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Utility Maximization Problem with Uncertainty and a

Jump Setting∗

Sarah Kaakäı † Anis Matoussi ‡ Achraf Tamtalini §

Abstract

We study a robust utility maximization problem in the unbounded case with a general

penalty term and information including jumps. We focus on time consistent penalties and

we prove that there exists an optimal probability measure solution of the robust problem.

Then, we characterize the dynamic value process of our stochastic control problem as the

unique solution of a Quadratic-Exponential BSDE.

Keywords: Utility maximization, Robustness, Quadratic BSDEs with jumps, Time-consistent

penalties, Bellman Martingale Optimality principle.

Introduction

One of the major problems in asset pricing is the valuation in incomplete markets. In such

markets, the decision maker/agent could use the well known utility maximization approach

and the literature is particularly rich on the subject (see for example Rouge and El Karoui

(2000), Hu et al. (2005), Morlais (2009) and Carmona (2008) among many others). However,

in many cases, the decision maker does not know the probability distribution (also called

prior or model) governing the stochastic nature of the problem she/he is facing. Thus, before

solving the utility maximization problem, the decision maker is faced with an intermediate
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problem of choosing an “optimal” probability. This type of problems are called robust utility

maximization problems or utility maximization problems under model uncertainty. In the

mathematical finance literature, we can find two types of approaches to solve robust utility

maximization problems. The first one relies on convex duality methods which are presented

in Quenez (2004), Gundel (2005), Schied (2007) and Schied and Wu (2005). The second

one, which we will follow in this article, is based on a stochastic control approach and the

powerful tool of BSDEs.

In this article, this uncertainty is captured by considering a set of plausible probability

measures that will be penalized through a penalty functional. This penalty functional will

measure the distance between any plausible probability Q and the reference/historical one

denoted P . In Anderson et al. (2003) and Hansen et al. (2006) for example, a hedging

problem was addressed by using the classical entropic penalty under a Markovian setting

and hence Hamilton-Jacobi-Bellman (HJB) equations were derived in order to characterize

the optimal strategies. The authors in Skiadas (2003) have followed the same point of view

and obtained a BSDE that coincides with the one describing a stochastic differential utility

(see also Duffie and Epstein (1992) and Duffie and Skiadas (1994) for more about stochastic

differential utilities).

More recently, Bordigoni et al. (2007) addressed a robust problem in a more general setting

which is non Markovian by using stochastic control techniques. More precisely, they studied

the following robust maximization problem:

sup
π

inf
Q∈Q

U(π,Q) (0.1)

where π runs through a set of strategies and Q ∈ Q through a set of models. The simplest

case corresponds to the case where the set Q is the singleton {P} and U(π, P ) is simply the P -

expected utility from a non bounded terminal wealth and consumption/investment portfolio.

The term U(π,Q) is the sum of Q-expected utility and an entropic penalization term. The

set Q is assumed to have certain properties and usually does not need to be specified in any

detail. Their work is cast in the case of a continuous filtration and the first minimization

problem was solved by proving the existence of a unique optimal probability Q∗. They

also characterized the value process of the stochastic control problem as the unique solution

of a Quadratic BSDE (QBSDE). In the same spirit, Faidi et al. (2013) studied the same

problem using two type of penalties: the first one is the f -divergence penalties in the general

framework of a continuous filtration and the second one is the time-consistent penalties

studied in the context of a Brownian filtration. For the latter, they also characterized the

value process as the unique solution of a QBSDE.

In this paper, we study the first minimization problem in (0.1) in the case of discontinuous

filtration (where the information includes jumps) using time consistent penalties. Note that

in our framework, the relative entropic penalty, as we will see further, is a special case

of the class of time-consistent penalties. We first start by showing that the minimization
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problem in (0.1) is well posed and we prove the existence of an optimal probability Q∗

using a Komlós-type argument. Second, we prove that the value process of the minimization

problem is described by a class of Quadratic-Exponential BSDE with jumps (QEBSDEJ) with

unbounded terminal condition. We stress that for a given unbounded terminal condition,

the study of Quadratic BSDEs is a difficult problem, see for instance Briand and Hu (2006),

Briand and Hu (2008) and Barrieu and El Karoui (2013) in the continuous framework and

we emphasize that adding jumps to our optimization problem involves significant difficulties

in solving the related BSDEs. Karoui et al. (2016) have obtained existence result for this new

class of BSDEs with jumps with unbounded terminal condition. However, they have showed

uniqueness only in the bounded case. In this paper, we use the convexity of the generator of

our BSDE to show the uniqueness of solution of the BSDE by extending the work of Briand

and Hu (2008) in the Brownian setting.

The paper is structured as follows. Section 1 establishes the general framework, in which we

assume the existence of a stochastic basis carrying a Brownian motion and a compensated

integer-valued random measure that possesses a weak predictable representation property.

In section 2, we give a number of estimates for subsequent use. We then prove with the help

of Komlós theorem that there exists an optimal probability Q∗. Finally, in section 3, we

treat our optimization problem from a stochastic control point of view, and show, thanks to

Bellman Optimality Principle, that the corresponding value process is the unique solution of

a QEBSDEJ.

1 Framework of the optimization problem

1.1 Setting and notations

This section sets out the notation and the assumptions that will be assumed to hold in the

sequel. Let (Ω,F,F, P ) be a filtered probability space with a finite time horizon T <∞ and a

filtration F = (Ft)t∈[0,T ] satisfying the usual conditions of right continuity and completeness,

in which all semimartingales are taken to have right continuous paths with left limits. We

assume that that F0 is trivial and F = FT . On this stochastic basis, let W be a d-dimensional

standard Brownian motion and let µ(dt, dx) = (µ(w, dt, dx)|w ∈ Ω) denote an integer-random

valued measure on ([0, T ]× E,B([0, T ])⊗ E) with compensator ν := νP (w, dt, dx) under P ,

where E := Rd\{0} is equipped with its Borel σ-field E := B(E).

On (Ω̃, F̃) := (Ω× [0, T ]× E,F ⊗B[0, T ]⊗ E), we define the measure P × ν by

P × ν(B̃) = E

[∫
[0,T ]×E

1
B̃

(w, t, x)ν(w, dt, dx)

]
, B̃ ∈ F̃. (1.1)

We denote by P̃ := P ⊗ E where P is the predictable σ-field on Ω × [0, T ]. We say that a

function on Ω̃ is predictable if it is P̃-measurable.
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1. Framework of the optimization problem

We will assume that the compensator ν is absolutely continuous with respect to the λ ⊗ dt
with a density ξ:

ν(w, dt, dx) = ξt(w, x)λ(dx)dt, (1.2)

where λ is a σ-finite measure on (E,E), that satisfies the following condition:
∫
E 1∧|x|2λ(dx) <

∞ and the density ξ is P̃-measurable, positive and bounded:

0 < ξt(w, x) ≤ Cν <∞, P × λ(dx)× dt− a.e. for some constant Cν . (1.3)

Note that, thanks to (1.2), we have that ν({t}×E) = 0 for all t, and ν([0, T ]×E) ≤ CνTλ(E).

For ψ a predictable function on Ω̃, we define its integral process with respect to µ as:

(ψ ? µ)t :=


∫

[0,t]×E
ψt(x)µ(w, ds, dx) if

∫
[0,t]×E

|ψt(w, x)|µ(w, ds, dx) <∞,

+∞ otherwise.

(1.4)

In the same way, we define the integral process with respect to ν.

Let µ̃ be the compensated measure of µ

µ̃(w, dt, dx) = µ(w, dt, dx)− ν(w, dt, dx). (1.5)

To alleviate the notations, we will omit the dependence on w in the different stochastic quan-

tities. In the following, we recall some properties that can be found in Becherer (2006) or

Jacod and Shiryaev (2013). First, for any predictable function ψ, the process ψ ? ν is a pre-

dictable process whereas ψ?µ is an optional process. We recall that E[|ψ|?µT ] = E[|ψ|?νT ].

If (|ψ|2 ?µ)1/2 is locally integrable, then ψ is integrable with respect to µ̃ and ψ ? µ̃ is defined

as the purely discontinuous local martingale (under P ) with jump process
∫
E Uµ({t}, dx).

If the increasing process |ψ| ? µ (or equivalently, |ψ| ? ν) is locally integrable, then again,

ψ is integrable with respect to µ̃ and is the purely discontinuous local martingale as in the

first case and we have ψ ? µ̃ = ψ ? µ − ψ ? ν. Finally, if the process |ψ|2 ? ν is integrable,

then U is integrable with respect to µ̃ and Z̃ ? µ̃ is a square integrable martingale, purely

discontinuous, with predictable quadratic variation 〈ψ ? µ̃〉 = |ψ|2 ? ν. These properties and

their proofs can be found in Section II.1.d of Jacod and Shiryaev (2013).

We will assume that W and µ̃ satisfy the following weak representation property with re-

spect to P and F: Every local martingale M with respect to (F, P ) admits the following

decomposition:

Mt = M0 + (η ·W )t + (ψ ? µ̃)t := M0 +

∫ t

0
ηsdWs + (ψ ? µ̃)t, ∀t ≥ 0, P − a.s. (1.6)

where η is a progressively measurable process and ψ a predictable process such that∫ T

0
|ηs|2ds <∞, (|ψ|2 ? ν)T <∞, P − a.s. (1.7)
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1. Framework of the optimization problem

We introduce the following spaces:

• Lexp is the space of all FT -measurable random variables X such that:

E[exp(γ|X|)] <∞, ∀γ > 0.

