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Abstract: High spatial resolution land surface temperature (LST, <100 m) is used in a wide range
of applications such as agricultural water consumptive use estimation, crop water
stress monitoring, fire mapping, urban heat island and volcano eruption detection. LST
retrievals from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space
Station (ECOSTRESS) launched in June 2018, together with the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER, launched in 1999)
and the Landsat series, comprise the state-of-the-art high spatial resolution LST
datasets publicly accessible. The U.S. Geological Survey (USGS) Landsat LST is
generated using the single-channel (SC) algorithm. The ASTER and ECOSTRESS
LST are generated using the temperature and emissivity separation (TES) algorithm
developed by Jet Propulsion Laboratory (JPL). Recently, we generated the
ECOSTRESS LST product over Europe and Africa using both the TES and split-
window (SW) algorithms under the European ECOSTRESS Hub (EEH). Although
extensive validations have been conducted for the ASTER and Landsat LST products,
a further validation of different types of ECOSTRESS LST products is still in need.
Especially, a cross-satellite comparison of ECOSTRESS, ASTER and Landsat LST is
required for a thorough understanding of the consistency among the different LST
products and will furthermore support the adaptation of LST retrieval algorithms for
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future thermal missions. Here, we validated the JPL TES (Collection 1), EEH TES and
EEH SW ECOSTRESS LST products over Europe and Africa for the period between
August 1, 2018 and December 31, 2021 by comparing against the in-situ
measurements at 9 sites over a wide variety of land cover types. Meanwhile, the
validation results were compared with those obtained for ASTER and Landsat LST at
the same sites. The results reveal that the three ECOSTRESS LST products have
consistent performances, with an RMSE around 2 K overall. A cold bias around 1 K
exists for all three ECOSTRESS LST, which is related to an issue with the sensor’s
radiometric calibration in Collection 1 data that is addressed in Collection 2 and to be
released in 2022. The Landsat LST shows a similar accuracy, with an RMSE of 2.20 K
and bias of 0.54 K. The EEHSW LST show the highest consistency with Landsat LST,
probably due to the identical emissivity correction process. The performance of ASTER
LST is also similar, with an RMSE of 1.98 K and bias of 0.9 K. σ (precision) of all the
LST products are around 1.5 K. Future recalibration of the ECOSTRESS Level 1
radiance data in Collection 2 release is expected to further improve the accuracy of
ECOSTRESS LST.
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Abstract 18 

High spatial resolution land surface temperature (LST, <100 m) is used in a wide range of 19 

applications such as agricultural water consumptive use estimation, crop water stress 20 

monitoring, fire mapping, urban heat island and volcano eruption detection. LST retrievals 21 

from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 22 

(ECOSTRESS) launched in June 2018, together with the Advanced Spaceborne Thermal 23 

Emission and Reflection Radiometer (ASTER, launched in 1999) and the Landsat series, 24 

comprise the state-of-the-art high spatial resolution LST datasets publicly accessible. The U.S. 25 

Geological Survey (USGS) Landsat LST is generated using the single-channel (SC) algorithm. 26 

The ASTER and ECOSTRESS LST are generated using the temperature and emissivity 27 
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separation (TES) algorithm developed by Jet Propulsion Laboratory (JPL). Recently, we 28 

generated the ECOSTRESS LST product over Europe and Africa using both the TES and split-29 

window (SW) algorithms under the European ECOSTRESS Hub (EEH). Although extensive 30 

validations have been conducted for the ASTER and Landsat LST products, a further validation 31 

of different types of ECOSTRESS LST products is still in need. Especially, a cross-satellite 32 

comparison of ECOSTRESS, ASTER and Landsat LST is required for a thorough 33 

understanding of the consistency among the different LST products and will furthermore 34 

support the adaptation of LST retrieval algorithms for future thermal missions. Here, we 35 

validated the JPL TES (Collection 1), EEH TES and EEH SW ECOSTRESS LST products 36 

over Europe and Africa for the period between August 1, 2018 and December 31, 2021 by 37 

comparing against the in-situ measurements at 9 sites over a wide variety of land cover types. 38 

Meanwhile, the validation results were compared with those obtained for ASTER and Landsat 39 

LST at the same sites. The results reveal that the three ECOSTRESS LST products have 40 

consistent performances, with an RMSE around 2 K overall. A cold bias around 1 K exists for 41 

all three ECOSTRESS LST, which is related to an issue with the sensor’s radiometric 42 

calibration in Collection 1 data that is addressed in Collection 2 and to be released in 2022. The 43 

Landsat LST shows a similar accuracy, with an RMSE of 2.20 K and bias of 0.54 K. The 44 

EEHSW LST show the highest consistency with Landsat LST, probably due to the identical 45 

emissivity correction process. The performance of ASTER LST is also similar, with an RMSE 46 

of 1.98 K and bias of 0.9 K. σ (precision) of all the LST products are around 1.5 K. Future 47 

recalibration of the ECOSTRESS Level 1 radiance data in Collection 2 release is expected to 48 

further improve the accuracy of ECOSTRESS LST. 49 

Keywords: High spatial resolution LST, ECOSTRESS, ASTER, Landsat 50 

1. Introduction 51 
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Land surface temperature (LST) is an important biophysical variable that controls the 52 

magnitude and variability of terrestrial ecosystem processes (Bai et al. 2022; Li et al. 2013; 53 

Mallick et al. 2015; Mallick et al. 2014). It has been identified as a critical Earth System Data 54 

Record (ESDR) and Essential Climate Variable (ECV) (NASA 2005, 2011), as well as one of 55 

the high-priority parameters of the International Geosphere and Biosphere Program (IGBP) 56 

(Townshend et al. 1994). LST carries the imprints of surface water stress and is immensely 57 

sensitive to evaporative cooling. It is a preeminent variable for studying evaporation and 58 

surface-atmosphere exchange (Mallick et al. 2018), climatic and environmental studies (Hulley 59 

et al. 2021), surface radiation budget (Hu et al. 2016; Liang et al. 2010), drought monitoring 60 

(Anderson et al. 2016; Hu et al. 2020) and urban heat island (Chakraborty et al. 2021).  61 

High spatial resolution LST (<100 m) is especially important for agricultural applications 62 

including agricultural consumptive water estimation, irrigation management, crop water stress 63 

monitoring since the pixel size is expected to match the individual field size (Anderson et al. 64 

2012; Anderson et al. 2021; Ekinzog et al. 2022). Moreover, for urban environmental studies, 65 

high spatial resolution LST is also needed due to the marked spatial heterogeneity of urban 66 

canopies (Liu and Zhang 2011; Yuan and Bauer 2007). Also, natural hazard early warning and 67 

mitigation such as fire detection and volcanic process monitoring (Guangmeng and Mei 2004; 68 

Ramsey and Flynn 2020; Silvestri et al. 2020) require high spatial resolution LST for risk 69 

management. 70 

Thermal infrared (TIR) remote sensing is the most straightforward way to retrieve LST at 71 

global scales due to the close relation of longwave TIR radiation from the Earth’s surface to 72 

surface temperature and the extensive spatial coverage of satellite observations (Becker and Li 73 

