
HAL Id: hal-03814095
https://hal.science/hal-03814095

Submitted on 13 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strategies for Modelling Failure Propagation in
Dynamic Systems with AltaRica

Tatiana Prosvirnova, Christel Seguin, Christophe Frazza, Michel Batteux,
Xavier de Bossoreille, Frédéric Deschamps, Jean Gauthier, Estelle Saez

To cite this version:
Tatiana Prosvirnova, Christel Seguin, Christophe Frazza, Michel Batteux, Xavier de Bossoreille, et
al.. Strategies for Modelling Failure Propagation in Dynamic Systems with AltaRica. International
Symposium on Model-Based Safety and Assessment (IMBSA), Sep 2022, Munich, Germany. pp.101-
115, �10.1007/978-3-031-15842-1_8�. �hal-03814095�

https://hal.science/hal-03814095
https://hal.archives-ouvertes.fr

Strategies for modelling failure propagation in
dynamic systems with AltaRica ⋆

Tatiana Prosvirnova1, Christel Seguin1, Christophe Frazza2, Michel Batteux3,
Xavier de Bossoreille4, Frédéric Deschamps5, Jean Gauthier6, and Estelle Saez7

1 ONERA/DTIS, Université de Toulouse, Toulouse, France,
{Tatiana.Prosvirnova,Christel.Seguin}@onera.fr

2 SaToDev, 25 rue Marcel Issartier, 33700 Mérignac, France,
christophe.frazza@satodev.fr

3 IRT SystemX, Palaiseau, France, michel.batteux@irt-systemx.fr
4 APSYS Airbus, 37 Avenue Escadrille Normandie Niemen, 31700 Blagnac, France,

xavier.debossoreille@apsys-airbus.com
5 LGM, Euclide B4 - ZAC St Martin du Touch, 1 Rue Emmanuel Arin, 31300

Toulouse, France, frederic.deschamps@lgm.fr
6 5 Dassault Aviation, 54 AV Marcel Dassault, 33700 Mérignac, France,

Jean.Gauthier@dassault-aviation.com
7 IRT Saint-Exupéry, B612, 3 rue Tarfaya, 31405 Toulouse, France,

estelle.saez@irt-saintexupery.com

Abstract. The AltaRica modelling language has been designed to facil-
itate failure propagation modelling and safety analyses of complex tech-
nical systems. Indeed, it makes it possible to model the functional dy-
namics (change of control mode, reconfiguration of equipment, etc.) and
failures (cascades of failures, hidden failures, etc.) of the systems.
The objective of this article is to provide guides to make the best use of
this dynamic modelling capability. We focus on the modelling of poten-
tially problematic dynamic phenomenon - continuous control of a phys-
ical process with a feedback loop.
We propose different strategies to model this phenomenon illustrated
by a simple example. We discuss the advantages and drawbacks of the
proposed solutions.

Keywords: Model Based Safety Assessment · dynamic systems · failure
propagation models · AltaRica.

1 Introduction

The AltaRica language [2] was designed to facilitate failure propagation mod-
elling and safety analyses of complex technical systems. Thus, it makes it possi-
ble more particularly to model the functional dynamics (change of control mode,
reconfiguration of equipment, etc.) and failures (cascades of failures, hidden fail-
ures, etc.) of the systems.

⋆ Supported by French Institutes of Technology Saint Exupéry and SystemX.

2 T. Prosvirnova et al.

The objective of this article is to provide guides to make the best use of this
dynamic modelling capability for control systems. The proposed guides were
developed by a panel of classical safety and MBSA (Model Based Safety Assess-
ment) experts as part of the S2C (System & Safety Continuity) project of the
French Institutes of Technology (FIT) Saint Exupéry and SystemX.

The S2C working group extracted from the participants’ MBSA feedback the
commonly encountered pitfalls and the modelling strategies adopted to over-
come the difficulties. The paper focuses on potentially problematic dynamic
phenomenon: continuous control of a physical process with feedback loops.

