

∼
−→ X(MN ),

where Ω(M)N and X(M)N are the reduced spaces of Remark 3.23.
As no such isomorphism is guaranteed on the level of observables, it is natural to inquire into

the relation between L∞-reduction and the association of observables functor

Ham∞ : (M,ω) 7→ Ham∞(M,ω).

This question motivates the following definition, which heuristically measures the extent to which
these procedures fail to commute.

Definition 3.42. The residue defect of of Gy (M,ω) with respect to N ⊆M is the cokernel

coker rN =
Ham∞(MN , ωN )

im rN

of the geometric reduction map rN : Ham∞(M,ω)[N ] → Ham∞(MN , ωN ).

32



As Lemmas 3.35 and 3.36 ensure that r<0
N surjects onto Ham

<0
∞ (MN , ωN ), we may identify

[Ham∞, R] with the component coker r0N = Ham
0
∞(MN , ωN )/im r0N on Hamiltonian pairs.

The residue defect of G y (M,ω) with respect to N ⊆ M measures the extent to which the
reduced space (MN , ωN ) exhibits observables that are not induced from (MN , ωN ).

We will establish in Theorem 4.13 that in the suitably regular symplectic setting we have
[Ham∞, R] = 0. In the n-plectic case with n > 1, the determination appears to be highly non-
trivial.

4 Applications and examples

In this section we investigate our reduction formalism in the setting of various natural examples.

4.1 L∞-reduction in the 1-plectic case

In this subsection, we discuss how definition the L∞-reduction scheme manifests in the 1-plectic,
i.e. symplectic, setting.

Let (M,ω) be a symplectic manifold, be N ⊆M be a closed subset, and consider a Lie algebra
action gy(N ⊆M). The auxiliary spaces of the L∞-reduction scheme are:

L∞(M,ω) C∞(M)

L∞(M,ω)[N ]



f ∈ C

∞(M)

∣∣∣∣∣∣

ξf ∈ IN ∀ξ ∈ g

vfh ∈ IN ∀h ∈ IN
[vf , ξ] ∈ Xg(M) along N, ∀ξ ∈ g





IL∞
(N)




f ∈ C∞(M)

∣∣∣∣∣∣∣∣

ξf ∈ IN ∀ξ ∈ g

vf h ∈ IN ∀h ∈ IN
f ∈ IN
vf ⊆ Xg(M) along N





=

=

=

(3)

A particular feature of the symplectic setting is that the space L∞(M,ω) = C∞(M) naturally
possesses the structure of an associative algebra with respect to which the l2 bracket is a Poisson
structure. We now show that this structure descends to the reduced space L∞(M,ω)N .

Theorem 4.1. If g y M is tangent to N ⊆ M , and if the symplectic structure ω ∈ Ω2(M) is
reducible, then the reduction L∞(M,ω)N inherits a natural Poisson structure from C∞(M,ω).

Proof. Since IN is an associative ideal in C∞(M), it follows that IL∞
(N) = L∞(M,ω)[N ] ∩ IN

is an associative ideal in L∞(M,ω)[N ]. Moreover, we have previously established that IL∞
(N) ⊆

L∞(M,ω)[N ] is an L∞-ideal (see Definition 3.22 and Lemma 3.20), and thus, in particular, an
ideal with respect to the l2 bracket. The result follows as these two facts together imply that
IL∞

(N) ⊆ L∞(M,ω)[N ] is a Poisson ideal.

Thus, in the presence of the additional hypothesis that g y (N ⊆ M) and ω is a reducible
2-form, Diagram 3 is in the category of Poisson algebras.

Remark 4.2. Observe that if v ∈ Xham(M,ω) then vf ∈ IX(N) precisely when {f,C∞(M)} =
vf C

∞(M) ⊆ IN .
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Definition 4.3. We define the space of Casimir functions along N to be

Q =
{
f ∈ C∞(M)

∣∣∣ {f,C∞(M)} ⊆ IN
}
. (4)

That is, in light of Remark 4.2,

f ∈ Q ⇐⇒ vf ∈ IX(N).

Lemma 4.4 (properties of Q). The subspace Q enjoys the following properties:

i. Q ⊆ C∞(M,ω) is a Poisson subalgebra (but not an associative or Lie ideal),

ii. Q ⊆ FN is a Lie ideal,

iii. Q ∩ IN is an associative ideal in C∞(M) and a Poisson ideal in FN .

Proof. This follows from an easy verification that

{fh,C∞(M)} = f{h,C∞(M)}+ h{f,C∞(M)}

and
{{f, h}, C∞(M)} = {{h,C∞(M)}, f} − {{f,C∞(M)}, h}

lie in IN whenever f ∈ Q or Q ∩ IN and h ∈ C∞(M), FN or Q, depending on the statement to be
proved.

We now specialize to the case where the action Gy(M,ω) is Hamiltonian, with moment map
µ :M → g∗.

Theorem 4.5. Fix a symplectic Hamiltonian action Gy(M,ω) with moment map µ : M → g∗

and put N = µ−1(0). Then

L∞(M,ω)[N ] = FN ∩ Q
′

IL∞
(N) = Iµ + (IN ∩ Q),

where Iµ, FN are given by Definition 1.9 and 1.16 respectively, N (Iµ) is the Lie algebra normalizer
of Iµ inside of C∞(M), Q is given in Equation (4), and

Q′ =
{
f ∈ C∞(M)

∣∣∣ {f, µξ} ∈ Iµ +Q ∀ξ ∈ g
}
. (5)

Furthermore, the reduced Poisson algebra is

L∞(M,ω)[N ]

IL∞
(N)

=
FN ∩ Q

′

Iµ + IN ∩ Q
.

