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THE ASYMMETRIC QUANTUM CLONING REGION

ION NECHITA, CLÉMENT PELLEGRINI, AND DENIS ROCHETTE

Abstract. Quantum cloning is a fundamental protocol of quantum information theory.
Perfect universal quantum cloning is prohibited by the laws of quantum mechanics, only
imperfect copies being reachable. Symmetric quantum cloning is concerned with case
when the quality of the clones is identical. In this work, we study the general case
of 1 → N asymmetric cloning, where one asks for arbitrary qualities of the clones. We
characterize, for all Hilbert space dimensions and number of clones, the set of all possible
clone qualities. This set is realized as the nonnegative part of the unit ball of a newly
introduced norm, which we call the Q-norm. We also provide a closed form expression
for the quantum cloner achieving a given clone quality vector. Our analysis relies on the
Schur-Weyl duality and on the study of the spectral properties of partially transposed
permutation operators.
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1. Introduction

In quantum mechanics, the information is encoded in the state |ψ〉 of a quantum system,
that is a unit vector of a complex Hilbert space H. When thinking of information and
communication, a general task of a computer is to ”copy and paste” the information. This
task, up to a certain precision, is perfectly performed by a classical computer. At the level
of quantum mechanics, the duplication of a quantum state is a protocol |ψ〉 7→ |ψ〉 ⊗ |ψ〉
or |ψ〉 7→ |ψ〉⊗ . . .⊗|ψ〉 = |ψ〉⊗N when one wants to obtain N copies of |ψ〉. Such protocol
carries the name of quantum cloning. More generally, one aims at cloning mixed states
ρ 7→ ρ⊗N , where ρ is a density matrix, that is a positive trace one operator on H. If
H = Cd, a quantum cloner is an application T from Md to M⊗N

d , where Md is the set
of d× d matrices. As usual, such applications are required to be quantum channels, that
is completely positive and trace preserving linear maps. This scenario can be relaxed by
allowing the output T (ρ) to be a non-product state. In this case, only partial traces are
required to be equal to the input, that is Ti(ρ) = ρ, for all clone indices i = 1, . . . , n,
where Ti is the quantum channel fromMd on the i-th copy ofMd after taking the partial
trace on the other copies ofMd. In this sense Ti(ρ) corresponds to the copy number i of
ρ. Such protocols are called perfect quantum cloning.

Designing perfect quantum cloners, able to clone any state, is known to be impossible;
this fundamental fact is known under the name of “no-cloning theorem” [Die82, WZ82].
Indeed cloning arbitrary quantum information is forbidden by the rules of quantum me-
chanics. This no-go result is one of the fundamental differences between classical and
quantum information processing, and has received a lot of attention in the recent years.

Even if perfect cloning is impossible, the story is not over. Since perfect cloning is
unreachable, one has to relax the task of obtaining perfect copies of quantum states.
This is the central subject of approximate quantum cloning. In this context one allows
to obtain copies of states which are not perfect. The quality of the copies can be then
measured as the distance between the input (i.e the state to be cloned) and the different
copies Ti(ρ), (i = 1, . . . , n), in terms of a figure of merit called quantum fidelity. Two
types of approximate cloning can be considered: the symmetric quantum cloning, where
one asks to have the same quality for each copies or the asymmetric quantum cloning
where copies are allowed to have different qualities. In terms of quantum fidelity, the non
cloning theorem states that the quality can not be one for each copy.

The quantum cloning problem is a central topic in quantum information theory. Since
the pioneering work on universal quantum cloners [BH98], many authors studied the
different cloning scenarios : symmetric [Wer98, KW99] vs. asymmetric [Cer00, Kay14,

SĆHM14, Has16], qubit [GM97] vs. qudit [FFC05], phase covariant [BCDM00], proba-
bilistic [DG98], state dependent [LS20], etc [BDMS00, DDZ+05]. For a comprehensive
review one can consult [SIGA05, FWJ+14] where theoretical results as well as practical
considerations are exposed. From a concrete point of view where the practical design
of concrete quantum cloner are considered one can consult [CDKK20] where techniques
of machine learning are used to obtain quantum circuits which can clone families of
prescribed quantum states. Quantum cloning is an essential ingredient in cryptography
protocols: the impossibility of non-cloning prevents a malicious eavesdropper from inter-
cepting a message and copying it without disturbing the original. This main idea is the
basis of the BB84 protocol [BB20].

An inherent question is the physically realisable figures of merit for quantum cloners.
Briefly speaking, the asymmetric quantum cloning region can be described in terms of
the quality of the clones produced by quantum channels. For each point in the cloning
region, a concrete expression of a quantum cloners corresponding to this figure of merit
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is of major interest, especially for the optimal quantum cloners. The simplest situation
when N = 2 has been deeply studied with extensive results obtained using different
approaches: selective measurements [BH96], unitary transformations [BH98, BDE+98],
prior information [DDZ+05]. The symmetric 1→ N quantum cloning problem has been
fully described by Werner and Keyl in the two papers [Wer98, KW99], where the cloning
maps are given by quantum channels. Recently, the asymmetric 1→ 2 quantum cloning
has been revisited in [Has16], where different figures of merit are addressed. In the
authors’ recent work [NPR21], the complete region has been described in terms of union
of ellipses, and the expression of all (not just the optimal) possible cloners has been
provided in terms of particular permutation operators.

Several recent papers address the more general problem of asymmetric 1→ N quantum
cloning. One the one hand, Kay and his collaborators [KKR09, KRK12, Kay14] consider
the optimal quantum fidelity of the different copies is bounded by the largest eigenvalue
of an operator. On the other hand, Ćwikliński, Horodecki, Mozrzymas, and Studziński
[ĆHS12, SĆHM14] use techniques from group representation theory to analyse the com-
mutant structure of the unitaries operators U⊗(N−1) ⊗ U∗ and the algebra of partially
transposed permutation operators, developed earlier for a more general framework in
papers [SHM13] and [MHS14, MSH18]. These papers are principally focused on the op-
timal quantum cloners. An important result in [KRK12], describes the optimal quantum
cloners in terms of a quadratic relation satisfied by the fildelities of their marginals:

(1)
N∑
i=1

(
(d+ 1)fi − 1

)
= (d− 1) +

(∑N
i=1

√
(d+ 1)fi − 1

)2

N + d− 1
.

In the equation above, d is the dimension of the Hilbert space, N is the number of clones,
and fi are respectively the optimal achievable fidelities. Using some unitary-equivariant
constraints (i.e., commutation relation with all the unitaries U⊗p ⊗ Ū⊗q), Grinko and
Ozols [GO22] have reduced semidefinite optimization problems into linear optimization
problems, and in particular the asymmetric cloning problem.

The current paper is devoted to the case of 1→ N asymmetric quantum cloning. The
originality of our paper lies in the fact that we completely describe, using techniques from
functional analysis and representation theory, the cloning region with the help of a newly
defined norm ‖·‖Q, which we call the Q-norm.

Definition 1.1. The Q-norm of a vector x ∈ RN defined by

‖x‖Q :=
d λmax

(∑N
i=1 |xi| · ω(0,i) ⊗ I⊗(N−1)

)
−
∑N

i=1 |xi|
d2 − 1

,

where λmax(·) is the largest eigenvalue.

More precisely the cloning region

RN,d :=

{
p ∈ [0, 1]N

∣∣∣∣ ∃T cloning map s.t. Ti(ρ) = pi ·ρ+ (1− pi)
I

d

}
appears as the non-negative part of the unit ball of the dual norm ‖·‖∗Q:

RN,d =

{
p ∈ [0, 1]N

∣∣∣∣ ∀q ∈ [0, 1]N s.t. ‖q‖Q ≤ 1, 〈p, q〉 ≤ 1

}
.

Here, we study the whole set of parameters p reached by quantum cloners, and not
only the optimal ones (in some given direction). We naturally recover the result (1) of
[KRK12] corresponding to optimal cloners. Surprisingly, the parameters of these optimal
quantum cloners do not delimit the whole region, see Figure 5. We exhibit points on
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the border of the cloning region that can not be directly obtained with the quadratic
equation (1) of optimality. We start from first principles and use Schur-Weyl duality
to design quantum cloners as sum of particular permutation operators. In particular,
the technical core of the asymmetric quantum cloning problem is finding the eigenvector
associated to the maximal eigenvalue of a certain Hermitian operator appearing in the
definition of the Q-norm.

In this paper, we shall use the following notation for sets of integers:

JnK := {1, 2, . . . , n}
Jm,nK := {m,m+ 1, . . . , n}.

The paper is structured as follows. Section 2 is devoted to present the asymmetric
quantum cloning problem. We present our figure of merit approach linked with quantum
fidelities. We address the worst case situation and we show that it is equivalent to
the average situation. In Section 3, we present the Schur-Weyl ingredient and link the
quantum cloners with permutation operators. Next, in Section 4, we study in details
the eigenvalues and eigenvectors of these permutation operators and we focus on the
maximal eigenvalue. This allows us to delimit, in terms of the spectral properties of
these operators, the asymmetric quantum cloning region. In Section 5, we introduce the
Q-norm, which allows to finally obtain the description of the cloning region in terms of
the dual of this norm. In order to streamline the presentation, the proofs of numerous
technical lemmas are postponed to appendices.

2. Asymmetric quantum cloning

In this paper, we consider a finite dimensional Hilbert space H = Cd. We denote by
Md the corresponding set of complex d × d matrices and by U(d) the set of unitary
matrices that is U(d) = {U ∈Md | U∗U = I}, where I denotes the identity matrix. The
Hilbert space H describes a quantum system and the states on H are the usual density
matrices which is denoted by

Dd =
{
ρ ∈Md

∣∣ ρ ≥ 0, Tr(ρ) = 1
}
.

We denote the unnormalized maximally entangled state by

(2) ω = |Ω〉〈Ω| , with |Ω〉 =
d∑
i=1

|ii〉 .

On a composite systems H⊗N , we write ρ(i) for the state ρ acting on the Hilbert space H
corresponding to the subsystem i:

ρ(i) := I ⊗ I ⊗ · · · ⊗ ρ⊗ · · · ⊗ I,
where the matrix ρ appears in the i-th position. We shall use extensively the nota-
tion |Ω〉(j,k) which is the unnormalized maximally entangled state between the j-th and

the k-th subsystems, that is |Ω〉(j,k) =
∑d

i=1 |i〉(j)⊗ |i〉(k). Also, depending on context, we
shall index the tensor factors either starting from 0 or starting from 1.

The evolution of mixed states (density matrices) in quantum mechanics is described
by a quantum channel T : Md → Md′ . Quantum channels are linear maps which are
completely positive and trace preserving. In particular they map Dd into Dd′ .

When dealing with composite systems, we shall invoke the partial trace. Namely, if
T :Md → (Md)

⊗N is a quantum channel, we write

Ti(ρ) = Tr[[1,N ]]\{i}

[
T (ρ)

]
,
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for all 1 ≤ i ≤ N and for all ρ ∈ Md. The operation Tr[[1,N ]]\{i} is the partial trace over
all copies of Md except the copy number i. The quantum channels Ti are called the
marginals of T . Similarly, we denote the partial transpose of an operator M ∈ Md, on
the i-th copy of Md, by

MTi .

When the partial transpose is taken on the first copy of Md, we simply write

MΓ = MT1 .

On the space of complex matrices, we denote by 〈·, ·〉 the Frobenius inner product:

〈A,B〉 = Tr
[
A∗B

]
.

The quantum cloning problem consists in finding a quantum channel T : Md →
(Md)

⊗N which copies any pure state into product states. The no-cloning theorem [Die82,
WZ82] give a negative answer to this question.

Theorem 2.1 (No-cloning theorem). There is no quantum channel T :Md → (Md)
⊗N

such that for all pure quantum states ρ ∈ Dd the following holds

T (ρ) = ρ⊗N .

The quantum broadcasting problem is a relaxation consisting in finding a quantum
channel T :Md → (Md)

⊗N such that all the marginals are the identity. The no-cloning
theorem is a corollary of the no-broadcasting theorem [BCF+96].

Theorem 2.2 (No-broadcasting theorem). There is no quantum channel T : Md →
(Md)

⊗N such that for all mixed quantum states ρ ∈ Dd, and for all 1 ≤ i ≤ N the
following holds

Ti(ρ) = ρ.

In this paper we are going to study an approximate version by allowing the marginals
to be of the form

Ti(ρ) = pi ·ρ+ (1− pi)
I

d
,

for some pi ∈ [0, 1]. This problem is known as the approximate quantum cloning problem.

2.1. Quantum Fidelity. The current section is devoted to rigorously presenting the
problem we shall address in this paper. Asking the marginals Ti to be the identity map
means that perfect copies of states are required. The no-cloning Theorem expresses that
it is not permitted. Then, it is natural to relax this “search” of perfection by allowing
some “imperfections”.

The quantum cloning problem is then given by the description of figures of merit for
quantum cloning maps. That is a measure of closeness between the output of the marginal
Ti(ρ) and the state ρ. We choose the quantum fidelity to measure this distance. Recall
that the quantum fidelity is defined by [NC10]

F (ρ, σ) = Tr2

(√√
ρσ
√
ρ

)
for all states (ρ, σ) ∈ (Dd)2. Recall that the quantum fidelity satisfies the following
properties (below, ρ, σ are density matrices, x, y are unit norm vectors, and U is a unitary
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operator)

F (ρ, σ) = F (σ, ρ)

F (UρU∗, UσU∗) = F (ρ, σ)

F
(
ρ, |x〉〈x|

)
= Tr

(
ρ |x〉〈x|

)
= 〈x| ρ |x〉

F
(
|x〉〈x| , |y〉〈y|

)
= 〈x|y〉2

F (ρ, σ) = 1⇔ ρ = σ.

Recall also that the quantum fidelity is jointly concave [NC10], that is

F

( n∑
i=1

pi · ρi,
n∑
i=1

pi · σi
)
≥

n∑
i=1

pi · F (ρi, σi)

for all probability vectors p = (p1, . . . , pn) and all density matrices ρi, σi with 1 ≤ i ≤ n.
We shall concentrate on the marginal fidelities F

(
ρ, Ti(ρ)

)
, and we want to be as close

to 1 as possible on the N marginals according to a distribution α ∈ [0, 1]N . More precisely,
we are interested in, what we call the the Quantum cloning problem. In details, for a
quantum channel T :Md → (Md)

⊗N , let us introduce

Fα(T ) =
N∑
i=1

αi · inf
ρ∈Dd

F
(
ρ, Ti(ρ)

)
.