1995; Li et al. 2013; McMillin 1975). Several key difficulties exist in LST retrieval from TIR 74 

radiance measured at the top of atmosphere (TOA): 1) estimation of LST is an underdetermined 75 

problem considering there is always one more unknown than the thermal channels (N 76 
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emissivities + 1 temperature > N TIR channels), 2) accurate atmospheric correction is difficult 77 

to implement due to the uncertainties in the atmospheric water content and vertical profile data 78 

and the error propagation in the atmospheric radiative transfer models, 3) decoupling LST and 79 

emissivity is challenging considering the pronounced variation of emissivity among different 80 

land surface types and soil compositions. Based on different assumptions on how to deal with 81 

these challenges, multiple algorithms have been developed to retrieve LST depending on the 82 

thermal bands available, including single-channel (SC) (Qin et al. 2001), split-window (SW) 83 

(McMillin 1975; Wan and Dozier 1996) and temperature and emissivity separation (TES) 84 

(Gillespie et al. 1998) algorithms. These algorithms have been successfully applied to different 85 

satellite sensors to generate operational LST products, including Landsat (Malakar et al. 2018), 86 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (Abrams 2000), 87 

Moderate Resolution Imaging Spectroradiometer (MODIS) (Wan 2014; Wan and Li 1997), 88 

Advanced Baseline Imager (ABI) series (Yu et al. 2008) and Visible Infrared Imaging 89 

Radiometer Suite (VIIRS) (Islam et al. 2016; Li et al. 2014), among others. 90 

Since the launch in June 2018, the ECOsystem Spaceborne Thermal Radiometer 91 

Experiment on Space Station (ECOSTRESS), has acquired the most detailed LST images (38 92 

m × 69 m) with the most frequent revisits (3-5 days) ever from space (Fisher et al. 2020; Hook 93 

et al. 2019; Hulley et al. 2021), compared with the LST retrievals from the comparable satellites 94 

in orbit, i.e., ASTER (90 m, 16-day revisit) (Abrams 2000; Abrams et al. 2015) and Landsat 95 

series (60 m for Landsat 7 ETM+, 100 m for Landsat 8/9 TIRS/TIRS2, 16-day revisit) (Wulder 96 

et al. 2019). Although considerable effort has been put into the validation activities for ASTER 97 

(Sabol Jr et al. 2009; Sobrino et al. 2007; Wang and Liang 2009) and Landsat LST products 98 

(Malakar et al. 2018; Wang et al. 2019; Wang et al. 2020), a further evaluation of different 99 

types of LST products from the newly launched ECOSTRESS mission is still needed (Hulley 100 

et al. 2021), especially inter-comparison with ASTER and Landsat LST products, to better 101 
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understand their consistency in different surface and atmospheric scenarios and to facilitate the 102 

preparation of future TIR missions such as National Aeronautics and Space Administration’s 103 

(NASA) future Surface Biology and Geology (SBG) mission in 2026 (Cawse-Nicholson et al. 104 

2021), European Space Agency’s (ESA) Land Surface Temperature Monitoring (LSTM) 105 

mission in 2028 (Koetz et al. 2019) and the Franco-Indian joint Thermal infraRed Imaging 106 

Satellite for High-resolution Natural resource Assessment (TRISHNA) mission in 2025 107 

(Lagouarde et al. 2018).  108 

In this study, we evaluated three ECOSTRESS LST products, which are the NASA official 109 

product (Collection 1) generated using the Jet Propulsion Laboratory (JPL) TES algorithm and 110 

those generated using the SW and TES algorithms from the ECOSTRESS European Hub 111 

(EEH). The evaluation was conducted by comparing each ECOSTRESS LST product with the 112 

in-situ measurements at 9 sites between August 1, 2018 and December 31, 2021 over Europe 113 

and Africa. Additionally, the evaluation results were compared with the ASTER LST produced 114 

by the ASTER Science Team and the Landsat LST produced by U.S. Geological Survey 115 

(USGS) at the same sites. The evaluation is expected to facilitate the use of ECOSTRESS LST 116 

products with a better understanding of their accuracy and support the LST retrieval for the 117 

future TIR missions. 118 

2. Data 119 

2.1. Satellite LST products 120 

2.1.1. ECOSTRESS LST 121 

ECOSTRESS was launched to the international space station (ISS) on June 29, 2018. The 122 

instrument includes a TIR multispectral whiskbroom scanner with five bands between 8 and 123 

12.5 μm, which scans at ±25° and results in a swath width of ~400 km depending on the ISS 124 

height. The ISS orbit allows excellent coverages of the selected targets with multiple revisits 125 

in the diurnal cycle. Three different ECOSTRESS LST products were used in this evaluation: 126 
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the LST estimated using the TES algorithm of NASA JPL (named JPLTES LST hereafter), 127 

that using the TES algorithm by EEH (named EEHTES LST hereafter) and that using the SW 128 

algorithm by EEH (named EEHSW LST hereafter). 129 

1) JPLTES LST 130 

Initially, a 5-band TES algorithm was implemented on the ECOSTRESS observations to 131 

retrieve LST. After May 15, 2019, a 3-band TES algorithm was used to retrieve LST from the 132 

ECOSTRESS thermal bands centered at 8.78, 10.49 and 12.09 μm and the other two bands 133 

centered at 8.29 and 9.2 μm were discarded during the data transfer process. This is because 134 

the primary and secondary mass storage units (MSU-A and -B) failed in flight during 2019 and 135 

TIR bands 1 and 3 were no longer downloaded in the new acquisition mode to maximize the 136 

download capacity (Hulley et al. 2021). The atmospheric correction was conducted using the 137 

atmospheric Radiative Transfer for TOVS (RTTOV) model (Saunders et al. 2018) with inputs 138 

of atmospheric water vapor and temperature profiles from the NASA GMAO GEOS5-FP 139 

reanalysis product. The GEOS atmospheric profiles depict the atmospheric state at 42 pressure 140 

levels and are available in near real time with a spatial resolution of 0.25° in latitude and ~0.33° 141 

in longitude every 3 hours. To match the ECOSTRESS observations, spatial and temporal 142 

interpolation were conducted on the GEOS5 atmospheric profiles. The three atmospheric 143 

parameters from the RTTOV model outputs (i.e., atmosphere upwelling and downwelling 144 

radiances and transmissivity) were used to obtain the surface-leaving radiance, which served 145 

as an input into the TES algorithm to estimate LST and emissivity simultaneously in an iterative 146 

way. The pixels were aggregated from the native resolution (38 m × 69 m) to square pixels 147 

(~70 m × 70 m) to facilitate the subsequent usages. More details of the JPL-TES algorithm can 148 

be found in the algorithm theoretical basis document (ATBD, 149 

https://ecostress.jpl.nasa.gov/data/atbds-summary-table). The ECOSTRESS JPLTES LST 150 
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products (ECO2LSTE) were downloaded from the NASA Earthdata Search platform 151 

(https://search.earthdata.nasa.gov/search). 152 

2) EEHTES LST 153 

EEH is a project funded by ESA, aiming at developing LST and evapotranspiration (ET) 154 

products for Europe and Africa using the high spatial and temporal resolution ECOSTRESS 155 