• D
exp
0 is the space of progressively measurable processes (Xt)0≤t≤T with

E

[
exp

(
γ ess sup

0≤t≤T
|Xt|

)]
<∞, ∀γ > 0.

• D
exp
1 is the space of progressively measurable processes (Xt)0≤t≤T with

E

[
exp

(
γ

∫ T

0
|Xs|ds

)]
<∞, ∀γ > 0.

• H
2,p
λ is the space of predictable processes ψ such that

E

[(∫ T

0
|ψ|2s,λds

) p
2

] 1
p

<∞,

where

|ψ|2s,λ :=

∫
E
|ψs(x)|2ξs(x)λ(dx).

• H2,p is the set of all predictable processes η such that

E

[(∫ T

0
|ηs|2ds

) p
2

] 1
p

<∞.

1.2 The optimization problem

For every probability Q � P on FT , we denote by D = (Dt)0≤t≤T its Radon-Nikodym

density with respect to P , that is,

Dt = E

[
dQ

dP

∣∣∣∣Ft] , t ≥ 0.

D is a càdlàg nonnegative P -martingale. Let τn := inf{t ≥ 0, Dt ≤ 1/n} and consider the

local martingale Mn
t =

∫ t∧τn
0 D−1

s− dDs. Thanks to the weak representation property, there

exist two predictable processes (ηns ) and (ψns ), s ≤ τn, such that,
∫ t∧τn

0 |ηns |2ds < ∞ and

(|ψ)|2 ? ν)t∧τn <∞ and

Dt∧τn = E ((ηn ·W ). + (ψn ? µ̃).)t∧τn , t ≥ 0, P − a.s.
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1. Framework of the optimization problem

Consistency requires that we should have ηnt = ηn+1
t dt ⊗ dP -a.e and ψnt (x) = ψn+1

t (x)

ν(dx)⊗dt⊗dP -a.e on {t ≤ τn∧T}. By the fact that τn ↗∞ Q-a.s., we obtain the existence

of Q-a.s. defined predictable processes η and ψ such that,

Dt = E ((η ·W ). + (ψ ? µ̃).)t , t ≥ 0, Q− a.s. (1.8)

where
∫ T

0 |ηs|
2ds < ∞ and (|ψ|2 ? ν)T < ∞ Q − a.s.. Note that since for all t ∈ [0, T ],

Dt > 0 Q-a.s., then we must have for every t ∈ [0, T ], ψt(x) > −1 dQ× ν(dx, dt)-a.e. and we

can rewrite (Dt) as in the following:

Dt = exp

(
(η ·W )t + (ψ ? µ̃)t −

1

2

∫ t

0
|ηs|2ds+ ((ln(1 + ψ)− ψ) ? µ)t

)
Q− a.s. (1.9)

We now introduce the following time consistent penalty for a probability Q� P on FT :

γt(Q) := EQ

[∫ T

t
r(s, w, ηs, ψs)ds

∣∣∣∣Ft] , (1.10)

where r : [0, T ] × Ω × Rd × L2(E, λ) → [0,+∞] is a suitable measurable function that is

convex and lower-semicontinuous in (η, ψ) and such that r(t, 0, 0) = 0. Note that, since r

is non-negative, r is minimal at η = 0 and ψ = 0 and this corresponds to the probabilistic

model P . Therefore, the reference probability has the highest plausibility. In the following,

we will consider probabilities Q ∈ Qf where

Qf = {Q� P, γ0(Q) <∞}. (1.11)

In order to solve the stochastic control problem with BSDEs, we need to impose some reg-

ularity and growth conditions on the penalty function. In a Brownian setting, Faidi et al.

(2013) assumed the penalty function to be bounded from below by the relative entropy. In

the same way, we will assume that there exists K̃2, K̃1 > 0 such that,

γ0(Q) ≥ −K̃2 + K̃1H(Q|P ).

Let f be the function defined as follow:

f(x) =

(1 + x) log(1 + x)− x, if x ≥ −1;

∞ otherwise;
(1.12)

For the latter inequality to be verified, a sufficient condition on r will be the following:

(Ar) There exists K1,K2 > 0 such that for all w ∈ Ω, t ∈ [0, T ], η ∈ Rd and ψ ∈ L2(E, λ;R),

we have,

r(t, w, η, ψ) ≥ −K2 +K1

(
|η|2

2
+

∫
E
f(ψ(x))ξt(w, x)λ(dx)

)
.
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1. Framework of the optimization problem

The following proposition shows that the entropic penalty can be retrieved with a special

choice for r. A detailed proof is given in the Appendix 4.

Proposition 1.1. Let r(t, η, ψ) = 1
2 |η|

2 +
∫
E f(ψ(x))ξt(x)λ(dx) and Q ∈ Qf . Then, the

penalty function corresponds to the relative entropy, that is

γ0(Q) =
(∆)

EQ

[∫ T

0

(
|ηt|2

2
+

∫
E
f(ψt(x))ξt(x)λ(dx)

)
dt

]
= H0(Q|P ),

where,

Ht(Q|P ) = EQ

[
log

(
dQ

dP

)∣∣∣∣Ft] . (1.13)

Moreover, we have for a general r verifying (Ar),

H(Q|P ) ≤ γ0(Q)

K1
+
TK2

K1
. (1.14)

In particular, H(Q|P ) is finite for all Q ∈ Qf .

Remark 1.2. Let r∗(t, z, z̃) = sup
η∈Rd,ψ∈L2(λ)

(z · η+
∫
E z̃(x)ψ(x)λ(dx)− r(t, η, ψ)) the Fenchel

conjugate r. Assumption (Ar) implies that, for w ∈ Ω, z ∈ Rd, t ∈ [0, T ] and z̃ ∈ L2(E, λ;R),

r∗(t, w, z, z̃) ≤ K2 +
|z|2

2K1
+K1

∫
E
f∗
(

z̃(x)

K1ξt(x)

)
ξt(x)λ(dx), (1.15)

where f∗(x) := ex − x− 1 is the Fenchel conjugate of the function f .

Now, given a positive adapted process δ, we define the discounting process:

Sδt := exp

(
−
∫ t

0
δsds

)
, 0 ≤ t ≤ T,

and the auxiliary quantities,

Uδt,T := α

∫ T

t

Sδs
Sδt
Usds+ α

SδT
Sδt
UT , 0 ≤ t ≤ T, α, α ≥ 0,

Rδt,T (Q) :=

∫ T

t

Sδs
Sδt
r(s, ηs, ψs)ds, 0 ≤ t ≤ T.

Now we consider the cost functional

c(w,Q) := Uδ0,T (w) + βR0,T (Q)(w), (1.16)

which consists of two terms. The first one is a discounted utility term that is the sum of

a final utility UT and a continuous utility with utility rate (Us). For instance, (Us) can be

seen as the utility coming from investing/consuming and UT as the utility coming from the
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2. Some helpful estimates and existence of optimal probability

terminal wealth. The second term is simply the penalty term and measure the “distance”

between the probability Q and the reference probability P . The parameter β might be viewed

as measuring the degree of confidence of the reference probability P . The higher β is, the

more confident we are in P , with the limiting case β ↑ ∞ (respectively β ↓ 0) corresponding

to full degree of confidence (respectively distrust).

Our objective is to solve the following optimization problem:

Minimize the functional Q 7→ Γ(Q) := EQ[c(., Q)], (1.17)

over the set Qf . To guarantee the well-posedeness of the problem, we will assume the

following:

(Au) i. The discounting rate is bounded by some constant ||δ||∞;

ii. The process U belongs to Dexp
1 ;

iii. The terminal utility UT belongs to Lexp.

Remark 1.3. Under assumption (Au), we have

E

[
exp

(
λ

∫ T

0
|Us|ds+ µ|UT |

)]
<∞, ∀λ, µ ∈ R+. (1.18)

Indeed, using the convexity of the exponential function, we get,

E

[
exp

(
λ

∫ T

0
|Us|ds+ µUT

)]
= E

[
exp

(
1

2
× 2λ

∫ T

0
|Us|ds+

1

2
× 2µUT

)]
≤ E

[
1

2
exp

(
2λ

∫ T

0
|Us|ds

)
+

1

2
exp

(
2µ|UT |

)]
=

1

2
E

[
exp

(
2λ

∫ T

0
|Us|ds

)]
+

1

2
E
[
exp

(
2µ|UT |

)]
<∞,

where the finiteness of the two last expectations is due to assumption (Au).

2 Some helpful estimates and existence of optimal

probability

2.1 Auxiliary estimates

The main objective of this section is to prove the existence of an optimal probability Q∗

that minimizes the functional Γ. To achieve this, we start by proving some useful auxiliary

estimates. We will adapt the steps in Bordigoni et al. (2007) and the inequalities therein

into our setting.