We aim to study the following optimization problem

(3) sup
T
Fα(T )

and find the quantum cloning map which reaches the supremum.
First, let us simplify the problem by showing that we can consider only pure states

in the expression of Fα(T ). Indeed for a density matrix ρ, we can consider its spectral
decomposition

ρ =
d∑
i=1

vi · |xi〉〈xi| ,

where ∀i ∈ JdK, vi ≥ 0 and
∑d

i=1 vi = 1. Using the concavity of the quantum fidelity, we
have that for all quantum channels Φ :Md →Md,

F
(
ρ,Φ(ρ)

)
≥

d∑
i=1

v2
i · F

(
|xi〉〈xi| ,Φ

(
|xi〉〈xi|

))
≥ min

i
F
(
|xi〉〈xi| ,Φ

(
|xi〉〈xi|

))
.

This obviously implies that for all 1 ≤ i ≤ N

inf
ρ∈Dd

F
(
ρ, Ti(ρ)

)
= inf
‖x‖=1

F
(
|x〉〈x| , Ti

(
|x〉〈x|

))
.

Hence, our problem reduces to the analysis of the following quantity

Fα(T ) =
N∑
i=1

αi · inf
ρ∈Dd

Tr
(
ρ Ti(ρ)

)
,

where the infimum is taken on the set of pure states ρ = |x〉〈x|.
When the weights αi are all equal positive scalars, the problem is the so called sym-

metric Quantum cloning problem. Otherwise the problem is called Asymmetric Quantum
cloning problem which is the one addressed in this paper. In the next section we shall see
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that we can restrict the optimization problem (3) to the particular class of U(d) covariant
channels.

2.2. Symmetrized quantum channels. A particular class of quantum channel will
play an important role: the symmetrized quantum channel.

Definition 2.3. For a quantum channel T :Md → (Md)
⊗N we define T̃ the symmetrized

quantum channel

T̃ (ρ) =

∫
U(d)

U⊗NT
(
U∗ρ U

)(
U∗
)⊗N

dU,

where the integral is taken with respected to the normalized Haar measure on the unitary
group U(d).

In an equivalent way we can define the notion of U(d)-covariance for quantum channels.

Definition 2.4. A quantum channel T : Md → (Md)
⊗N is called U(d)-covariant if for

all U ∈ U(d)

T (U∗ρ U) =
(
U∗
)⊗N

T (ρ)U⊗N .

Note that T is U(d)-covariant if and only if T̃ = T by the invariance property of the Haar
measure.

A straightforward computation shows that the marginals of T̃ are also U(d)-covariant.

Indeed for all marginals T̃i, we have

T̃i(ρ) = TrJNK\{i}

[∫
U(d)

U⊗NT
(
U∗ρ U

)(
U∗
)⊗N

dU

]

=

∫
U(d)

U TrJNK\{i}

[
T
(
U∗ρ U

)]
U∗dU

=

∫
U(d)

U Ti
(
U∗ρ U

)
U∗dU.

The marginals of T̃ are symmetrized, and therefore they are also U(d)-covariant. Now

using the jointly concavity of the quantum fidelity we have for all marginals T̃i

inf
ρ∈Dd

F
(
ρ, T̃i(ρ)

)
≥ inf

ρ∈Dd
F
(
ρ, Ti(ρ)

)
.

where the infima are taken over the pure states ρ. Hence, we have

sup
T̃

Fα
(
T̃
)
≥ sup

T
Fα(T ).

Our optimization problem can be thus be restricted to the simpler set of U(d)-covariant
quantum channels.

2.3. Average vs. worst fidelity. The usual quantum cloning average problem is defined
as follows. For a quantum channel T :Md → (Md)

⊗N and for a distribution α ∈ [0, 1]N ,
we define

F̄α(T ) =
N∑
i=1

αi E
ρ∈Dd

[
F
(
ρ, Ti(ρ)

)]
where the expectation is taken on the pure states ρ, and

E
ρ∈Dd

[
f(ρ)

]
=

∫
f
(
|x〉〈x|

)
dν(x),
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where ν is the uniform measure on the set of pure states, that is the (normalized) Lebesgue
measure on the unit sphere of Cd. We have thus restated the question as an optimization
problem

sup
T
F̄α(T ).

As a first sight, it is not clear why the average and the worst case (see (3)) problems
coincide. This relies on the description of which marginals will be involved by solving
the quantum cloning problem. In particular using the U(d)-covariance, we shall see later
that all the marginals Ti will be of the form

Ti(ρ) = pi ·ρ+ (1− pi)
I

d
,

where the measure of closeness is given by the pi ∈ R.

Proposition 2.5. The worst case problem and the average case problem are equivalent.
More precisely, for all U(d)-covariant quantum channel T : Md → (Md)

⊗N and for all
distributions α ∈ [0, 1]N we have

sup
T
F̄α(T ) = sup

T
Fα(T ).

Proof. As announced, due to the U(d)-covariance, we shall see in Proposition 3.2 that

the involved marginals of T :Md → (Md)
⊗N will be of the form

Ti(ρ) = pi ·ρ+ (1− pi)
I

d
,

for all pure states ρ, for some pi ∈ R that does not depend on ρ. This way, the figures of
merit F

(
ρ, Ti(ρ)

)
of the marginals, on pure states ρ = |x〉〈x|, are given by

F
(
ρ, Ti(ρ)

)
= 〈x|Ti(ρ) |x〉

=
〈
x
∣∣∣pi ·ρ+ (1− pi)

I

d

∣∣∣x〉
= pi +

1− pi
d

.

In particular they do not depend on the state. It is then clear that for pure states ρ

inf
ρ∈Dd

F
(
ρ, Ti(ρ)

)
= E

ρ∈Dd

[
F
(
ρ, Ti(ρ)

)]
,

which justifies the equivalence of the worst case and average problem. �

In the rest of the paper all quantum channels T : Md → (Md)
⊗N are considered to

be U(d)-covariant.

3. Schur-Weyl duality & Permutation operators

This section is divided into two main parts which are about the study of permutations
operators. On the one hand, we relate the Choi matrix of a quantum cloner to some
particular sum of permutation operators. On the other hand we study the maximal
eigenvalues and corresponding eigenvectors of such permutation operators. The crucial
tool used here is the so-called Schur-Weyl duality [FH13]. More precisely, we shall use
two important ingredients of this duality. The first ingredient concerns the fact that an
operator which commutes with all operators of the form U ⊗ . . . ⊗ U , where U is an
arbitrary unitary operator, is a sum of permutation operators. The second ingredient is
the decomposition of H⊗n into a direct orthogonal sum of irreducible representations of
Sn.
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To be more precise, let CT be the Choi matrix of a quantum channel T : Md →
(Md)

⊗N , defined by

CT = (id⊗T )

( d∑
i,j=1

|i〉〈j| ⊗ |i〉〈j|
)

= (id⊗T ) |Ω〉〈Ω| ,

where |Ω〉 was defined in (2). In particular, we recover T by the formula

∀ρ T (ρ) = Tr0

[
CT
(
ρT ⊗ I⊗N

)]
.

Recall that a quantum channel T is a completely positive and trace-preserving map.
In the Choi matrix form, these conditions become (recall that the Choi matrix is an
operator acting on N + 1 copies of Cd, indexed by the integers 0, 1, 2, . . . , N , with the
index 0 corresponding to the input space) [Wat18]:

(4) CT ≥ 0 and TrJ0,NK\{0}(CT ) = I.

Our strategy is then the following. Firstly, by exploiting the U(d)-covariance of quantum
cloners, we shall give the form of admissible corresponding Choi matrices. Secondly, we
study the location of the maximal eigenvalues of particular sum of permutations operator
which appear in our optimization procedure from Section 3.3

3.1. Choi matrices of quantum cloners. In this subsection, we shall use the following
version of Schur-Weyl duality [FH13].

Theorem 3.1 (Schur–Weyl). Let H be a finite d-dimensional Hilbert space, and T a
linear map acting on H⊗n. If [T, U⊗n] = 0 holds for all unitaries U ∈ U(d), then T is a
linear combination of permutation operators Πσ on H⊗n:

T =
∑
σ∈Sn

ασ · Πσ,

where Sn is the symmetric group on n elements and Πσ is the representation defined by

(5) Πσ(v1 ⊗ · · · ⊗ vn) = vσ91(1) ⊗ · · · ⊗ vσ91(n).

As announced we shall combine U(d)-covariance with the above theorem to obtain the
generic form of U(d)-covariant cloning. This is the content of the following proposition.

Proposition 3.2. The Choi matrix CT of a U(d)-covariant quantum channel T :Md →
(Md)

⊗N is linear combination of partially transposed permutation operators Πσ onH⊗(N+1)
d .

More precisely, for all σ ∈ SN+1 there exists βσ ∈ C such that

(6) CT =
∑

σ∈SN+1

βσ · ΠΓ
σ

Then for all 1 ≤ i ≤ N there exists pi ∈ R such that the marginals become

Ti(ρ) = pi ·ρ+ (1− pi)
I

d
,

for all pure states ρ.
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Proof. From the U(d)-covariance of T and the formula
(
Ū ⊗U

)
|Ω〉 = |Ω〉 we have for all

unitaries U ∈ U(d):

CT
(
Ū ⊗ U⊗N

)
=
[
(id⊗T ) |Ω〉〈Ω|

](
Ū ⊗ U⊗N

)
=
[
(id⊗T )

(
Ū ⊗ U

)
|Ω〉〈Ω|

(
UT ⊗ U∗

)](
Ū ⊗ U⊗N

)
=
(
Ū ⊗ U⊗N

)[
(id⊗T ) |Ω〉〈Ω|

](
UT ⊗

(
U∗
)⊗N)(

Ū ⊗ U⊗N
)

=
(
Ū ⊗ U⊗N

)
CT

Therefore
[
CT , Ū ⊗ U⊗N

]
= 0, which is equivalent to

[
CΓ
T , U ⊗ U⊗N

]
= 0. Then the

decomposition (6) is a direct consequence of the fact that CΓ
T commutes with all U⊗(N+1)

and the Schur-Weyl duality. This holds for all Choi matrices coming from U(d)-covariant
channels, which is the case for all marginals Ti. In this particular case, the two permuta-
tions of S2 are

(1)(2) and (1 2)

and their partially transposed permutation operators correspond to the identity and the
maximally depolarizing channels defined on all ρ ∈ Dd by:

Λλ(ρ) = (1− λ)ρ+ λ
I

d
,

with 0 ≤ λ ≤ 1+ 1
d2−1

. Hence, the marginals Ti are of the form: Ti(ρ) = pi·ρ+(1−pi) Id . �

Remark 3.3. Note that conversely, a linear combination of partially transposed permu-
tation operators is a Choi matrix of a quantum channel if the conditions of Eq. (4) hold.

In the following, we recall that the permutations of the group Sn+1 will start from 0,
i.e. σ ∈ Sn+1 is a permutation of {0, 1, . . . , n − 1, n}. Study of permutations operators
and their actions on a particular set of vectors wil be crucial in the following. In particular
we shall concentrate on a particular operator

(7) Sx :=
N∑
i=1

xi · ΠΓ
(0,i),

where x = (xi)
N
i=1 ∈ (R∗+)N . The relevance of this operator shall be justified in Section 4

as it appears in the optimization procedure on fidelities.

3.2. Permutation operators. In this subsection, in order to illustrate some examples
and lemmas, we shall use a graphical calculus for tensors, derived from the Penrose
graphical notation [Pen71]. This helps to make computations faster and illuminate some
otherwise abstract equations. Appendix A is dedicated to many examples illustrated
by graphical calculus. Similar graphical calculi have been developed in the context of
tensor network state or categorical quantum information theory, which can be found
in [WBC11, CK18, DKPVDW20]. See [NPR21, Section 4] for a complete description. In
particular the permutations are read from right to left.

Note than in Sx appears only transpositions of the form (0, i). It is worth noticing that
such permutations belong to

{
σ ∈ SN+1

∣∣ σ(0) 6= 0
}

. As it is discussed in Appendix A
only such permutations contributes non trivially to the quantum cloning problem. In the
sequel we collect information of the permutations of this set and then we plug them into
S.
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A permutation σ ∈
{
σ ∈ SN+1

∣∣ σ(0) 6= 0
}

can be parametrized by a couple 1 ≤ a, b ≤
N such that σ(0) = a and σ(b) = 0. This gives a partition of{

σ ∈ SN+1

∣∣ σ(0) 6= 0
}

=
⋃

1≤a,b≤N

Σa,b

where

(8) Σa,b =
{
σ ∈ SN+1

∣∣ σ(0) = a and σ(b) = 0
}
.

Each set Σa,b contains (N −1)! permutations. For 1 ≤ a, b ≤ N , a generic element of Σa,b

will be denoted by σa,b.
Before expressing the relevant result on these permutations, we need to introduce some

notations. For two integers i, j we denote by (i : j) the permutation SN−1 defined by

(i : j) =


(
(i− 1) (i− 2) · · · j

)
if 0 ≤ j < i ≤ N − 1(

i (i+ 1) · · · (j − 1)
)

if 0 ≤ i < j ≤ N − 1

(0)(1) · · · (N − 2) otherwise

.

Let 1 ≤ a, b, c ≤ N and σ in SN−1, we shall also need the following permutations
operators

Πσ(a,b,c) =

{
Π(0 : (a−1)) ◦ Πσ ◦ Π((b−1) : 0) if b = c

Π(0 : (a−1)) ◦ Πσ ◦ Π((b−1) : 0) ◦ Π((c−1) : (b−1)) if b 6= c.

The following Lemma gives a similar tractable expression of all the permutation op-
erators ΠΓ

σ, and two sets which are useful to seek the eigenvectors of the permutation
operators.

Lemma 3.4. Let 1 ≤ a, b, c ≤ N , and let σ ∈ Σa,b, then

• There exists a unique σ̂ ∈ SN−1 such as the partially transposed permutation
operator σΓ is

ΠΓ
σ = Π(1 a) (ω(0,1) ⊗ Πσ̂) Π(1 b).