The modelling guide endeavours to give for this case:

– an example of a very simple system and a failure condition which illustrates
the need for modelling;

– the usual modelling errors of this type of system and the resulting malfunc-
tions;

– good modelling practices in the form of AltaRica modelling strategies;
– the results of qualitative analyses (simulations, search for the causes of failure

conditions) which provide confidence in the behaviour, modelled according
to the strategies;

– the general assumptions under which the modelling strategies are valid.

The modelling of dynamic systems in dependability has mainly been studied
to evaluate the usual probabilistic indicators of reliability or safety (see for exam-
ple [18]). This paper characterises strategies for modelling dynamic systems that
also allow the calculation of sequences of events that lead to failure conditions.
This type of modelling is in the process of being standardised in aeronautics and
the communication also contributes to clarifying the modelling choices made to
deal with the aircraft braking system in the future document ED-135 [1].

The remainder of this article is organised as follows. Section 2 describes the
case study. Section 3 gives an overview of the related works. Section 4 presents
issues raised by failure propagation modelling of systems with control loops and
discusses different strategies to solve them. Section 5 concludes this article and
gives some perspectives.

2 Case study description

In order to illustrate how to deal with failure propagation modelling of systems
with control feedback loops, let us consider a simple example illustrated in Fig. 1.
In that example, we consider a system composed of an equipment under control
and a controller that builds a command from the information provided by a
sensor and from the initial order sent, for instance, by an operator. The sensor
acquires data of the equipment output and sends it to the controller, which is
used to control the equipment. This example is a simplified control loop, and we
can easily replace the equipment by a valve or an actuator.

We consider that all the components (operator order, controller, equipment
under control and sensor) have two failure modes:

3

Fig. 1. Case study: an equipment under control.

– fail loss: leads to the loss of the component;
– fail err: leads to the erroneous behaviour of the component.

From a safety point of view, the evaluated failure conditions are the following:

– FC1: Loss of equipment output;
– FC2: Erroneous equipment output.

The equipment output is monitored by the sensor that sends its acquired
information to the controller. The equipment output depends on the equipment
input data. The controller computes a re-evaluated order from its two inputs
(the operator order and the sensor acquisition information) and controls the
equipment based on the order.

The component failures and the corresponding system output and effects are
described in table 1.

Table 1. Component failure and their safety effects.

Component Failure mode Safety effects

Order fail loss Leads to the loss of control and the loss of equipment
output.

fail err Leads to an erroneous command of the equipment and
an erroneous equipment output.

Equipment fail loss Leads to the loss of equipment output.
fail err Leads to an erroneous equipment output. The erroneous

data is acquired by the sensor.

Sensor fail loss Leads to the loss of the sensor acquisition sent to the
controller leading to the loss of the equipment output.

fail err Leads to an erroneous information from the sensor acqui-
sition, leading to an erroneous equipment output.

Equipment Output, on Fig. 1, is a safety artefact, an observer of the failure
conditions.

To compute the order and to control the equipment, the controller needs the
output of the equipment under control sent by the sensor.

Even before starting the modelling, one can identify that the modelled sys-
tem is a control loop: the input of the controller depends on the sensor output
depending itself on the controller output.

4 T. Prosvirnova et al.

Modelling systems with a control loop using classical Fault Tree approach can
lead to circular equations in a fault tree. If the fault tree is structured strictly
following the dependencies of the different inputs and outputs of the system,
there will be a circular logic in the produced fault tree.

In practice, most of the time, the circular equations in fault trees are solved
by the analysts, who make assumptions on the behaviour of the system and
adapt a modelling strategy to remove the circular equations from the fault tree.
Nevertheless, when a circular equation appears in a fault tree, it is always worth
analysing the possible impacts of the simplification performed to solve it.

Modelling systems with a control loop using high level modelling languages
supporting MBSA (Model-Based Safety Assessment) approach may lead to sim-
ilar problems. Different strategies to solve them are discussed in the following
sections.

3 Related works

3.1 Static and dynamic failure propagation models

Failure propagation modelling formalisms can be divided in two categories: com-
binatorial models (for example, Fault Trees or Reliability Block Diagrams) and
discrete-event models (for example, Markov chains or Generalized Stochastic
Petri Nets).