Proof. Consider f ∈ L∞(M,ω)[N ]. By the very definition of Poisson bracket, the first condition
(see Diagram (3)) in the definition of L∞(M,ω)[N ] reads as Lξf = {µξ, f} ∈ IN for any ξ ∈ g.
Hence the Jacobi identity implies that {Iµ, f} ⊆ IN . Similarly the second condition implies that
Lvfh = {f, h} ∈ IN for any h ∈ IN , hence {f, IN} ⊆ IN , i.e. f is a first order function. In
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particular, since Iµ ⊆ IN , the latter condition implies the former one. The third condition implies
that for any ξ ∈ g there exist two families gi ∈ C∞(M) and ξi ∈ g such that

[vf , ξ] =
∑

i

gi ξi along N .

The left-hand side can be recast as [vf , ξ] = [vf , vµξ
] = v{f,µξ} since according to our conventions

the comoment map, the assignment of Hamiltonian vector fields, and the infinitesimal action are
each Lie algebra morphism (see Remark 1.4). From the expression of the Hamiltonian vector of the
product of two functions, we have

∑

i

giξi =
∑

i

givµξi
= v∑

i giξi
−

∑

i

µivgi .

where the last term vanishes along N = µ−1(0). According to Remark 4.2, equality along N implies

v{f,µξ} − v
∑

i giξi
∈ IX(N),

from which {f, µξ} −
∑

i giξi ∈ Q and so

{f, µξ} ⊆ Iµ +Q ∀ξ ∈ g .

Introducing Q′ as in Equation (5), the latter implies that

L∞(M,ω)[N ] = FN ∩ Q
′.

Consider now f ∈ IL∞
(N). The fourth condition in Diagram (3) implies the existence of two families

gi ∈ C
∞(M) and ξi ∈ g such that, along N ,

vf =
∑

i

gi vµi
= v∑

i giµi
−

∑

i
✚✚µivgi ,

where µi = µξi . By a similar argument as that of Remark 4.2, we obtain f ∈ Iµ + Q. In other
terms,

IL∞
(N) = L∞(M,ω)[N ] ∩ (Iµ + IN ∩ Q) .

The last claim follows by noting that both Iµ and IN ∩ Q lie inside FN ∩ IN ∩ Q
′ (see Lemma

4.6).

Lemma 4.6 (properties of Q′). The subspace Q′ enjoys the following properties:

i. Q′ is an associative subalgebra of C∞(M),

ii. FN ∩ Q
′ =

{
f ∈ FN

∣∣∣ {f, Iµ} ⊆ Iµ +Q ∩ IN
}

and it is a Poisson subalgebra of C∞(M,ω),

iii. Iµ →֒ N (Iµ) →֒ Q
′ as associative algebras,

iv. IN ∩Q →֒ FN ∩ IN ∩ Q
′ →֒ Q′ as associative algebras,

v. Iµ + IN ∩Q is a Poisson ideal inside of Q′ ∩ FN .
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Proof. i. Consider f, g in Q′. By the distributive property of the Poisson bracket, we have for
any ξ ∈ g that

{fg, µξ} ∈ Q
′ · {Q′, µξ} ⊆ Q

′ · Iµ + (IN ∩ Q) · Q
′ ⊆ Iµ + IN ∩ Q

where in the last inclusion we employed Lemma 4.4.

ii. The equality expresses the fact that the defining condition for Q′ may be given in terms of
Iµ. This follows from the fact that f ∈ FN implies {f, µξ} ⊆ IN , and from the fact that
Q∩IN ⊆ C

∞(M) is an associative ideal by statement iii. of Lemma 4.4. As the intersection of
the associative algebra Q′ and the Poisson algebra FN it is, in particular, a Poisson algebra.

iii. The inclusion is immediate as N (Iµ) is a Lie algebra normalizer.

iv. Clearly IN ∩ Q includes in IN ∩ FN . To prove the inclusion in Q′ notice first that {(IN ∩
Q), Iµ} ⊆ IN . The Jacobi identity implies that {(IN ∩ Q), Iµ} lies in Q since

{
{IN ∩ Q, Iµ}, C

∞(M)
}
⊆

{
{IN ∩ Q, C

∞(M)}, Iµ
}
+

{
{Iµ, C

∞(M)}, IN ∩ Q
}
⊆ IN

by the definition of Q and the inclusion Iµ ⊆ FN (see [AGJ90, Prop. 5.1]).

Remark 4.7. Observe that FN comprises precisely those functions with Hamiltonian vector field
tangent to N . Thus we see from statement ii. of Lemma 4.6 that the reducible observables in the
symplectic case consists of those functions in FN that satisfy a slightly stronger condition of being
preserved along N . Specifically, for any f ∈ Q′ ∩ FN and ξ ∈ g, the Lie derivative Lξf ∈ IN is a
linear combination of an element Iµ and a constraint with Hamiltonian vector field vanishing along
N .