• Let φ ∈ H⊗(N−1), then

ΠΓ
σ(|Ω〉(0,c) ⊗ |φ〉) =

d · |Ω〉(0,a) ⊗ Πσ̂(a,b,b) |φ〉 if b = c

|Ω〉(0,a) ⊗ Πσ̂(a,b,c) |φ〉 if b 6= c.

• In particular

Im ΠΓ
σ = Span

{
|Ω〉(0,a) ⊗ |φ〉

∣∣∣ φ ∈ H⊗(N−1)
}

Ker ΠΓ
σ ⊇ Span

{
|Ω〉(0,k) ⊗ |φ〉

∣∣∣ 1 ≤ k ≤ N, φ ∈ H⊗(N−1)
}⊥
.

The proof of this lemma, which is rather lengthy and technical, as well as the graphical
formalism used to derive it, is postponed to Appendix A.2, see also Examples A.6, A.7
and A.9. Note that for any 1 ≤ i ≤ N , the partially transposed permutation operator
associated to the permutation (0 i) ∈ Σi,i is

ΠΓ
(0 i) = ω(0,i) ⊗ I⊗(N−1).

Let us comment on this lemma. The action of ΠΓ
σ onto vectors of the form |Ω〉(0,c) ⊗

|φ〉) makes appear a permutation operator on H⊗N−1, which acts on |φ〉. Since this
permutation is a representation operator, it is then natural to involve the decomposition
of H⊗N−1 into irreducible representations in order to make more precise the action of ΠΓ

σ.
This shall be made clear in the next section.
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3.3. Maximal eigenvalue. This section is devoted to the analysis of the maximal eigen-
value of the operator

(9) Sx =
N∑
i=1

xi · ΠΓ
(0,i),

where x = (xi)
N
i=1 ∈ (0,∞)N (in this section, the vector x is fixed and we do not write the

subscript x). The study of the maximum eigenvalue and the location of corresponding
eigenvectors is crucial in the main result of the paper. As announced, due to the structure
of the ΠΓ

(0 i), where permutations on SN−1 appear, we shall consider the Schur-Weyl

decomposition [FH13]

H⊗(N−1) =
⊕

λ irrep SN−1

Eλ

In the sequel, given a permutation σ ∈ SN−1, we consider the decomposition of Πσ with
respect to this decomposition. Note that this decomposition is orthogonal and all the
direct sum in the paper will be considered orthogonal. In particular we denote by P λ the
orthogonal projection into the irreducible representation λ of SN−1. For σ ∈ SN−1 note
that

Πλ
σ := P λΠσP

λ = P λΠσ = ΠσP
λ,

is a unitary operator.
Let λ be an irreducible representation of SN−1, and let

{
vλi
}
i

be an orthonormal basis

of the irreducible subspace Eλ of SN−1 associated to λ. Associated with this orthonormal
basis, we introduce the following set of vectors

Vλ =
{
|Ω〉(0,i) ⊗

∣∣vλj 〉 ∣∣∣ 1 ≤ i ≤ N, 1 ≤ j ≤ dim(Eλ)
}
.

The scalar products of the elements of Vλ are determined by the following lemma whose
proof is postponed to Appendix A.4.

Lemma 3.5. Let λ1, λ2 be two distinct irreducible representations of SN−1 on H⊗(N−1),
let v1,v2 be two normalized vectors in the irreducible subspace λ1 and λ2 of SN−1, and
let 1 ≤ k, l ≤ N . Then

〈
Ω(0,k) ⊗ v1

∣∣Ω(0,l) ⊗ v2

〉
=

{
d · 〈v1|v2〉 if k = l

〈v1|Π((l−1) : (k−1)) |v2〉 if k 6= l.

As a consequence 〈
Ω(0,k) ⊗ v1

∣∣Ω(0,k) ⊗ v1

〉
= d〈

Ω(0,k) ⊗ v1

∣∣Ω(0,l) ⊗ v1

〉
= 〈v1|Π((l−1) : (k−1)) |v1〉 ,

and 〈
Ω(0,k) ⊗ v1

∣∣Ω(0,l) ⊗ v2

〉
= 0.

In particular the vector spaces SpanVλ are in orthogonal direct sum.

In order to seek the maximal eigenvalue of Sx and the corresponding eigenvector, we
shall use the following lemma, which links the range of Sx and the vector space generated
by this vλ.
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Lemma 3.6. We have the following inclusion for ImSx and KerSx

ImSx ⊆
⊕
λ

Span(Vλ)

KerSx ⊇
(

Span(Vλ, λ)
)⊥

In particular we will consider the decomposition

H⊗N−1 =
⊕
λ

Span(Vλ)
⊕(

Span(Vλ, λ)
)⊥
.

Proof. The fact that the vector spaces SpanVλ are in orthogonal direct sum is a conse-
quence of Lemma 3.5. For the first inclusion, since Sx =

∑N
i=1 xi · ΠΓ

(0,i) we have

ImSx ⊆
N∑
i=1

Im ΠΓ
(0,i).

Following Lemma 3.4, for all 1 ≤ i ≤ N ,

Im ΠΓ
(0,i) ⊆

⊕
λ

Span(Vλ).

Hence, ImSx ⊆
⊕

λ Span(Vλ). Now we have Sx = S∗x which yields KerSx = (ImS∗x)
⊥ =

(ImSx)
⊥, then

KerSx ⊇ Span(Vλ, λ, )⊥.
The last point is obvious. �

Remark 3.7. From Lemma 3.4 we have that, for all irrep λ,

ΠΓ
σ(|Ω〉(0,c) ⊗

∣∣vλ〉) =

d · |Ω〉(0,a) ⊗ Πσ̂(a,b,b)

∣∣vλ〉 if b = c

|Ω〉(0,a) ⊗ Πσ̂(a,b,c)

∣∣vλ〉 if b 6= c.

Since Πσ̂(a,b,c)

∣∣vλ〉 = Πσ̂(a,b,c)P
λ
∣∣vλ〉 = P λΠσ̂(a,b,c)P

λ
∣∣vλ〉 = Πλ

σ̂(a,b,c)

∣∣vλ〉, we see that

SpanVλ is stabilized by ΠΓ
σ for all σ. This way, Lemma 3.6 expresses the fact that Sx can

be block diagonalized with respect to the orthogonal decomposition
⊕

λ Span(Vλ)
⊕(

Span(Vλ, λ)
)⊥

.
As a result of this block diagonalization, for any non-zero eigenvalue of S one can

associate an eigenvector of the form χ =
∑

ij βij · |Ω〉(0,i)⊗
∣∣vλj 〉, for some coefficients βij.

Note that vectors of this form can also be in the kernel of S.

At this stage, in order to localize the maximal eigenvalue of S one has to study S|Vλ

which stands for the restriction of S to the space SpanVλ. Actually this is not straight-
forward since Vλ is not a basis of SpanVλ in general. Nevertheless for the trivial repre-
sentation λ = (N − 1) of SN−1, the corresponding set, which we denote by V+, is a basis
and we can expressed the action of S on this basis. This is the content of the following
proposition.

Proposition 3.8. The vectors of V+ are linearly independent. Let us define

S+ :=


d x1 x1 x1 . . . x1

x2 d x2 x2 . . . x2
...

...
...

. . .
...

xN xN xN . . . d xN

 .
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Then the restriction of the operator S, defined in Eq. (7), onto the vectors V+ can be
written in block diagonal form

S|V+ = S
⊕ dim

(
∨(N−1)(H)

)
+ .

Proof. From Lemma 3.5, for any 1 ≤ i, j ≤ N and any distinct v,w in the orthogonal
basis of the irreducible subspace of SN−1 associated to the trivial representation, we have
the following relation, which holds for any orthonormal vectors v and w on ∨(N−1)(H):

〈
Ω(0,i) ⊗ v

∣∣Ω(0,j) ⊗ v
〉

=

{
d if i = j

1 if i 6= j
,
〈
Ω(0,i) ⊗ v

∣∣Ω(0,j) ⊗w
〉

= 0.

Then the Gram matrix G̃ of the vectors V+ is block diagonal, where each block is the N×
N matrix

G =


d 1 · · · 1
1 d · · · 1
...

...
. . .

...
1 1 · · · d

 .

That is

G̃ = G⊕ dim
(
∨(N−1)(H)

)
.

Note that each block is invertible. Indeed for all v = (v1, . . . , vN), we have

〈v,Gv〉 = (d− 1)‖v‖2 +

(
N∑
k=1

vk

)2

which clearly shows that G is positive definite since d > 1. This shows that V+ is a
linearly independent set.

Now note that for all v ∈ ∨(N−1)(H) we have Πσ̂ |v〉 = v. This way, in the basis V+ of
Span V+, from Lemma 3.4 we have for all i = 1, . . . , N and for all v ∈ ∨(N−1)(H)

ΠΓ
(0,i)(|Ω〉(0,c) ⊗ |v〉) =

d · |Ω〉(0,i) ⊗ |v〉 = if b = c

|Ω〉(0,i) ⊗ Πσ̂(a,b,c) |v〉 = |Ω〉(0,i) ⊗ |v〉 if b 6= c.

Now fix i ∈ Jdim(∨(N−1)(H))K and consider vi in the orthonormal basis ∨(N−1)(H), the
linear independent set of vectors {|Ω〉(0,j)⊗|vi〉 , j = 1, . . . , N} is stable under the action of

S and the corresponding matrix is S+. Then reading V+ = {|Ω〉(0,1)⊗|v1〉 , . . . , |Ω〉(0,N)⊗
|v1〉 , |Ω〉(0,1) ⊗ |v2〉 , . . . , |Ω〉(0,N) ⊗ |v2〉 , . . .}, we obtain the block decomposition. �

Remark 3.9. With a change of basis i.e fix first |Ω〉(0,i) and let vi runs onto the or-

thonormal basis of ∨(N−1)(H) , the operator S|V+ can also be written

S|V+ =


d x1 · I x1 · I . . . x1 · I
x2 · I d x2 · I . . . x2 · I

...
...

. . .
...

xN · I xN · I . . . d xN · I

 ,

where each block I is the identity operator of the space ∨(N−1)(H)
)
.

Even if Vλ is not necessarily a system of linearly independent vectors, one can still
define a matrix S̃|Vλ which describes the action of S onto the SpanV λ. To this end, let λ

be any irreducible representation of SN−1, and let |Ω〉(0,l)⊗
∣∣vλ〉 be a vector in V λ. Then
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for any 1 ≤ k ≤ N the action of the operator ΠΓ
(0 k) on the vector |Ω〉(0,l) ⊗

∣∣vλ〉 is given
by

ΠΓ
(0 k)

(
|Ω〉(0,l) ⊗

∣∣vλ〉 ) =

{
d · |Ω〉(1,k) ⊗

∣∣vλ〉 if k = l

|Ω〉(1,k) ⊗ Πλ
((l−1):(k−1))

∣∣vλ〉 otherwise.

Indeed for transposition (0, k), the associated σ̂ = id and Π(0 : (k−1))◦Πid◦Π((k−1) : 0) = Πid,
we have

Πid,k,k,l =

{
Πid if k = l

Π((l−1) : (k−1)) if k 6= l.

Now at this stage let us introduce S̃|Vλ :

S̃|Vλ =


d x1 · Πλ

id x1 · Πλ
((2−1):(1−1)) . . . x1 · Πλ

((N−1):(1−1))

x2 · Πλ
((1−1):(2−1)) d x2 · Πλ

id . . . x2 · Πλ
((N−1):(2−1))

...
...

. . .
...

xN · Πλ
((1−1):(N−1)) xN · Πλ

((2−1):(N−1)) . . . d xN · Πλ
id

 .

This matrix would be exactly the matrix of S|Vλ written if Vλ is linearly independent.

Writing the set of vectors V λ as a column matrix V λ we have the relation:

S|VλV
λ = V λS̃|Vλ .

Remark 3.10. Note that S̃|V+ = S|V+ .

We now arrive at the main result of this section, where we identify the largest eigenvalue
and one corresponding eigenvector of the operator S introduced in (7).

Theorem 3.11. Let S be the operator defined in Eq. (7), and µ the largest eigenvalue
of S. Then

µ = ‖S+‖.
and a corresponding eigenvector χ can be chosen of the form

χ =
N∑
i=1

βi · |Ω〉(0,i) ⊗ |v〉 ,

for some vector v in ∨(N−1)(H). The coefficients βi of the vector χ satisfy the equation

(d− 1)
N∑
i=1

β2
i +

( N∑
i=1

βi

)2

= 1.

Proof. Note that S is a positive semidefinite operator as a weighted sum of projections,
hence its spectrum is non-negative. Thanks to the block diagonalization lemma 3.6, we
have

Spec(S) ∩ R∗+ ⊆
⋃
λ

SpecS|Vλ .

Now since S|VλV
λ = V λS̃|Vλ , Lemma B.2 implies that

SpecS|Vλ ⊆ Spec S̃|Vλ .

Let λ be an irrepr... But all eigenvalue µ of S̃|Vλ satisfies |µ| ≤
∥∥∥S̃|Vλ∥∥∥. Now by Lemma

B.1 ∥∥∥S̃|Vλ∥∥∥ ≤ ∥∥∥(S̃|Vλ)′∥∥∥,
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where

(
S̃|Vλ

)′
=


d x1 x1 . . . x1

x2 d x2 . . . x2
...

...
. . .

...
xN xN . . . d xN

 = S+.

This holds since
∥∥Πλ

σ

∥∥ = 1 as Πλ
σ is a unitary representation.

Now all eigenvalues µ of S|Vλ , µ ≤ ‖S+‖. This way, let ρ(s) denote the spectral radius

of S, which is also the maximal eigenvalue of S (recall that S is a positive operator) then
we have

ρ(S) ≤ max
λ

max
µ

{
µ ∈ SpecS|Vλ

}
≤
∥∥S+

∥∥.
So by the Perron–Frobenius theorem ρ(S+) = ‖S+‖, since S|

V+ is a matrix with positive
coefficients, which concludes the proof. A straightforward computation based on Lemma
3.5 shows that

1 = 〈χ, χ〉 = (d− 1)
N∑
i=1

β2
i +

( N∑
i=1

βi

)2

implies that equation (d− 1)
∑N

i=1 β
2
i +

(∑N
i=1 βi

)2

= 1 is satisfied. �

4. Optimal Quantum Cloning

This section concerns the solution of the optimization problem defined previously. We
shall proceed in two steps: first, we upper bound the average fidelity by the largest
eigenvalue of a matrix. Then we show that our upper bound is reached by explicit
quantum cloning channel which shall be called optimal cloning channel.