Combinatorial models are static models, i.e. all the events are assumed to
be independent and may occur in any order. In other words, the order of occur-
rence of events has no influence on the occurrence of the Failure Conditions. In
this case, models are assessed by solving systems of Boolean equations to cal-
culate Minimal Cut Sets (MCS) and probabilistic indicators (for instance, the
probability of the Failure Condition). Efficient assessment algorithms have been
developed for static models [16], which enable to assess industrial scale models.

Discrete-event models may be static, and in that case the occurrence order of
the events has no influence on the resulting state. But it is not always the case.
We say that a discrete-event model is dynamic if it exists at least one couple
of sequences that are constituted with the same events and result in different
states. For dynamic models, the order of occurrence of events is important.

Static discrete-event models can be assessed by generation and solving of
Boolean equations. For dynamic discrete-event models, the compilation into
Boolean equations is not always possible and may lose information. In that cases,
it is possible to generate sequences of events leading to the Failure Conditions.
The generation of sequences partially explores the failure scenarios of the model.
Note that, the computation time greatly increases compared to the generation
of Boolean equations and their assessment.

There are different high-level modelling languages supporting the MBSA
approach. Amongst them we can cite AltaRica (AltaRica LaBRI [2], AltaR-
ica DataFlow [7] and AltaRica 3.0 [4]), Figaro [8], SAML [9], HiP-HOPS [12],
Component Fault Trees [11], Generalised Stochastic Petri nets with predicates
implemented in GRIF [17]. The list is not exhaustive.

5

Amongst the cited modelling formalisms HiP-HOPS and Components Fault
Trees are combinatorial formalisms and enable to create static models. To model
failure propagation of systems with control loops using these formalisms the
analyst needs to make assumptions on the system behaviour in order to create
a static model.

AltaRica, Figaro, SAML and Petri nets are based on discrete-event models
and enable to describe static and dynamic models. Continuous control of a phys-
ical process with a feedback loop is a dynamic phenomenon. Different strategies
can be adopted for failure propagation modelling of systems with control loops.
Some of them are presented and discussed using AltaRica DataFlow in the re-
mainder of this article.

3.2 AltaRica modelling language

AltaRica is a high level textual formal domain specific modelling language dedi-
cated to Safety Analysis created at the end of nineties [2]. AltaRica is an event-
centric language. The behaviour of components is described by means of state
machines. The state of a component is represented by variables (the so-called
state variables) and their values. The changes of state are possible when, and
only when, events occur. The occurrence of an event updates the values of the
variables, by the firing of a transition: a triple < guard, event, action >, where
a guard is a Boolean expression built over the variables and an action is an
instruction which modifies the values of state variables. AltaRica distinguishes
two types of variables: state variables and flow variables. State variables can be
modified only through the firing of transitions. Flow variables are used to model
information circulating between nodes of a model. Their values are calculated
from the values of state variables thanks to a mechanism described by means of
the so-called assertion.

When a transition is fired, first its action is executed to compute the values
of state variables, second the assertion is executed to compute the values of flow
variables.

The behaviour of components is described inside nodes. Nodes can be assem-
bled into hierarchies, their input and output flows can be connected and their
transitions can be synchronised. Nodes can be stored in the libraries of reusable
components and are reused by instantiation, like in structured programming lan-
guages. AltaRica is an asynchronous language: only one transition can be fired at
a time. However, it offers a mechanism to synchronise events. For example, com-
mon cause failures, shared repair crews, broadcasts can be represented by means
of synchronisations. There are three versions of AltaRica modelling language:

– AltaRica LaBRI, the first version of the language developed by LaBRI [2];

– AltaRica DataFlow, the second version of the language implemented in sev-
eral industrial tools [7];

– and AltaRica 3.0 implemented in the OpenAltaRica platform by AltaRica
Association and IRT SystemX [4].

6 T. Prosvirnova et al.

Acausal and causal models The main difference between the three versions
of the language is the semantics of the assertion (calculation of values of flow
variables).