We proceed now to compare the L∞-reduction procedure with the symplectic reduction schemes
surveyed in Section 1. In Table 4.1 are summarized the working hypothesis required by the different
procedures.

reduction hypothesis
scheme action GyM constraint set N ω ∈ Ω2(M)

AGJ none “well behaved”2 symplectic
D none first class symplectic

L∞ any g-stable
presymplectic
reducible

ŚW Hamiltonian N = µ−1(0) symplectic
ACG Hamiltonian N = µ−1(0) symplectic

MW
Hamiltonian
free and proper on µ−1(0)

N = µ−1(0)
0 regular value for µ

symplectic

Let us focus on the symmetry-based observables reductions, that is, we assume N = µ−1(0) for
a moment map µ. In this case, both the [ŚW], the [ACG], and the L∞-reduction schemes apply. In
particular, we have the following morphisms of Poisson algebra.

2E.g. strongly coisotropic and locally conical, see [AGJ90, Prop. 3.3].
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Proposition 4.8 ([L∞] vs. [ŚW]). Fix a symplectic Hamiltonian action Gy(M,ω) with moment
map µ :M → g∗, and put N = µ−1(0). When N (Iµ) →֒ FN we have a canonical Poisson morphism
from the [ŚW] reduction to the L∞-reduction. When IN ∩ Q →֒ Iµ the L∞-reduction embeds into
the [ŚW] reduction. When Iµ = IN , the [ŚW] and [L∞] reduced spaces are isomorphic.

Proof. According to Section 3.4, N = µ−1(0) implies that ω is reducible. First observe that under
the above hypothesis the [ŚW] and [L∞] reductions are well-defined. We exhibit all pertinent rela-
tions between the considered spaces in the following diagram commutative diagram in the category
of Poisson algebra.

Iµ N (Iµ)
N (Iµ)
Iµ

Iµ N (Iµ) ∩ FN
N (Iµ)∩FN

Iµ

Iµ + IN ∩ Q ∩N (Iµ) N (Iµ) ∩ FN
N (Iµ)∩FN

Iµ+IN∩Q∩N (Iµ)

Iµ + IN ∩ Q Q′ ∩ FN
Q′∩FN

Iµ+IN∩Q

(Lie.) ideal

(Lie.) ideal

(Lie.) ideal

(Lie.) ideal

where the rightmost bottom arrow is given by the second isomorphism theorem of Lie algebras.
This induces the following diagram at the level of quotient spaces, where dashed arrow denotes
morphisms of associative algebras (not Poisson) as in Lemma 1.22.

N (Iµ) ∩ FN

Iµ

N (Iµ)

Iµ

Q′

Iµ

N (Iµ) ∩ FN

Iµ + IN ∩ Q ∩N (Iµ)

Q′ ∩ FN

Iµ + IN ∩ Q

Q′

Iµ + IN ∩Q

where we identify the [ŚW] reduction in the middle of the first row (see Theorem 1.13) and the
[L∞] reduction in the middle of the second row (see Theorem 4.5). The latter diagram means that
the two considered reduction schemes yield different Poisson algebras in general and they posses a
nontrivial intersection inside of the associative algebra Q′/(Iµ + IN ∩ Q).

When FN →֒ N (Iµ), the top left horizontal arrow in the previous diagram is an isomorphism
and we obtain the sought map. Similarly, when IN ∩Q →֒ Iµ we have that FN ∩Q

′ ∼= N (Iµ)∩FN ,
hence the two bottom Poisson map are indeed identifications. Finally, the condition Iµ = IN implies
the previous two; hence, the two reduced Poisson algebras coincide.

Proposition 4.9 ([L∞] vs. [ACG]). Consider a symplectic Hamiltonian action Gy(M,ω) with
moment map µ : M → g∗. Assume that N = µ−1(0) where µ is a moment map associated to the
action. If Iµ = IN , then the [ACG] reduction naturally embeds in the [L∞] reduced algebra. If
moreover FN

∼= C∞(M)G + IN , then the [ACG] and [L∞] reductions are isomorphic.
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Proof. We indicate the relevant relations between all spaces in following commutative diagram in
the category of Poisson algebras.

IGN C∞(M)G
C∞(M)G

IGN

IGN ∩ FN C∞(M)G ∩ FN
C∞(M)G ∩ FN

IGN ∩ FN

IGµ + IGN ∩ Q C∞(M)G ∩ FN
C∞(M)G ∩ FN

IGµ + IGN ∩ Q

Iµ + IN ∩ Q Q′ ∩ FN
Q′ ∩ FN

Iµ + IN ∩ Q

(Lie.) ideal

(Lie.) ideal

q

(Lie.) ideal

y

(Lie.) ideal

where the top and bottom squares encode the second Lie algebra isomorphism theorem. The
inclusion of C∞(M)G in Q′ follows from C∞(M)G ⊆ N (Iµ). The inclusion of IµG + IN

G ∩ Q ⊆
IN

G ∩FN follows from the inclusion of Iµ and Q in FN ([AGJ90, Prop. 5.1] and Lemma 4.4). Note
that the bottom right object coincides with the [L∞] reduction (see Theorem 4.5), and the top right
object corresponds to the [ACG] reduction introduced in Definition 1.25. The first claim follows by
noticing that the rightmost two top vertical arrows are indeed identifications whenever Iµ = IN . If,
moreover, FN

∼= C∞(M)G + IN , the bottom right vertical arrow yields an isomorphism.