4.1. Upper Bound. We start with a proposition relating quantum fidelities to the max-
imal eigenvalue of the following matrix, acting on H⊗(N+1):

Rα =
N∑
i=1

αi
(
I(0,i) + ω(0,i)

)
⊗ I⊗(N−1) ∈M⊗(N+1)

d

=

(
N∑
i=1

αi

)
I⊗(N+1) + Sα(10)

where, α ∈ [0, 1]N is a weight vector and Sα is defined in (7). Note that the maximal
eigenvector derived for Sα is the same as the one of Rα since any non zero vector is a
maximal eigenvector for the identity part of Rα.

Proposition 4.1. Let T : Md → (Md)
⊗N be a quantum channel having Choi matrix

CT . Then, for any weight vector α ∈ [0, 1]N , we have

F̄α(T ) =
1

d(d+ 1)
〈CT , Rα〉.

The following upper bound holds:

sup
T
F̄α(T ) ≤ λmax(Rα)

d+ 1
,

where the sup is taken over all quantum channels T , and λmax(Rα) is the largest eigenvalue
of the matrix Rα of Eq. (10).
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Proof. We start from the expression of the average fidelity (below, the expectations are
taken with respect to the uniform measure on pure quantum states ρ):

F̄α(T ) =
N∑
i=1

αi · Eρ
[
F
(
ρ, Ti(ρ)

)]
=

N∑
i=1

αi · Eρ
[

Tr
(
ρ Ti(ρ)

)]
=

N∑
i=1

αi · Eρ
[〈
T (ρ), ρ(i) ⊗ I

〉]
=

N∑
i=1

αi · Eρ
[〈
CT , ρ

T
(0) ⊗ ρ(i) ⊗ I

〉]
,

=
N∑
i=1

αi ·
〈
CT ,Eρ

[
ρT

(0) ⊗ ρ(i)

]
⊗ I
〉
.

To simplify further F̄α(T ), note that taking the integral over the pure states ρ.

Eρ
[
ρT ⊗ ρ

]
=

∫
Dd
ρT ⊗ ρ dρ

=

[ ∫
Dd
ρ⊗ ρ dρ

]Γ

=
2

d(d+ 1)

(
P+
S2

)Γ

=
1

d(d+ 1)

(
Π(0)(1) + Π(0 1)

)Γ

=
1

d(d+ 1)
(I + ω).

Plugging this into the expression above for F̄α(T ) yields the first claim. Let us now show
the upper bound in the statement.

sup
T
F̄α(T ) = sup

T

〈CT , Rα〉
d(d+ 1)

= sup
C≥0

Tr[1,N ](C)=I

1

d(d+ 1)
〈C,Rα〉

≤ sup
C≥0

Tr(C)=d

1

d(d+ 1)
〈C,Rα〉

=
λmax(Rα)

d+ 1
.

The last equality comes from the fact that for any positive semi-definite matrix A, and
for any symmetric matrix B, the following holds:

Tr[AB] ≤ Tr[A] · λmax(B).

Then taking C = d|χ〉〈χ| for an eigenvector corresponding to λmax(Rα) from Theorem
3.11 shows that the bound is reached. �
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Remark 4.2. The only place where an inequality was used in the derivation above was
when we relaxed the condition Tr[[0,N ]]\{0}(C) = I to the (weaker) condition Tr(C) = d. As
it turns out, we shall construct in the next Section 4.2 examples of quantum channels T
matching this upper bound, justifying a posteriori the above manipulation.

4.2. Saturation and Construction of the Asymmetric Quantum cloning chan-
nel. In this section we build a Choi matrix candidate for saturating the upper bound of
the Proposition 4.1. We shall prove the following result.

Theorem 4.3. Let α ∈ [0, 1]N . Let χ =
∑N

i=1 βi
∣∣Ω(0,i

〉
⊗ |v〉 be a norm one eigenvector

associated to λmax(Rα) from Theorem 3.11. The coefficient vector β (which is real and
depends on the direction α) satisfies the normalization condition (13)). Consider the
associated quantum channel Tβ defined by

(11) Tβ(ρ) :=
dN(N + d− 1)

TrP+
SN

Pβ

(
ρ⊗ I⊗(N−1)

)
PT
β ,

where

Pβ :=
1

N !

∑
σ∈SN

βσ(0)+1 · Πσ.

Then Tβ is an optimal quantum cloning channel in the direction α, that is

(12)
N∑
i=1

αi · F̄
(
(Tβ)i

)
=
λmax(Rα)

d+ 1
.

First we shall prove that the linear map Tβ from Eq (11) is a quantum channel. To
this end we introduce the following Choi matrix which will be the candidate

Cβ =
d

TrP+
SN

N + d− 1

N

∑
1≤a,b≤N
σ∈Σa,b

βaβb
(N − 1)!

ΠΓ
σ

for some positive reals (βi)1≤i≤N satisfying

(13) (d− 1)
N∑
i=1

β2
i +

( N∑
i=1

βi

)2

= 1.

The first task is to state that this candidate is indeed a Choi matrix. This is the
content of the following proposition whose technical proof is postponed in Lemma D.1 in
Appendix D.

Proposition 4.4. Consider real numbers (βi)1≤i≤N such that there exists a and b with
βaβb 6= 0. Then, the operator

C̃β =
∑

1≤a,b≤N
σ∈Σa,b

βaβb
(N − 1)!

ΠΓ
σ

is an orthogonal projection if and only if the condition (13) is satisfied.
Assume (13) is satisfied. The operator Cβ is a positive operator, such that

Tr[[0,N ]]\{0}Cβ = I.

As a consequence the matrix CTβ is a Choi Matrix
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Now that we have designed a Choi matrix, the second task is to derive the associated
quantum cloning channel. To this end, assume β satisfies condition (13) let define the
operator

Pβ =
1

N !

∑
σ∈SN

βσ(0)+1 · Πσ,

and define for all states ρ,

Tβ(ρ) =
dN(N + d− 1)

TrP+
SN

Pβ

(
ρ⊗ I⊗(N−1)

)
PT
β .

This construction is a reminder of the symmetric quantum cloning case (see the en d of
this section). Note in general that Pβ is in general not a projector. In order to show that
Tβ is the corresponding channel associated with Cβ we need the following Lemma whose
proof is postponed in Lemma D.2 in Appendix D

Lemma 4.5. For any 1 ≤ a, b ≤ N , and any σ ∈ Σa,b, the permutation operator σΓ is

the Choi matrix a linear map Tµ,ν :Md → (Md)
⊗N defined by

Tµ,ν(X) = Πµ

(
X ⊗ I⊗(N−1)

)
Πν

for some permutations µ and ν in SN such that µ(0) = a− 1 and ν(b− 1) = 0.
As a consequence for some fixed 1 ≤ a, b ≤ N ,∑

σ∈Σa,b

ΠΓ
σ =

1

(N − 1)!
CTa,b

where
Ta,b(X) =

∑
µ,ν∈SN
µ(0)=a−1
ν(b−1)=0

Πµ

(
X ⊗ I⊗(N−1)

)
Πν .

Under the light of this Lemma the following proposition expresses the fact that Tβ has
Choi matrix CTβ .

Proposition 4.6. Let (βi)1≤i≤N satisfying Eq. (13) and define

C̃Tβ =
∑

1≤a,b≤N

βaβb

(N − 1)!2
CTa,b

with

Pβ =
1

N !

∑
σ∈SN

βσ(0)+1 · Πσ,

then Tβ is a quantum channel whose Choi matrix is given by

(14) CTβ =
d

TrP+
SN

N + d− 1

N

∑
1≤a,b≤N
σ∈Σa,b

βaβb
(N − 1)!

ΠΓ
σ

Proof. As announced this proposition is a corollary of lemma 4.5 noting that

C̃Tβ =
∑

1≤a,b≤N

βaβb

(N − 1)!2
CTa,b

we find

Tβ(ρ) =
dN(N + d− 1)

TrP+
SN

Pβ

(
ρ⊗ I⊗(N−1)

)
PT
β .

and the proof is complete. �
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Before expressing our final Theorem, which states the optimality of Tβ, we need to
compute the marginal of this channel. To this end, in the final proof, we shall need the
following lemma whose proof is postponed in Lemma D.3 in Appendix D

Lemma 4.7. Let an orthogonal projector C̃Tβ for some reals (βi)1≤i≤N satisfying Eq. (13).
Then for any 1 ≤ i ≤ N , we have

C̃Tβ ω(0,i) =
1

(N − 1)!

∑
1≤a≤N
σ∈Σa,i

βa

(
(d− 1)βi +

∑
1≤b≤N

βb

)
ΠΓ
σ.

Let Choi matrix CTβ for some reals (βi)1≤i≤N satisfying Eq. (13). Then for any 1 ≤
i ≤ N , we have

Tr
[
CTβ ω(0,i)

]
= d

(
(d− 1)βk +

N∑
j=1

βj

)2

.

Now we are in the position to give the proof of the main theorem of this section.

Proof of Theorem 4.3. The fact that the linear map Tβ is a quantum channel have been
proved in Theorem 4.6. We now show its optimally in the direction α.

Recall that we have

F̄α(Tβ) =
∑
i

αi · F̄ (Ti)

≤ λmax(Rα)

d+ 1
.

Then Tβ is optimal if we have equality in the above expression, that is

(15)
N∑
i=1

αi · F̄
(
(Tβ)i

)
=
λmax(Rα)

d+ 1
.

Denote now Ri =
(
I(0,i) +ω(0,i)

)
⊗I⊗(N−1), using Lemma D.3, for all marginal fidelities,

we have (CTβ is the Choi matrix of the map Tβ, see Eq (14))

F̄ ((Tβ)i) = Eρ
[
F
(
ρ, (Tβ)i(ρ)

)]
= Eρ

[〈
CTβ , ρ

T
(i) ⊗ ρ(i) ⊗ I

〉]
=

1

d(d+ 1)

〈
CTβ , Ri

〉
=

Tr
[
CTβ
]

+ Tr
[
CTβ ω(0,i)

]
d(d+ 1)

=

1 +

(
(d− 1)βi +

N∑
j=1

βj

)2

d+ 1

that is the equality (12) is satisfied if

N∑
i=1

αi

(
(d− 1)βi +

N∑
j=1

βj

)2

= λmax

( N∑
i=1

αi · ω(0,i)

)
= λmax(Sα).
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In the preceding equality we have withdrawn the useless part concerning the identity
operator. At this stage, since χ corresponds also to a maximal eigenvector of Sα from
Theorem 3.11, we have 〈

χ

∣∣∣∣ N∑
i=1

αi · ω(0,i)

∣∣∣∣χ〉 = λmax

(
Sα

)
,

Now using Lemma 3.5, we have〈
χ

∣∣∣∣ N∑
i=1

αi · ω(0,i)

∣∣∣∣χ〉 =
N∑
i=1

αi

(
(d− 1)βi +

N∑
j=1

βj

)2

which proves finally the optimality of Tβ and conclude the proof of Theorem 4.3. �

Let us finish by recalling the symmetric quantum cloning problem and showing the
analogy with the known results in this context and the one we have provided. Indeed,
for β = 1

N(N+d−1)
the following matrix is a projector:

C̃T =
∑

σ∈SN+1

β

(N − 1)!
ΠΓ
σ.

and hence, C̃T ≥ 0. We define the matrix CT to be

CT =
d

TrP+
SN

N + d− 1

N
C̃T ,

then CT ≥ 0 and Tr[[0,N ]]\{1}(CT ) = I. That is CT is the Choi matrix of a quantum channel.
It can be seen that it is actually the Choi matrix associated to the Optimal Symmetric
Quantum cloning channel from [Wer98], defined on all pure state ρ by:

Topt(ρ) =
d

TrP+
SN

P+
SN

(
ρ⊗ I⊗(N−1)

)
P+
SN
.

4.3. Figures of merit. Given a set (pi)1≤i≤N in [0, 1] one might ask whether it exists a
quantum cloning map Tβ for some positive reals (βi)1≤i≤N such that for all marginal (Tβ)i
and for all (pure) states ρ:

(Tβ)i(ρ) = pi ·ρ+ (1− pi)
I

d
.

We give in the next proposition a relation providing an equation satisfied by the proba-
bility tuple (pi) corresponding to the channels Tβ. This relation has already been noted
in the series of papers [KKR09, Kay14, KRK12].

Proposition 4.8. Let Tβ be a 1 → N quantum cloning map, for some positive re-
als (βi)1≤i≤N such that for all marginal (Tβ)i and for all pure state ρ:

(Tβ)i(ρ) = pi ·ρ+ (1− pi)
I

d
.

Then the (pi)1≤i≤N must satisfy

(16) N + (d2 − 1)
N∑
i=1

pi = d(d− 1) +

(∑N
i=1

√
(d2 − 1)pi + 1

)2

N + d− 1
.
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Proof. The figures of merit pi’s for each marginal (Tβ)i are related to the marginal fidelities

fi by pi = dfi−1
d−1

with

fi =
1 +

(
(d− 1)βi +

∑N
j=1 βj

)2

d+ 1
.

By summing over all i, we get that
N∑
i=1

√
(d+ 1)fi − 1 = (N + d− 1)

N∑
i=1

βi,

and finally

βi =
1

d− 1

(√
(d+ 1)fi − 1− 1

N + d− 1

N∑
j=1

√
(d+ 1)fj − 1

)
.

The Eq. (13) yields

N∑
i=1

(
(d+ 1)fi − 1

)
=

N∑
i=1

(
(d− 1)βi +

N∑
j=1

βj

)2

= (d− 1)

(
(d− 1)

N∑
i=1

β2
i +

( N∑
j=1

βj

)2 )
+ (N + d− 1)

( N∑
i=1

βi

)2

= (d− 1) + (N + d− 1)

( N∑
i=1

βi

)2

= (d− 1) +

(∑N
i=1

√
(d+ 1)fi − 1

)2

N + d− 1
.