Proposition 2.1. Under assumption (Ar) and (Au), there exists a constant C ∈ (0,∞)
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2. Some helpful estimates and existence of optimal probability

which depends only on α, α, β, δ, T, U, UT such that

Γ(Q) ≤ EQ[|c(·, Q)|] ≤ C(1 + γ0(Q)), for all Q ∈ Qf . (2.1)

In particular, this shows that Γ(Q) is well defined and finite for every Q ∈ Qf .

Proof. The first inequality is obvious. As for the second, denoting U := α
∫ T

0 |Ut|dt+α|UT |,
we have for Q ∈ Qf , using the fact that, 0 ≤ Sδt ≤ 1,

EQ[|c(·, Q)|] ≤ EQ
[
α

∫ T

0
|Ut|dt+ α|UT |

]
+ βEQ

[∫ T

0
r(t, ηt, ψt)dt

]
(2.2)

= EQ[U] + βγ0(Q). (2.3)

Fenchel inequality applied to x 7→ x log(x), gives

xy ≤ 1

λ
(x log(x) + eλy−1), ∀(x, y, λ) ∈ R∗+ × R∗+ × R∗. (2.4)

Therefore, using this inequality with λ = 1, we get,

EQ[U] = E

[
dQ

dP
U
]

≤ E
[
dQ

dP
log

(
dQ

dP

)]
+ E[eU−1]

= H(Q|P ) + E[eU−1]

≤ γ0(Q)

K1
+
TK2

K1
+ e−1E[eU],

where we used (1.14) in the last inequality. Going back to (2.2), we obtain,

EQ[|c(·, Q)|] ≤
(
β +

1

K1

)
γ0(Q) +

(
TK2

K1
+ e−1E[eU]

)
,

where the term E[eU] is finite as pointed out in remark 1.3. We then conclude by setting

C := max
(
β + 1

K1
, TK2
K1

+ e−1E[eU]
)

.

The next result shows that Γ is bounded from below by γ0(Q). This will be very useful

for proving the existence of an optimal probability.

Proposition 2.2. Assume (Ar) and (Au) hold. Then, there exists C ∈ (0,∞) depending on

α, α, β, δ, T, U, UT such that for all Q ∈ Qf

γ0(Q) ≤ C(1 + Γ(Q)). (2.5)

In particular, we have inf
Q∈Qf

Γ(Q) > −∞

9



2. Some helpful estimates and existence of optimal probability

Proof. Using the same notation as in the proof of the previous proposition, we have,

EQ[Uδ0,T ] ≥ −EQ[U].

For every λ ∈ R∗, using the inequality (2.4), we get,

EQ[U] ≤ 1

λ
H(Q|P ) +

1

λ
E[eλU−1]

≤ 1

λ

(
γ0(Q)

K1
+
TK2

K1

)
+
e−1

λ
E[eλU],

where we used (1.14) in the last inequality. On the other hand, since the discounting process

is bounded from above, we have

EQ[R0,T ] =
(∆)

EQ

[∫ T

0
Sδt r(t, ηt, ψt)dt

]
≥ e−||δ||∞TEQ

[∫ T

0
r(t, ηt, ψt)dt

]
= e−||δ||∞Tγ0(Q).

Combining the two previous inequalities leads to the following,

Γ(Q) = EQ[Uδ0,T + βRδ0,T ] ≥
(
βe−||δ||∞T − 1

λK1

)
γ0(Q)− TK2

λK1
− e−1

λ
E[eλU ]

Choosing λ large enough such that µ := βe−||δ||∞T − 1
λK1

> 0, we get the desired result by

setting C := 1
µ max

(
1, TK2

λK1
+ e−1

λ E[eλU ]
)

.

The following is a direct consequence of the previous proposition and inequality (1.14).

Corollary 2.3. Under assumptions (Ar) and (Au), there exists K ∈ (0,∞) such that for

every Q ∈ Qf , we have the following

H(Q|P ) ≤ K(1 + Γ(Q)). (2.6)

In the same spirit of the proof of the above proposition, we have the following estimate

that is crucial in proving the existence of an optimal probability Q∗ ∈ Qf .

Lemma 2.4. For any λ > 0 and any measurable set A ∈ FT , we have for every Q ∈ Qf

EQ[|Uδ0,T |1A] ≤ γ0(Q)

λK1
+
TK2

λK1
+
e−1

λ
E

[
1A exp(λα

∫ T

0
|Us|ds+ λα|UT |)

]
. (2.7)

Proof. Using inequality (2.4), we have for every λ > 0 and Q ∈ Qf ,

dQ

dP
|Uδ0,T |1A ≤

1

λ

(
dQ

dP
log

(
dQ

dP

)
+ e−1eλU

)
1A.

Taking the expectation under P and using (1.14), we consequently get, EQ[|Uδ0,T |1A] ≤
γ0(Q)
λK1

+ TK2
λK1

+ e−1

λ E[1A exp(λU)].
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2. Some helpful estimates and existence of optimal probability

2.2 Existence of optimal probability

In this subsection, we prove the existence of an optimal probability Q∗ ∈ Qf using a standard

Komlós-type argument, but before let us show two important properties of the functionals

Γ and γ0. We will introduce the following Linderberg condition on sequences of martingales

converging almost surely to 0. This technical assumption is needed to prove the lower-

semicontinuity of γ0:

(AL) Every sequence (Mn) of locally square integrable martingales with the representation

dMn
t = ηnt dWt +

∫
E ψ

n
t (x)µ̃(dt, dx) converging P -a.s. to 0 for each t ∈ [0, T ], verifies

the following Linderberg condition:

∀ε ∈ (0, 1],

∫ T

0

∫
E
|ψnt (x)|21|ψnt (x)|≥ε|ν(dt, dx) →

n→∞
0, in P − Probability

Proposition 2.5. Under the assumption (AL), we have the following:

1. Qf is a convex set and the functional Q ∈ Qf 7→ Γ(Q) is convex.

2. γ0 is lower-semicontinuous for L1(P ) convergence.

Proof. 1. Let λ ∈ (0, 1), Q, Q̃ ∈ Qf and Qλ := λQ + (1 − λ)Q̃. Let D and D̃ denote the

corresponding density processes and (η, ψ), (η̃, ψ̃) the associated processes via (1.8).

Consider the following processes:

ηλt :=
λDt−ηt + (1− λ)D̃t− η̃t

Dλ
t−

1Dλ
t−
>0,

ψλt :=
λDt−ψt + (1− λ)D̃t−ψ̃t

Dλ
t−

1Dλ
t−
>0,

where Dλ := λD + (1− λ)D̃ is the density process of Qλ with respect to P . It is easy

to see that the density Dλ satisfies the following SDE:

dDλ
t = Dλ

t−

(
ηλt dWt +

∫
E
ψλt (x)µ̃(dt, dx)

)
, t ∈ [0, T ], Qλ − a.s.

Hence, using the convexity assumption of r, we have,

γ0(Qλ) = EQλ

[∫ T

0
r(t, ηλt , ψ

λ
t )dt

]
≤ EQλ

[∫ T

0

(
λDt−

Dλ
t−
r(t, ηt, ψt) +

(1− λ)D̃t−

Dλ
t−

r(t, η̃t, ψ̃t)

)
1Dλ

t−
>0dt

]

= E

[
Dλ
T

∫ T

0

(
λDt−

Dλ
t−
r(t, ηt, ψt) +

(1− λ)D̃t−

Dλ
t−

r(t, η̃t, ψ̃t)

)
1Dλ

t−
>0dt

]
.

11



2. Some helpful estimates and existence of optimal probability

Using Fubini’s Theorem to interchange integral and expectation followed by condition-

ing on Ft and the martingale property of the density process Dλ, yields,

γ0(Qλ) ≤ E

[∫ T

0
Dλ
t

(
λDt−

Dλ
t−
r(t, ηt, ψt) +

(1− λ)D̃t−

Dλ
t−

r(t, η̃t, ψ̃t)

)
1Dλ

t−
>0dt

]
.

Since Dλ is right continuous, the set {t ∈ [0, T ], Dλ
t 6= Dλ

t−} is countable. Therefore,

we have,

γ0(Qλ) = E

[∫ T

0
Dλ
t−

(
λDt−

Dλ
t−
r(t, ηt, ψt) +

(1− λ)D̃t−

Dλ
t−

r(t, η̃t, ψ̃t)

)
1Dλ

t−
>0dt

]

≤ E
[∫ T

0
λDt−r(t, ηt, ψt) + (1− λ)D̃t−r(t, η̃t, ψ̃t)dt

]
= λγ0(Q) + (1− λ)γ0(Q̃) <∞.

We have showed then that Qf is convex. The convexity of the functional Γ follows

readily by using the same arguments used above.

2. Let (Qn) be a sequence of probability measures that converges to Q in L1(Ω, P ), i.e.,

Dn
T → DT in L1(Ω, P ) where Dn and D the corresponding densities processes. Let

(ηn, ψn) and (η, ψ) (resp.) be the processes given by (1.8) of Dn and D (resp.). Since

we know that Dn
T converges to DT in L1(P ), the maximal Doob’s inequality

P ( sup
0≤t≤T

|Dn
t −Dt| ≥ ε) ≤

1

ε
E[|Dn

T −DT |], ∀ε > 0,

implies that ( sup
0≤t≤T

|Dn
t −Dt|) converges to 0 in P -probability. By passing by a subse-

quence, we can assume that ( sup
0≤t≤T

|Dn
t −Dt|) converges to 0 P − a.s.