Remark 4.10. Note that the inclusion claimed in Proposition 4.9 follows also when C∞(M)G →֒ Q,
i.e. if the Hamiltonian vector field associated to any G-invariant smooth function vanishes along N .

When the constraint set N = µ−1(0) is also first class, it is possible to compare the [L∞] and
[D] reduction schemes.

Proposition 4.11 ([L∞] vs. [D]). Let Gy (M,ω) be a symplectic Hamiltonian action with moment
map µ : M → g∗. Further assume that N = µ−1(0) is first class. There is a natural mapping from
the L∞-reduced Poisson algebra to the [D] reduction. If IN = Iµ + IN ∩ Q then the [D] and [L∞]
reduced spaces coincide.

Proof. The relevant mappings are indicated in the following commutative diagram in the category
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of Poisson algebras

Iµ + IN ∩ Q Q′ ∩ FN
Q′ ∩ FN

Iµ + IN ∩ Q

IN ∩Q Q′ ∩ FN
Q′ ∩ FN

IN ∩ Q

IN FN
FN

IN

(Lie.) ideal

(Lie.) ideal

y

(Lie.) ideal

The top and the bottom embody the [L∞] and [D] reductions. The two bottom squares encode
the second isomorphism theorem of Lie algebras. In the case that IN = Iµ + IN ∩ Q, we have
in particular that Q′ ∩ FN = FN , hence the three Poisson algebras in the rightmost column are
identified.

Remark 4.12. Although the L∞-reduction procedure draw its original inspiration from the [SW]
scheme, from the proof of Proposition 4.11 and the simple observation that O(N) ⊇ FN ∩ Q

′

transpires how the L∞-reduction is rather a refinement of the [D] reduction. More specifically,
such a refinement is obtained by considering the subset of Dirac’s observables consisting of suitably
locally preserved first-class functions and dividing out by a subset of functions vanishing on N.
These choices, in particular, imply that this construction yields a Poisson algebra regardless of the
condition of being N a first-class constraint.

The laxer relationship with the [SW] reduction is unsurprising as that scheme relies fundamen-
tally on the associative structure of C∞(M) which, in principle, does not carry to Ham∞(M,ω).

An observable reduction scheme cannot be considered entirely satisfactory if it were not to agree
with the [MW] reduction in the presence of a regular constraint set. Crucially, all the reduction
schemes mentioned in Section 1 satisfy this compatibility property (see [ŚW83, Thm. 1] and [AGJ90,
Prop. 3.6] for further details). More formally, under the hypotheses of the Marsden–Weinstein
reduction theorem, the reduced Poisson algebra C∞(M,ω)0 is isomorphic to the Poisson algebra
C∞(M0, ω0) on the reduced symplectic manifold.

Theorem 4.13. Let Gy(M,ω) be a symplectic Hamiltonian action and suppose that 0 ∈ g∗ is
a regular value of the moment map µ : M → g∗. If G y M is free and proper, then the [L∞],
[ŚW], [D], and [ACG] reductions are equal. In particular, each is isomorphic to the Poisson algebra
C∞(M0, ω0) of smooth functions on the Marsden–Weinstein reduced space.

Proof. First observe that the above hypothesis coincide with those of 1.5 and hence the [MW]
geometric reduction is well defined. Let us denote by (M0, ω0) the symplectic manifold obtained by
the Marsden–Weinstein reduction procedure. The regular value condition guarantees that µ−1(0) is
an embedded submanifold of M . In particular, we have Iµ = IM (see [ŚW83, Thm. 1] and [AGJ90,
Prop. 5.12] for details). According to Propositions 4.8 and 4.11 the latter condition implies that the
[L∞], [ŚW] and [D] reduction schemes yield the same Poisson algebra. In particular, all of them
coincide with C∞(M0, ω0) in virtue of [ŚW83, Thm. 1]. The isomorphism between the latter and
the [ACG] reduction is given in [Śni05, Thm. 1].
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The following diagram subsumes the relationship between the considered reduction schemes.

FN∩Q′

Iµ+IN∩Q
FN∩N (Iµ)

Iµ

C∞(M)G

IGµ

(
C∞(M)

Iµ

)G

C∞(M)G∩FN

IGµ +IG
N
∩Q

C∞(M)G

IG
N

(
C∞

IN

)G

[ŚW] reduction

[L∞] reduction

[ACG] reduction

As before, the dashed (resp. solid) arrows indicate morphisms of associative (resp. Poisson) algebras.

4.2 The coordinate cross in R2

Let us consider an elementary example in which the L∞-reduction of a symplectic manifold is
possible even though the action fails to preserve the symplectic form.

Consider the plane M = R2 and the union of the coordinate axes N = {(x, y) |xy = 0}. The
vanishing ideal is IN = xy · C∞(M). We consider the vector field ξ = x∂x + y∂y as the action of
a one-dimensional abelian Lie algebra on M . The vector fields tangent to N are generated by x∂x
and y∂y. In particular ω = dx ∧ dy is reducible, as it is closed and as ιξω = xdy − ydx vanishes on
N when contracted with x∂x or y∂y.

As described in the preceding section, the reduction is the quotient

{f | vf ∈ XN (M),Lξf ∈ IN , [ξ, vf ] ∈ Xg(M) + IX(N)}

{f | f ∈ IN , vf ∈ Xg(M) + IX(N)}
.

