
HAL Id: hal-03813967
https://hal.science/hal-03813967v1

Submitted on 13 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy-efficient online resource provisioning for
cloud-edge platforms via multi-armed bandits

Jordan Rey-Jouanchicot, Juan-Angel Lorenzo-Del-Castillo, Stéphane
Zuckerman, E Veronica Belmega

To cite this version:
Jordan Rey-Jouanchicot, Juan-Angel Lorenzo-Del-Castillo, Stéphane Zuckerman, E Veronica Belmega.
Energy-efficient online resource provisioning for cloud-edge platforms via multi-armed bandits. Work-
shop on Cloud Computing - 34th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), Nov 2022, Bordeaux, France. �hal-03813967�

https://hal.science/hal-03813967v1
https://hal.archives-ouvertes.fr

Energy-efficient online resource provisioning for
cloud-edge platforms via multi-armed bandits

Jordan Rey-Jouanchicot∗, Juan Ángel Lorenzo del Castillo†, Stéphane Zuckerman†, and E. Veronica Belmega†‡
∗ CY Tech, CY Cergy Paris Université, Cergy, France

† ETIS UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, F-95000, Cergy, France
‡ Univ. Gustave Eiffel, CNRS, LIGM, F-77454, Marne-la-Vallée, France

Email: jordan.rey.jouanchicot@cy-tech.fr, juan-angel.lorenzo-del-castillo@cyu.fr,
stephane.zuckerman@ensea.fr, veronica.belmega@esiee.fr

Abstract—Edge computing is a new paradigm in which data
are locally collected, aggregated and preprocessed before being
sent to a Cloud platform. Edge devices, typically IoT objects,
are characterized by limited computational capabilities, alongside
high energy efficiency operations. In smart building or smart city
applications, the overall amount of available IoT devices may ac-
count for an important computational capacity. Aggregating the
idle CPU cycles of several devices would allow performing on-site
parallel and distributed computing, while reusing the available
resources in the network. Timely and important computational
tasks such as video surveillance processing, HPC jobs, or deep
neural network training, can be performed with local available
resources. This includes local servers or a private, on-site cloud,
as opposed to the use of public clouds, thus avoiding security
issues and fostering energy efficiency. An ongoing research topic
in such a distributed and volatile context is to design novel
algorithms for resource provisioning that allow tasks to be
distributed over a set of available IoT devices in an efficient
manner. This work presents two online, adaptive and robust
scheduling techniques, based on the UCB and EXP3 Multi-
Armed Bandit algorithms (MABs), for resource management
in Cloud-Edge Computing based environments while improving
performance and reducing energy consumption. The novelty
of our adapted algorithms lies in the fact that we explicitly
account for unavailable computing IoT devices resulting in a
time-varying available set of arms at each stage. Our numerical
results show the high relevance of our approach in reaching
optimal provisioning policies in time-varying environments.

Index Terms—Cloud Edge computing, resource provisioning,
online learning, multi-armed bandits

I. INTRODUCTION

Designing efficient job scheduling and resource manage-
ment policies with power and energy, as well as execution time
in mind, requires new approaches as the cloud moves to the
network Edge and to Internet of Things (IoT) systems. Indeed,
the complexity of the scheduling problem increases with the
degree of heterogeneity and the high diversity of properties
within computational nodes in terms of available resources
(e.g., memory, computational power, etc.). In addition, the
scheduler has to adapt on-the-fly to the incoming workloads
with characteristics and requirements which may vary over
time. Moreover, a given scheduling decision may sometimes
be beneficial in the short term, but at the expense of worsening
the global system performance in the mid or long term.

This issue becomes particularly important in emerging
areas such as the design of edge architectures, in which

plenty of edge servers are established to be close to multiple
heterogeneous IoT devices at the edge of the network [1].
Data from sensors are collected and aggregated in the edge
layer, which can be used as a support for delay-critical IoT
applications and data pre-processing before they are typically
routed to an upper layer, like a cloud.