TIR observations. Two different LST algorithms (i.e., TES and SW) and three ET models were 156 

implemented in EEH. The unique feature of EEH is that both the LST algorithms are driven by 157 

homogenized radiance and environmental datasets, and all the evaporation models are forced 158 

by uniform upper boundary and lower boundary conditions. This characteristic enables 159 

appropriate comparisons between different models for a wide range of surface, energy, and 160 

water availability scenarios. Overall, the EEH will serve as a support to ESA’s next generation 161 

Copernicus High Priority Candidate LSTM mission. 162 

The EEHTES LST is retrieved in a similar way to the JPLTES LST except for the 163 

atmospheric profiles input into RTTOV for estimating the atmospheric parameters. To generate 164 

the EEHTES LST, the European Centre for Medium-range Weather Forecasting (ECMWF) 165 

ERA5 hourly products on single level and on 37 pressure levels were used to mimic the near-166 

surface and vertical atmospheric conditions, respectively. Mode details of the EEHTES LST 167 

retrieval process can be found in the ATBD (http://isp-168 

projects.private.list.lu/eeh/public/datasets).The EEHTES LST products between August 2018 169 

and December 2021 are available on the Food Security-TEP portal (https://foodsecurity-170 

tep.net/). 171 

3) EEHSW LST 172 

The EEHSW algorithm follows the generalized SW method proposed by Wan and Dozier 173 

(1996) as below: 174 

𝑇𝑠 = 𝑏0 + (𝑏1 + 𝑏2
1 − 𝜀

𝜀
+ 𝑏3

∆𝜀

𝜀2
)
𝑇11 + 𝑇12

2
+ (𝑏4 + 𝑏5

1 − 𝜀

𝜀
+ 𝑏6

∆𝜀

𝜀2
)
𝑇11 − 𝑇12

2
 

(1) 
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+𝑏7(𝑇11 − 𝑇12)
2 

where Ts is the LST (in K), T11 and T12 are at-sensor brightness temperatures (in K) centred 175 

around 11 and 12 µm (bands 4 and 5 in the case of ECOSTRESS), respectively, ε is the mean 176 

emissivity of the SW channels (bands 4 and 5), ∆ε is the emissivity difference between the SW 177 

channels, and b0 to b7 are the algorithm coefficients. 178 

To obtain the eight coefficients in Eq. 1, a simulation dataset was compiled using the 179 

RTTOV 12 atmospheric radiative transfer model and the SeeBor V5.0 atmospheric profile 180 

database. The atmospheric transmittance and the atmospheric upwelling radiance are simulated 181 

over land for the SW channels using all the 9136 profiles at viewing zenith angle (VZA) from 182 

nadir to 35° with an increment of 5° and the atmospheric downwelling radiance at 53°. The 183 

numbers of daytime and night-time profiles are 4948 and 4188, respectively. The volumetric 184 

water vapor content (WVC) was divided into six subranges with an overlap of 0.5 g/cm2: [0, 185 

1.5], [1, 2.5], [2, 3.5], [3, 4.5], [4, 5.5] and [5, 7.8]. To maximize the algorithm performance 186 

over a wide range of surface conditions, the LST in the simulation was set as follows. For cold 187 

atmospheric profiles (T0 < 280 K), the LST varies from T0 - 20 K to T0 + 4 K in steps of 5 K, 188 

and for warm atmospheric profiles (T0 > 280 K), LST varies from T0 - 5 K to T0 + 29 K in steps 189 

of 5 K. In addition, a total of 81 emissivity spectra were selected from the ECOSTRESS 190 

spectral library, including vegetation, water, ice, snow, rock, sand and soil spectra. Finally, for 191 

given LST, LSE, and atmospheric parameters, the TOA radiances in ECOSTRESS bands 4 and 192 

5 were simulated, and the brightness temperatures were calculated. Once the simulation 193 

database was established, the eight coefficients were determined via statistical regression. 194 

The enterprise LSE estimation method based on the ASTER GED v3 product was used to 195 

provide emissivity (Hulley et al. 2015; Malakar et al. 2018; Yu et al. 2017). The bare soil 196 

emissivities were first extracted from the ASTER GED and then converted to the ECOSTRESS 197 

SW channels. Adjustments over vegetated surfaces and snow/ice covered surfaces were made 198 
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by using the vegetation fractional coverage and fraction snow extent data from the Copernicus 199 

Global Land Service (CGLS). Moreover, constant emissivities were assigned to pixels marked 200 

as water. 201 

After acquiring the emissivity for each pixel in the image and the regression coefficients 202 

stratified by VZA and WVC, LST was calculated directly from the TOA radiances for clear-203 

sky scenes screened using cloud mask. The WVC information was obtained from the ERA5 204 

hourly single level data, which was interpolated temporally and spatially to ECOSTRESS 205 

observations. Mode details of the EEHSW LST retrieval process can be found in the ATBD 206 

(http://isp-projects.private.list.lu/eeh/public/datasets). The EEHSW LST products between 207 

August 2018 and December 2021 are also available on the Food Security-TEP portal 208 

(https://foodsecurity-tep.net/). 209 

2.1.2. ASTER LST 210 

ASTER is a high spatial resolution radiometer onboard the NASA Earth Observing System 211 

(EOS) Terra satellite, which was launched into a sun-synchronous orbit on December 19, 1999. 212 

It collects 14 bands from the visible to the thermal wavelengths, among which five bands are 213 

in the TIR spectrum with a spatial resolution of 90 m, centered at 8.30, 8.65, 9.05, 10.60 and 214 

11.30 μm, respectively. The ASTER LST product (AST08) was generated using the TES 215 

algorithm from the 5 TIR bands by the U.S./Japan ASTER Science team (Gillespie et al. 1998). 216 

Previous studies (Sabol Jr et al. 2009; Sobrino et al. 2007; Wang and Liang 2009) showed that 217 

the ASTER LST accuracy is within the 1.5 K and the LST estimation error could increase under 218 

unusually humid atmosphere over cold surfaces due to the incomplete atmospheric correction 219 

(Sabol Jr et al. 2009). The AST08 products were downloaded from the NASA Earthdata Search 220 

platform (https://search.earthdata.nasa.gov/search). 221 

2.1.3. Landsat LST 222 
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The Landsat mission is a joint NASA/USGS program. It collects the longest record of high 223 

spatial resolution TIR data (60−120 m) since the launch of Landsat 4 (July 1982). The Landsat 224 

LST produced by USGS was estimated using the operational single-channel (OSC) algorithm 225 

developed by Malakar et al. (2018). The three atmospheric parameters were estimated by 226 

inputting the atmospheric profile data into the MODTRAN 5.2 model. The emissivity was 227 

estimated in the same way as for the EEHSW LST based on the ASTER GED algorithm. The 228 

surface emittance was then calculated as follows: 229 

𝐵𝑖(𝑇𝑠) =
𝐿𝑇𝑂𝐴,𝑖 − 𝐿𝑢𝑝,𝑖 − (1 − 𝜀𝑖)𝜏𝑖𝐿𝑑𝑜𝑤𝑛,𝑖

𝜀𝑖𝜏𝑖
 

(2) 

where Ts is the surface temperature, B is the Planck function, LTOA,i is the TOA radiance in band 230 

i, Lup,i, Ldown,i and τi are atmosphere upwelling, downwelling radiances and transmissivity, 231 

respectively, εi is the narrow-band emissivity in band i. Finally, LST was calculated from the 232 

surface emittance based on a look up table (Malakar et al. 2018). The RMSE of the USGS 233 