We first consider the denominator. Since f ∈ IN , we have f = xyh for some smooth function
h. Thus df = y(h+ x∂h

∂x )dx+ x(h+ y ∂h
∂y )dy, from which vf = y(h+ x∂h

∂x )∂y − x(h+ y ∂h
∂y )∂x. Such

expressions are required to lie in Xg(M) + IX(N). Now, the equality of ideals IX(N) = INX(M)
in this example yields vf = h(y∂y − x∂x) up to an element of IX(N). As multiples of xy in
h are redundant, we arrive at a decomposition h(x, y) = h0 + xhx(x) + yhy(y) + xyhres . Then
vf = (h0 + xhx(x) + yhy(y))(y∂y − x∂x). Multiplying and removing all multiples of xy, we obtain

vf = h0(y∂y − x∂x) + y2hy(y)∂y − x
2hx(x)∂x.

Since x and y are fully decoupled, there are no terms in IX(N). It remains to check when this lies
in Xg(M). This requires that h0, hx and hy be identically zero, so that h(x, y) = xyhres(x, y) and
thus f = (xy)2hres (x, y) for some smooth function hres(x, y).

Now for the numerator. Since multiples of (xy)2 vanish in the quotient, we introduce the ansatz

f(x, y) = f0 + xfx(x) + yf y(y) + xyfxy|x(x) + xyfxy|y(y).
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Taking exterior derivatives gives

df =
(
fx(x) + x(fx)′(x) + yfxy|x(x) + xy(fxy|x)′(x) + yfxy|y(y)

)
dx

+
(
f y(y) + y(f y)′(y) + xfxy|y(y) + xy(fxy|y)′(y) + xfxy|x(x)

)
dy.

Before calculating vf , let us look at Lξf = df(ξ).

df(ξ) = xfx(x) + x2(fx)′(x) + xyfxy|x(x) + x2y(fxy|x)′(x) + xyfxy|y(y)

+ yf y(y) + y2(f y)′(y) + xyfxy|y(y) + xy2(fxy|y)′(y) + xyfxy|x(x).

As this function lies in IN , it follows that fx and f y must vanish. In terms of our expression for f ,

vf =
(
yfxy|x(x) + xy(fxy|x)′(x) + yfxy|y(y)

)
∂y −

(
xfxy|y(y) + xy(fxy|y)′(y) + xfxy|x(x)

)
∂x.

Since XN (M) is generated by x∂x and y∂y, it follows that vf ∈ XN (M). We now turn to the
commutator [ξ, vf ]. Since ξ preserves IN , it also preserves IX(N) = INX(M). We may thus
disregard all terms which are multiples of xy and write

[ξ, vf ] ≡ y
2(fxy|y)′(y)∂y − x

2(fxy|x(x))′∂x.

This is a multiple of ξ precisely when (fxy|y)′ = (fxy|x)′ = 0, that is, precisely when fxy|y and fxy|x

are constant. Thus, up to elements in the denominator, f takes the form

f = f0 + xyfxy

for arbitrary constants f0, fxy ∈ R. In particular, the reduced L∞-algebra is isomorphic to the
abelian Lie algebra R2.

4.3 Multicotangent bundles

As a precursor to the primary example of multiphase spaces, let us examine the intermediate
construction of multicotangent bundles.

Fix a manifold E. The nth multicotangent bundle of E is the manifold M = ΛnT ∗E. As T ∗E
carries a canonical 1-form, so ΛnT ∗E carries a canonical n-form θ ∈ Ωn(M). Explicitly,

θη(v1, . . . , vn) = η(π∗v1, . . . , π∗vn)

where η ∈ ΛnT ∗E, v1, . . . , vn ∈ TηΛnT ∗E, and π : ΛnT ∗E → E is the projection. Local coordinates
(ei)i≤n on U ⊆ E, induce local coordinates (ei, p

I) on π∗U ⊆ M , where I = 1 ≤ i1 < . . . < in ≤ n
is a multiindex of length n, and where pI represents the coefficient of deI = dei1 ∧ · · · ∧ dein . In
these terms,

θ =
∑
pI deI =

∑
pI dei1 ∧ · · · ∧ dein .

The canonical multisymplectic structure on ΛnT ∗E is ω = dθ. Note that any diffeomorphism ψ of
E naturally extends to a diffeomorphism Ψ = (ψ−1)∗ of ΛnT ∗E. On the infinitesimal level, this
induces an inclusion of Lie algebras

X(E) →֒ X(ΛnT ∗E)

v 7→ ṽ
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called the prolongation map along π : ΛnT ∗E → E. From ψ∗θ = θ for all diffeomorphisms ψ :
E → E, we easily derive Lṽθ = 0 for all vector fields v ∈ X(E), whence ιṽω + dιṽθ = 0 so that
ṽ is a Hamiltonian vector field for ιṽθ ∈ Ωn−1(ΛnT ∗E). In particular, any smooth action g y E
prolongs to a θ-preserving action g y ΛnT ∗E and thus Lemma 2.15 provides a canonical moment
map µ ∈ Ωn−1(ΛnT ∗E, g∗) according to µξ = ιξθ.

From
α ∈ µ−1(0) ⇐⇒ ιgθα = 0 ⇐⇒ ιg

E
α = 0

we obtain the 0-level set µ−1(0) ⊆ ΛnT ∗E as the annihilator

N = µ−1(0) = {α ∈ ΛnT ∗E | ιg
E
α = 0} .