Data processing at the edge may have multiple objectives,
such as obtaining usage statistics of a smart building,
improve energy consumption policies, perform predictive
maintenance using Artificial Intelligence, etc. However,
these actions may incur sustainability and security issues.
For example, in the case of a smart building, the collected
and pre-processed data may be sent to a public cloud (i.e.,
off-site) for further processing and storage, which adds
additional power consumption. In addition, letting sensitive
information leave the building may raise security concerns,
given that many public cloud providers store their clients’
data in countries outside the EU, and are therefore subject
to different privacy laws. Finally, the addition of an Edge
layer allows preserving system functionalities in the case of
communication interruptions at the cloud level.

In this Cloud-Edge Computing context, IoT devices
perform a single periodic task with a relatively low frequency,
and thus are idle most of the time. A fully distributed and
parallel system could use a smart IoT network to pre-process
data during the devices’ idle computing cycles, before sending
it to a cloud for more advanced processing. Thus, what is
required, which becomes the main motivation of this work,
is an online adaptive scheduling system that can perform
resource allocation and load-balance work across the various
nodes and heterogeneous parts.

Reinforcement learning (RL) and, more specifically, multi-
armed bandits (MAB), allow designing online and adaptive
scheduling policies which make a trade-off on-the-fly between
data exploration and exploitation [2]. MAB algorithms rely
on a payoff-based feedback (or reward mechanism) with little
or no assumptions regarding the underlying dynamics of
the environment (e.g., they do not need any prior workload
profiling). Such adaptive algorithms relying on strictly causal
information also come with performance guarantees in terms
of regret minimization.

Two well-known MAB algorithms that have shown their
relevance in online orchestration problems for IoT are UCB
(Upper Confidence Bound) [3] and EXP3 (Exponential-weight
algorithm for Exploration and Exploitation) [4]. Our main
contribution in this paper is to adapt these algorithms to a
more general setting in which not all the arms can be chosen
at every step. In other words, not only the rewards but also
the set of available arms is varying with time. This enables
us to account for unavailable computing IoT devices, but also
imposes the use of the stronger dynamic regret performance
metric as opposed to the classical regret notion. In this setting,
we propose two online adaptive scheduling policies, based on
UCB and EXP3, to perform efficient resource allocation in
idle IoT devices from an edge network. We propose a software
framework, based on realistic premises, that learns the optimal
provisioning policies for a job on a given Edge environment.

The rest of the article is organized as follows: Section II
highlights the related work on resource allocation for Cloud-
Edge computing using RL policies. Section III explains our
system model. Section IV provides a gentle introduction to
the Multi-Armed Bandit problem. In Section V we present the
algorithms implementation. Section VI shows and discusses
the obtained results. Finally, Section VII concludes this article
and outlines the future work.

II. RELATED WORK

In recent years there has been an important rise in the
number of articles that propose resource allocation techniques
in the Edge-Cloud context using RL. Authors in [5] investigate
computation offloading mechanisms of multiple selfish users
with resource allocation in IoT edge computing networks by
using a multi-agent RL framework. However, they refer to
factors such as the transmitted power level or the radio access
technology, whereas our work focuses on hardware factors
such as CPU and/or memory availability. Ali S. et al. [6]
present a fast uplink grant scheduling method based on a
probabilistic sleeping MABs (i.e. the set of available arms
varies over time) for machine type devices (MTDs) in wireless
systems. They know that the availability of the MTDs follows
the distribution of their traffic, which is not applicable to our
problem, much more general. Mahmood et al. [7] have an
objective closer to ours, which aims at minimizing the task
duration in mobile edge cloud contexts by studying the optimal
task segmentation. However, their algorithm performs optimal
resource allocation by solving a convex optimization problem
instead of using RL techniques. By and large, the differences
of our work with respect to the existing literature are twofold:
on the one hand, our objective is to efficiently approach task
dispatching and its parallelization among a set of available IoT
resources in a network-agnostic manner; that is, focusing only
on the available devices and not on how they communicate.
On the other hand, whereas in the literature each prospective
resource to be chosen is seen as an arm in the MAB settings,
we approach the problem in a novel way, by considering each
arm as a workload distribution.

III. SYSTEM MODEL

As outlined in Section I, we propose a scenario in which
an Edge infrastructure will comprise a set of heterogeneous
IoT devices with different capabilities. For example, we can
cite input devices such as sensors or cameras; devices with
limited storage and processing capacity (i.e., a Raspberry Pi);
low-power microcontrollers, or devices with a high processing
capacity, such as GPUs (Nvidia Jetson, for example); or
network devices, such as switches and routers.