Landsat LST was reported to be approximately 2.5 K (Wang et al. 2022). The Landsat-7 and -234 

8 LST data were downloaded from the Google Earth Engine (GEE).  235 

2.2. Ground measurements 236 

Ground measurements from five different networks were used to evaluate the high spatial 237 

resolution LST, including the Karlsruhe Institute of Technology (KIT) network, the Copernicus 238 

network, the Baseline Surface Radiation Network (BSRN), the Global Change Unit (GCU) 239 

network and the Integrated Carbon Observation System (ICOS) network. The detailed 240 

information of these sites is listed in Table 1. The spatial distribution of the 9 sites is shown in 241 

Fig. 1. The pictures of the landscape around the sites are shown in Fig. 2. 242 

The KIT and Copernicus stations were designed to validate LST over relatively 243 

homogeneous surfaces. The surface upwelling and downwelling radiances are collected using 244 

narrow-band radiometers measuring TIR radiance between 9.6 and 11.5 μm (Göttsche et al. 245 

2016). The radiometers are mounted at heights between 12 and 28 m and measure the radiances 246 
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once per minute, which results in fields of view (FOV) between 3 and 14 m2. Two KIT sites 247 

over desert and water surface and one Copernicus site over mixed forests were selected.  248 

The BSRN was set up to provide observations of the best possible quality for short- and 249 

long-wave surface radiation fluxes sampled at high frequency (once per minute). The 250 

measurements from well calibrated pyrgeometers are expected to provide reference for the 251 

validation of satellite-based estimates of the surface radiative fluxes and for the comparison to 252 

climate model calculations (Driemel et al. 2018). Here, only one BSRN site CAB was selected 253 

considering both upwelling and downwelling radiation fluxes are collected at this site and the 254 

accuracy of the measurements has been demonstrated in the previous studies (Trigo et al. 2021).  255 

The GCU sites were set up in Spain for the calibration of TIR sensors and the validation 256 

of satellite LST products (Sobrino and Skoković 2016). Thermal radiance measurements are 257 

collected for the spectral range between 8 and 14 μm. The measurements are collected every 258 

10 s and averaged to 5 min. Two permanent sites providing long-term observations were 259 

selected from the GCU sites.  260 

The ICOS network was developed to produce standardized, high-precision and long-term 261 

observations for understanding the carbon cycle and providing necessary information on 262 

greenhouse gases. The ICOS sites measure the fluxes of greenhouse gases, living and non-263 

living components as well as drivers (e.g., radiations) for the exchange of greenhouse gases, 264 

water and energy between ecosystems and the atmosphere. We selected three sites over 265 

different land surface types. The upwelling and downwelling radiations are measured using 266 

pyrgeometers and averaged for each half hour.  267 

Table 1 Information of the selected 9 in-situ measurement sites. 268 

Site 

No. 

Site location Site 

ID 

Network Latitude Longitude Surface 

type 

Emissivity 

1 
Gobabeb wind 

tower, Namibia 
GBB KIT 23.551° S 15.051° E 

Barren/spa

rsely 

vegetated 

0.940 Hulley 

et al. (2021) 
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2 
Lake 

Constance, 

Germany 

CNS KIT 47.605° N 9.444° E  Water 0.973 Hulley 

et al. (2021)  

3 
KIT Forest, 

Germany 
KIT Copernicus 49.091° N 8.425° E Mixed 

forest 

0.988 Freitas 

et al. (2009) 

4 
Cabauw, 

Netherlands 
CAB BSRN 51.971° N 4.927° E Grassland 

From 

ECOSTRESS 

5 
Fuente Duque, 

Donana, Spain 
FDU GCU 36.998° N 6.434° W Marshland 

Measurements 

Sobrino and 

Skoković 

(2016)  

6 

Balsa Blanca, 

Cabo de Gata, 

Spain 
CDG GCU 36.939° N 2.034° W 

Woody 

savannas 

Measurements 

Sobrino and 

Skoković 

(2016) 

7 
Fontainebleau-

Barbeau, 

France 

FON ICOS 48.476° N 2.780° E 

Deciduous 

broadleaf 

forest 

From 

ECOSTRESS 

8 Lison, Italy LSN ICOS 45.740° N 12.750° E Cropland 
From 

ECOSTRESS 

9 
San Rossore 2, 

Italy 
SR2 ICOS 43.732° N 10.291° E 

Evergreen 

needleleaf 

forest 

From 

ECOSTRESS 

Estimating LST from the radiance measurements of the KIT, Copernicus and GCU sites 269 

was achieved by inverting the Planck’s law as follows: 270 

𝐵𝑖(𝑇𝑠) =
𝐿𝑢𝑝,𝑖 − (1 − 𝜀𝑖)𝐿𝑑𝑜𝑤𝑛,𝑖

𝜀𝑖
 

(3) 

where Lup,i is the upwelling longwave radiance measured by the station radiometers, Ldown,i is 271 

the downwelling thermal radiance, which is measured by an additional radiometer for the KIT 272 

and Copernicus sites (Duan et al. 2019) and calculated by inputting MOD07 atmospheric 273 

profiles into the MODTRAN model for the GCU sites (Sobrino and Skoković 2016),  εi is the 274 

narrow-band emissivity, Ts is the inverted temperature. The band-effective emissivity was 275 

obtained using the methods listed in Table 1. 276 

For the longwave radiation measurements from the BSRN and ICOS sites, the LST is 277 

estimated by inverting the Stefan-Boltzmann’s law as follows: 278 

𝑇𝑠 = √
𝑅𝑢𝑝 − (1 − 𝜀𝐵𝐵)𝑅𝑑𝑜𝑤𝑛

𝜀𝐵𝐵𝜎

4

 

(4) 
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where Rup and Rdown are the measured upward and downward longwave radiations, respectively, 279 

εBB is the broadband emissivity and σ is the Stefan-Boltzmann constant. The broadband 280 

emissivity was estimated from the ECOSTRESS emissivity retrievals in the three thermal 281 

bands as follows:  282 

𝜀𝐵𝐵 = 0.3287𝜀2 + 0.3783𝜀4 + 0.3158𝜀5 − 0.0255 (5) 

where ε2, ε4 and ε5 are the emissivity retrievals in bands 2, 4 and 5, respectively. 283 

  
Fig. 1 Spatial distribution of the nine in-situ measurement sites, including 8 sites over Europe and 1 site over 284 

Africa. 285 
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Fig. 2 High resolution images for the nine sites from Google Earth. 286 

3. Evaluation method 287 

3.1. Temperature-based validation 288 

In this study, the Temperature-based validation strategy was adopted for the LST 289 

evaluation (Hulley et al. 2021). The different LST products were compared with in-situ 290 

measurements for the period between August 1, 2018 and December 31, 2021 over Europe and 291 