In terms of pi’s, we finally find

(17) N + (d2 − 1)
N∑
i=1

pi = d(d− 1) +

(∑N
i=1

√
(d2 − 1)pi + 1

)2

N + d− 1
.

�

Remark 4.9. In particular we recover the standard result of Werner [Wer98] on the
optimal 1→ N Symmetric Quantum cloning popt = d+N

N(d+1)
if we set all the pi’s equal.

Example 4.10 (N = 2, see also [NPR21]). The Choi matrix CT of an optimal Asym-
metric Quantum cloning T :Md → (Md)

⊗2 is a linear combination of four permutation
operators:

(18) CT = c1 · ΠΓ
(1 2) + c2 · ΠΓ

(1 3) + c3

(
ΠΓ

(1 2 3) + ΠΓ
(3 2 1)

)
with c1, c2, c3 ≥ 0 such that c3 =

√
c1c2 and d (c1 + c2) + 2 c3 = 1. The two marginals of

T are

T1(ρ) = (d c1 + 2 c3)·ρ+ d c2 · I
T2(ρ) = (d c2 + 2 c3)·ρ+ d c1 · I

If we relax the optimality condition, a Choi matrix CT in the form of Eq. (18) is
in the admissible region of the Asymmetric Quantum cloning problem if CT ≥ 0 and
Tr[[0,N ]]\{1}(CT ) = I. These conditions, in terms of the ci’s, become c3 ≤

√
c1c2 and

d (c1 + c2) + 2 c3 = 1, see Figure 2. In general the Choi matrix of a 1 → 2 quantum



THE ASYMMETRIC QUANTUM CLONING REGION 23

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

popt

p1

p2

d = 2

Figure 1. Figures of merit of the optimal 1→ 2 Asymmetric Quantum cloning.

cloning map is a linear combination of the six permutation operators of S3, see Figure 3
for the general admissible region.
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Figure 2. Admissible
regions with 4 permuta-
tion operators.
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Figure 3. Admissible
regions with 6 permuta-
tion operators.

We finish this section by showing that optimal cloning of 1→ (N−1) does not provide
in general optimal cloning of 1→ N .

More precisely, let p ∈ [0, 1](N−1) satisfying the optimal condition of Eq. (17) for the
1→ (N−1) asymmetric quantum cloning. Under which condition (p, 0) ∈ [0, 1]N satisfies
the optimal condition of Eq. (17) for the 1→ N asymmetric quantum cloning. The next
proposition is a corrollary of Proposition 4.8

Proposition 4.11. Let p ∈ [0, 1](N−1) satisfying the optimal condition of Eq. (17) for
the 1→ (N − 1) asymmetric quantum cloning. Then (p, 0) ∈ [0, 1]N satisfies the optimal
condition of Eq. (17) if and only if p is of the form

p(i) = ei = (0, . . . , 1, . . . , 0), i = 1, . . . , N − 1,

where 1 is in position i and the vector is completed with 0
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Proof. Let p = (pi)1≤i≤N−1 ∈ [0, 1](N−1) satisfying the optimal condition of Eq. (17) and

A =
N−1∑
i=1

√
(d2 − 1)pi + 1.

We have from Eq. (17)

(19) N − 1 + (d2 − 1)
N−1∑
i=1

pi = d(d− 1) +
A2

N − 1 + d− 1
.

Suppose now that (p, 0) ∈ [0, 1]N satisfies the optimal condition of Eq. (17) for the 1→ N
asymmetric quantum cloning we have

N + (d2 − 1)
N−1∑
i=1

pi = d(d− 1) +
(A+ 1)2

N + d− 1
,

this yields

1 =
(A+ 1)2

N + d− 1
− A2

N − 1 + d− 1
,

Solving this quadratic equation in terms of A and selecting the non negtaive solution
yiels A = (N + d− 2). Plugging it into (19) we get

N−1∑
i=1

pi = 1

Now consider the function

p 7→ f(p) =

(
N−1∑
k=1

√
(d2 − 1)pk + 1

)

which is strictly concave. If
∑N−1

i=1 pi = 1 and if we denote ei = (0, . . . , 0, 1, 0, . . . , 0)

(N + d− 2) = f(p) = f

(
N−1∑
i=1

piei

)

≥
N−1∑
i=1

pif(ei)

=
N−1∑
i=1

pi(N + d− 2)

= (N + d− 2)

Therefore the only possibility to have equality in the above equations is that p = ei for
some i = 1, . . . , N − 1. �

5. The cloning region

5.1. The Q-norm. Having related the average fidelities F̄α(T ) to the largest eigenvalue
of the matrix Rα from Eq. (10), we show next that this quantity is further related to a
norm on RN , which has very interesting properties. We introduce now a quantity which
is crucial for our work.
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Definition 5.1. For a vector x ∈ RN , define its Q-norm

(20) ‖x‖Q :=
d λmax(Sx)− ‖x‖1

d2 − 1
,

where ‖x‖1 =
∑N

i=1 |xi| is the `1 norm of the vector x and the matrix Sx is given by

(21) Sx =
N∑
i=1

|xi| · ω(0,i) ⊗ I⊗(N−1) ∈M⊗(N+1)
d .

The fact that the quantity above is indeed a norm in RN will be shown in Theorem 5.5.

Remark 5.2. The Q-norm of a vector x ∈ RN depends on the dimension parameter d.

Remark 5.3. The fact that we subtract the one norm ‖.‖1 implies that it is highly non
trivial to show that ‖.‖Q is a norm. Note that on its own λmax allows to define a norm
(essentially this comes from the facts that for two matrices 0 ≤ A ≤ B we have λmax(A) ≤
λmax(B) and λmax(A + B) ≤ λmax(A) + λmax(B)). In general unless trivial examples
subtracting two norms don’t provide a new norm. This would be the content of a theorem
in our context.

Note that the matrix Sx defined above is closely related to both the matrix Rα from
Eq. (10) and to the star Hamiltonian considered in [KKR09, Eq. (3)] and [KRK12,
Kay14]. We shall prove in Theorem 5.5 that the quantity from Eq. (20) is a norm; to
do so, we need the following preliminary lemma which is proved in Lemma C.1,C.2,C.3
Appendix C. Note that the proofs are again based on the design of a maximal eigenvector.

Lemma 5.4. The quantity ‖ · ‖Q has the following properties:

• For all x ∈ RN , we have

1

d
‖x‖1 ≤ λmax(Sx) ≤ d‖x‖1.

• For all x, y ∈ RN
+ , ‖x+ y‖Q ≤ ‖x‖Q + ‖y‖Q.

• For all t ∈ [0, 1]N and x ∈ RN
+ , ‖t · x‖Q ≤ ‖x‖Q.

In some sense this lemma gathers all the minimal requirements for a quantity to be
a norm. In particular, the first point expresses the fact that the ‖ · ‖Q quantity is non-
negative. The first inequality is saturated if and only if the matrix Sx is a (non-negative)
multiple of the identity. The second inequality is saturated if and only if x has at most
one non-zero entry.

Under the light of the previous lemma we can prove the important result establishing
that the quantity ‖.‖Q is a norm.

Theorem 5.5. For all N ≥ 1, the quantity ‖·‖Q from Eq. (20) is a norm on RN .

Proof. The absolute homogeneity is clear since both λmax(Sx) and ‖x‖1 are also absolutely
homogeneous. Let x ∈ RN such that ‖x‖Q = 0, then

d · λmax(Sx) = ‖x‖1 = tr(Sx).

In particular all eigenvalues of
∑N

i=1 |xi| · (ω(0,k) ⊗ I⊗(N−1)) are equal to λmax(Sx), and

hence
∑N

i=1 |xi| · (ω(0,k) ⊗ I⊗(N−1)) is a constant multiple of the identity:

N∑
i=1

|xi| ·
(
ω(0,k) ⊗ I⊗(N−1)

)
= c · I⊗(N+1)
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for a c = λmax(Sx) ≥ 0. Let i, j = 1, . . . , d such that i 6= j. Let |ψ〉 be defined by

|ψ〉 =
∣∣i j · · · j︸ ︷︷ ︸
N times

〉
.

Then 〈
ψ

∣∣∣∣ N∑
i=1

|xi| ·
(
ω(0,k) ⊗ I⊗(N−1)

)∣∣∣∣ψ〉 = 0

〈ψ| c · I⊗(N+1) |ψ〉 = c.

Finally c = 0 implies x = 0, and ‖·‖Q is positive-definite. Let x, y ∈ RN , such that

both ‖x‖Q ≤ 1 and ‖y‖Q ≤ 1. Let us show that
∥∥x+y

2

∥∥
Q ≤ 1, which is equivalent to the

triangle inequality. We can assume that x + y ∈ RN
+ , otherwise multiply the 3 vectors

by sign(x+ y). Let x′ defined by

x′ =

{
[x, x+y

2
] ∩ ∂ RN

+ if ∩ 6= ∅
x otherwise

and similarly for y′. Then x′, y′ and x+y
2

are in RN
+ , with

x+ y

2
∈ [x′, y′],

then there exists λ ∈ [0, 1] such that x+y
2

= λx′ + (1− λ)y′, then by the second point of
Lemma 5.4 and homogeneity,∥∥∥∥x+ y

2

∥∥∥∥
Q
≤ λ‖x′‖Q + (1− λ)‖y′‖Q ≤ max(‖x′‖Q, ‖y

′‖Q).

Now there exists tx ∈ [0, 1]N and ty ∈ [0, 1]N such that x′ = txx and y′ = tyy, then by the
last point of Lemma 5.4 both ‖x′‖Q ≤ 1 and ‖y′‖Q ≤ 1, such that

∥∥x+y
2

∥∥
Q ≤ 1. �

With the help of the Q-norm, Proposition 4.1 can be reformulated as: for all quantum
channels T ,

(22) ∀α ∈ [0, 1]N , F̄α(T ) ≤ 1

d
‖α‖1 +

(
1− 1

d

)
‖α‖Q.

We end this section by defining the dual norm:

(23) ‖y‖∗Q := sup
x 6=0

〈y, x〉
‖x‖Q

which will play an important role later, when discussing the set admissible cloning prob-
abilities R(N, d), see Eq. (24).

Example 5.6 (N = 1). Let x ∈ R, in one dimension the Q-norm of x introduced in
Definition 5.1 is

‖x‖Q :=
d λmax

(
|x| · ω

)
− |x|

d2 − 1
,
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with λmax

(
|x| ·ω

)
= d|x|, such that the Q-norm reduces to ‖x‖Q = |x|, as well as the dual

norm defined in Equation (23):

‖y‖∗Q = sup
x 6=0

〈y, x〉
‖x‖Q

= sup
‖x‖Q=1

〈y, x〉

= sup
x=±1
〈y, x〉

= |y|.

Example 5.7 (N = 2). Let x1, x2 ∈ R, and let Sx be defined as in Equation (21):

Sx = |x1| · ω(0,1) ⊗ I + |x2| · ω(0,2) ⊗ I.
That is

Sx = |x1| + |x2| .

Then a normalized eigenvector for the largest eigenvalue of Sx is

χ = β1 · |Ω〉(0,1) ⊗ |v〉+ β2 · |Ω〉(0,2) ⊗ |v〉 ,
that is

χ = β1 v
+ β2

v ,

for some coefficients β1, β2, and v = 1√
d

∑
1≤i<d |i〉. Then the action of Sx on the eigen-

vector χ is given by

Sx(χ) =

[
|x1| + |x2|

](
β1 v

+ β2
v

)
= |x1|

(
β1 v

+ β2
v

)
+ |x2|

(
β1 v

+ β2
v

)
= |x1|(dβ1 + β2)

v
+ |x2|(β1 + dβ2) v .

Solving the system of equations gives

λmax(Sx) =
1

2

(
d (|x1|+ |x2|) +

√
d2(|x1| − |x2|)2 + 4|x1| |x2|

)
,

and finally the Q-norm becomes (see Figure 4):

‖x‖Q =

d
2

(
d (|x1|+ |x2|) +

√
d2(|x1| − |x2|)2 + 4|x1| |x2|

)
−
(
|x1|+ |x2|

)
d2 − 1

.

5.2. Admissible region. This section is devoted to present one of our main result,
namely the cloning area. More precisely we make precise the distribution p ∈ [0, 1]N

reachable by Quantum cloning map T : Md → (Md)
⊗N , that is such that for all pure

state ρ

Ti(ρ) = pi ·ρ+ (1− pi)
I

d
.

Let RN,d be the admissible region of distribution p ∈ [0, 1]N for the 1→ N Asymmetric
Quantum cloning problem, that is,

(24) RN,d :=

{
p ∈ [0, 1]N

∣∣∣∣ ∃T cloning map s.t. Ti(ρ) = pi ·ρ+ (1− pi)
I

d

}
Theorem 5.8. RN,d is the non-negative part of the unit ball of the dual norm ‖·‖∗Q. In

other words, a distribution p ∈ [0, 1]N is in RN,d if and only if ‖p‖∗Q ≤ 1.
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Figure 4. Some unit spheres of R2
+ with the Q-norm.

Proof. Let p ∈ RN,d and a cloning map Tp :Md → (Md)
⊗N such that for all ρ ∈ Dd and

all 1 ≤ i ≤ N we have (
Tp
)
i
(ρ) = pi ·ρ+ (1− pi)

I

d
,

then for all α ∈ [0, 1]N , α 6= 0

sup
T
F̄α(T ) ≥

∑
i

αi · F̄
(
(Tp)i

)
=
∑
i

αi · Eρ
[〈
ρ , pi ·ρ+ (1− pi)

I

d

〉]
=
∑
i

αi · Eρ
[
pi +

1− pi
d

]
= 〈p, α〉+

‖α‖1 − 〈p, α〉
d

=
1

d
‖α‖1 +

(
1− 1

d

)
〈p, α〉.