In this context, one or multiple tasks will be parallelized
and executed in the edge infrastructure. Nodes (any device
with network capabilities and enough computational power to
receive and process data) will announce their presence in the
network as well as their specifications (CPU, available disk
and memory, battery level, etc.). Nodes available to perform
a given task will place themselves in a hierarchical structure,
with a node (either in a local Cloud or an Edge device) taking
the role of a master in charge of scheduling and dispatching
chunks of the parallel task among the available worker nodes,
according to MAB-based policies.

Based on the premises of the proposed scenario, we provide
a simulated environment, using the OpenAI GYM environ-
ment, for a set of IoT devices with different and non-stationary
features. The environment generates scenarios comprising a
random combination of three different types of IoT devices
with varying computational power and power consumption
rates denoted A, B, and C. The metrics used for each
device are shown as (maximal number of attainable GFLOPS,
mean consumption in Watts). We have assigned the values
A(1000, 80), B(500, 30) and C(100, 5). A is the most pow-
erful but also the most power hungry, C is the least powerful
computationally speaking but also the most economical power-
wise, while B fits somewhere in the middle. For realistic
purposes, every time a simulated device is initialized, a vari-
ation from a Gaussian distribution is applied to their nominal
performance and consumption with a factor of 5% of the mean
value, in order to reflect the little differences in performance
that we find on similar manufactured devices. The environment
will return, respectively, the following simulated performance
values (s perf) and simulated consumption values (s watts)
from the nominal values n perf and n watts:

s perf = n perf ∗ 5x

100
+ n perf (1)

s watts = n watts ∗ 5x

100
+ n watts (2)

With x ∈ X(Ω), X ∼ N(0, 1) in both cases.
The proposed scheduler allocates resources from a subset

of the generated devices in order to distribute and run a task
among the given resources. During the execution of the task,
the environment behaves accordingly to reflect the effect of
running a program on the IoT infrastructure and returning
the program’s achieved performance (Gflops, MIPS, consumed
Watts, execution time) according to the chosen devices.

Algorithm 1 outlines the steps followed by our program to
simulate the execution of a workload in our environment. At

Algorithm 1 Resource allocation algorithm

Input: Number of steps and runs
Input: Task workload
Output: Workload distribution with best estimated value

1: for each run do
2: Generate new random IoT environment
3: for each step do
4: action = action selection rule(reward)
5: Select devices to allocate workload
6: for d on selected devices do
7: assign[d]← workload× action[d]
8: observation[d]← perf feedback[d]
9: end for

10: Update IoT environment
11: reward = update reward(observation)
12: end for
13: end for

each step, a workload is parallelized and distributed among the
chosen devices according to the weights in the action array. Its
execution will return performance parameters such as GFlops
or execution time. Our environment simulates the execution of
a fictitious workload by returning the following performance
values where s perf , n perf , s watts and n watts are the
values from equations (1) and (2):

wl perf = s perf × y

100
+ s perf (3)

wl watts = s watts× y

100
+ s watts (4)

With y ∈ Y (Ω), Y ∼ N(0, 1) in both cases. Again, a variation
from a Gaussian distribution is applied to their performance
and consumption with a factor of 1% of the mean value, which
we deem to be representative enough of a typical workload
variation which would run on this system.

The environment provides a framework as well, to test dif-
ferent MAB agents, where each agent implements a workload
scheduler, as shown in the next section.

IV. MULTI-ARMED BANDITS: BASICS

In the prototypical multi-armed bandit (MAB) problem1, at
each stage, the agent chooses one action, or arm, and receives
a reward as a result. The agent’s objective is to choose the
actions that maximize its long-term cumulative reward. Since
the feedback received is limited, the agent does not know the
random process generating the rewards and only observes the
reward of the chosen arm at each stage (and not the rewards
of the unchosen ones).