In the first version of the language, AltaRica LaBRI, the assertion is a set of
constraints. There is no input or output variables and in that way, it is possible
to represent acausal models. Each time a transition is fired, first the action of
the transition is executed, second a set of constraints (the assertion) is resolved
to calculate the values of flow variables. Constraints have a big expressive power.
However, in general, solving constraints involves multiple computation iterations
and may be very resource consuming. A set of constraints may have several
acceptable solutions resulting in non-deterministic model. In addition, there may
be no solution. In this case, the initial model is incorrect.

To be able to assess industrial scale models, a second version, AltaRica
DataFlow, has been created, reducing the expressive power of the assertion [7].
Its semantics is based on Mode Automata [14]. In this version of the language,
the assertion is a set of DataFlow assignments. Each flow variable is assigned
only once in the model and there is no circular definition. So, it is only possible to
represent causal models. The order of the execution of the DataFlow assignments
is calculated only once during the compilation of the model. When a transition
is fired, first, the values of state variables are calculated; second, the values of
the flow variables are calculated by executing the DataFlow assignments only
once, which is more efficient than resolving constraints.

The semantics of the third version of the language, AltaRica 3.0, is defined
in terms of Guarded Transition Systems [3]. To be able to model easily some
kind of looped systems, for instance networks or electrical systems, AltaRica 3.0
introduces the concept of bidirectional assignment. If x and y are variables,
x :=: y is a bidirectional assignment, which is equivalent to two assignments:
x := y and y := x. The assertion is an instruction, where each variable may be
defined in several assignments and there may be circular definitions. After each
transition firing, first the action of the transition is executed, second, the values
of flow variables are calculated by fixpoint solving of the assertion. In general,
fixpoint solving of the assertion is more resource consuming than calculation of
DataFlow assignments, but less resource consuming than resolving constraints.

Note that loops encountered in communication networks or electrical systems
are different from the feedback control loops introduced in Section 2 and fixpoint
solving does not resolve the modelling problems. Modelling techniques presented
in this article should be used in that case for both AltaRica DataFlow and
AltaRica 3.0 modelling languages.

AltaRica DataFlow In the remainder of this article we focus on AltaRica
DataFlow. It is used as a description language of several industrial modelling
tools: Cecilia Workshop (Dassault Aviation, Satodev), Simfia V3 and SimfiaNeo
(Apsys). Many industrial scale experiments have been conducted with this ver-
sion of the language [5, 6, 13]. It has been used to assess the safety of the flight
control system in the frame of the certification of the Dassault Aviation Falcon

7

7X. A set of efficient assessment tools has been developed, including a Fault Tree
compiler [14], a generator of critical sequences of events, and a stepwise simu-
lator. The definition of timed and stochastic semantics of AltaRica DataFlow
made it possible to develop a compiler to Markov chains [15], a probabilistic
model-checker [19] and a Monte Carlo simulator [10].

4 Case study modelling and analysis using AltaRica
DataFlow

4.1 Issues raised by failure propagation modelling of systems with
control feedback loops

Fig. 2. Graphical representation of the AltaRica DataFlow model of the Case study.

Fig. 2 shows a graphical representation of the AltaRica DataFlow model of
the case study. The behaviour of each component is represented by an AltaRica
node. The node Sensor represents the behaviour of the sensor, the nodeOrder -
the behaviour of the operator order, the node Equipment - the behaviour of the
equipment under study, nodes AllControlInputs and Control represents the
behaviour of the controller. The node EquipmentOutput is a safety artefact,
it is an observer on the status of the equipment output and models the Failure
Conditions.

The internal state of each node is represented by three values: {ok, lost, err},
where ok represents the nominal behaviour, lost represents the loss of the com-
ponent, err represents the erroneous behaviour of the component.

Nodes Order, Control, Sensor and Equipment have two events fail err
and fail loss representing the failure modes of these components.

The node AllControlInputs is a logical node, it does not have any internal
state. If at least one of the inputs is erroneous, then the output is erroneous. If
not, if at least one of the inputs is lost then the output is lost. Otherwise the
output is ok.

8 T. Prosvirnova et al.

Table 2. AltaRica DataFlow modelling framework.