Africa. To mitigate cloud contamination, only pixels surrounded by 15 × 15 (approximately 1 292 

km × 1 km) cloud-free pixels were considered for further evaluation. This is required for a fair 293 

evaluation of the ECOSTRESS LST since the ECOSTRESS cloud mask relies only on TIR 294 

bands. Meanwhile, the “3σ-Hampel identifier” was adopted to remove the outliers caused by 295 

possible cloud contamination or other radiance-related issue (Duan et al. 2019). The standard 296 

deviation used in the method is calculated as follows 297 

𝑆 = 1.4826 × median(|𝑥𝑖 − 𝑥𝑚|) (6) 

where S is the robust standard deviation, xi is the difference between the LST retrieval and in-298 

situ measurement, xm is the median of the difference. LST retrievals with LST differences 299 

below xm-3S or above xm+3S were regarded as outliers and excluded from the evaluation. To 300 
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ensure the spatial representativeness of the in-situ measurements, only match-ups with a 301 

standard deviation <1 K within a 3 × 3 window centered on the sites were retained.  302 

Three indices were used to quantify the performance of these LST products based on the 303 

recommendation by the Committee on Earth Observation Satellites (CEOS) Working Group 304 

on Calibration and Validation - Land Product Validation (LPV) Subgroup (Guillevic et al. 305 

2018). The total uncertainty is estimated via root-mean-square error (RMSE) as follows: 306 

𝑅𝑀𝑆𝐸 = √
∑(𝐿𝑆𝑇𝑠𝑎𝑡 − 𝐿𝑆𝑇𝑖𝑛𝑠𝑖𝑡𝑢)

2

𝑁
 

(7) 

where LSTsat and LSTinsitu are the LST products and in-situ measurements, respectively, N is 307 

the sample number. The accuracy is estimated via bias μ as follows: 308 

𝜇 = median(𝐿𝑆𝑇𝑠𝑎𝑡,𝑖 − 𝐿𝑆𝑇𝑖𝑛𝑠𝑖𝑡𝑢,𝑖). (8) 

The median is used in lieu of the mean to avoid the impacts of outliers in statistics. Similarly, 309 

the median of the absolute residual is calculated as an estimate of the precision σ: 310 

𝜎 = 1.4826 × median(|(𝐿𝑆𝑇𝑠𝑎𝑡,𝑖 − 𝐿𝑆𝑇𝑖𝑛𝑠𝑖𝑡𝑢,𝑖) − 𝜇|). (9) 

3.2. Cross-satellite validation 311 

The Landsat and ASTER-Terra have sun-synchronous orbits. This feature leads to a fixed 312 

overpass time, which is around 10 a.m. for Landsat and 10: 30 a.m./p.m. for ASTER. Due to 313 

the asynchronous orbits of ISS, the overpass time of ECOSTRESS varies from day to day. It 314 

is therefore challenging to obtain Landsat and ASTER LST concurrent with ECOSTRESS LST. 315 

Here, Landsat and ASTER LST retrievals were evaluated for the same period at the 9 selected 316 

ground sites, and the same accuracy indicators were used as mentioned in Eqs. 7−9. 317 

4. Results and analysis 318 

4.1. Evaluation results using in-situ measurements 319 

Fig. 3 shows the evaluation results of ECOSTRESS LST at the 9 sites. The sample 320 

numbers are above 15 at most sites except for the 2 GCU sites due to the sparse coverage of 321 

ECOSTRESS over the Iberian Peninsula. The RMSE of the three ECOSTRESS LST are below 322 
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3 K and μ (absolute value) are within 2 K at most sites except for the two ICOS sites FON and 323 

LSN. The performances of LST retrievals at GBB, CNS, KIT and CGD are better as compared 324 

to the other sites. The RMSE are below 2 K and μ (absolute value) are around 1 K at these 4 325 

sites. 326 

For the three spatially homogeneous KIT and Copernicus sites, the LST products are in 327 

good agreement with in-situ LST. At GBB and KIT, the RMSEs are around 1.5 K and μ 328 

(absolute value) are around 1 K. At CNS, the RMSE and μ (absolute value) are around 1 K. A 329 

cold bias exists at all the sites for the three products, except for JPLTES and EEHTES LST at 330 

site GBB where LST is generally >295 K.  The JPLTES and EEHTES LST are in close 331 

agreement at the 3 sites. At the desert site GBB with very dry atmosphere, the EEHTES LST 332 

has a slightly better performance (with the RMSE and μ 0.14 and 0.29 K lower, respectively) 333 

as compared to the JPLTES LST. At the water site CNS, the difference between JPLTES and 334 

EEHTES is more notable, with RMSE and μ of JPLTES approximately 0.4 K lower. For the 335 

forest site KIT, the JPLTES LST has a slightly lower RMSE and μ (0.16 and 0.27 K, 336 

respectively) as compared to the EEHTES LST. In terms of the EEHSW LST, it has a similar 337 

RMSE to the two TES LST at all the three KIT and Copernicus sites. However, μ is found >0.8 338 

K higher at GBB. At the site KIT, the RMSE and μ of EEHSW LST are approximately 0.2 and 339 

0.6 K lower than for the two TES LST, respectively. The better performance of the EEHSW 340 

LST at the forest site KIT is probably related to the low spectral contrast of emissivity for dense 341 

vegetation, which leads to a degraded performance of the TES algorithm (Gillespie et al. 1998).  342 

At the BSRN site CAB, the RMSE of the JPLTES and EEHSW are close (~2.5 K). The 343 

RMSE of the EEHTES LST is ~0.2 K higher than the other two. All the three LST have a 344 

negative bias. μ (absolute value) of the EEHTES LST is ~0.5 K higher than the other two, and 345 

σ of the JPLTES LST is approximately 1.5 K, which is ~0.3 K lower than those of the EEHSW 346 

and EEHTES LST. 347 



17 
 

At the two GCU sites, the RMSE of the three ECOSTRESS LST at CDG (<2 K) are 348 

substantially lower than at FDU (>2.5 K). This is probably due to the seasonal change of 349 

landscape (dry and wet periods) and consequent variant spatial heterogeneity at the marshland 350 

site FDU.  μ (absolute value) of the JPLTES and EEHTES LST at FDU (<1 K) are lower than 351 

at CDG (~1.2 K) while μ (absolute value) of the EEHSW LST (~0.8 K) are similar at both sites. 352 

The JPLTES and EEHTES LST are close with respect to RMSE and μ at the two sites, with 353 

differences <0.3 K. However, σ of the EEHTES LST is considerably higher than that of the 354 

JPLTES LST, especially at FDU where the difference exceeds 1 K. The RMSE of EEHSW 355 

LST is similar to those of the two TES LST at FDU (with differences within 0.3 K), but >0.4 356 

K lower as compared to the two TES LST at CDG despite of the sparsely vegetated surface.  μ 357 

(absolute value) of the EEHSW LST is ~0.3 K higher at FDU but ~0.4 K lower at CDG than 358 

the two TES LST.  359 

At the three vegetated ICOS sites, the performances of three ECOSTRESS LST are similar. 360 

The RMSE is generally above 3 K at FON and LSN and between 2 and 2.5 K at SR2. μ is 361 

around -2 and 1 K at FON and LSN, respectively and is below 1 K at SR2. σ is above 2.5 K in 362 

most cases. As compared to the results for the other six sites, LST accuracies at the three ICOS 363 

sites are degraded, especially in terms of RMSE. This is probably due to the 30 min sampling 364 

interval at the ICOS sites, which is too infrequent to capture the substantial temporal variation 365 

in LST at daytime. The two TES LST are close to each other over the ICOS sites, with a 366 

difference in RMSE of ~0.1. The EEHSW LST has a ~0.3 K lower RMSE and μ at the forest 367 

site FON, which is similar to the case at the forest site KIT. At the sites LSN and SR2, the 368 