Stochastic MABs: Formally, in a stochastic k-armed
bandit problem we define the set of possible actions or arms
as A = {a1, a2, . . . ak}, |A| = k. The action at ∈ A
selected at time t = {1, 2, . . . , T} receives a reward ut(at),
where ut(at) is a random variable drawn from the statistical
distribution Pa of arm at. The agent’s objective is to play the

1The multi-armed bandit name comes from the slot machines in casinos.

arm with the highest mean reward as many times as possible
over the horizon of play T , i.e., maximize the cumulative
reward

∑T
t=1 ut(at). In this setup, we can quantify the agent’s

performance at time T via the seminal notion of regret. Let
µa be the mean value of the reward distribution Pa. Following
Belmega et al.’s notation [8], we define

µ∗ = max
a∈A

µa and a∗ = argmax
a∈A

µa

respectively as the bandit’s maximal mean reward and the arm
that achieves it. We define the agent’s mean regret, R̄T , by
aggregating the mean difference between the best arm and
the online policy at chosen by the agent at each step t =
1, 2, . . . , T .

R̄T =

T∑
t=1

E[ut(a
∗)− ut(at)] = Tµ∗ −

T∑
t=1

E[ut(at)]. (5)

More precisely, the regret tells us whether or not the agent
fails to identify the best arm, i.e., the mean number of sub-
optimal choices made, up to the instant T (weighted by the
suboptimality gap of each arm). Maximizing the aggregated
reward will therefore amount to looking for a regret that
is sublinear in T , which is a property known as no regret
and defined mathematically as R̄T = o(T). This property
guarantees that the relative number of the agent’s sub-optimal
choices will decay to zero with time.

In stochastic MABs, the best online policy in terms of regret
minimization rate is the upper-confidence bound (UCB) algo-
rithm. In contrast to a pure exploitation policy, UCB includes
an additional exploration term, that leads to a logarithmic
regret. If we define the empirical mean payoff of arm a as

µ̂a,t
.
=

sum of rewards when a is chosen prior to t

number of times a is chosen prior to t

=

∑t−1
i=1 ui(a)·1ai=a∑t−1

i=1 1ai=a

=

∑t−1
i=1 ui(a)·1ai=a

Nt(a)
(6)

then UCB will select among the non-greedy actions according
to their potential for actually being optimal, according to its
equation:

at+1
.
= argmax

a∈A

[
µ̂a,t + c

√
ln t

Nt(a)

]
(7)

where c > 0 is the parameter that controls the degree of
exploration vs. exploitation trade-off. As already mentioned,
UCB has a logarithmic mean regret: R̄T ≤ O(log T), which
is attained with c > 2 and is optimal in stochastic problems.

Adversarial MABs: Another important MAB algorithm
is the exponential weights for exploration and exploitation
(EXP3) algorithm [9], which is tailored to a more general
environment, in which the problem is not purely stochastic in
nature and, therefore, it is not possible to identify an optimal
arm. This context is known as adversarial MABs, since the
agent may face any possible sequence of rewards, including
those imposed by an adversary that actively tries to minimize

the agent’s reward. In this non-stationary or adversarial MAB
setting, the notion of regret becomes:

RT = max
a∈A

(
T∑

t=1

ut(a)

)
−

T∑
t=1

ut(at). (8)

In order to reach a sublinear regret, the choice of arms has
to be randomized. More precisely, EXP3 keeps a cumulative
score of the performance of each arm and then employs a
random arm drawn with probability xt that is exponentially
proportional to this score

ût(a) = ut(a) · 1a=at/xa,t, ∀a ∈ A
yt+1 = yt + γût,

xt+1 = Λ(yt+1),

(9)

where the logit choice map Λ : Rk → ∆(A) is given by

Λ(y) =
(exp(ya))a∈A∑

b∈A exp(yb)
, (10)

where ∆(A) = {x ∈ Rk|xa ≥ 0, ∀a ∈ A,
∑

b∈A xb = 1}
is the probability simplex. The first step, called importance
sampling, is required to build ût, an unbiased estimate of
the unobserved reward vector based on the obtained (scalar)
reward ut(at) from choosing arm at.

EXP3 attains a sublinear regret R̄T = O(
√
kT log k)

with a trade-off parameter γ =
√
log k/(kT). This regret

minimization rate is indeed slower than that of UCB, but it is
nevertheless optimal in adversarial problems, in which UCB
has no theoretical performance guarantee. Worse, it can also
be brought to a halt entirely by an adversary.