Component Input and
output flows

State vari-
ables

Transitions Assertions

Order Input: N/A
Output: O

S ∈
{ok, err, lost}

S=ok |- fail loss ->

S:= lost;

O=S;

Type:
{ok, lost, err}

Initially ok. S=ok |- fail err ->

S:= err;

AllControl-
Inputs

Input: I1, I2
Output: O

N/A N/A O = case{
I1=err or

I2=err :

err,

I1=lost

or I2=lost

:lost, else

ok };
Control Input: I Out-

put: O
S ∈
{ok, err, lost}

S=ok |- fail loss ->

S:= lost;

O =case {
S=ok: I,

Sensor Type:
{ok, lost, err}

Initially ok. S=ok |- fail err ->

S:= err;

S=lost:

lost,

Equipment else err };
Equipment-
Output

Input: I Out-
put: O

N/A N/A O=I;

Type:
{ok, lost, err}

The details of the AltaRica nodes are given in Table 2.
The AltaRica DataFlow model given Fig. 2 is not correct because the asser-

tion of this model is not DataFlow.
We say that, there is a cycle of equations in the assertion if there is a flow

variable which depends on itself in the assertion. In other words, there is a cir-
cular definition in the assertion. In practice, cycles of equations can be detected
during a compilation thanks to the dependency graph of the assertion. If the de-
pendency graph of the assertion has cycles, then there is a cycle in the equations
of the assertion.

Indeed, in our example there is a cycle in the equations of the assertion, the
output of the node Equipment depends on itself.

During the compilation of the model an error is detected (see for example
Fig. 3), that should be corrected. There are different strategies to solve this
problem. They are presented below.

4.2 “Cut the Loop” solution

The simplification or “cut the loop” solution modifies the model in order to solve
the equation cycle by “cutting” the control loop in the system, and by ensuring
the safety model analysis is still representative of the studied system. Most of
the time, it is necessary to add assumptions and explanations in order to achieve

9

Fig. 3. Example of an error: cycle in the assertion.

this goal. For instance, instead of analysing the control loop illustrated Fig. 1
we can choose to perform the analysis on a model with a simplified control loop
as illustrated Fig. 4.

Fig. 4. Illustration of the “cut the loop” solution.

In our example, the existing control loop is “cut” using a safety artefact
shown in green in Fig.4. The purpose of the “Const ok” node is to use the same
Sensor node than the one previously defined. It is a numerical “cap” that sends
an “Ok” input to the Sensor. This is equivalent to use a Sensor node with no
Input.

The key point in this solution is to ensure that the analysis performed with
the simplified model is as representative as the one performed with the complete
model.

Model validation and analysis This solution is valid if the simplified model
is representative of the studied system despite the simplification. Note that to
achieve this goal, in some cases, it may be necessary to provide additional anal-
ysis to the model output. In the example, we consider that the safety analyst
who decides to cut the loop will check that the cutsets obtained by “cutting the
loop” are representative of the control loop. This is the case as shown in Table 3.

In particular, we check that the Sensor failures (fail loss and fail err) lead to
the Failure Conditions as it is expected (loss of the Sensor leads to the Loss of

10 T. Prosvirnova et al.

Table 3. Cutsets for the “Cut the loop” solution.

Cutsets for FC1: Loss of equipment output Cutsets for FC2: Erroneous equipment
output

Control.fail loss Control.fail err
Order.fail loss Order.fail err
Euipment.fail loss Equipment.fail err
Sensor.fail loss Sensor.fail err

equipment output and erroneous Sensor leads to an erroneous equipment out-
put). In addition, the others components’ failures effects are unchanged. Indeed,
the failures of the order, control or equipment (fail loss and fail err) directly
lead to the equipment output corresponding failures. In this example, the Sen-
sor State (“ok” or “failed”) has a direct effect. In other words, in case of an
erroneous sensor, the Failure Conditions “FC2: Erroneous equipment output” is
directly reached. Counterexample: In case of the addition of a consolidation be-
tween the two inputs of AllControlInputs (one input ok and the other erroneous
leading to the loss of the output), “cutting the loop” solution, proposed in this
example, is not valid. It leads to lose the information captured by the Sensor. In
that different case, an erroneous order, equipment or control then leads to the
loss of the equipment output (FC1) and not to an erroneous equipment output
(FC2). It is still possible to “Cut the loop” by linking directly the AllControlIn-
puts to the EquipmentOutput and by cutting the loop right before the Control
node, nevertheless the resulting model is very far from the initial system.