EEHSW LST is close to the two TES LST with a difference in RMSE within 0.15 K.  369 
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Fig. 3 ECOSTRESS LST against in-situ measurements (K) at the nine ground sites. Daytime and night-time 370 

retrievals were included. 371 

A comparison of the night-time LST retrievals with in-situ measurements reveals no 372 

significant improvements in RMSE (Fig. 4) at GBB due to the pronounced spatial homogeneity 373 

at the desert site. However, the magnitude of μ is higher during night-time at GBB. At the 374 

grassland site CAB, RMSE is approximately 0.3 K lower at night while the difference in μ is 375 

negligible between all day and night-time retrievals. At LSN, the RMSE at night is ~1 K lower 376 

than for all day, which could be because the temporal variation of LST is minor within the 30 377 

min sampling interval and the spatial heterogeneity decreases at night. Similar to GBB and 378 

CNS, μ also increases at LSN at night. σ is lower at night in all cases, which is probably due to 379 

the narrow range of LST. 380 
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Fig. 4 Night-time ECOSTRESS LST against in-situ measurements (K). Only sites with at least 10 match-381 

ups are shown. 382 

The LST bias time series (Fig. 5) shows stably distributed bias (±2 K) at the three KIT and 383 

Copernicus sites, which is consistent with the good accuracy shown in Fig. 3. At GBB, most 384 

samples for EEHSW are distinctively below 0, which is also reflected by the negative μ (-1.25 385 

K). The variation ranges of samples for the day and night are similar although the sample 386 

number during the night-time is much lower.  387 

For CAB, most samples have negative biases, which agrees with the negative μ in Fig. 3. 388 

The biases in 2020 are obviously larger, and vary between -8 and 4 K. In the other years, the 389 

biases generally range between -6 and 2 K. 390 

For the three ICOS sites, the samples are more scattered (varying between ±6 K) as 391 

compared to the KIT sites, which is in line with the results in Fig. 3. At LSN, most samples at 392 

night are distributed between 0 and 3 K, which leads to a lower RMSE at night than in the day. 393 
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Fig. 5 Time series of LST bias (ECOSTRESS LST minus in-situ measurements) at the ground sites. Sites 394 

FDU and CDG are omitted due to the small number of samples. 395 

Overall, the three ECOSTRESS LST products agree well with each other, with an RMSE 396 

around 2 K and a difference of RMSE within 0.2 K (Fig. 6 and Table 2). The EEHSW LST has 397 

the lowest RMSE and σ while the JPLTES LST has the lowest μ (absolute value). μ is within 1 398 

K for the JPLTES but slightly above 1 K for the EEHSW and EEHTES LST. A cold bias exists 399 

for all the three LST, which is more pronounced for LST below 295 K. This agrees with the 400 

finding by Hulley et al. (2021) and relates to the issue in radiometric calibration of the 401 

ECOSTRESS radiance data, which is caused by the increased temperature of the cold 402 
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blackbody and the increased noise in the cold blackbody. In the future reprocessing of 403 

ECOSTRESS data, this cold bias is expected to be mitigated by adjusting the calibration 404 

coefficients of the radiance data. 405 

 406 

Fig. 6 ECOSTRESS LST retrievals vs. in-situ LST at the 6 sites GBB, CNS, KIT, CAB, FUD and CDG. 407 

The three ICOS sites were excluded due to their poor performance caused by the 30 min sampling frequency. 408 

Table 2 Statistics for three ECOSTRESS LST products at the 9 sites. All results are in K and the last two 409 

rows show summary results for each product. 410 

Sites 
JPLTES EEHSW EEHTES Sample 

No. RMSE μ σ RMSE μ σ RMSE μ σ 

GBB 1.89 0.44 1.95 1.92 -1.25 1.30 1.75 0.15 2.19 57 

CNS 0.73 -0.63 0.48 0.95 -0.53 0.84 1.11 -1.14 0.32 25 

KIT 1.41 -1.08 1.02 1.26 -0.49 1.06 1.57 -1.35 0.87 35 

CAB 2.50 -1.24 1.48 2.40 -1.22 1.77 2.72 -1.80 1.88 95 

FDU 2.53 -0.57 2.36 2.83 0.86 3.68 2.80 -0.46 3.86 7 

CDG 1.72 -1.15 1.42 1.30 -0.80 1.35 1.89 -1.26 1.98 9 

FON 3.11 -2.27 3.69 2.84 -1.90 2.88 3.22 -2.43 3.04 34 

LSN 3.20 1.10 2.69 3.22 1.28 3.15 3.34 0.87 3.13 56 

SR2 2.27 0.46 3.23 2.28 0.63 2.19 2.33 0.08 3.03 17 

6 sites* 2.04 -0.78 1.52 1.99 -1.05 1.44 2.18 -1.21 1.45 228 

All 2.41 -0.67 2.05 2.35 -0.87 1.89 2.54 -1.12 2.00 335 
*6 sites include GBB, CNS, KIT, CAB, FDU and CDG. 411 

4.2. Inter-comparison with Landsat and ASTER LST retrievals 412 

4.2.1. Inter-comparison with Landsat LST 413 

The match-ups for all 9 sites are at least 15. The two GCU sites are covered considerably 414 

better by Landsat than by ECOSTRESS. Overall, the RMSE is within 3 K and μ within 1.5 K 415 

at most sites (except for FDU, FON and LSN). 416 
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Fig. 7 Landsat LST against in-situ measurements (K) at the ground sites. 417 

The Landsat LST retrievals show a comparably good accuracy at the 3 KIT and Copernicus 418 

sites. At GBB, the RMSE is slightly higher (~0.3 K) than the three ECOSTRESS LST. μ for 419 

Landsat LST (absolute value) is close to that for the EEHSW LST that similarly uses the 420 

ASTER GED data for emissivity retrieval but higher (>0.8 K) than for the TES LST, which is 421 

in line with the higher μ of the EEHSW LST as compared to the JPLTES and EEHTES LST 422 

(Table 2). At the water site CNS, the performance of Landsat LST is close to those of the three 423 

ECOSTRESS LST, with an RMSE ~1 K.  At the forest site KIT, the RMSE (~1.5 K) is also 424 

close to those of the three ECOSTRESS LST. μ (absolute value) of Landsat LST is below 0.5 425 

K, which is similar to the EEHSW LST, but more than 1 K lower than for the two TES LST. 426 
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At CAB, the RMSE of Landsat LST is ~0.5 K lower than the three ECOSTRESS LST. μ 427 

is ~0.2 K lower than for the JPLTES and EEHSW LST and ~0.8 K lower than for the EEHTES 428 

LST. 429 

As found for the ECOSTRESS LST, at the two GCU sites the performance of the Landsat 430 

LST at CDG is much better than at FDU. The RMSE of the Landsat LST is above 3 K at FDU, 431 

which is higher (0.25−0.55 K) than for the three ECOSTRESS LST. μ (absolute value) of 432 

Landsat LST approaches 0 K at FDU, which is lower than for the three ECOSTRESS LST. At 433 

CDG, the RMSE of the Landsat LST is close to those of the two ECOSTRESS TES LST (~1.8 434 