V. OUR PROPOSED MAB-BASED ALGORITHMS

In our case, the set of available arms is not fixed and may
change at each stage: we call this a time-varying set of arms,
At. Our online policy chooses an action at ∈ At ⊆ A such
that |At| = n ≤ k where n is arbitrarily fixed from the
beginning2. The motivation behind this stems from the fact
that some of the IoT devices (k − n) might not be available
at each stage t. This hence leads to a non stochastic setting,
since the statistics of the available arms vary with time.

A. Dynamic regret

In this non stationary setting, we consider the dynamic
regret, which is defined as follows:

R⋆
T =

T∑
t=1

(u⋆
t − ut(at)), (11)

where u⋆
t = maxa∈At

ut(a). One can easily see that the above
target is much more ambitious than the classic regret in (8).
Indeed in (8), the online policies are compared with the best
fixed policy on average over the time horizon, whereas in
(11), the online policies are compared with the instantaneous
dynamic policy. Notice that online MAB-policies are only

2When n ≡ k, the classical setup stands where all arms are always available
and can be exploited by the agent.

exploiting past observed rewards or strictly causal information
in their updates, which hints that achieving no dynamic regret
is only possible when the environment is not varying too
drastically from one stage to the next [10].

Nevertheless, using the classic (as opposed to dynamic)
regret is not possible in this setting because we do not allow
our adapted algorithms to choose an arm that uses one or more
unavailable devices. When using a dynamic regret, by having
R⋆

T /T go to zero (which is equivalent to no dynamic regret,
i.e., R⋆

T = o(T)), this implies that our algorithms are capable
of tracking the instantaneous optimal solution as it changes in
time. Otherwise, this would imply that the dynamic optimal
solution has too strong temporal variations to be tracked by
our adaptive algorithms relying on past information solely.
In this case, a less ambitious target has to be identified by
properly adjusting the classic regret in (8) to account for the
time-varying available subset of arms, At, at each stage.

B. Our MAB-based task assignment algorithms for dynamic
available arms

We have modified, for both the UCB and EXP3 algorithms,
the subroutine devoted to selecting actions, in order to adapt
it to our problem where only a (known) subset of all actions
is available. Algorithms 2 and 3 show, respectively, our UCB
and EXP3 implementations.

Regarding our adapted UCB algorithm, we update a w
vector containing as inputs the scores: wa values for each
arm a, corresponding to the objective in (7) based on the
exploitation and exploration terms. Then, the action with the
maximum associated wa is chosen and we verify whether this
action is valid, i.e., whether it can be mapped only to available
devices. If it is valid, then this action is selected. Otherwise,
this action is discarded and we draw a new action with the
maximum associated score.

Regarding our adapted EXP3 algorithm, at each step, we
first choose a random action at+1 from the discrete probability
vector xt+1 as with classic EXP3. If the action is valid,
we choose it and the algorithm continues. Otherwise, we re-
draw (with replacement) a new random action from the same
distribution until a valid action is finally identified.

VI. NUMERICAL RESULTS

A. Simulation environment and parameters

In the existing literature on resource allocation problems via
MABs, each prospective resource to be chosen is typically
seen as an arm, or action. Here, we propose each action to
be a workload distribution, i.e., a set of devices chosen from
the available IoT devices, each receiving a fraction of the
workload. For example, for an infrastructure composed of six
devices where only three are chosen by the resource allocator,
possible valid actions, or arms, may be:

a1 = [0.3, 0.0, 0.1, 0.0, 0.0, 0.6]
a2 = [0.0, 0.0, 0.4, 0.4, 0.0, 0.2]
a3 = [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]

Algorithm 2 Adapted UCB algorithm

Require: tuning parameter c ≥ 2, initial reward sample µ̂a,1

from each arm a ∈ A
1: set na ← 1 for all a ∈ A
2: for t = 1 to T do
3: set wa ←

[
µ̂a,t + c

√
ln t

Nt(a)

]
for all a ∈ A

4: repeat
5: at+1 ← argmaxa(wa)
6: if at least one device of at+1 is not available then
7: discard arm at+1