We denote Mn
t := sup

0≤s≤t
|Dn

s − Ds| and introduce the following stopping time τn :=

inf{t ∈ [0, T ],Mn
t ≥ 1} ∧ T . We have Mn

τn ≤ Mn
τ−n

+ |Dn
τn − Dτn | and by taking

expectation in the latter we get

E[Mn
τn ] ≤ E[Mn

τ−n
] + E[|Dn

τn −Dτn |]. (2.8)

Recall that Mn
T →
n→∞

0 and since (Mn
t )t is a nondecreasing process we have Mτ−n

≤Mn
T

so that Mn
τ−n
−→
n→∞

0. We also have by the definition of the stopping time τn that

Mn
τ−n
≤ 1. Hence, by the dominated convergence theorem, we obtain that

E[Mn
τ−n

]→ 0 as n→∞. (2.9)

12



2. Some helpful estimates and existence of optimal probability

Furthermore,

E[|Dn
τn −Dτn |] = E[|E[Dn

T |Fτn ]− E[DT |Fτn ]|] = E[|E[Dn
T −DT |Fτn ]|]

≤ E[E[|Dn
T −DT ||Fτn ]] = E[|Dn

T −DT |] −→
n→∞

0.
(2.10)

Combining (2.8), (2.9) and (2.10), we deduce that Mn
τn converges to 0 in L1(P ). Then,

by Burkholder-Davis-Gundy’s inequality, we get that [Dn−D]
1
2
τn converges to 0 in L1(P )

and a fortiori in P -probability. Now, as [Dn−D]T = [Dn−D]τn1τn=T+[Dn−D]T1τn<T ,

then for every ε > 0,

P ([Dn −D]T ≥ ε) ≤ P ([Dn −D]τn1τn=T ≥ ε) + P ([Dn −D]T1τn<T ≥ ε)

≤ P ([Dn −D]τn ≥ ε) + P (τn < T ),

and

P (τn < T ) = P (∃t ∈ [0, T ] s.t. Mn
t ≥ 1) ≤ P (Mn

T ≥ 1) −→
n→∞

0.

So, we get that [Dn −D]T converges to 0 in P -probability. On the other hand, since

Dn
t − Dt → 0, thanks to the assumption (AL), we get from Corollary 1 in Shiryayev

(1981) that 〈Dn−D〉T converges to 0 in P -probability and by passing to a subsequence

while keeping the same notation, we may say that 〈Dn −D〉T converges to 0 P − a.s..
But, we know that,

〈Dn −D〉T =

∫ T

0
|Dn

t−η
n
t −Dt−ηt|2dt+

∫ T

0

∫
E
|Dn

t−ψ
n
t (x)−Dt−ψt(x)|2ν(dt, dx).

Therefore, we immediately obtain that Dn
t−η

n
t → Dt−ηt dP×dt−a.e. and dP×dt−a.e.,

Dn
t−ψ

n
t (x) → Dt−ψt(x) in L2(E, λ). Next, we will show that γ0(Q) ≤ lim inf

n→∞
γ0(Qn).

Assume by way of contradiction that γ0(Q) > l := lim inf
n→∞

γ0(Qn). By passing to a

subsequence, we may assume that γ0(Qn) → l. Let ζ := inf{t ∈ [0, T ], Dt = 0} and

ζn := inf{t ∈ [0, T ], Dn
t = 0}. Since Dn

t = 0 on {t > ζn}, we must have ζ ≤ lim inf
n→∞

ζn.

Hence, for ε := γ0(Q)−l
2 , there is k ∈ N such that for Tk := ζ ∧ {ζk, ζk+1, ...}, we have

γ0(Q) = EQ

[∫ T

0
r(t, ηt, ψt)dt

]
= E

[∫ ζ

0
Dt−r(t, ηt, ψt)dt

]
≤ E

[∫ Tk

0
Dt−r(t, ηt, ψt)dt

]
+ ε

= E

[∫ Tk

0
g(t,Dt− , Dt−ηt, Dt−ψt)dt

]
+ ε,

where g(t, x, y, z) := xr(t, yx ,
z
x). Clearly, since r is lower-semicontinuous in (η, ψ), we

13



2. Some helpful estimates and existence of optimal probability

get that also g is also lower-semicontinuous. Hence, by Fatou’s lemma, we obtain

E

[∫ Tk

0
g(t,Dt− , Dt−ηt, Dt−ψt)dt

]
≤ lim inf

n≥k
E

[∫ Tk

0
g(t,Dn

t− , D
n
t−ηt, D

n
t−ψt)dt

]
≤ lim inf

n≥k
E

[∫ ζk

0
g(t,Dn

t− , D
n
t−η

n
t , D

n
t−ψ

n
t )dt

]
= lim inf

n≥k
γ0(Qn) = l,

so that we have γ0(Q) ≤ l + ε < γ0(Q) which is a contradiction.

In the next theorem, we show the existence of an optimal probability Q∗ ∈ Qf .

Theorem 2.6. Assume (Ar), (Au) and (AL) hold. Then there exists a probability measure

Q∗ minimizing Q 7→ Γ(Q) over Qf .

Proof. Let Qn a minimizing sequence in Qf such that

Γ(Qn)↘↘
n→∞

inf
Q∈Qf

Γ(Q),

and we denote by Dn the corresponding density process. Since we have Dn
T ≥ 0, it follows

from Komlós’ lemma that there exists a sequence denotedD
n
T such thatD

n
T ∈ conv(Dn

T , D
n+1
T , ...)

for each n ∈ N and (D
n
T ) converges P − a.s. to a random variable D

∞
T . Now, we will show

that D
∞
T is associated with a probability measure Q

∞
. First, we have D

∞
T is nonnegative as

the P − a.s. limit of the nonnegative sequence (D
n
T )n. Second, since Qf is convex, each D

n
T

is associated with a probability measure Q
n ∈ Qf . Now, thanks to the convexity of Γ and

the fact that (Γ(Qn))n is decreasing, we have the following,

Γ(Q
n
) ≤ sup

m≥n
Γ(Qn) = Γ(Qn) ≤ Γ(Q1). (2.11)

Consequently, using (2.6), we get,

sup
n∈N

E[D
n
T log(D

n
T )] = supH(Q

n|P ) ≤ K(1 + sup
n∈N

Γ(Q
n
)) ≤ K(1 + Γ(Q1)) <∞.

By Vallée-Poussin’s criterion, the sequence (D
n
T ) is P - uniformly integrable and therefore

converges to D
∞
T in L1(P ). Hence, we have, E[D

∞
T ] = lim

n→∞
E[D

n
T ] = 1 since E[D

n
T ] =

1 for all n ∈ N. This shows that D
∞
T can be associated with a probability Q

∞
on FT

such that dQ
∞

= D
∞
T dP . Our next step is to prove that this probability Q

∞
belongs to

Qf . By Proposition 2.5, we know that γ0 is lower-semicontinuous with respect to L1(Ω, P )

convergence. Therefore, we get since D
n
T
L1

→ D
∞
T ,

γ0(Q
∞

) ≤ lim inf
n→∞

γ0(Q
n
).
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2. Some helpful estimates and existence of optimal probability

But, thanks to (2.5), we know that γ0(Q) ≤ C(1 + Γ(Q)). Consequently, we obtain that,

lim inf
n→∞

γ0(Q
n
) ≤ C(1 + sup

n∈N
Γ(Q

n
)).

The RHS of the last inequality is finite thanks to (2.11). We then conclude that γ0(Q
∞

) <∞,

i.e., Q
∞ ∈ Qf . It remains to show that Q

∞
is optimal. Note that using the same arguments

in the proof of Proposition 2.5, the function Q 7→ EQ[Rδ0,T (Q)] = EQ[
∫ T

0 Sδt r(t, ηt, ψt)dt] is

lower-semicontinuous for L1(Ω, P ) convergence and therefore we get immediately that,

EQ∞
[
Rδ0,T (Q

∞
)
]
≤ lim inf

n→∞
EQn

[
Rδ0,T (Q

n
)
]
.

We denote Y
n

:= D
n
TU

δ
0,T and Y

∞
:= D

∞
T Uδ0,T . If we prove that we also have

E[Y
∞

] ≤ lim inf
n→∞

E[Y
n
], (2.12)

then we would have

Γ(Q
∞

) = E[Y
∞

] + EQ∞ [Rδ0,T (Q
∞

)]

≤ lim inf
n→∞

E[Y
n
] + lim inf

n→∞
EQn

[
Rδ0,T (Q

n
)
]

≤ lim inf
n→∞

E[Y
n
] + EQn

[
Rδ0,T (Q

n
)
]

= lim inf
n→∞

Γ(Q
n
) = inf

Q∈Qf
Γ(Q),

which proves that indeed Q
∞

is optimal. Although Y
n

is linear in D
n
T , we cannot use

Fatou’s lemma since ther term Uδ0,T has no lower bound. To remediate this, we introduce

the following:

R̃m := Uδ0,T1Uδ0,T≥−m
≥ −m, m ∈ N.