Notwithstanding the apparent difficulty of computing the full reduced space of observables,
certain elements are always present.

Proposition 4.14. If v ∈ X(E) preserves Xg(E), then (ṽ, ιṽθ) ∈ Ham
0
∞(ΛnT ∗E,ω) is reducible.

Proof. More formally, our condition on v is that [v,Xg(E)] ⊆ Xg(E). For the reducibility of ṽ ∈
X(M), we must check two conditions.

First we show that [ṽ, ξ] ∈ Xg(M) + IX(N) for all ξ ∈ g. We will use the fact that [ṽ, ξ] is the
Hamiltonian vector field of ι[ṽ,ξ]θ, and that [ṽ, ξ] is the prolongation of the vector field [v, ξ

E
] ∈ X(E).

By hypothesis, [v, ξ
E
] =

∑
i fiζEi

for some fi ∈ C∞(E) and ζi ∈ g, from which ι[ṽ,ξ]θ =
∑
fiιζ

i
θ.

We have
d
(∑

fiιζ
i
θ
)
=

∑
fidιζiθi + dfi ∧ ιζiθ

At every point x ∈ E, each term fidιζiθi is related by the injective map v 7→ ιvω to fiζi; while, at
every point x ∈ N = {x | ιζθ = 0 ∀ζ}, each term dfi ∧ ιζiθ vanishes. Therefore, the injectivity of
v 7→ ιvω yields [ṽ, ξ] ∈ Xg(M) + IX(N).

Second, we establish that ṽ is tangent to N . In fact, this is true even in the stronger sense that
the flow Ψt of ṽ preserves N , that is, that η ∈ N implies Ψt(η) ∈ N . We will show that (ιζθ)Ψtη = 0
if and only if Ψ∗

t (ιζθ)η = 0. Since Ψt preserves θ this is equivalent to (ι(Ψt)∗ζθ)η = 0. Denote by ψ
the flow of v on E and observe that θ depends only on (ψt)∗ζ = π∗(Ψt)∗ζ. Invoking our hypothesis
that [v,Xg(E)] ⊆ Xg(E), we note that ψt preserves Xg(E), and hence that (ψt)∗ζπ(η) is a linear

combination of fundamental vectors of g. This provides (ι(Ψt)∗ζθ)η, from which we obtain (ιζθ)Ψtη.
For the reducibility of ιṽθ, we require that ιξιṽθ ∈ IΩ(N) and that Lξιṽθ = [Lξ, ιṽ ] θ = ι[ξ,ṽ]θ ∈

IΩ(N) for all ξ ∈ g. The first containment is an immediate consequence of the equality N = {α ∈
ΛnT ∗E | ιg

E
α = 0}. The second follows from this characterization of N and the from the property

that [ξ, ṽ] ∈ Xg(M) + IX(N).

4.4 Multiphase spaces

We now consider multiphase spaces, arguably the foremost class of examples of multisymplectic
manifolds, playing an essential role in the covariant Hamiltonian description of first-order classical
field theories. See [H1́2, Kij73] for a shorter exposition and [GIMM98, GIM04] for a comprehensive
treatment.

The multiphase space associated to a surjective submersion π : E → Σ is

Λn
1T

∗E = {η ∈ ΛnT ∗E | ιuιvη = 0 ∀u, v ∈ Tvert.E} .
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Traditionally, we consider Σ to embody the independent variables of a classical field theory, and the
fiber directions of E the dependent variables.

When the dimension of Σ is sufficiently great, Λn
1T

∗E is a multisymplectic submanifold of ΛnT ∗E
and inherits the constructions of Subsection 4.3.

We begin with the extension of vector fields. As it is not generally true that the prolongation
of v ∈ X(E) to Λ1T ∗E is tangent to Λn

1T
∗E, our first task is to identify those v ∈ X(M) that do

prolong to Λn
1T

∗E.

Lemma 4.15. If v ∈ X(E) is (E → Σ)-projectable, then the prolongation ṽ ∈ X(ΛnT ∗E) is tangent
to Λn

1T
∗E.

Proof. Suppose v ∈ X(E) projects along π : E → Σ to some w ∈ X(Σ). Then there are smooth
families of diffeomorphisms (Ψt)t and (ψt)t such that v = d

dtΨt|t=0, w = d
dtψt|t=0, and

π ◦Ψt = ψt ◦ π.

Since ṽ = d
dtΨ

∗
−t|t=0 it suffices to show that each Ψ∗

t preserves Λn
1T

∗E. To see this is so, fix t ∈ R,
put Ψ = Ψt, let α ∈ Λn

1T
∗E and u, u′ ∈ Tvert.E, and observe that

ιuιu′(Ψ∗α) = Ψ∗(ιΨ∗uιΨ∗u′α) = 0.

Note that the last equality follows as α ∈ Λn
1T

∗E, and as π∗Ψ∗u = ψ∗(π∗u) = 0 provides Ψ∗u,Ψ∗u
′ ∈

Tvert.E.

Lemma 4.16. If v ∈ X(E) is (E → Σ)-projectable, then ṽ ∈ X(Λn
1T

∗E) is a Hamiltonian vector
field for ιṽθ ∈ Ωn−1(Λn

1T
∗E).

Proof. This is a straightforward consequence of Lemma 4.15 and the expository review of Subsection
4.3.