Advantages and drawbacks of the approach The interest of this approach
is to solve the equation cycle in the assertion by using a static modelling. Com-
pared to dynamic modelling, static modelling enables shorter cutset computation
time. In addition, it is possible to generate Boolean equations from static models
without loss of information. In that case, this modelling choice can allow solv-
ing huge industrial scale models. Eventually, in addition, for static models the
probabilities computation is straightforward.

Nevertheless, the simplification of the model leads to a model closer to what
the safety specialist has in mind (and could write down using Fault Tree Analysis
approach) than to the initial system description. Modellers can choose to make
the model look like the system, for instance by adding some graphical artefacts
or “empty” links. In that case, they introduce an artificial consistency between
the safety and the system models that may lead to misunderstandings and future
mistakes.

Only the output just before the “loop cut” is affected by all the failure modes.
Consequently, this approach is only valid (in terms of resulting cutset) when the
control loop has only one output (here EquipmentOutput). When the control
loop has several outputs (to the FCs or to the other parts of the model) some
information may be missing. In our example, if Control output is an input for a
monitoring positioned after the sensor, this new node does not see the impact of

11

the failures of equipment. This approach is efficient when the loop can be “cut”
before nodes (the sensor here) that only affect the system when they fail (State
ok or failed here). Its use is limited when the components are involved in the
functional description of the system (for instance in the monitoring).

4.3 The “Dirac” solution

The “Dirac” solution introduces a safety artefact to handle the equation cycle. It
allows the modelling of all dependencies between the output and input flows by
introducing a state variable. In order to solve the equation cycle in the example
illustrated in Fig. 5, we introduce this safety artefact through the modelling unit
named “FeedbackDelay”.

Fig. 5. Illustration of the “Dirac” solution.

The “FeedbackDelay” modelling unit contains:

– A state variable prev val (previous value) that is initially ok;
– Two flow variables: I and O;
– An assertion: O = prev val;
– An immediate deterministic event called “update”, associated with the prob-

ability distribution Dirac(0);
– A transition not (I = prev val) |- update -> prev val:=I;, which al-

lows to remove the direct flow dependency between the output value (O) of
the node and its input value (I) and to introduce a dependency between the
input I and the state variable prev val.

The defined transition can be read: when the condition (input value I is
different from the state value prev val), the deterministic event update is in-
stantaneously triggered (because it follows a Dirac(0) law). As a result, prev val

is assigned to the current value of I. Because of the assertion the output O takes
immediately the same value, resulting in the propagation of the failure mode.

The introduction of a state variable set to “ok” initialises the problem to be
solved when no failure is triggered. This solves the equation cycle for the initial
state. At this stage it is interesting to note that the state variable introduces
a “memory” effect on the transition. Indeed, the state value of prev val will

12 T. Prosvirnova et al.

change only when the transition conditions are fulfilled. This is why the mod-
elling artefact we have presented is often called a “Delay”. It does not refer to
quantitative time (e.g. measured in second) but to sequential time, i.e., the order
in which the different updates happen.

Model validation and analysis The minimal cutsets calculated for the model
given in Fig. 5 are the same as the ones obtained for the previous solution given
in Table 3.

The “Dirac” solution does not require specific validation, except for the local
validation of the dedicated component. The stepwise simulator can be used to
validate the model behaviour. In addition, we can also outline that special care
shall be taken when several immediate (Dirac(0)) transitions are introduced in
the model that can be enabled at the same time.

Advantages and drawbacks of the approach The proposed model is very
close to the studied system. It allows a close representation of the system control.
Consequently, it will be easier to validate the model with system engineers. It
will also be easier to use this model to communicate to others or to capture the
system behaviour.