Hence, we have for n ∈ N ∪ {∞},

Y
n

= D
n
TU

δ
0,T = D

n
T R̃m +D

n
TU

δ
0,T1Uδ0,T<−m

.

Because now R̃m is bounded below by −m, we can use Fatou’s lemma to get,

E[D
∞
R̃m] ≤ lim inf

n→∞
E[D

n
R̃m].

Consequently, by adding and subtracting E[D
n
TU

δ
0,T1Uδ0,T<−m

], we obtain,

E[Y
∞

] ≤ lim inf
n→∞

E[D
n
R̃m] + E[D

n
TU

δ
0,T1Uδ0,T<−m

]

≤ lim inf
n→∞

E[Y
n
] + 2 sup

n∈N∪{∞}
E[Dn

T |Uδ0,T |1Uδ0,T<−m].
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3. Related BSDE with jumps

The desired inequality (2.12) will follow once we prove that

lim
m→∞

sup
n∈N∪{∞}

E[Dn
T |Uδ0,T |1Uδ0,T<−m] = 0,

and this is where we use Lemma 2.4. Indeed, thanks to this lemma, we have,

E[Dn
T |Uδ0,T |1Uδ0,T<−m] = EQn [|Uδ0,T |1Uδ0,T<−m] ≤ γ0(Q

n
)

λK1
+
TK2

λK1
+
e−1

λ
E[exp(λU)1Uδ0,T<−m

]

≤ C(1 + Γ(Q
n
))

λK1
+
TK2

λK1
+
e−1

λ
E[exp(λU)1Uδ0,T<−m

].

Using (2.11), we deduce that

sup
n∈N∪{∞}

E[Dn
T |Uδ0,T |1Uδ0,T<−m] ≤ C(1 + max(Γ(Q1),Γ(Q

∞
)))

λK1
+
TK2

λK1
+
e−1

λ
E[exp(λU)1Uδ0,T<−m

].

By the dominated convergence theorem, the third term in the RHS of the previous inequality

goes to 0 as m→∞. Hence, we for all λ > 0, we have

lim
m→∞

sup
n∈N∪{∞}

E[Dn
T |Uδ0,T |1Uδ0,T<−m] ≤ C(1 + max(Γ(Q1),Γ(Q

∞
)))

λK1
+
TK2

λK1
.

Sending λ to ∞, we finally obtain the desired result.

3 Related BSDE with jumps

This section is devoted to the study of the dynamic value process V associated to the opti-

mization problem (1.17) using stochastic control techniques. More precisely, we prove that

the dynamic process is the unique solution of a certain QEBSDEJ. This extends the previous

work by Schroder and Skiadas (1999), Skiadas (2003) and Lazrak and Quenez (2003).

We first introduce some notations that we will use below. Let S denote the set of all stopping

time τ with values in [0, T ] and D the space of all density processes DQ with Q ∈ Qf . We

also define,

D(Q, τ) := {Q′ ∈ Qf , Q
′ = Q on Fτ},

Γ(Q, τ) := EQ[c(·, Q)|Fτ ].

As in El Karoui (1981), we define the minimal conditional cost at time τ by

J(Q, τ) := Q− ess inf
Q′∈D(Q,τ)

Γ(Q′, τ).
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3. Related BSDE with jumps

For Q ∈ Qf and τ ∈ S, we now define the value of the control problem starting at time τ

instead of 0 and assuming one has used the model Q up to time τ ,

Ṽ (Q′, τ) := EQ′ [U
δ
τ,T |Fτ ] + βEQ′ [R

δ
τ,T (Q′)|Fτ ],

V (Q, τ) := Q− ess inf
Q′∈D(Q,τ)

Ṽ (Q′, τ).

The following martingale optimality principle is a consequence of Theorems 1.15, 1.17 and

1.21 in El Karoui (1981). It is the analogue of Proposition 3.4 in Faidi et al. (2013) in a

Brownian setting but the proofs also hold in our setting with obvious modifications.

Proposition 3.1. Under (Au) and (Ar), we have:

• The family {J(Q, τ)|τ ∈ S, Q ∈ Qf} is a submartingale system, that is for any Q ∈ Qf

and stopping times σ ≤ τ , we have,

EQ[J(Q, τ)|Fσ] ≥ J(Q, σ) Q− a.s. (3.1)

• Q̂ ∈ Qf is optimal if and only if the family {J(Q̂, τ)|τ ∈ S} is a Q̂-martingale system

which means that for any stopping times σ ≤ τ

E
Q̂

[J(Q̂, τ)|Fσ] = J(Q̂, σ) Q̂− a.s.

• For each Q ∈ Qf , there exists an adapted RCLL process JQ = (JQt )t∈[0,T ] which is a

right closed Q-submartingale such that for every stopping time τ

JQτ = J(Q, τ) Q− a.s.

Before stating the BSDE verified by the value process V , we will need to define a strong

order relation on the set of increasing processes defined below.

Definition 3.2. Let X and Y two increasing processes. We say that X � Y if the process

Y −X is increasing.

Theorem 3.3. Assume assumptions (Ar), (Au) and (AL) hold. If the optimal probability

Q
∞

in Theorem 2.6 is equivalent to P , then there exists Z and Z̃ such that (V,Z, Z̃) is

solution in Dexp
0 ×H2,p ×H

2,p
λ of the following BSDE:

dVt =

(
δtVt − αUt + βr∗

(
t,
Zt
β
, ξt

Z̃t
β

))
dt− ZtdWt −

∫
E
Z̃t(x)µ̃(dx, dt),

VT = αUT .

(3.2)

Proof. We will split the proof into three steps: First, we will prove that the value process V

is a P -special martingale, that is it can be decomposed as V = V0 + MV + AV , where MV
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3. Related BSDE with jumps

is a local martingale that can be written as MV = (Z ·W ) + (Z̃ ? µ̃) and AV a predictable

finite variation process. Then, we will show that (V,Z, Z̃) is a solution of the BSDE. Finally,

we will prove that (V,Z, Z̃) is in the required spaces.

Step 1: First, note that since we assumed that Q
∞ ∼ P , then,

inf
Q∈Qf

Γ(Q) = inf
Q∈Qef

Γ(Q),

where Qef := {Q ∈ Qf , Q ∼ P} and we define De(Q, τ) accordingly. Hence, we will restrict

our attention to probabilities Q ∈ Qef and all essential infinimums can be taken with respect

to P in the expression of V (Q, τ) and J(Q, τ), i.e.,

J(Q, τ) = P − ess inf
Q′∈De(Q,τ)

Γ(Q′, τ),

V (Q, τ) = P − ess inf
Q′∈De(Q,τ)

Ṽ (Q′, τ).

By Bayes’ formula and the definition of Rτ,T (Q′), it is easy to see that Ṽ (Q′, τ) depends only

on the values of the density process D′ of Q′ on [τ, T ] and is therefore independent of Q.

Hence, we can denote V (Q, τ) by V (τ). From the definition of Rδt,T (Q′) and Uδt,T , we have

Rδ0,T (Q′) =

∫ τ

0
Sδt r(t, q

′
t, ψ
′
t)dt+ SδτR

δ
τ,T (Q′),

Uδ0,T = α

∫ τ

0
SδtUtdt+ Uδτ,T .

Comparing V (τ) and J(Q, τ) yields for Q ∈ Qef with density process DQ = E((η·W )+(ψ?µ̃)),

J(Q, τ) = SδτV (τ) + α

∫ τ

0
SδtUtdt+ β

∫ τ

0
Sδt r(t, ηt, ψt)dt, P − a.s. (3.3)

From the martingale optimality principle in Proposition 3.1, there exists an adapted RCLL

process denoted JQ = (JQt )t∈[0,T ] such that JQτ = J(Q, τ), Q − a.s. From (3.3), we deduce

that we can choose an adapted RCLL process (Vt)t∈[0,T ] such that Vτ = V (τ), P − a.s. for

all τ ∈ S. We can then rewrite (3.3) for every Q ∈ Qef as,

JQt = Sδt Vt + α

∫ t

0
SδsUsds+ β

∫ t

0
Sδsr(s, ηs, ψs)dt, dt× dP − a.e. (3.4)

As the probability P ∈ Qef corresponds to η = 0 and ψ = 0 and r(t, 0, 0) = 0, we get in

particular for Q = P in (3.4) that JP = SδV + α
∫

0 S
δ
sUsds. By Proposition 3.1, JP is a P -

submartingale and thus we deduce that V is a P -special semimartingale, i.e. its canonical

decomposition can be written as

V = V0 +MV +AV , (3.5)
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3. Related BSDE with jumps

where MV is a local martingale and AV is a predictable finite variation process. By the weak

representation assumption, the local martingale MV can be written as:

MV = −(Z ·W )− (Z̃ ? µ̃).

Step 2: We now prove that (V,Z, Z̃) is a solution of QEBSDEJ in (3.2). Plugging (3.5) into

(3.4) yields

dJQt = −δtSδt Vtdt+ αSδtUtdt+ Sδt

(
βr(t, ηt, ψt)dt− ZtdWt −

∫
E
Z̃t(x)µ̃(dx, dt) + dAVt

)
.