We now again turn our attention to the canonical moment map induced by θ = θ|Λn
1T

∗E ∈
Ωn(Λn

1T
∗E) for the action G y Λn

1T
∗E lifted from G y (E → Σ). If G y Λn

1T
∗E lifts the action

Gy (E → Σ), then it is easy to show that G preserves θ.
For the zero level set of the moment map, the same argument as with the multicotangent bundles

applies and we obtain
N = µ−1(0) = {α ∈ Λn

1T
∗E | ιg

E
α = 0}

We thus arrive at a natural class of reducible observables on Λn
1T

∗E.

Theorem 4.17. If v ∈ X(M) preserves Xg(E), and if v ∈ X(E) is (E → Σ)-projectable, then
(ṽ, ιṽθ) ∈ Ham

0
∞(Λn

1T
∗E,ω) is reducible.

Proof. In light of Lemma 4.16, this follows by similar argument as Proposition 4.14.

4.5 2-dimensional scalar fields

Let us consider a concrete example of a multiphase space for a field theory with configuration bundle
E = R3 → Σ = R2 possessing two independent variables (σ1, σ2) and one dependent variable q. In
this setting, a general element of the multicotangent bundle Λ2T ∗E has the form

p dσ1 ∧ dσ2 + p1 dσ1 ∧ dq + p2 dσ2 ∧ dq.
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and we take (σ1, σ2, q, p, p
1, p2) as our preferred coordinates on Λ2T ∗E. The multiphase space

Λ2
1T

∗E in this setting is equal to the multicotangent bundle.
The canonical 2-form on the multiphase space is given by

θ = p dσ1 ∧ dσ2 + p1dσ1dq + p2dσ2dq

and the multisymplectic form by ω = dθ.
Let us now fix an infinitesimal action by g = R on E, generated by the vector field v = (q)2∂q ∈

X(E). Via natural prolongation, this action induces a multisymplectic action on M = Λ2
1T

∗E, given
by V = (q)2∂q−2q(p1∂p1+p

2∂p2). By construction, θ is an invariant potential of ω, hence it induces
a covariant moment map.

Let us now apply the reduction procedure. Since g is one-dimensional and the action on M is
generated by V , we can set N = {x | (ιV θ)x = 0}. Since ιV θ = q2(p1dσ1 + p2dσ2), this means that
N = {q = 0} ∪ {p1 = p2 = 0} is the intersection of two vector spaces of unequal dimensions. Let
us describe the spaces relevant for reduction, where we use 〈· · · 〉 to denote the C∞(M)-span of a
collection of elements.

• IN = 〈qp1qp2〉

• XN (M) = 〈q∂q, p
i∂pj , ∂σ1 , ∂σ2 , ∂p〉

• IX(N) = IN · X(M).

• IΩ(N)1 = IN · 〈dσ1,dσ2,dp〉+ 〈p
1, p2〉dq + q · 〈dp1,dp2〉.

Using this, we can try to determine the reduction. In degree 0, the reduction is given by
{f |LV (f)∈IN}

IN
. The condition in the numerator means that q2 ∂f∂q − qp

1 ∂f
∂p1
− qp2 ∂f∂q ∈ IN . (To avoid

possible confusion, note that here q2 denotes the square of q, rather than an index.) The second
and third term are always in IN , so we can concentrate on the first one. There the condition implies
that f has to take the form

f = f0(σi, p
i, p) + qp1f1 + qp2f2,

where f1, f2 are arbitrary functions and f0 is a function of σi, pi, p. Since the second and third
term lie in the denominator, the reduction in degree 0 will be isomorphic to the space of possible
functions f0.

Even in this relatively elementary case, calculating the full reduction is very difficult. There is,
however, a class of observables for which the calculations are tractable: namely, 1-forms of the type
θ(v) for v ∈ X(E). All such forms are observables by the construction of the multiphase space, and
their Hamiltonian vector fields are prolongations w̃ ∈ X(M) of w. A general vector field w on E
has the form w = w1∂σ1 + w2∂σ2 + wq∂q for arbitrary functions w1, w2, wq of σ1, σ2, q. Since the
multiphase space here is equal to the multicotangent bundle, we need only to check the condition
[v,w] ∈ Xg(E). We obtain

[v,w] = [q2∂q, v] = q2
∂w1

∂q
∂σ1 +

∂w2

∂q
∂σ2 +

(∂w1

∂q
− 2qwq

)
∂q .

For this to lie in Xg(E), w1, w2 must be independent of q and wq must be a multiple of q. A
lengthy calculation shows that an observable of the form (ιw̃θ, w̃) reduces to zero, if and only if
w1 = w2 = 0 and wq is a multiple of q2. So we have a subspace in the reduction that is isomorphic
to {(ιw̃θ, w̃) | w = w1(σ1, σ2)∂σ1 + w2∂σ2(σ1, σ2) + qŵq(σ1, σ2)∂q}.
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5 Outlook

We briefly consider three natural directions in which to extend our research.