Introducing a deterministic transition may lead to have a dynamic model.
When this is the case, the tool solver will generate all the possible sequences of
failures leading to the top events while for a static model it would be sufficient
to generate all the combinations of failures (i.e. cutsets) or to solve directly a
Boolean equation. Consequently, the computation time becomes more important
than for a static model. At worst, for very huge industrial scale systems this
computation time can be a blocking point. In addition, when there are several
deterministic transitions, their synchronisation and priority of triggering need
to be handled. This adds complexity to the model.

4.4 The “double flow” solution

The “double flow” solution relies on the addition of artificial flows to deal with
the dependencies in the model. As shown in Fig. 6, the dependencies between
the variables are modelled through two different paths.

Firstly, failure modes of all components are “collected” by the flows from
Order to Sensor (underneath path). In this underneath path, the output of All-
ControlInputs does not depend on the Sensor output. Then, AllControInputs
gets a second output. Each AllControInputs output is related to an input (see
Table 4).

Model validation and analysis The validation of this approach is the same as
the one discussed for the “cut the loop” approach. It is needed to demonstrate
that the model is representative of the modelled system. Additional analyses
may be required to justify this choice. The cutsets are as expected (the same as
given in Table 3) and validate the model outputs.

13

Fig. 6. Illustration of the “double flow” solution.

Table 4. AltaRica DataFlow modelling framework for the “double flow” solution.

Component Input and
output flows

State vari-
ables

Transitions Assertions

AllControl-
Inputs

Input: I1, I2
Output: O1,
O2

N/A N/A O1 = I1;

O2 = I2;

Control Input: I1, I2
Output: O1,
O2

S ∈
{ok, err, lost}

S=ok |- fail loss ->

S:= lost;

O1 =case {
S=ok: I1,

S=lost:

lost,

Type:
{ok, lost, err}

Initially ok. S=ok |- fail err ->

S:= err;

else err };

O2 =case {
S=ok: I2,

S=lost:

lost,

else err };
Equipment Input: I1, I2

Output: O1,
O2

S ∈
{ok, err, lost}

S=ok |- fail loss ->

S:= lost;

O1 =case {
S=ok: I1,

S=lost:

lost, else

err

Type:
{ok, lost, err}

Initially ok. S=ok |- fail err ->

S:= err;

O2 =case {
S=ok: I2,

S=lost:

lost,

else err };

Advantages and drawbacks of the approach The interest of this approach
is to solve the equation cycle using a static modelling. This choice can thus re-
duce the model computation time. In addition, the probabilities computation
is straightforward. This approach is usable in case of control loops with sev-
eral outputs (when several downstream components depend on the control loop
output).

14 T. Prosvirnova et al.

This approach is the one requiring the more safety artefacts, making the
model and the justifications heavier. As a consequence, it is mostly used for
local loops, with few involved components.

4.5 Summary

We presented three different solutions that can be used to solve an equation cycle
in the assertion of AltaRica DataFlow models. All of them have their advantages
and drawbacks.

The “Cut the loop” solution is simple and conserves static modelling. But it
is not always possible to use and needs additional validation by the analyst.

The “Dirac” solution is always possible. The model can be validated us-
ing stepwise simulation. The model in most of the cases is dynamic which may
greatly increase computation time for large scale models. In addition, when sev-
eral immediate transitions are used in the model, this greatly increases the model
complexity and its validation.

The “Double flow” solution adds some artificial flows. But the model stays
static and conserves the efficiency of calculations. However, additional validation
of the model should be provided by the analyst.

5 Conclusion and perspectives

In this article we presented different strategies that can be used to represent
control loops with AltaRica DataFlow modelling language. We show that there
is no best solution to solve the problem. All the proposed solutions have their
advantages and drawbacks.

Our future works will focus on the identification of other types of modelling
problems raised in the domain of dynamic failure propagation modelling and on
the definition of modelling strategies for these problems.