8: end if
9: until all devices selected by at+1 are available

10: receive utility ut(at)
11: Nt+1(a) = Nt(a),∀a ̸= at, Nt+1(at)← Nt(at) + 1
12: µ̂at,t+1 ← (1− 1

Nt+1(at)
)µ̂at,t +

1
Nt+1(at)

ut(at)
13: end for

Algorithm 3 Adapted EXP3 algorithm

Require: Parameter γ > 0
1: set y1 ← 0
2: for t = 1 to T do
3: xt+1 ← Λ(yt)
4: repeat
5: at+1 ← draw(xt+1)
6: until at+1 use only devices available at this step
7: receive utility ut(at)
8: ût(a)← ut(a) · 1a=at

/xa,t,∀a ∈ A
9: yt+1 ← yt + γût

10: end for

Each element in an action array represents the percentage of
work delivered to each device according to the array index.
For example, for action a1, device 0 will receive 30% of
the workload, device 2 will receive 10%, and device 5 the
remaining 60%. After running the workload, the agent will
receive an aggregated reward from the selected devices. We
propose the following reward ut(at) for an action at executed
at step t:

ut(at) =
Gflop

α ∗ consumption+ β ∗ execution time2
(12)

Hence, to compute the reward, we take into account the
number of floating-point operations Gflop to be executed in
a task, and we compute its ratio with the sum of two criteria:
consumption and execution time. The term consumption
represents the workload’s aggregated consumed power in Watts
multiplied by the execution time: execution time, which
represents the workload task’s completion time, measured in
seconds. Each criterion is weighted by α for consumption and
(respectively) β for execution time2. We squared the value
of the execution time in the second term, after experiment-
ing with various workload simulations, to provide a balance
between energy consumption and execution time. From these
experiments, we decided to set α = 1 and β = 1.

TABLE I: Test battery executed in our framework

Generated devices Chosen devices Agent(s) Workload
4 2 UCB and EXP3 Invariable
6 2 UCB and EXP3 Invariable
8 2 UCB and EXP3 Invariable
4 4 UCB and EXP3 Invariable
6 2 UCB and EXP3 Variable
4 4 UCB and EXP3 Variable

The simulator has been evaluated by setting up a battery of
tests as presented in Table I. Generated devices represents the
number of devices available in our IoT infrastructure. Chosen
devices is the number of IoT devices – chosen among the
generated devices – that the scheduler will use to distribute and
run the workload. We choose these ratios of generated/chosen
devices by considering that, in a real setup, an agent will
not exceed an occupation of 75% of the available devices,
although we have also tested a 4 over 4 devices (or 100%)
case for performance testing purposes. In all cases, we have
evaluated the behaviour of both our adapted UCB and EXP3
algorithms. To better understand whether the learning curve
of our algorithms depends on the type of workload, we
have tested them either by generating a workload and using
it through the whole experiment (Invariable Workload, by
default) or by generating a new workload at each step of the
algorithm (Variable Workload, indicated as VW in the results).
In the latter case, the workloads vary between 500 and 5000
GFlops. Each test comprises Tmax = 10000 algorithm steps,
which makes up for a run, and we execute 20 such runs

Fig. 1: Average performance for 2 devices chosen out of 8.
Each figure shows the dynamic optimal rewards (blue dots)
as well as the adaptive MABs obtained reward (orange dots),
at each step. Data are averaged over 20 runs with different
scenarios. Top: our adapted UCB. Bottom: our adapted EXP3.

to obtain the average behaviour of each algorithm. We have
measured the convergence speed of the reward and the regret
for each test.

B. Simulation results

Figure 1 shows our adapted UCB and EXP3 performance
for the 2 over 8 devices test proposed in Table I. Dots in
blue show the dynamic optimal reward at every step, whereas
the dots in orange show the obtained reward for the chosen
actions. We appreciate that, for this case in which the workload
is invariable, UCB quickly tracks the optimal rewards. EXP3,
however, improves much more slowly although it seems to
converge with a higher number of steps. The dynamic regret
for both UCB and EXP3 are displayed in figures 2 and 3, re-
spectively. They confirm the same behaviour for other settings:
2 devices over 4, 6 or 8 devices and invariable workloads.