5.1 Moduli spaces of flat connections

Let P → M be G-principal bundle over a compact manifold Mn admitting a flat connection, let
G = AdP be the gauge group, let A be the space of connections on P , let

N = {A ∈ A |FA = 0}

be the subspace of flat connections, and letM = N/G be the moduli space of flat connections. Given
any invariant polynomial q ∈ Sn+1(g∗)G, it is shown in [CFRZ16, Section 10] that the assignment

ωq(v1, . . . , vk) 7→

∫

M
q(αA ∧ v1 ∧ · · · ∧ vk), v1, . . . , vk ∈ Ω1(M, adP ) ∼= TAA

defines a presymplectic form on A, where we identify X(A) with a space of suitably smooth maps
v : A → Ω1(M, adP ) as A is an Ω1(M, adP )-affine space, and moreover that M arises as the
geometric multisymplectic reduction of G y (N ⊆ A). This extends a classic observation of
Atiyah–Bott [AB83, Section 9] in the case in which M is a surface. In each case, the there is an
associated moment map derived from the curvature F : A → Ω2(M, adP ).

It would be interesting to rigorously adapt our framework to this infinite-dimensional setting.
In particular, it would be interesting to identify suitable analogues of the auxiliary spaces of Section
3 and to examine the reduced L∞-algebra in particular examples.

5.2 Classical field theories

One of the original motivations behind the development of multisymplectic geometry was the search
for a rigorous mathematical framework for prequantum field theories. The driving principle was to
look for a suitable extension of the geometric mechanics’ framework, based on symplectic geometry
(see [AM08]), from point-like particles with a finite set of configuration coordinates to systems with
infinite denumerable degrees of freedom.

Cornerstones of the former are the philosophy of encoding phase spaces as cotangent bundles of
configuration manifolds and the fact that cotangent bundles are canonically symplectic. Extending
such ideas to classical field theories led to the introduction of multiphase spaces, as touched on in
Section 4.4.

At present, the application of recent developments in the theory of multisymplectic observ-
ables, moment maps, and reduction to its motivating subject of classical mechanics remains broadly
underdeveloped.

A natural next step that could follow from the present work would be to provide a more explicit
characterization of the reducible observables in the specific case of multiphase spaces. In other
terms, the latter would imply the displaying a multisymplectic analogue of the so-called cotangent
bundle reduction, see [MMO+07, OR06]. Although it is essentially a matter of restricting general
constructions to a peculiar class, essentially comprising fibered spaces with an exact multisymplectic
form as sketched in sections 4.3 and 4.4, such results could foster new applications of multisymplectic
methods to the realm of the mathematical physics of continuous and field-like systems.
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However, it should be clear from the example given in Section 4.5 that carrying out all computa-
tions required to display all reducible observables explicitly is a daunting task. Accomplishing this
merely for the prototypical model of the free scalar field on the Minkowski space-time would be a
nontrivial result, particularly if it were to enable to retrieve geometrically the mechanical momenta
usually introduced through variational methods in the physics literature.

5.3 Quantization

In the symplectic setting, a quantization procedure is an assignment to admissible symplectic man-
ifolds (M,ω) equipped with additional data, of a Hilbert space H(M,ω). When (M,ω) comes
equipped with a compatible G-action, the H(M,ω) inherits the structure of a G-representation.

Unsurprisingly, multisymplectic setting is more exotic. We refer to [Sch21] for a general exposi-
tion and present below the prequantization construction of [FRS14, FRS16].

Definition 5.1 ([FRS14]). The cochain complex of sheaves

C∞(−;U(1))
dlog
−−→ Ω1(−)

d
−→ Ω2(−)

d
−→ · · ·Ωn(−)→ Ωn+1(−)→ · · · ,

with C∞(−;U(1)) in degree 0, will be called the Deligne complex and will be denoted by the symbol
U(1)Del.

Definition 5.2 ([FRS14]). The n-stack of principal U(1)-n-bundles (or (n− 1)-bundle gerbes) with
connection B

nU(1)conn is the n-stack presented via the Dold–Kan construction to the presheaf
U(1)≤n

Del[n] regarded as a presheaf of chain complexes concentrated in nonnegative degree.

Definition 5.3 ([FRS14]). Let (M,ω) be a pre-n-plectic manifold. A prequantization of (M,ω) is
a lift

M Ωn+1(−)cl

B
nU(1)conn

ω

F
∇

The key observation is that this prequantization construction is given purely in terms of dif-
ferential forms on M , a class of spaces for which we have just proposed a very general reduction
scheme (see Remark 3.23). Consequently, given a subset N ⊆ M and compatible action g y M , a
candidate construction for a reduced prequantization that immediately suggests itself is the termwise
reduction Ω 7→ ΩN of the Deligne complex with respect to g yM along N.

Specializing to the 2-plectic setting, in [SW21] the prequantization of (M,ω) is realized in the
framework of bundle gerbes, and in [Rog11] in terms of Courant algebroids. In each case, it would
be interesting to adapt our reduction apparatus to reduce these prequantizations along a subset
N ⊆ M by an action g y (N ⊆ M). A rich field, further quantization schemes are proposed by
Barron and Seralejahi [BS17], Barron and Shafiee [BS19], and by de Bellis, Samann, and Szabo
[DSS10, DSS11].

Several natural questions arise. For example, it would be interesting to identify and investigate a
[Q,R] = 0 “quantization commutes with reduction” conjecture. Additionally, it is shown in [FRS14]

46



that Ham∞(M,ω) is suitably equivalent to the infinitesimal symmetries of a prequantization of
(M,ω). It would be interesting to compare the reduction of a prequantization of (M,ω) with the
L∞-reduction of its space of infinitesimal symmetries Ham∞(M,ω).
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