For each Q ∈ Qef , we have, DQ = E((η ·W ) + (ψ ? µ̃)), P − a.s. and by Girsanov’s theorem,

we have, dWQ
t = dWt − ηtdt is a Q Brownian motion and νQ(dx, dt) = (1 + ψt(x))ν(dt, dx)

is the compensation of µ under Q. Rewriting the dynamic of JQ, we obtain,

dJQt = −δtSδt Vtdt+αSδtUtdt+Sδt
(
βr(t, ηt, ψt)dt− Ztηtdt−

∫
E
Z̃t(x)ψt(x)ν(dx, dt) + dAVt

)
− Sδt

(
ZtdW

Q
t +

∫
E
Z̃t(x)µ̃Q(dx, dt)

)
. (3.6)

But, we know thanks to Proposition 3.1, that for every Q ∈ Qef , JQ is a Q- submartingale

and JQ
∞

is a Q
∞

-martingale. This means that we should have,

dAVt ≥ Ztηtdt+

∫
E
Z̃t(x)ψt(x)ν(dx, dt)− βr(t, ηt, ψt)dt+ δtVtdt− αSδtUtdt, dt× dQ− a.e.

dAVt = Ztη
∞
t dt+

∫
E
Z̃t(x)ψ

∞
t (x)ν(dx, dt)− βr(t, η∞t , ψ

∞
t ) + δtVtdt− αSδtUtdt, dt× dQ

∞ − a.e.

Note that the above inequality and equality are verified dt× dP − a.e. since Q ∈ Qef and by

the assumption that Q
∞ ∈ Qef , in which case they become equivalent to,

dAVt ≥ ess sup
ηt∈Rd,ψt∈L2(λ)

(
Ztηtdt+

∫
E
Z̃t(x)ψt(x)ν(dx, dt)− βr(t, ηt, ψt)dt

)
+ δtVtdt− αSδtUtdt, dt× dP − a.e.

(3.7)

dAVt = Ztη
∞
t dt+

∫
E
Z̃t(x)ψ

∞
t (x)ν(dx, dt)− βr(t, η∞t , ψ

∞
t ) + δtVtdt− αSδtUtdt, dt× dP − a.e.

(3.8)

By denoting

r∗(t, z, z̃) = sup
η∈Rd,ψ∈L2(λ)

(z · η +

∫
E
z(x)ψ(x)λ(dx)− r(t, η, ψ)),
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3. Related BSDE with jumps

the Fenchel conjugate of r, equation (3.7) implies that dt× dP − a.e.,

dAVt = ess sup
ηt∈Rd,ψt∈L2(λ)

(
Ztηtdt+

∫
E
Z̃t(x)ψt(x)ν(dx, dt)− βr(t, ηt, ψt)dt

)
+ δtVtdt− αSδtUtdt

= βr∗(t,
1

β
Zt,

1

β
ξtZ̃t)dt+ δtVtdt− αSδtUtdt

= Ztη
∞
t dt+

∫
E
Z̃t(x)ψ

∞
t (x)ν(dx, dt)− βr(t, η∞t , ψ

∞
t ) + δtVtdt− αSδtUtdt.

(3.9)

This shows in particular that(
Zt
β
,
Z̃t
β
ξt

)
∈ ∂r(t, η∞t , ψ

∞
t ), dt× dP − a.e. (3.10)

Going back to equation (3.5) and replacing the finite variation process AV by its expression

in (3.9), it follows that (V,Z, Z̃) is solution of the following equation,
dVt =

(
δtVt − αUt + βr∗

(
t,
Zt
β
, ξt

Z̃t
β

))
dt− ZtdWt −

∫
E
Z̃(x)µ̃(dx, dt),

VT = αUT .

Step 3: In this step, we show that the (V,Z, Z̃) ∈ Dexp
0 ×H

2,p
λ ×H2,2. V ∈ Dexp

0 follows as

in Faidi et al. (2013). As for Z and Z̃, the proof will lean on some exponential transform.

We introduce the following processes defined for t ∈ [0, T ] as:

Y −t = −CVt + C

∫ t

0
(α|Us|+K2β)ds+ C

∫ t

0
δs|Vs|ds,

Y +
t = CVt + C

∫ t

0
(α|Us|+K2β)ds+ C

∫ t

0
δs|Vs|ds,

K−t = exp(Y −t ), K+
t = exp(Y +

t ),

where C = 1
K1β

. For any p ≥ 1, we have

sup
t∈[0,T ]

(K±t )p = sup
t∈[0,T ]

exp(pY ±t ) ≤ sup
t∈[0,T ]

exp(pC|Vt|+ pC

∫ t

0
(α|Us|+K2β)ds+ pC

∫ t

0
δs|Vs|ds)

≤ exp(pC sup
t∈[0,T ]

|Vt|+ pCα

∫ T

0
|Us|ds+ pCK2βT + pC||δ||∞T sup

t∈[0,T ]
|Vt|).

Since V ∈ Dexp
0 and U ∈ Dexp

1 , from the above inequality we deduce that sup
t∈[0,T ]

K±t ∈ Lp(Ω).
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3. Related BSDE with jumps

We turn our attention to the process Y −. Using (3.2), the process Y − verifies:

dY −t = −CdVt + C(α|Ut|+K2β)dt+ Cδt|Vt|dt

= C

(
δt(|Vt| − Vt) + α(|Ut|+ Ut) +K2β − βr∗

(
t,
Zt
β
, ξt

Z̃t
β

))
dt+ CZtdWt +

∫
E
CZ̃t(x)µ̃(dt, dx)

=

(
CK2β − Cβr∗

(
t,
Zt
β
, ξt

Z̃t
β

)
+
|CZt|2

2
+

∫
E
f∗(CZ̃t(x))ξt(x)λ(dx)

)
dt+ Cδt(|Vt| − Vt)dt

+ Cα(|Ut|+ Ut)dt+ CZtdWt −
|CZt|2

2
dt+

∫
E
CZ̃t(x)µ̃(dt, dx)−

∫
E
f∗(CZ̃t(x))ξt(x)λ(dx)dt

= dI−t + dL−t ,

where

dI−t =

(
Cδt(|Vt| − Vt) + Cα(|Ut|+ Ut) + CK2β + Cβr∗

(
t,
Zt
β
, ξt

Z̃t
β

)
+
|CZt|2

2

)
dt,

+

∫
E
f∗(CZ̃t(x))ξt(x)λ(dx)dt

dL−t = CZtdWt −
|CZt|2

2
dt+

∫
E
CZ̃t(x)µ̃(dt, dx)−

∫
E
f∗(CZ̃t(x))ξt(x)λ(dx)dt.

Thanks to inequality given in (1.15), we have the following:

−Cβr∗
(
t,
Zt
β
, ξt

Z̃t
β

)
+ CK2β +

|CZt|2

2
+

∫
E
f∗(CZ̃t(x))ξt(x)λ(dx) ≥ 0, dt× dP − a.e.

It is also easy to see, by the definition of Doléans-Dade’s exponential, that exp(L−t ) = E(M−)t

where, dM−t = CZtdWt +
∫
E(eCZ̃t(x) − 1)µ̃(dt, dx). Therefore, we obtain,

K−t =
(∆)

exp(Y −t ) = exp(V0) exp(I−t ) exp(L−t ) = exp(V0) exp(I−t )E(M−)t.

Using the integration by part formula, we get, dK−t = K−
t−(dM−t + dI−t ), which implies,

that the predictable quadratic variation of K− verifies, d〈K−〉t = (K−
t−)2d〈M−〉t and as a

consequence, d〈M−〉t = 1
(K−

t−
)2
d〈K−〉t. Hence,

〈M−〉T ≤ sup
t∈[0,T ]

(
1

(K−t )2

)
× 〈K−〉T . (3.11)

Now, we need to have an estimate for 〈K−〉 in order to get one for 〈M−〉. Itô’s formula

yields,

d(K−t )2 = 2K−
t−dK

−
t + d[K−]t = 2(K−

t−)2(dM−t + dI−t ) + d[K−]t.

Taking a sequence of stopping times (Tn) such that for each n ∈ N, (
∫ t∧Tn

0 2(K−
s−)2dM−s )t

is a uniformly integrable martingale and integrating the above equation between a stopping
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3. Related BSDE with jumps

time σ ≤ T and T ∧ Tn, we get,

[K−]T∧Tn − [K−]σ = (K−T∧Tn)2 − (K−σ )2 − 2

∫ T∧Tn

σ
(K−

t−)2(dM−t + dI−t ).

Since
∫ Tn

0 (K−
t−)2dI−t ≥ 0, by taking conditional expectations on both sides, we obtain,

E[〈K−〉T∧Tn−〈K−〉σ|Fσ] = E[[K−]T∧Tn−[K−]σ|Fσ] ≤ E[(K−T∧Tn)2|Fσ] ≤ E[ sup
t∈[0,T ]

(K−t )2|Fσ].

Finally, passing to the limit as n→ +∞ and using the Monotone Convergence theorem, we

have,

E[〈K−〉T − 〈K−〉σ|Fσ] ≤ E[ sup
t∈[0,T ]

(K−t )2|Fσ].