When using variable workloads we have observed a gap
between the obtained rewards by our adapted MAB algorithms
and the dynamic optimal rewards. The reason for this is
that, if the workloads strongly vary in time, then the optimal
work distribution among the available devices can also change
considerably. Figures 2 and 3 show that there is indeed an
offset in the average dynamic regret for variable workloads
and, hence, it does not tend to zero. The reason lies in the
fact that the dynamic regret is a much more ambitious target
than the classic regret. A zero dynamic regret is very hard,
if not impossible, to achieve with strictly causal information
(only past rewards are observed) and in highly dynamic
environments. In such environments, a less ambitious target
has to be defined inspired from the classical regret.

Fig. 2: Dynamic regret obtained by our adapted UCB algo-
rithm for our test battery. We notice the convergence towards
zero in all cases with invariable workloads.

Fig. 3: Dynamic regret obtained by our adapted EXP3 algo-
rithm for our test battery. The regret’s convergence towards
zero is not obvious, although it does decrease with time.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we exploit a modified version of the well-
known UCB and EXP3 multi-armed bandit algorithms to
propose a resource allocation scheduler for Cloud-Edge Com-
puting environments. The scheduler selects a subset of IoT
devices among the available ones to dispatch a computational
workload and hence, takes advantage of the available CPU
cycles of such devices. Our simulation results show that, for
a fixed workload and a subset of the available devices, both
algorithms can track the dynamic optimal rewards, with UCB
having a much faster dynamic regret decay rate. For variable
workloads, though, none of the algorithms are able to track
the optimal rewards based only on strictly causal information,
in which a less ambitious target needs to be introduced.
These results are very promising in realistic environments,
given that the scheduler will always select only a subset
of available IoT devices and it will run identical or very
similar computationally-intensive workloads. Future work may
include a more exhaustive testbed where a larger number
of arms has to be accounted for and in which our MAB
algorithms may have to be adjusted further. This work is a
first step in considering a larger setup where the scheduler
will be adapted to a real IoT testbed.

REFERENCES

[1] S. Deng, Z. Xiang, P. Zhao, J. Taheri, H. Gao, J. Yin, and A. Y. Zomaya,
“Dynamical resource allocation in edge for trustable internet-of-things
systems: A reinforcement learning method,” vol. 16, no. 9, pp. 6103–
6113.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, 2nd ed. The MIT Press, 2018. [Online]. Available:
http://incompleteideas.net/book/the-book-2nd.html

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” vol. 47, no. 2, pp. 235–256. [Online].
Available: https://doi.org/10.1023/A:1013689704352

[4] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E.
Schapire, “The nonstochastic multiarmed bandit prob-
lem,” vol. 32, no. 1, pp. 48–77. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/S0097539701398375

[5] X. Liu, J. Yu, Z. Feng, and Y. Gao, “Multi-agent reinforcement learning
for resource allocation in IoT networks with edge computing,” vol. 17,
no. 9, pp. 220–236.

[6] S. Ali, A. Ferdowsi, W. Saad, and N. Rajatheva, “Sleeping multi-armed
bandits for fast uplink grant allocation in machine type communica-
tions,” in 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6.

[7] A. Mahmood, Y. Hong, M. K. Ehsan, and S. Mumtaz, “Optimal
Resource Allocation and Task Segmentation in IoT Enabled Mobile
Edge Cloud,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 12, pp. 13 294–13 303, Dec. 2021.

[8] E. V. Belmega, P. Mertikopoulos, R. Negrel, and L. Sanguinetti, “Online
convex optimization and no-regret learning: Algorithms, guarantees and
applications.” [Online]. Available: http://arxiv.org/abs/1804.04529

[9] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire,
“Gambling in a rigged casino: the adversarial multi-armed
bandit problem,” in Annual Symposium on Foundations of
Computer Science - Proceedings, pp. 322–331. [Online]. Available:
https://princeton-staging.pure.elsevier.com/en/publications/gambling-in-
a-rigged-casino-the-adversarial-multi-armed-bandit-pr

[10] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games.
Cambridge university press, 2006.