This inequality together with the upper bound from Proposition 4.1 in the form of Eq. (22)

sup
T
F̄α(T ) ≤ 1

d
‖α‖1 +

(
1− 1

d

)
‖α‖Q,

give us 〈p, α〉 ≤ ‖α‖Q for all α ∈ [0, 1]N . For arbitrary α ∈ RN , note that

〈p, α〉 ≤ 〈p, |α|〉 ≤ ‖|α|‖Q = ‖α‖Q,

showing the inclusion

RN,d ⊆ {p ∈ [0, 1]N : ‖p‖∗Q ≤ 1}.
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Let p ∈ [0, 1]N such that ‖p‖∗Q = 1, there is α ∈ [0, 1]N such that ‖α‖Q = 〈p, α〉, that is

d λmax(Sα)− ‖α‖1

d2 − 1
= 〈p, α〉

λmax(Sα) + ‖α‖1

d+ 1
=
d− 1

d
〈p, α〉+

1

d
‖α‖1

λmax

(
Rα

)
d+ 1

= 〈f, α〉

where in the last equation we set fi = (d−1)pi+1
d

. Then, from Theorem 4.3, there are some
(βi)1≤i≤N satisfying Eq. (13) and a cloning map Tβ such that∑

i

αi · F̄
(
(Tβ)i

)
=
λmax(Rα)

d+ 1

Then the marginals of Tβ are (Tβ)i(ρ) = pi ·ρ + (1 − pi) Id , and p is in RN,d. Since this
is true for all p ∈ [0, 1]N such that ‖p‖∗Q = 1, this is true for all p ∈ [0, 1]N such that
‖p‖∗Q ≤ 1 by convexity. �

Importantly, since the maps Tβ from Theorem 4.3 are valid cloning maps, the points p
corresponding to these maps (see Eq. (16)) are elements of RN,d.

5.3. Convex region. From Theorem 5.8, we know that the admissible region RN,d is a
convex set delimited by a family of hyperplanes:{

p ∈ RN
∣∣∣〈α, p〉 = ‖α‖Q

}
.

The asymmetric quantum cloning is an optimization problem defined in Eq (3) by

sup
T

N∑
i=1

αi · inf
ρ∈Dd

F
(
ρ, Ti(ρ)

)
,

for a distribution α ∈ [0, 1]N , and where the supremum is taken on the quantum channels
and the infimum on the pure states. From Proposition 3.2, the marginals of a U(d)-

covariant quantum channels T :Md →
(
Md

)⊗N
are of the form

Ti(ρ) = pi ·ρ+ (1− pi)
I

d
,

for all pure states ρ, where the pi’s become our figures of merit. Within this formulation
of the problem, if we restrict the problem to U(d)-covariant quantum channels, we do not
ask the pi’s to be collinear with the αi’s. Instead we want to maximize

N∑
i=1

αi

(
pi +

1− pi
d

)
.

The cloning maps defined in Section 4.2 can indeed give pi’s in a different direction
than the αi’s, specially when the direction of the αi does not intersect an extreme point
of RN,d. As a consequence, the cloning maps Tβ defined in Section 4.2 do not fill the
boundary of RN,d, since some points in this boundary are not optimal with respect
to the optimization problem. However these points can always be reached by convex
combination of the cloning maps defined in Section 4.2.
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Example 5.9 (d = 2 & N = 3). Let us consider the 1 → 3 quantum cloning problem
where we ask the first two copies are the same (have the same fidelity). That is we have
to find the set {

(p, p, q)
∣∣∣ p, q ∈ [0, 1]

}⋂
R3,2.

When q = 0 we are in the setting of the symmetric 1 → 2 quantum cloning problem,
where the best (i.e. largest) p given by [Wer98] is popt = 2

3
; in our setting, this means that

‖(2/3, 2/3, 0)‖∗Q = 1.

However, the cloning map defined in Section 4.2 cannot produce the point (2
3
, 2

3
, 0),

instead we get (2
3
, 2

3
, 1

9
) (the black dot on Figure 5), since (2

3
, 2

3
, 0) is not optimal with

respect to the optimization problem. These cloning maps are the best cloning maps for
this problem, but doesn’t reach all the boundary of the set RN,d. These unreachable flat
region can be achieved by convexity (the flat region is in orange on Figure 5).

Figure 5. The section {(p, p, q)} of the 1 → 3 quantum cloning region
R3,2. On the axis q = 0, the largest p such that (p, p, 0) ∈ R3,2 is p = 2/3.
However, the only q such that (2/3, 2/3, q) satisfies Eq. (16) is q = 1/9.
In the left panel (and in the zoomed region in the right panel), we have
plotted in blue the points (p, p, q) satisfying Eq. (16) with an inequality,
and in orange the slice of the set R3,2. The visible orange region in the
right panel corresponds to points inR3,2 which do not satisfy the inequality
(16).

In conclusion, as the previous example shows, given a tuple p ∈ [0, 1]N , in order to
decide whether p is admissible for the problem of asymmetric quantum cloning, it does
not suffice to check whether the Eq. (16) holds as an inequality; one needs to check the
condition from Theorem 5.8, that is ‖p‖∗Q ≤ 1. This is one of the main contributions
of this paper, the realization that the convex region R(N, d) is not described by the
Eq. (16), seen as an inequality.
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of the algebra of partially transposed permutation operators. Journal of Mathematical
Physics, 55(3):032202, 2014. 3
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Appendix A. Structure of permutation operators

This appendix is devoted to the presentation of technical results on permutations op-
erator. Numerous results or remarks are illustrated by graphical calculus.

A.1. Contributions of permutations. In Section 3, we only focus on permutations
where 0 is not a fixed point. This is motivated by the following remarks

Let T :Md → (Md)
⊗N be a U(d)-covariant quantum channel, and CT its Choi matrix,

then from Proposition 3.2 we have for all ρ ∈ Dd

T (ρ) = Tr0

[
CT
(
ρT ⊗ I⊗N

)]
= Tr0

[ ∑
σ∈SN+1

βσ · ΠΓ
σ

(
ρT ⊗ I⊗N

)]
,

for some βσ ∈ C (see example A.3 for the case N = 2).
Let us justify that σ ∈ SN+1 such that σ(0) = 0 do not contribute to the performance

of the cloning map whereas the (N + 1) cycles contribute the most to the copies. Indeed,
for a permutation σ ∈ SN+1 such that σ(0) = 0 we have ΠΓ

σ = Πσ and for all ρ ∈ Dd

Tr1

[
ΠΓ
σ

(
ρT ⊗ I⊗N

)]
= Tr0

[
Πσ

(
ρT ⊗ I⊗N

)]
=

Tr ρ

d
Tr0

[
Πσ I

⊗(N+1)
]

=
1

d
· Tr0 Πσ

whose contributions consist in deteriorating the quality of the cloning, since the quantity
Tr1 σ does not depend on ρ. Now if σ ∈ SN+1 is a (N + 1) cycle the marginals of

Tperfect :Md −→ (Md)
⊗N

ρ 7−→ Tr0

[
ΠΓ
σ

(
ρT ⊗ I⊗N

)]
are all equals to identity, i.e. (Tperfect)i(ρ) = ρ for all ρ ∈ Md. This would be the case
of a perfect quantum cloning map but the operator Tperfect are of course not completly
positive operator due to the no-cloning Theorem (see Example A.4 fro computations with
graphical calculus).

More generally, let T : Md → (Md)
⊗N be a U(d)-covariant quantum channel. From

Proposition 3.2 the marginals Ti are for all ρ ∈ Dd

Ti(ρ) = pi ·ρ+ (1− pi)
I

d

where the pi are the sums of the N !
2

coefficients βσ of the permutations contributing for
this copy, that is the σ such that i is in the orbit of 0 under the action of σ. The followings
examples illustrates some results in terms of graphical calculus.
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Example A.1 (Partition of Σa,b, N = 3). The permutation set
{

ΠΓ
σ

∣∣ σ ∈ S4, σ(0) 6=
0
}

is partitioned in

Σ1,1 :
{

,
}
, Σ1,2 :

{
,

}
, Σ1,3 :

{
,

}
,

Σ2,1 :
{

,
}
, Σ2,2 :

{
,

}
, Σ2,3 :

{
,

}
,

Σ3,1 :
{

,
}
, Σ3,2 :

{
,

}
, Σ3,3 :

{
,

}
.

Example A.2 (Partially transposed permutations, N = 3). On S4 the (0 i)-partially
transposed permutations are

ΠΓ
(0 1) = , ΠΓ

(0 2) = , ΠΓ
(0 3) = .

Example A.3. [Choi Matrix N = 2] Let T : Md → Md ⊗Md be a U(d)-covariant
quantum channel, then its Choi matrix CT is:

βid + β(12) + β(13) + β(23) + β(123) + β(321)

Example A.4. [Contributions of quantum clonning] Let T : Md → Md ⊗ Md be a
U(d)-covariant quantum channel, such that its Choi matrix CT is the partially transposed
cycle (1 2 3):

CT = .

Then the two marginals are

T1(ρ) = Tr{0,2}

[
(1 2 3)Γ

(
ρT ⊗ I⊗N

)]
= Tr2

[
ρT

]
= Tr1

[
ρ

]
= ρ

= ρ ,

and

T2(ρ) = Tr{0,1}

[
(1 2 3)Γ

(
ρT ⊗ I⊗N

)]
= Tr1

[
ρT

]
= Tr0

[
ρ

]
=

ρ

= ρ .

A.2. Proof of Lemma 3.4. In this subsection, we prove the key Lemma 3.4, which gives
the structure of partially permutations operators and action on vectors. We illustrate as
well with graphical calculus.

Lemma A.5. Let 1 ≤ a, b ≤ N , for any σ ∈ Σa,b, there exists a unique σ̂ ∈ SN−1 such
as the partially transposed permutation operator σΓ is

ΠΓ
σ = Π(1 a) (ω(0,1) ⊗ Πσ̂) Π(1 b).
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Proof. Let 1 ≤ a, b, c, d ≤ N , and σ ∈ Σa,b, then Π(c a) ΠΓ
σ Π(d b) is a partially transposed

permutation operator from Σc,d. Let σ′ ∈ Σ1,1 be the permutation such that

Π(1 a) ΠΓ
σ Π(1 b) = ΠΓ

σ′ .

There is a unique σ̂ ∈ SN−1, such that

Π(1 a) ΠΓ
σ Π(1 b) = ω(0,1) ⊗ Πσ̂,

where the permutation operator is Πσ̂ is

Πσ̂ =
1

d
· Tr0,1

[
Π(1 a) ΠΓ

σ Π(1 b)

]
.

�

Example A.6. Let σ = (0 3 2) ∈ S4. Its partial transposition operator

ΠΓ
σ = ,

can be decomposed into

ΠΓ
σ =

=

=
σ̂

= Π(1 3)

(
ω(0,1) ⊗ Π(0 1)

)
Π(1 2).

Recall that for two integers i, j we denote by (i : j) the permutation Sn defined by

(i : j) =


(
(i− 1) (i− 2) · · · j

)
if 0 ≤ j < i ≤ n(

i (i+ 1) · · · (j − 1)
)

if 0 ≤ i < j ≤ n

(0)(1) · · · (n− 1) otherwise

.

That is, the |i− j| cycle of Sn between i and j.

Example A.7 (n = 3). The non-trivial (i : j)-cycles of S3 are:

(0 : 2) = , (2 : 0) = ,

(1 : 3) = , (3 : 1) = ,

(0 : 3) = , (3 : 0) = .

Lemma A.8. Let 1 ≤ a, b, c ≤ N , and let σ ∈ Σa,b. Let φ ∈ H⊗(N−1), then

ΠΓ
σ(|Ω〉(0,c) ⊗ |φ〉)

=

d · |Ω〉(0,a) ⊗
(
Π(0 : (a−1)) ◦ Πσ̂ ◦ Π((b−1) : 0)

)
|φ〉 if b = c

|Ω〉(0,a) ⊗
(
Π(0 : (a−1)) ◦ Πσ̂ ◦ Π((b−1) : 0) ◦ Π((c−1) : (b−1))

)
|φ〉 if b 6= c.

Proof. From Lemma A.5 we can write ΠΓ
σ = Π(1 a) (ω(0,1) ⊗ Πσ̂) Π(1 b), or equivalently

ΠΓ
σ = Π(1 a) (I⊗2 ⊗ Πσ̂)

(
ω(0,1) ⊗ I⊗(N−1)

)
Π(1 b).

Together with ω |Ω〉 = d · |Ω〉, we have the following relations:(
ω(0,1) ⊗ I⊗(N−1)

)
Π(1 b) = Π(1 b)

(
ω(0,b) ⊗ I⊗(N−1)

)
,
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and

Π(1 b)

(
|Ω〉(0,b) ⊗ |φ〉

)
= |Ω〉 ⊗ Π((b−1) : 0) |φ〉 .

If b = c, then(
ω(0,1) ⊗ I⊗(N−1)

)
Π(1 b)

(
|Ω〉(0,c) ⊗ |φ〉

)
= Π(1 b)

(
ω(0,b) ⊗ I⊗(N−1)

)(
|Ω〉(0,c) ⊗ |φ〉

)
= Π(1 b)

(
ω(0,b) |Ω〉(0,b) ⊗ |φ〉

)
= d · Π(1 b)

(
|Ω〉(0,b) ⊗ |φ〉

)
= d ·

(
|Ω〉 ⊗ Π((b−1) : 0) |φ〉

)
,

such that finally ΠΓ
σ

(
|Ω〉(0,c) ⊗ |φ〉

)
= d · Π(1 a)

[
|Ω〉(0,1) ⊗

(
Πσ̂ ◦ Π((b−1) : 0) ◦

)
|φ〉
]
.

If b 6= c, we have the following relation:(
ω(0,b) ⊗ I⊗(N−1)

)(
|Ω〉(0,c) ⊗ |φ〉

)
= |Ω〉(0,b) ⊗ Π((c−1) : (b−1)) |φ〉 .

Then(
ω(0,1) ⊗ I⊗(N−1)

)
Π(1 b)

(
|Ω〉(0,c) ⊗ |φ〉

)
= Π(1 b)

(
ω(0,b) ⊗ I⊗(N−1)

)(
|Ω〉(0,c) ⊗ |φ〉

)
= Π(1 b)

(
|Ω〉(0,b) ⊗ Π((c−1) : (b−1)) |φ〉

)
= |Ω〉(0,1) ⊗

(
Π((b−1) : 0) ◦ Π((c−1) : (b−1))

)
|φ〉 ,

such that finally

σΓ(|Ω〉(0,c) ⊗ |φ〉) = Π(1 a)

[
|Ω〉(0,1) ⊗

(
Πσ̂ ◦ Π((b−1) : 0) ◦ Π((c−1) : (b−1))

)
|φ〉
]
.