Now, since for every p ≥ 1, sup
t∈[0,T ]

K−t ∈ LP (Ω), it follows from Garcia and Neveu Lemma

(see for example Lemma 4.3 in Barrieu and El Karoui (2013) or Neveu (1972)) that

E[〈K−〉pT ] <∞, ∀p ≥ 1. (3.12)

With the same arguments used to show that sup
t∈[0,T ]

K−t ∈ Lp(Ω), we have also that sup
t∈[0,T ]

1
K−t
∈

Lp(Ω) for any p ≥ 1. From (3.11) and (3.12) together with Cauchy-Schwartz inequality, we

deduce that

E[〈M−〉pT ] <∞, ∀p ≥ 1. (3.13)

As for the process Y +, it verifies, dY +
t = dI+

t + dL+
t where,

dI+
t =

(
Cδt(|Vt|+ Vt) + Cα(|Ut| − Ut) + CK2β + Cβr∗

(
t,
Zt
β
, ξt

Z̃t
β

)
+
|CZt|2

2

)
dt

+

∫
E
f∗(−CZ̃t(x))ξt(x)λ(dx)dt,

dL+
t = −CZtdWt −

|CZt|2

2
dt−

∫
E
CZ̃t(x)µ̃(dt, dx)−

∫
E
f∗(−CZ̃t(x))ξt(x)λ(dx)dt.

As r∗ and f∗ are positive functions, the process I+
t is increasing and as previously, by easy

calculations, we can see that exp(L+
t ) = E(M+)t where dM+

t = −CZtdWt +
∫
E(e−CZ̃t(x) −

1)µ̃(dt, dx). Going through the same lines as with Y −, we obtain,

E[〈M+〉pT ] <∞, ∀p ≥ 1. (3.14)
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3. Related BSDE with jumps

But, expressing the expression of predictable quadratic variation of M+ and M−, we get,

E

[(∫ T

0
|CZt|2dt+

∫ T

0

∫
E

(eCZ̃t(x) − 1)2ν(dt, dx)

)p]
<∞, p ≥ 1,

E

[(∫ T

0
|CZt|2dt+

∫ T

0

∫
E

(e−CZ̃t(x) − 1)2ν(dt, dx)

)p]
<∞, p ≥ 1.

This implies from one hand that,

E

[(∫ T

0
|Zt|2dt

)p]
<∞, p ≥ 1,

and from the other hand, using the fact that |y|2 ≤ 2(|ey − 1|2 + |e−y − 1|2), y ∈ R, we get

that,

E

[(∫ T

0

∫
E
|Z̃t(x)|2ν(dt, dx)

)p]
<∞, p ≥ 1.

In conclusion, we have showed that Z ∈ H2,p and Z̃ ∈ H
2,p
λ .

In the next proposition, we establish a comparison theorem for the class of BSDEs in

(3.2). For two random variables, we write A ≤ B if A ≤ B P − a.s. and for two processes X

and Y , we write X ≤ Y if ∀t ∈ [0, T ], Xt ≤ Yt P − a.s. Finally, we write (A,X) ≤ (B, Y ) if

A ≤ B and X ≤ Y .

Proposition 3.4. Assume that for k = 1, 2, (V k, Zk, Z̃k) is a solution of the BSDE (3.2)

in Dexp
0 ×H2,p ×H

2,p
λ associated with (Uk, U

k
T ). If (U1, U

1
T ) ≤ (U2, U

2
T ), then,

∀t ∈ [0, T ], V 1
t ≤ V 2

t P − a.s.

Proof. In general, establishing comparison theorems for BSDEs is obtained through an es-

timate of the quantity ((V 1 − V 2)+)2. Here, in order to take advantage of the convexity of

the finite variation part of the BSDE, we will rather estimate V 1 − θV 2 for each θ ∈ (0, 1).

Similar idea was used in Briand and Hu (2008) for the continuous case.

Let θ ∈ (0, 1) and V θ = V 1 − θV 2. We define accordingly Zθ, Z̃θ, U θ and U
θ
T . From (3.2),

the dynamics of the process V θ discounted are given by

dSδt V
θ
t = Sδt

[
−αUθt + β

(
r∗

(
t,
Z1
t

β
, ξt

Ẑ1
t

β

)
− θr∗

(
t,
Z2
t

β
, ξt

Ẑ2
t

β

))]
dt

− SδtZθt dWt −
∫
E
Sδt Z̃

θ
t (x)µ̃(dx, dt)

= Sδt (−αU θt + β(r∗,1 − θr∗,2))dt− SδtZθt dWt −
∫
E
Sδt Z̃

θ
t (x)µ̃(dx, dt),

where, to alleviate the notations, we have denoted, r∗,i = r∗(t,
Zit
β , ξt

Z̃it
β ). Now, since r∗ is
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3. Related BSDE with jumps

convex, the term r∗,1 − θr∗,2 can be bounded from above. Indeed,

r∗,1 = r∗

(
t,
Z1
t

β
, ξt

Ẑ1
t

β

)
≤ θr∗

(
t,
Z2
t

β
, ξt

Ẑ2
t

β

)
+ (1− θ)r∗

(
t,

Zθt
β(1− θ)

, ξt
Z̃θt

β(1− θ)

)
:= θr∗,2 + (1− θ)r∗,θ.

(3.15)

Moreover, thanks to (1.15), we have

r∗,θ ≤ K2 +
|Zθt |2

2K1β2(1− θ)2
+K1

∫
E
f∗

(
Z̃θt (x)

K1β(1− θ)

)
ξt(x)λ(dx).

Using this last inequality in (3.15), we get that,

β(r∗,1 − θr∗,2) ≤ K2β(1− θ) +
|Zθt |2

2K1β(1− θ)
+K1β(1− θ)

∫
E
f∗

(
Z̃θt (x)

K1β(1− θ)

)
ξt(x)λ(dx).

(3.16)

To get rid of the quadratic and exponential terms in the inequality above, we will use an

exponential change of variables. More precisely, let c be a negative constant (to be specified

later), and set Pt = exp(cSδt V
θ
t ), Qt = cSδt Pt−Z

θ
t and Q̃t = cSδt Pt−Z̃

θ
t . Using Itô’s formula,

we deduce,

dPt = Pt−

[
cd(Sδt V

θ
t ) +

c2

2
d〈SδV θ〉t +

∫
E
f∗(−cSδt Z̃θt (x))µ(dx, dt)

]
= cPt−

[
Sδt (−αUθt + β(r∗,1 − θr∗,2))dt− SδtZθt dWt −

∫
E
Sδt Z̃

θ
t (x)µ̃(dx, dt)

+
c

2
|SδtZθt |2dt+

1

c

∫
E
f∗(−cSδt Z̃θt (x))µ(dx, dt)

]
= cSδt Pt−

[
−αU θt + β(r∗,1 − θr∗,2) +

c

2
Sδt |Zθt |2 +

1

cSδt

∫
E
f∗(−cSδt Z̃θt (x))ξt(x)λ(dx))

]
dt

−QtdWt −
∫
E
Q̃t(x)µ̃(dx, dt) + Pt−

∫
E
f∗(−cSδt Z̃θt (x))µ̃(dx, dt)

:= Gtdt−QtdWt −
∫
E
Q̃t(x)µ̃(dx, dt) + Pt−

∫
E
f∗(−cSδt Z̃θt (x))µ̃(dx, dt).

Thanks to equation (3.16), the Gt term is bounded from above,

Gt ≤ cSδt Pt−
[
−αU θt +K2β(1− θ) +

|Zθt |2

2

(
1

K1β(1− θ)
+ cSδt

)
+

∫
E

(
K1β(1− θ)f∗

(
Z̃θt (x)

K1β(1− θ)

)
− 1

−cSδt
f∗(−cSδt Z̃θt (x))

)
ξt(x)λ(dx)

]

:= cSδt Pt−

[
−αU θt +K2β(1− θ) +

|Zθt |2

2

(
1

K1β(1− θ)
+ cSδt

)
+

∫
E

(
h(K1β(1− θ), Z̃θt (x))− h(

−1

cSδt
, Z̃θt (x))

)
ξt(x)λ(dx)

]
,

(3.17)

24



3. Related BSDE with jumps

where h : R× Rd → R defined as h(x, z) := xf∗(z/x) = xez/x − x− z. We need to choose c

such that the term next to |Zθt |2 is negative, that choose c such that,

1

K1β(1− θ)
≤ −cSδt .

Since Sδt ≥ e||δ||∞T , it is sufficient to set c(θ) := − e−||δ||∞T

K1β(1−θ) . Computing the derivative of h

with respect to x, we get, ∂xh(x, z) = ez/x− (z/x)ez/x− 1. Studying the sign of the function

x → ex − xex − 1 by calculating its derivative, we obtain that ex − xex − 1 ≤ 0, ∀x ∈ R.

Therefore, we deduce that ∂xh(x, z) ≤ 0, ∀x ∈ R, that h is decreasing. Hence, going back to

(3.17), we get that,

Gt ≤ c(θ)Sδt Pt−(−αU θt +K2β(1− θ)) ≤ Sδt Pt−e−||δ||∞T
(

α

K1β
U1
t −

K2

K1

)
, (3.18)

where we have used, in the second inequality, the fact that,

U θt = U1
t − θU2

t = θ(U1
t − U2

t ) + (1− θ)U1
t ≤ (1− θ)U1

t .