K) but ~0.5 K higher than that of the EEHSW LST. μ (absolute value) of the Landsat LST is 435 

close to that of the EEHSW LST (~0.8 K) and ~0.4 K lower than those of the two ECOSTRESS 436 

TES LST.  437 

At the ICOS sites, the accuracy of Landsat LST is also lower than at the other sites. At 438 

FON, the RMSE of Landsat LST is similar to that of EEHSW (~2.5 K), which is around 0.6 K 439 

lower than for the two TES LST. At LSN, a significant overestimation exists in Landsat LST, 440 

which leads to an RMSE and μ of Landsat LST around 1 and 2 K higher than for the three 441 

ECOSTRESS LST, respectively. At SR2, the RMSE of Landsat LST is ~0.4 K lower than for 442 

the three ECOSTRESS LST. However, μ is more than 0.5 K higher than for the ECOSTRESS 443 

LST. 444 

The validation results of Landsat LST for the six sites (excluding ICOS sites) are very 445 

similar to those of ECOSTRESS LST (Fig. 8). The RMSE is 2.20 K, which is ~0.2 K higher 446 

than for the three ECOSTRESS LST. μ (absolute value) of Landsat LST is close to that of 447 

JPLTES LST (~0.8 K) and slightly lower than for the EEHSW and EEHTES LST, but with a 448 

different sign. σ of Landsat LST is similar to those of the three ECOSTRESS LST (~1.5 K), 449 

although it is generally lower than for the ECOSTRESS LST at individual sites. 450 
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 451 

Fig. 8 Landsat LST retrievals vs. in-situ LST at the 6 sites GBB, CNS, KIT, CAB, FUD and CDG. The three 452 

ICOS sites were excluded due to their poor performance caused by the 30 min sampling frequency. 453 

4.2.2. Inter-comparison with ASTER LST 454 

The ASTER LST have sparse coverages at most of the nine sites except for GBB, which 455 

provides 38 matchups (Fig. 9). At GBB, the RMSE (2 K) of ASTER LST is slightly higher 456 

(~0.1 K) than for the three ECOSTRESS LST and slightly lower (~0.1 K) than for the Landsat 457 

LST. μ (absolute value) of ASTER LST is close to those of ECOSTRESS SW and Landsat 458 

LST (~1 K), which use the ASTER emissivity, but higher (>0.5 K) than for the two 459 

ECOSTRESS TES LST. σ of ASTER LST is also similar to that of the ECOSTRESS SW and 460 

Landsat LST (~1.3 K) and lower (~0.6 K) than for the two ECOSTRESS TES LST. 461 

Overall, the RMSE of the ASTER LST is 1.98 K, which is similar to those for the 462 

ECOSTRESS LST and ~0.2 K lower than for the Landsat LST (Tables 2 and 3). μ (absolute 463 

value) is close to the ECOSTRESS and Landsat LST, which is approximately 1 K. σ of the 464 

ASTER LST is similar to those of the ECOSTRESS LST (~1.5 K), but lower (~0.3 K) than for 465 

the Landsat LST. 466 



25 
 

  
Fig. 9 ASTER LST against in-situ measurements (K) at (a) GBB and (b) at the 6 sites GBB, CNS, KIT, CAB, 467 

FUD and CDG. 468 

Table 3 Statistics results for Landsat and ASTER LST products at the 9 sites. The average RMSE, μ and σ 469 

for ASTER LST are in K for all available samples with a required minimum sample number of 5.  470 

Sites 
Landsat ASTER 

RMSE μ σ Sample No. RMSE μ σ Sample No. 

GBB 2.14 1.36 1.23 91 2.00 1.04 1.29 38 

CNS 0.87 -0.26 0.59 24 - - - 2 

KIT 1.36 -0.02 1.15 19 - - - 2 

CAB 1.95 -0.97 1.40 42 - - - 5 

FDU 3.08 -0.19 2.91 71 - - - 6 

CDG 1.86 0.73 1.48 78 - - - 6 

FON 2.63 2.13 1.15 15 - - - 0 

LSN 4.13 3.51 1.82 47 - - - 7 

SR2 1.81 1.15 1.05 33 - - - 5 

6 sites* 2.20 0.54 1.73 325 1.98 0.90 1.46 59 

All 2.48 0.85 1.94 420 2.06 0.90 1.62 71 

Among the five LST retrievals (Fig. 10), the JPLTES, EEHSW and ASTER have similar 471 

RMSE (approximately 2 K) and are ~0.2 K lower than for the EEHTES and Landsat LST. The 472 

Landsat LST has the lowest μ (absolute value) but the highest RMSE and σ. The JPLTES, 473 

EEHSW, EEHTES and ASTER have similar σ (~1.5 K) and are ~0.2 K lower than for the 474 

Landsat LST. In general, the five high spatial resolution LST products show a high level of 475 

consistency, with an RMSE around 2 K, μ around 1 K and σ around 1.5 K. 476 
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 477 

Fig. 10 Comparison among the five LST products in terms of RMSE, μ and σ for the six sites GBB, CNS, 478 

KIT, CAB, FUD and CDG. The absolute value of μ is shown and μ is negative for the JPLTES, EEHSW and 479 

EEHTES ECOSTRESS LST. 480 

5. Discussion 481 

5.1. Dependence of LST retrieval uncertainty on water vapor content and vegetation condition 482 

Atmospheric and vegetation conditions are two important factors for LST retrieval. Here, 483 

the dependence of LST bias on precipitable water vapor (PWV) content and normalized 484 

differential vegetation index (NDVI) was investigated (Fig. 11). No clear trend is evident in 485 

the scatterplot between LST bias and PWV/NDVI. For the RMSE in different PWV intervals, 486 

an increase is noted (>0.5 K) in the 3−5 cm interval. The RMSE for the JPLTES and EEHTES 487 

LST are almost identical when PWV is below 2 cm. Whereas, the RMSE of the EEHTES LST 488 

is clearly higher than that of the JPLTES LST when PWV is above 2 cm. This agrees with the 489 

fact that the difference between the JPLTES and EEHTES LST mainly stems from the different 490 

atmospheric profiles used in atmospheric correction for these two LST products. The EEHSW 491 

LST has the lowest RMSE in most cases except when PWV is below 1 cm. This indicates that 492 

the LST retrieval accuracy from TES is more sensitive to PWV as compared to that from SW.  493 

For the RMSE in different NDVI intervals, an increase for NDVI greater than 0.4 is evident. 494 

We infer that this is attributed to an increase in uncertainties of emissivity retrievals from the 495 

TES algorithm with vegetation coverage, which is also propagated via the ASTER GED data 496 

to the EEHSW LST. The RMSE for the NDVI interval between 0.4 and 0.6 (>3 K) is notably 497 
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higher than for the other intervals. This is probably due to the increased spatial heterogeneity 498 

generally observed for intermediate vegetation coverage, which can reduce the spatial 499 

representativeness of the ground measurements. 500 

  

Fig. 11 LST bias (LST retrieval minus in-situ measurements) versus (a) PWV and (b) NDVI at all the sites. 501 