To conclude, from the relation

Π(1 a)

(
|Ω〉(0,1) ⊗ |φ〉

)
= |Ω〉(0,a) ⊗ Π(0 : (a−1)) |φ〉 ,

we obtain

ΠΓ
σ(|Ω〉(0,c) ⊗ |φ〉) =

=

d · |Ω〉(0,a) ⊗
(
Π(0 : (a−1)) ◦ Πσ̂ ◦ Π((b−1) : 0)

)
|φ〉 if b = c

|Ω〉(0,a) ⊗
(
Π(0 : (a−1)) ◦ Πσ̂ ◦ Π((b−1) : 0) ◦ Π((c−1) : (b−1))

)
|φ〉 if b 6= c.

�

Example A.9. Let σ = (0 3 1 2) ∈ S4, and let φ ∈ H⊗2, then

ΠΓ
σ

(
|Ω〉(0,1) ⊗ |φ〉

)
=

φ

= φ

= |Ω〉(0,3) ⊗ Π(0 1) |φ〉 .

In order to simplify the next equations we use the notations Πσ̂(a,b,c) and Πb,c, defined
by:

Πσ̂(a,b,c) = Π(0 : (a−1)) ◦ Πσ̂ ◦ Πb,c,

and

Πb,c =

{
Π((b−1) : 0) if b = c

Π((b−1) : 0) ◦ Π((c−1) : (b−1)) if b 6= c
.

The following lemma concerns the image and the kernel of operators ΠΓ
σ.
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Lemma A.10. For any 1 ≤ a, b ≤ N and any σ ∈ Σa,b,

Im ΠΓ
σ = Span

{
|Ω〉(0,a) ⊗ |φ〉

∣∣∣ φ ∈ H⊗(N−1)
}

Ker ΠΓ
σ ⊇ Span

{
|Ω〉(0,k) ⊗ |φ〉

∣∣∣ 1 ≤ k ≤ N, φ ∈ H⊗(N−1)
}⊥
.

Proof. Let 1 ≤ a, b ≤ N , let σ ∈ Σa,b, and let v ∈ Im ΠΓ
σ, then v = |Ω〉(0,a) ⊗ |φ〉 with φ ∈

H⊗(N−1), from Lemma A.5. Let φ ∈ H⊗(N−1)
d , and define u = 1

d
|Ω〉(0,b)⊗Π91σ̂,a,b,c |φ〉. Then

from Lemma A.8,

ΠΓ
σ(u) = |Ω〉(0,a) ⊗ |φ〉 .

Since on finite-dimensional spaces, the kernel of a linear map M is equal to the orthogonal

complement of the image of adjoint M∗, i.e. KerM =
(

ImM∗)⊥, we have

Ker ΠΓ
σ = Span

{
|Ω〉(1,b) ⊗ |φ〉

∣∣∣ φ ∈ H⊗(N−1)
}⊥

⊇ Span
{
|Ω〉(1,k) ⊗ |φ〉

∣∣∣ 1 ≤ k ≤ N, φ ∈ H⊗(N−1)
}⊥

�

A.3. Partial trace of partially transposed permutation operators.

Lemma A.11. Let 1 ≤ a, b ≤ N , then

Tr[[0,N ]]\{0}

[ ∑
σ∈Σa,a

ΠΓ
σ

]
= (N − 1)! Tr

[
P+
SN−1

]
· I

Tr[[0,N ]]\{0}

[ ∑
σ∈Σa,b

ΠΓ
σ

]
=

(N − 1)!

d
Tr
[
P+
SN−1

]
· I,

where the orthogonal projector onto the trivial representation subspace of SN−1 is defined
by P+

SN−1
= 1

(N−1)!

∑
σ∈SN−1

Πσ.
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Proof. For the first equation we have from Lemma A.5

Tr[[0,N ]]\{0}

[ ∑
σ∈Σa,a

ΠΓ
σ

]
= Tr[[0,N ]]\{0}

[ ∑
σ∈SN−1

Π(1 a) (ω ⊗ Πσ̂) Π(1 a)

]
=

∑
σ∈SN−1

Tr[[0,N ]]\{0}

[
Π(1 a) (ω ⊗ Πσ̂) Π(1 a)

]
=

∑
σ∈SN−1

Tr[[0,N ]]\{0}

[
(I ⊗ Π(0 (a−1))) (ω ⊗ Πσ̂) (I ⊗ Π(0 (a−1)))

]

=
∑

σ∈SN−1

d∑
i,j=1

Tr[[0,N ]]\{0}

[
(I ⊗ Π(0 (a−1))) (|i〉〈j| ⊗ |i〉〈j| ⊗ Πσ̂) (I ⊗ Π(0 (a−1)))

]

=
∑

σ∈SN−1

d∑
i,j=1

Tr[[0,N ]]\{0}

[
(I |i〉〈j| I)⊗

(
Π(0 (a−1)) (|i〉〈j| ⊗ Πσ̂) Π(0 (a−1))

)]

=
∑

σ∈SN−1

d∑
i,j=1

Tr
[
Π(0 (a−1)) (|i〉〈j| ⊗ Πσ̂) Π(0 (a−1))

]
· |i〉〈j|

=
∑

σ∈SN−1

d∑
i,j=1

Tr
[
(|i〉〈j| ⊗ Πσ̂) (Π(0 (a−1)) ◦ Π(0 (a−1)))

]
· |i〉〈j|

=
∑

σ∈SN−1

d∑
i,j=1

〈i|j〉 ⊗ Tr
[
Πσ̂

]
· |i〉〈j|

=
∑

σ∈SN−1

Tr
[
Πσ̂

]
· I,

where Π(0 (a−1)) is a permutation operator of SN . For the second equation, since the
partial transposition is a linear operator, we have the equality

Tr[[0,N ]]\{0}

[ ∑
σ∈Σa,b

ΠΓ
σ

]
=

(
Tr[[0,N ]]\{0}

[ ∑
σ∈Σa,b

Πσ

])Γ

.

For any σ ∈ Σa,b the relation

(Ū ⊗ U⊗N) ΠΓ
σ (Ū ⊗ U⊗N) = ΠΓ

σ

holds for all U ∈ U(d), such that Tr[[0,N ]]\{0}

[∑
σ∈Σa,b

ΠΓ
σ

]
is a multiple of the identity, and

Tr[[0,N ]]\{0}

[ ∑
σ∈Σa,b

ΠΓ
σ

]
= Tr[[0,N ]]\{0}

[ ∑
σ∈Σa,b

Πσ

]
= c · I,

with c = 1
d

Tr
[∑

σ∈Σa,b
Πσ

]
. For a permutation σ ∈ Sn we write #σ the number of

disjoint cycles of σ. Then

Tr
[ ∑
σ∈Σa,b

Πσ

]
=
∑
σ∈Σa,b

d#σ

=
∑
σ∈Σa,a

d#[σ◦(a b)].
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Let σ ∈ Σa,a and write σ = c1 ◦ · · · ◦ ck the decomposition of σ in disjoint cycles ci =
(si1 · · · sili). If it exists i ∈ [k] such that a, b ∈ ci then ci ◦ (a b) can be decomposed
in two disjoint cycles. Otherwise, if there exist i, j ∈ [k] such that a ∈ ci and b ∈ cj
then ci ◦ cj ◦ (a b) can be decomposed in one disjoint cycle. Finally

#
[
σ ◦ (a b)

]
=

{
#σ + 1 if ∃i ∈ [k] s.t. a, b ∈ ci
#σ − 1 otherwise

.

But since σ ∈ Σa,a and b 6= a, in the decomposition of σ in disjoint cycles, a is in the
cycle (0 a), and #

[
σ ◦ (a b)

]
= #σ − 1. That is

Tr
[ ∑
σ∈Σa,b

Πσ

]
=

1

d
Tr
[ ∑
σ∈Σa,a

Πσ

]
.

�

A.4. Scalar product of vectors in Vλ.

Lemma A.12. Let λ1, λ2 be two distinct irreducible representations of SN−1, let v1,v2

be two normalized vectors in the irreducible subspace λ1 and λ2 of SN−1, and let 1 ≤
k, l ≤ N . Then〈

Ω(0,k) ⊗ v1

∣∣Ω(0,l) ⊗ v2

〉
=

{
d · 〈v1|v2〉 if k = l

〈v1|Π((l−1) : (k−1)) |v2〉 if k 6= l.

As a consequence 〈
Ω(0,k) ⊗ v1

∣∣Ω(0,k) ⊗ v1

〉
= d〈

Ω(0,k) ⊗ v1

∣∣Ω(0,l) ⊗ v1

〉
= 〈v1|Π((l−1) : (k−1)) |v1〉 ,

and 〈
Ω(0,k) ⊗ v1

∣∣Ω(0,l) ⊗ v2

〉
= 0.

In particular the vector spaces SpanVλ are in orthogonal direct sum.

Proof. Since both v1 and v2 are normalized, we have 〈vi|vi〉 = 1 for all i ∈ {1, 2}. Then
from 〈Ω|Ω〉 = d we have〈

Ω(0,k) ⊗ v1

∣∣Ω(0,k) ⊗ v1

〉
= 〈Ω|Ω〉 ⊗ 〈v1|v1〉
= d.

When k 6= l, from the equation
〈
Ω(0,k) ⊗ φ

∣∣Ω(0,l) ⊗ ψ
〉

= 〈φ|Π((l−1) : (k−1)) |ψ〉 for any φ, ψ ∈
H⊗(N−1), we have 〈

Ω(0,k) ⊗ v1

∣∣Ω(0,l) ⊗ v1

〉
= 〈v1|Π((l−1) : (k−1)) |v1〉 .

When we look at λ1, λ2, two distinct irreducible representations of SN−1, the scalar
product becomes〈

Ω(0,k) ⊗ v1

∣∣Ω(0,l) ⊗ v2

〉
=

{
〈Ω|Ω〉 ⊗ 〈v1|v2〉 if k = l

〈v1|Π((l−1) : (k−1)) |v2〉 if k 6= l.

Note that Π((l−1) : (k−1)) |v2〉 lives in the irreducible subspace of SN−1 associated to λ2,
since the irreducible representations are stable by any representation of permutations.
Then both scalar product are null because the irreducible spaces are orthogonal each
other. �
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Remark A.13. In the particular case of the trivial representation, we have for all 1 ≤
k, l ≤ N and all normalized v in the irreducible subspace ∨(N−1)(H),〈

Ω(0,k) ⊗ v
∣∣Ω(0,k) ⊗ v

〉
= d〈

Ω(0,k) ⊗ v
∣∣Ω(0,l) ⊗ v

〉
= 1.

From Lemma A.8, the action of the permutation operators ΠΓ
σa,b

on the vectors |Ω〉(0,k)⊗
|v〉, for all 1 ≤ k ≤ N , is

(25) ΠΓ
σa,b

(
|Ω〉(0,k) ⊗ |v〉

)
=

{
d · |Ω〉(1,a) ⊗ Πλ

σ̂,a,b,b |v〉 if b = k

|Ω〉(1,a) ⊗ Πλ
σ̂,a,b,k |v〉 if b 6= k,

with Πλ
σ = P λ Πσ P

λ, and P λ the projector onto the irreducible subspace λ.
For any permutation operator ΠΓ

σa,b
we know from Lemma A.10 that the V λ’s form

a generators of the orthogonal complement of the kernel of ΠΓ
σa,b

. However, in general
they do not define a basis. We can extract a subset of linearly independent vectors to
form a basis. In this basis ΠΓ

σa,b
can be block diagonalized due to Eq. (25), since for all

irreducible representation λ, and any vector v in Vλ, we have

ΠΓ
σa,b

(v) ∈ SpanVλ.

Example A.14 (N = 3). Let x1, x2, x3 ∈ R+, and define

S = x1 · ΠΓ
(0 1) + x2 · ΠΓ

(0 2) + x3 · ΠΓ
(0 3),

that is

S = x1 + x2 + x3 .

Then an eigenvector for the largest eigenvalue of R is

χ = β1 · |Ω〉(0,1) ⊗ |v〉+ β2 · |Ω〉(0,2) ⊗ |v〉+ β3 · |Ω〉(0,3) ⊗ |v〉 ,

that is

χ = β1 v
+ β2 v + β3

v ,

for some coefficients βi, and v =
∑

1≤i≤j<d

|ij〉.

Appendix B. Some results in linear algebra

In the proofs, we use simple linear algebra results that are not mainstream. We gather
them in this appendix for the convenience of the reader.

Lemma B.1. For all 1 ≤ i, j ≤ n, let Mij be some matrices inMm, and define the block
matrix

M =
∑

1≤i,j≤n

Mij ⊗ |i〉〈j| ,

and the matrix M ′ =
∑

1≤i,j≤n ‖Mij‖ · |i〉〈j|. We then have

‖M‖ ≤ ‖M ′‖.

Proof. Consider v and w two unit vectors such that ‖M‖ = 〈v|M |w〉, we can decompose

v =
n∑
i=1

|vi〉 ⊗ |i〉 with vi ∈ Cm and we define v′ =
n∑
i=1

‖vi‖ · |i〉. Since we consider the
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Euclidian norm, we have obviously ‖v′‖ = ‖v‖ = 1. We define w′ similarly, and then have∣∣〈v|M |w〉∣∣ =

∣∣∣∣∑
ij

〈vi|Mij |wj〉
∣∣∣∣

≤
∑
ij

‖vi‖ ‖Mij‖ ‖wj‖ (Cauchy-Schwarz)

=
∑
ij

‖vi‖ ‖wj‖
〈
i
∣∣M ′∣∣j〉

=
〈
v′
∣∣M ′∣∣w′〉

≤ ‖v′‖ ‖w′‖ ||M ′||
≤ ||M ′||.

which ends the proof. �

The foolowing lemma is usefull in the paper when we relate the spectrum of S with
the one of S̃

Lemma B.2. Let A ∈ M be an operator, let n ≥ m let {f1, . . . , fn} be a set of vectors
such that Cm = V ect{f1, . . . , fn}. We suppose that for all i = 1, . . . , n there exists aij,
j = 1, . . . , n such that

Afi =
n∑

i,j=1

aijfj

Denote Ã the n× n matrix with coefficients (aij). Then

SpecA ⊆ Spec Ã.