Finally, denoting Dt = exp
(
−e−||δ||∞T

∫ t
0 S

δ
s

(
α
K1β

U1
t − K2

K1

)
ds
)

, and introducing PDt :=

DtPt, Q
D
t := QtDt and Q̃Dt := Q̃tDt. Using again Itô’s formula, for any stopping time

0 ≤ t ≤ τ ≤ T ,

PDt ≥ PDτ +

∫ τ

t
QDs dWs +

∫ τ

t
Q̃Ds (x)µ̃(dx, ds)−

∫ τ

t

∫
E
Ps−Dsf

∗(−cSδs Z̃θs (x))µ̃(dx, ds).

Considering a localizing sequence of stopping time τn, such that the local martingales, in the

above inequality, stopped in τn are martingales, we obtain,

Pt ≥ E
[
Pτn exp

(
−e−||δ||∞T

∫ τn

t
Ss

(
α

K1β
U1
t −

K2

K1

)
ds

)∣∣∣∣Ft] .
In view of the integrability assumptions on U1 and on V , by the dominated convergence

theorem, we can deduce that,

Pt ≥ E
[
PT exp

(
−e−||δ||∞T

∫ T

t
Ss

(
α

K1β
U1
t −

K2

K1

)
ds

)∣∣∣∣Ft] .
But by definition of P , PT = exp(c(θ)SδTV

θ
T ) = exp(c(θ)SδT (U

1
T − θU

2
T )), and because U

1
T ≤

U
2
T and c(θ) is negative, we get,

c(θ)SδTV
θ
T ≥ −

e−||δ||∞T

K1β
SδTU

1
T .
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Therefore, we have,

Pt ≥ E
[

exp

(
−e−||δ||∞T

(
SδT
K1β

U
1
T +

∫ T

t
Ss

(
α

K1β
U1
t −

K2

K1

)
ds

))∣∣∣∣Ft] ,
which implies that,

V θ
t ≤ −

K1β(1− θ)e||δ||∞T

Sθt
lnE

[
exp

(
−e−||δ||∞T

(
SδT
K1β

U
1
T +

∫ T

t
Ss

(
α

K1β
U1
t −

K2

K1

)
ds

))∣∣∣∣Ft] .
Taking the limit when θ ↗ 1, we finally get,

V 1
t ≤ V 2

t .

The following corollary is a direct consequence of the comparison result above.

Corollary 3.5. Under assumptions (Ar) and (Au), the BSDE (3.2) has a unique solution

(V,Z, Z̃) Dexp
0 ×H2,p ×H

2,p
λ .

4 Appendix

Lemma 4.1. Let r(t, η, ψ) = 1
2 |η|

2 +
∫
E f(ψ(x))ξt(x)λ(dx) and Q ∈ Qf . Then, the following

processes,

Mt =

∫ t

0
ηsdW

Q
s , M ′t =

∫ t

0

∫
E

log(1 + ψs(x))µ̃Q(ds, dx),

are Q-martingales.

Proof. Since Q ∈ Qf , we have,

EQ

[∫ T

0
r(t, ηt, ψt)dt

]
= EQ

[∫ T

0

(
1

2
|ηt|2 +

∫
E
f(ψt(x))ξt(x)λ(dx)

)
dt

]
<∞. (4.1)

In particular, EQ

[∫ T
0

1
2 |ηt|

2dt
]
<∞, which implies that M is Q- martingale. Now, we prove

that M ′ is also a Q-martingale. First, note that,

f(x) = (1 + x) log(1 + x)− x ≥ 1

6
(1 + x) log2(1 + x) ≥ 0, for − 1 ≤ x ≤ e2 − 1.

Hence, as the RHS of (4.1) is finite, we get that

log(1 + ψs(x))1ψs(x)≤e2−1 ∈ L2(dQ× νQ(ds, dx)). (4.2)

Moreover, for x > e2 − 1, we have,

(1 + x) log(1 + x) ≤ 2((1 + x) log(1 + x)− x).
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Again, as the RHS of (4.1) is finite, we get that,

log(1 + ψs(x))1ψs(x)>e2−1 ∈ L1(dQ× νQ(ds, dx)). (4.3)

From (4.2) and (4.3), and using Theorem 1.8(i) in Jacod and Shiryaev (2013), we obtain that

M ′ is Q-martingale.

Proposition 4.2. Let r(t, η, ψ) = 1
2 |η|

2 +
∫
E f(ψ(x))ξt(x)λ(dx) and Q ∈ Qf . Then, we have,

H(Q|P ) = EQ

[∫ T

0
r(t, ηt, ψt)dt

]
= EQ

[∫ T

0

(
1

2
|ηt|2 +

∫
E
f(ψt(x))ξt(x)λ(dx)

)
dt

]
. (4.4)

Proof. Let Q ∈ Qf with corresponding (η, ψ). We introduce the following sequence of pro-

cesses (ψm)m∈N∗ defined as:

ψm,s(x) = ψs(x)1ψs(x)≤m1|x|≥1/m.

It is clear that ψm ∈ L2(dQ × νQ(ds, dx)). Developing the logarithm of Radon-Nikodym

derivative of Q w.r.t P gives Q-a.s.:

log

(
dQ

dP

)
= lim

m→∞
log

{
E

(∫ T

0
ηsdWs +

∫ T

0

∫
E
ψm,s(x)µ̃(ds, dx)

)}
= lim

m→∞

{∫ T

0
ηsdWs −

1

2

∫ T

0
|ηs|2ds+

∫ T

0

∫
E
ψm,s(x)µ̃(ds, dx)

+

∫ T

0

∫
E

(log(1 + ψm,s(x))− ψm,s(x))µ(ds, dx)

}
= lim

m→∞

{∫ T

0
ηsdW

Q
s +

1

2

∫ T

0
|ηs|2ds+

∫ T

0

∫
E
ψm,s(x)µ̃Q(ds, dx)

+

∫ T

0

∫
E

(log(1 + ψm,s(x))− ψm,s(x))µ̃Q(ds, dx)

+

∫ T

0

∫
E

[ψm,s(x)ψs(x) + (1 + ψs(x)) (log(1 + ψm,s(x))− ψm,s(x)) ν(ds, dx)]

}
= lim

m→∞

{∫ T

0
ηsdW

Q
s +

1

2

∫ T

0
|ηs|2ds+

∫ T

0

∫
E

log(1 + ψm,s(x))µ̃Q(ds, dx)

+

∫ T

0

∫
E

[(1 + ψs(x)) log(1 + ψm,s(x))− ψm,s(x)] ν(ds, dx)

}
,

(4.5)

where we used from the second to the third inequality that, by the definition of the process

ψm, (1 + ψs)(log(1 + ψm,s)− ψm,s) ∈ L1(ν(ds, dx)) and ψmψ ∈ L1(ν(ds, dx)). In particular,∫ t
0

∫
E(log(1 + ψm,s(x))− ψm,s(x)µ̃Q(ds, dx) is a well defined. Lemma 4.1 above insures that

the following processes:

Mt :=

∫ t

0
ηsdW

Q
s , M

′
t :=

∫ t

0

∫
E

log(1+ψs(x))µ̃Q(ds, dx), M ′m,t :=

∫ t

0

∫
E

log(1+ψm,s(x))µ̃Q(ds, dx),
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are Q-martingales. Moreover, we also have that M ′m,T converges to M ′T in L1(Q). Indeed,

decomposing M ′ and M ′m as in Lemma 4.1 in the following way,

M ′m,t = M̂m,t + M̃m,t,

where,

M̂m,t :=

∫ t

0

∫
E

log(1 +ψs,m(x))1ψs,m(x)≤e2−1, M̃m,t :=

∫ t

0

∫
E

log(1 +ψs,m(x))1ψs,m(x)>e2−1.

We have the positive (resp. negative) part of log(1 + ψm,s(x))1ψs,m(x)≤e2−1 increases (resp.

decreases) to the positive (resp. negative) part of log(1 + ψs(x))1ψs(x)≤e2−1 as m goes to

infinity and by the monotone convergence we deduce that M̂m,T convergence to M̂T in L1(Q).

Using the same argument, we have also M̃m,T converges to M̃T in L1(Q) as m goes to infinity.

Hence, we obtain that M ′m,T converges to M ′T as m→∞. By passing to a subsequence, we

may assume that M ′m,T converges to M ′T Q-a.s. Finally, by Monotone convergence theorem,

the last term in (4.5) also converges to
∫ T

0

∫
E f(ψs(x))ν(ds, dx). Consequently, (4.5) becomes,

log

(
dQ

dP

)
=

∫ T

0
ηsdW

Q
s +

1

2

∫ T

0
|ηs|2ds+

∫ T

0

∫
E

log(1 + ψs(x))µ̃Q(ds, dx)

+

∫ T

0

∫
E
f(ψs(x))ν(ds, dx).

Taking the expectation under Q and using the fact that M and M ′ are martingales yields

(4.4).
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