PWV was extracted from the ERA5 data, same as that used in the EEHSW algorithm. NDVI was obtained 502 

from the MOD13Q1 data after outlier removal and time series smoothing. The scatterplots show the LST 503 

biases for all the samples across different PWV and NDVI values. The bar plots show the RMSE of LST 504 

retrievals for each PWV and NDVI interval.  505 

5.2. Comparison among different LST estimation algorithms 506 

Different algorithms were used to retrieve LST from a host of satellite data, including the 507 

single-channel algorithm for Landsat, the TES algorithm for ASTER, and the TES and SW 508 

algorithms for ECOSTRESS. However, the overall accuracies for these LST were close. The 509 

EEHSW LST had the best correlation with the Landsat LST with regard to the three indicators 510 

among the three ECOSTRESS LST.  511 

For the Landsat, EEHSW and ASTER LST, which are generated with ASTER emissivities 512 

but different retrieval algorithms, they performed very consistently at GBB (see Tables 2 and 513 

3), with a higher μ (absolute value) and a lower σ as compared to the two ECOSTRESS TES 514 

LST. This confirms that emissivity retrieval plays a critical role in LST estimation and that 515 

LST retrievals using consistent emissivities could achieve similar accuracies when the 516 

atmosphere is dry.     517 



28 
 

5.3. Challenges of Temperature-based validation 518 

Spatial and temporal representativeness of ground measurements are among the major 519 

challenges existing for the Temperature-based validation. The FOVs of ground measurements 520 

are normally much smaller than the satellite pixels, even though as compared to the high spatial 521 

resolution LST data (Guillevic et al. 2014). Therefore, the area surrounding ground sites should 522 

be homogeneous at the pixel scale to ensure the spatial representativeness of the ground 523 

measurements. This explains the better performance of the LST retrievals at the KIT and 524 

Copernicus sites. The three KIT and Copernicus sites have been specifically designed to 525 

evaluate satellite LST products (Göttsche et al. 2013; Göttsche et al. 2016). The homogeneous 526 

landscapes surrounding the three sites (i.e., desert, water, and dense forest), choice of 527 

radiometers and regular maintenance ensure the accuracy and credibility of the validation 528 

results.  529 

Sampling frequency is also an important factor to consider in LST validation. For KIT, 530 

Copernicus, BSRN and GCU sites, the sampling frequency is within 5 min, which is 531 

appropriate for validating instantaneous LST retrievals. However, the sampling frequency of 532 

the ICOS sites is 30 min, which is insufficient for LST validation, especially for fast changing 533 

LST in the morning. This is reflected in the generally larger uncertainties of the validation 534 

results at the ICOS sites. Therefore, the results at the ICOS sites are not included in the overall 535 

statistics.  536 

Different sensors are used at the ground sites. At the KIT, Copernicus and GCU sites that 537 

were designed for LST validation, the precision radiometer KT15.85 IIP and the Apogee 538 

broadband radiometer are utilized. At the BSRN and ICOS sites that were set up for studying 539 

surface radiation budget and carbon and energy fluxes, respectively, pyrgeometers are used to 540 

measure the upwelling and downwelling broadband hemispheric longwave radiations. 541 

However, the directional temperature estimated from the radiance measurement is closer to 542 
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LST retrieved from satellite observations, which is further amplified over heterogeneous 543 

surfaces (Trigo et al. 2021; Yang et al. 2020). This partially explains why the RMSE at the KIT 544 

and GCU sites were generally lower.   545 

6. Conclusions and perspectives 546 

Launched to the ISS in 2018, ECOSTRESS serves as a bridge between the Landsat and 547 

ASTER missions that provide LST products at high spatial but coarse temporal resolutions and 548 

the next generation of TIR missions with high spatiotemporal resolutions (i.e., TRISHNA, 549 

LSTM and SBG). In this study, we evaluated three different ECOSTRESS LST products, i.e., 550 

the JPLTES, EEHSW and EEHTES LST, over Europe and Africa by comparing them with in-551 

situ measurements and the corresponding LST products from Landsat and ASTER at 9 ground 552 

sites. To the best of our knowledge, this is the first study that demonstrates a comprehensive 553 

comparison among the state-of-the-art high spatial resolution LST data. 554 

The RMSE of the three ECOSTRESS LST are below 3 K and μ (absolute value) are within 555 

2 K at all sites but the two ICOS sites FON and LSN, which could be related to the coarse 556 

sampling frequency (30 min) of the ICOS sites and physical differences between 557 

hemispherically effective temperature and satellite directional temperature. The performances 558 

of LST retrievals at the homogeneous sites GBB, CNS, KIT and CDG are better than at the 559 

other sites, which also corresponds to the high sampling frequencies of in-situ measurements 560 

and choice of sensor. The RMSE are below 2 K and μ (absolute value) are around 1 K at these 561 

4 sites. Overall, the three ECOSTRESS LST perform consistently, with an RMSE around 2 K 562 

and differences in RMSE within 0.2 K. A cold bias around 1 K exists for all three LST. This is 563 

related to the radiometric calibration of the ECOSTRESS Level 1 radiance data in Collection 564 

1. 565 

The validation results of Landsat LST are close to those of ECOSTRESS LST, with an 566 

overall RMSE of 2.20 K and differences from the three ECOSTRESS LST within 0.2 K. The 567 
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EEHSW LST has the best consistency with the Landsat LST, probably due to the identical 568 

emissivity retrieval process. The RMSE of the ASTER LST is 1.98 K. μ (absolute value) is 569 

close to the ECOSTRESS and Landsat LST, which is approximately 1 K. In general, the five 570 

high spatial resolution LST retrievals show a high level of consistency, with an RMSE around 571 

2 K, bias around 1 K, σ around 1.5 K. 572 

In the future, the ECOSTRESS radiance data will be reprocessed in Collection 2 to correct 573 

for the cold bias of the radiance calibration. This will further improve the LST accuracy. The 574 

ECOSTRESS LST retrievals, together with observations from the future high spatiotemporal 575 

resolution TIR missions, will provide unprecedented opportunities for studies in land surface 576 

monitoring and terrestrial ecosystem functioning. 577 
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Fig. A1 ECOSTRESS LST retrievals vs. in-situ LST by assembling the samples at all the sites. 585 
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 586 

Fig. A2 Landsat LST retrievals vs. in-situ LST by assembling the samples at all the sites. 587 

 588 

Fig. A3 ASTER LST retrievals vs. in-situ LST by assembling the samples at all the sites. 589 

 590 

Fig. A4 Comparison among the five LST products in terms of RMSE, μ and σ for all the nine sites. The 591 

absolute value of μ is shown and μ is negative for the JPL, EEHSW and EEHTES ECOSTRESS LST. 592 
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Fig. A5 LST bias (LST retrieval minus in-situ measurements) versus PWV at the 9 sites. PWV was extracted 593 

from the ERA5 data, same as that used in the EEHSW algorithm. The scatterplots show individual LST 594 

biases for their respective PWV values. The bar plots show the RMSE of LST retrievals for each PWV 595 

interval.  596 
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Fig. A6 LST bias (LST retrieval minus in-situ measurements) versus NDVI at the selected sites. The desert 597 

site GBB and water site CNS were excluded (lack of vegetation). NDVI was obtained from the MOD13Q1 598 

data after outlier removal and time series smoothing. The scatterplots show individual LST biases for their 599 

respective NDVI values. The bar plots show the RMSE of LST retrievals for each NDVI interval.  600 
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