Proof. Let F be the matrix composed of the vectors fi, i = 1, . . . , n written in column.
Then F is a m×n matrix of rank m since Cm = V ect{f1, . . . , fn}. By definition of Ã we
have

AF = FÃ

Furthermore for all scalar α

(A− α Im)F = AF − α Im F
= FÃ− αF
= F (Ã− αIn)

Now using the fact that rank(AB) ≤ min(rank(A), rank(B)) for all matrices A and B,
if α ∈ SpecA since rank(F ) = m

rank(F (Ã− αIn)) = rank((A− α Im)F ) < m.

Now since n ≥ m this necessarily implies that rank(Ã − αIn) < n which says that
α ∈ SpecÃ �

Remark B.3. Note that the matrix Ã is not uniquely defined and depends on a choice
of the way of writing Afi =

∑n
i,j=1 aijfj but the results concerning the inclusion is true

whatever if the form of the matrix Ã. Of course the other inclusion is not true in general
unless n = m and {f1, . . . , fn} is linearily independent (but this is trivial in this case).
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Remark B.4. In the lemma the condition Afi =
∑n

i,j=1 aijfj means that A leaves V =

V ect{f1, . . . , fn} invariant and we can rephrase this lemma by considering the restriction
to A on V and then saying that SpecA|V ⊆ Spec Ã. which is what we use in the body of
the paper.

Appendix C. The Q-norm

Lemma C.1. For all x ∈ RN , we have

1

d
‖x‖1 ≤ λmax(Sx) ≤ d‖x‖1.

In particular, the ‖ · ‖Q quantity is non-negative. The first inequality is saturated if and
only if the matrix Sx is a (non-negative) multiple of the identity. The second inequality
is saturated if and only if x has at most one non-zero entry.

Proof. For the first inequality, note that

λmax(Sx) ≥
TrSx
dN+1

=

∑N
i=1 d|xi| · dN−1

dN+1
=
‖x‖1

d
.

The inequality above is saturated if and only if the eigenvalues of Sx are identical.
For the second inequality, we use the subadditivity of the λmax functional:

λmax(Sx) ≤
N∑
i=1

λmax

(
|xi| · ω(0,i) ⊗ I⊗(N−1)

)
=

N∑
i=1

d|xi| = d‖x‖1.

The inequality above is saturated if and only if the matrices |xi| ·ω(0,i)⊗I have a common
largest eigenvector, which can happen only if the support of x has size 0 or 1. �

Lemma C.2. For all x, y ∈ RN
+ , ‖x+ y‖Q ≤ ‖x‖Q + ‖y‖Q.

Proof. This follows from the subadditivity of the λmax functional: for x, y ∈ RN
+ we have

λmax

[ N∑
i=1

(xi + yi) · ω(0,i) ⊗ I⊗(N−1)

]

≤ λmax

[ N∑
i=1

xi · ω(0,i) ⊗ I⊗(N−1)

]
+ λmax

[ N∑
i=1

yi · ω(0,i) ⊗ I⊗(N−1)

]
.

�

Lemma C.3. For all t ∈ [0, 1]N and x ∈ RN
+ , ‖t · x‖Q ≤ ‖x‖Q.

Proof. Let us show that for 0 ≤ x ≤ y (meaning that xi ≤ yi, i = 1, . . . , N), we
have ‖x‖Q ≤ ‖y‖Q. Let χ =

∑
k βk

∣∣Ω(0,k)

〉
⊗|v〉 be a normalized eigenvector correspond-

ing to the the largest eigenvalue λmax(Sx), from Theorem 3.11, that is

λmax(Sx) =
〈
χ
∣∣∣ N∑
i=1

xi ·
(
ω(0,i) ⊗ I⊗(N−1)

)∣∣∣χ〉.
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Note that due to the Perron–Frobenius Theorem, βi > 0 for all i = 1, . . . , N . Let us
point out two facts. First using Lemma 3.5

〈χ|ω(0,i) ⊗ I⊗(N−1) |χ〉 =
N∑
k=1

N∑
l=1

βkβl ·
〈
Ω(0,k) ⊗ v

∣∣ (ω(0,i) ⊗ I⊗(N−1)
) ∣∣Ω(0,l) ⊗ v

〉
=

N∑
k=1

βk ·
〈

Ω(0,k) ⊗ v
∣∣∣dβi · Ω(0,i) ⊗ v +

N∑
l=1
l 6=i

βl · Ω(0,l) ⊗ v
〉

=
N∑
k=1

βk ·
〈

Ω(0,k) ⊗ v
∣∣∣(d− 1)βi · Ω(0,i) ⊗ v +

N∑
l=1

βl · Ω(0,l) ⊗ v
〉

=

(
(d− 1)βi +

∑
k

βk

)2

Second

1 = 〈χ|χ〉

=
∑
i 6=j

βiβj + d
∑
i

β2
i

=

(
N∑
i=1

βi

)2

+ (d− 1)
N∑
i=1

β2
i

Now using that
(∑N

i=1 βi

)2

≥
∑N

i=1 β
2
i we get that 1 ≤ d

(∑N
i=1 βi

)2

then, since βi ≥ 0

〈χ|ω(0,i) ⊗ I⊗(N−1) |χ〉 ≥

(
N∑
i=1

βi

)2

≥ 1

d

This way since y ≥ x, we have that λmax(Sy) ≥ 〈χ, Syχ〉 then

λmax(Sy)− λmax(Sx) ≥ 〈χ|Sy − Sx|χ〉

=
N∑
i=1

(yi − xi)〈χ|ω(0,i) ⊗ I⊗(N−1)|χ〉

=
N∑
i=1

(yi − xi)
(

(d− 1)βi +
∑
k

βk

)2

≥
N∑
i=1

(yi − xi)
1

d

Then

‖y‖Q = λmax(Sy)−
1

d
‖y‖ ≥ λmax(Sx)−

1

d
‖x‖ = ‖x‖Q

which was the desired result. �

Appendix D. Optimal cloning

Lemma D.1. Let some reals (βi)1≤i≤N . The operator

C̃Tβ =
∑

1≤a,b≤N
σ∈Σa,b

βaβb
(N − 1)!

ΠΓ
σ
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such that there exists a and b with βaβb 6= 0 is an orthogonal projection if and only if the
condition (13)

(d− 1)
N∑
i=1

β2
i +

( N∑
i=1

βi

)2

= 1

is satisfied.
Assume (13) is satisfied. The operator CTβ is a positive operator, such that Tr[[0,N ]]\{0}CTβ =

I

Proof. Let some reals (βi)1≤i≤N , then(
C̃Tβ
)2

=
∑

1≤a,b≤N
1≤c,d≤N

∑
σ∈Σa,b
τ∈Σc,d

βaβbβcβd

(N − 1)!2
ΠΓ
σΠΓ

τ

=
∑

1≤a,d≤N

[
d
∑

1≤b,c≤N
b=c

∑
σ∈Σa,d

βaβbβcβd

(N − 1)!2
ΠΓ
σ +

∑
1≤b,c≤N
b 6=c

∑
σ∈Σa,d

βaβbβcβd

(N − 1)!2
ΠΓ
σ

]
.

The projection condition
(
C̃Tβ
)2

= C̃Tβ is equivalent to

βaβb = d
N∑
i=1

βaβiβiβb +
∑

1≤i,j≤N
i 6=j

βaβiβjβb

= βa

(
(d− 1)

N∑
i=1

β2
i +

(∑
i

βi

)2
)
βb.

Since (13) is assumed to be satisfied then C̃Tβ is an orthogonal projection and hence a
positive operator. This way CTβ is positive. We have now from Lemma A.11

Tr[[0,N ]]\{0}

(
C̃Tβ
)

= Tr[[0,N ]]\{0}

[ ∑
1≤a,b≤N
σ∈Σa,b

βaβb
(N − 1)!

σΓ

]

= Tr
[
P+
SN−1

](∑
i

βiβi +
1

d

∑
i 6=j

βiβj

)
· I

=
TrP+

SN−1

d

[
(d− 1)

∑
i

β2
i +

(∑
i

βi

)2
]
· I

=
TrP+

SN−1

d
· I

Then

Tr[[0,N ]]\{0}(CTβ) = Tr[[0,N ]]\{0}

[ d

TrP+
SN

N + d− 1

N
· C̃Tβ

]
=

TrP+
SN−1

TrP+
SN

N + d− 1

N
· I

= I,

where the last equation comes from Tr
[
P+
SN−1

]
= N

N+d−1
Tr
[
P+
SN

]
. �
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Lemma D.2. For any 1 ≤ a, b ≤ N , and any σ ∈ Σa,b, the permutation operator σΓ is

the Choi matrix a linear map Tµ,ν :Md → (Md)
⊗N defined by

Tµ,ν(X) = Πµ

(
X ⊗ I⊗(N−1)

)
Πν

for some permutations µ and ν in SN such that µ(0) = a− 1 and ν(b− 1) = 0.
As a consequence for some fixed 1 ≤ a, b ≤ N ,∑

σ∈Σa,b

ΠΓ
σ =

1

(N − 1)!
CTa,b

where

Ta,b(X) =
∑

µ,ν∈SN
µ(0)=a−1
ν(b−1)=0

Πµ

(
X ⊗ I⊗(N−1)

)
Πν .

Proof. Let 1 ≤ a, b ≤ N , and σ ∈ Σa,b. then from Lemma A.5 we have

ΠΓ
σ = Π(1 a) (ω ⊗ Πσ̂) Π(1 b),

such that on X ∈Md, the partial trace yields

Tr0

[
ΠΓ
σ(XT ⊗ I⊗N)

]
= Tr0

[
Π(1 a) (ω ⊗ Πσ̂) Π(1 b) (XT ⊗ I⊗N)

]
= Tr0

[
(I ⊗ Π(0 (a−1))) (ω ⊗ Πσ̂) (I ⊗ Π(0 (b−1))) (XT ⊗ I⊗N)

]
=
∑
i,j∈[d]

Tr0

[
(I ⊗ Π(0 (a−1))) (|i〉〈j| ⊗ |i〉〈j| ⊗ Πσ̂) (I ⊗ Π(0 (b−1))) (XT ⊗ I⊗N)

]
=
∑
i,j∈[d]

Tr
[
|i〉〈j|XT

]
· Π(0 (a−1)) (|i〉〈j| ⊗ Πσ̂) Π(0 (b−1))

=
∑
i,j∈[d]

〈i|X |j〉 · Π(0 (a−1)) (|i〉〈j| ⊗ Πσ̂) Π(0 (b−1))

= Π(0 (a−1)) (X ⊗ Πσ̂) Π(0 (b−1))

= Π(0 (a−1)) (X ⊗ I⊗(N−1)) (I ⊗ Πσ̂) Π(0 (b−1)).

And the result hold for Πµ = Π(0 (a−1)) and Πν = (I ⊗ Πσ̂) ◦ Π(0 (b−1)). �

Lemma D.3. Let an orthogonal projector C̃Tβ for some reals (βi)1≤i≤N satisfying Eq. (13).
Then for any 1 ≤ i ≤ N , we have

C̃Tβ ω(0,i) =
1

(N − 1)!

∑
1≤a≤N
σ∈Σa,i

βa

(
(d− 1)βi +

∑
1≤b≤N

βb

)
ΠΓ
σ.

Let Choi matrix CTβ for some reals (βi)1≤i≤N satisfying Eq. (13). Then for any 1 ≤
i ≤ N , we have

Tr
[
CTβ ω(0,i)

]
= d

(
(d− 1)βk +

N∑
j=1

βj

)2

.
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Proof. Since we are summing on all permutations ΠΓ
σa,b

, a direct calculation gives us

C̃Tβ ω(0,i) =
1

(N − 1)!

∑
1≤a,b≤N
σ∈Σa,b

βaβb · ΠΓ
σ ω(0,i)

=
1

(N − 1)!

∑
1≤a≤N

βa

(
(d− 1)

∑
σ∈Σa,i

βi · σΓ +
∑

1≤b≤N
σ∈Σa,i

βb · ΠΓ
σ

)

=
1

(N − 1)!

∑
1≤a≤N
σ∈Σa,i

βa

(
(d− 1)βi +

∑
1≤b≤N

βb

)
ΠΓ
σ.

And then we look at the action of the Choi matrix CTβ onto some ω(0,i), and take the
trace.

The Lemma A.11 yields

Tr
[
CTβ ω(0,i)

]
=
d(N + d− 1)

N Tr
[
P+
SN

] N∑
a=1

βa
(N − 1!)

(
(d− 1)βi +

N∑
b=1

βb

)
Tr

[ ∑
σ∈Σa,i

ΠΓ
σ

]

=
d(N + d− 1)

N Tr
[
P+
SN

] ((d− 1)βi +
N∑
b=1

βb

)(
(d− 1)βi +

N∑
a=1

βa

)
Tr
[
P+
SN−1

]

=
d(N + d− 1)

N Tr
[
P+
SN

] ((d− 1)βi +
N∑
j=1

βj

)2

Tr
[
P+
SN−1

]

= d

(
(d− 1)βk +

N∑
j=1

βj

)2

.
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	1. Introduction
	2. Asymmetric quantum cloning
	2.1. Quantum Fidelity
	2.2. Symmetrized quantum channels
	2.3. Average vs. worst fidelity

	3. Schur-Weyl duality & Permutation operators
	3.1. Choi matrices of quantum cloners
	3.2. Permutation operators
	3.3. Maximal eigenvalue

	4. Optimal Quantum Cloning
	4.1. Upper Bound
	4.2. Saturation and Construction of the Asymmetric Quantum cloning channel
	4.3. Figures of merit

	5. The cloning region
	5.1. The Q-norm
	5.2. Admissible region
	5.3. Convex region

	References
	Appendix A. Structure of permutation operators
	A.1. Contributions of permutations
	A.2. Proof of Lemma 3.4
	A.3. Partial trace of partially transposed permutation operators
	A.4. Scalar product of vectors in V lambda

	Appendix B. Some results in linear algebra
	Appendix C. The Q-norm
	Appendix D. Optimal cloning