References

1. Eurocae ed-135 guidelines and methods for conducting the safety assessment pro-
cess on civil airborne systems and equipment

2. Arnold, A., Griffault, A., Point, G., Rauzy, A.: The altarica language and its se-
mantics. Fundamenta Informaticae 34, 109–124 (2000)

3. Batteux, M., Prosvirnova, T., Rauzy, A.: Altarica 3.0 assertions: the why and the
wherefore. Journal of Risk and Reliability (2017), article accepted

4. Batteux, M., Prosvirnova, T., Rauzy, A.: Altarica 3.0 in 10 modeling patterns.
International Journal of Critical Computer-Based Systems 9(1–2), 133–165 (2018).
https://doi.org/10.1504/IJCCBS.2019.098809

5. Bernard, R., Aubert, J.J., Bieber, P., Merlini, C., Metge, S.: Experiments in model-
based safety analysis: flight controls. In: Faure, J.M. (ed.) Proceedings of IFAC
workshop on Dependable Control of Discrete Systems. pp. 43–48. Curran Asso-
ciates, Inc., Cachan, France (June 2007), iSBN 9781617389948

15

6. Bieber, P., Blanquart, J.P., Durrieu, G., Lesens, D., Lucotte, J., Tardy, F., Turin,
M., Seguin, C., Conquet, E.: Integration of formal fault analysis in assert: Case
studies and lessons learnt. In: Proceedings of 4th European Congress Embedded
Real Time Software, ERTS 2008. SIA (electronic proceedings), Toulouse, France
(January 2008), code R-2008-01-2B04

7. Boiteau, M., Dutuit, Y., Rauzy, A., Signoret, J.P.: The altarica data-flow language
in use: Assessment of production availability of a multistates system. Reliability
Engineering and System Safety 91, 747–755 (2006)

8. Bouissou, M., Bouhadana, H., Bannelier, M., Villatte, N.: Knowledge modelling
and reliability processing: presentation of the figaro modelling language and asso-
ciated tools. In: Proceedings of Safecomp’91 (1991)

9. Güdemann, M., Ortmeier, F.: A framework for qualitative and quantitative model-
based safety analysis. In: Proceedings of 12th High Assurance System Engineering
Symposium. pp. 132–141 (2010)

10. Khuu, M.: Contribution à l’accélération de la simulation stochastique sur des
modèles AltaRica Data Flow. Thèse de doctorat, Université de la Méditerranée
(Aix-Marseille II) (2008)

11. Mohrle, F., Zeller, M., Hofig, K., Rothfelder, M., Liggesmeyer, P.: Automated com-
positional safety analysis using component fault trees. In: 2015 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW). pp. 152–
159. IEEE (2015)

12. Papadopoulos, Y., Walker, M., Parker, D., Rude, E., Hamann, R., Uhlig, A., Gratz,
U., Lien, R.: Engineering failure analysis and design optimization with hip-hops.
Engineering Failure Analysis 18, 590–608 (2011)

13. Quayzin, X., Arbaretier, E.: Performance modeling of a surveillance mission.
In: Proceedings of the Annual Reliability and Maintainability Symposium,
RAMS’2009. pp. 206–211. IEEE, Fort Worth, Texas, USA (January 2009), iSBN
978-1-4244-2508-2

14. Rauzy, A.: Mode automata and their compilation into fault trees. Reliability En-
gineering and System Safety 78, 1–12 (2002)

15. Rauzy, A.: An experimental study on iterative methods to compute transient so-
lutions of large markov models. Reliability Engineering & System Safety 86(1),
105–115 (2004)

16. Rauzy, A.: Probabilistic Safety Analysis with XFTA. AltaRica Association, Les
Essarts le Roi, France (2020)

17. Signoret, J.P., Dutuit, Y., Cacheux, P.J., Folleau, C., Collas, S., Thomas,
P.: Make your petri nets understandable: Reliability block diagrams driven
petri nets. Reliability Engineering & System Safety 113, 61–75 (2013).
https://doi.org/https://doi.org/10.1016/j.ress.2012.12.008

18. Signoret, J.P., Leroy, A.: Reliability assessment of safety and production systems :
analysis, modelling, calculations and case studies / Jean-Pierre Signoret and Alain
Leroy. Springer Series in Reliability Engineering Ser, Springer, Cham, Switzerland
(2021)

19. Teichteil-Königbuch, F., Infantes, G., Seguin, C.: Epoch probabilistic model-
checking. In: Model Based Safety Assessment Workshop. Toulouse, France (2011)

