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ABSTRACT

We study a robust utility maximization problem in the unbounded case with a general penalty term
and information including jumps. We focus on time consistent penalties and we prove that there exists
an optimal probability measure solution of the robust problem. Then, we characterize the dynamic
value process of our stochastic control problem as the unique solution of a Quadratic-Exponential
BSDE.

Keywords Utility maximization, Robustness, Quadratic BSDEs with jumps, Time-consistent penalties, Bellman
Optimality principle

1 Introduction

One of the major problems in asset pricing is the valuation in incomplete markets. In such markets, the decision
maker/agent could use the well known utility maximization approach and the literature is particularly rich on the subject
(see for example Rouge and El Karoui (2000), Hu et al. (2005), Morlais (2009) and Carmona (2008) among many
others). However, in many cases, the decision maker does not know the probability distribution (also called prior or
model) governing the stochastic nature of the problem she/he is facing. Thus, before solving the utility maximization
problem, the decision maker is faced with an intermediate problem of choosing an “optimal” probability. This type of
problems are called robust utility maximization problems or utility maximization problems under model uncertainty. In
the mathematical finance literature, we can find two types of approaches to solve robust utility maximization problems.
The first one relies on convex duality methods which are presented in Quenez (2004), Gundel (2005), Schied (2007) and
Schied and Wu (2005). The second one, which we will follow in this article, is based on a stochastic control approach
and the powerful tool of BSDEs.
In this article, this uncertainty is captured by considering a set of plausible probability measures that will be penalized
through a penalty functional. This penalty functional will measure the distance between any plausible probability Q
and the reference/historical one denoted P . In Anderson et al. (2003) and Hansen et al. (2006) for example, a hedging
problem was addressed by using the classical entropic penalty under a Markovian setting and hence Hamilton-Jacobi-
Bellman (HJB) equations were derived in order to characterize the optimal strategies. The authors in Skiadas (2003) have
followed the same point of view and obtained a BSDE that coincides with the one describing a stochastic differential
utility (see also Duffie and Epstein (1992) and Duffie and Skiadas (1994) for more about stochastic differential utilities).
More recently, Bordigoni et al. (2007) addressed a robust problem in a more general setting which is non Markovian by
using stochastic control techniques. More precisely, they studied the following robust maximization problem:

sup
π

inf
Q∈Q

U(π,Q) (1)
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where π runs through a set of strategies and Q ∈ Q through a set of models. The simplest case corresponds to the case
where the set Q is the singleton {P} and U(π, P ) is simply the P -expected utility from a non bounded terminal wealth
and consumption/investment portfolio. The term U(π,Q) is the sum of Q-expected utility and an entropic penalization
term. The set Q is assumed to have certain properties and usually does not need to be specified in any detail. Their work
is cast in the case of a continuous filtration and the first minimization problem was solved by proving the existence of
a unique optimal probability Q∗. They also characterized the value process of the stochastic control problem as the
unique solution of a Quadratic BSDE (QBSDE). In the same spirit, Faidi et al. (2013) studied the same problem using
two type of penalties: the first one is the f -divergence penalties in the general framework of a continuous filtration and
the second one is time-consistent penalty and studied in the context of a Brownian filtration. For the latter, they also
characterized the value process as the unique solution of a QBSDE.
In this paper, we study the first minimization problem in (1) in the case of discontinuous filtration (where the information
includes jumps) using time consistent penalties. Note that in our framework, the relative entropic penalty, as we will
see further, is a special case of the class of time-consistent penalties. We first start by showing that the minimization
problem in (1) is well posed and we prove the existence of the optimal probability Q∗ using a Komlós-type argument.
Second, we prove that the value process of the minimization problem is described by a class of Quadratic-Exponential
BSDE with jumps (QEBSDEJ) with unbounded terminal condition. We stress that for a given unbounded terminal
condition, the study of Quadratic BSDEs is a difficult problem, see for instance Briand and Hu (2006), Briand and Hu
(2008) and Barrieu and El Karoui (2013) in the continuous framework and we emphasize that adding jumps to our
optimization problem involves significant difficulties in solving the related BSDEs. Karoui et al. (2016) have obtained
existence result for this new class of BSDEs with jumps with unbounded terminal condition. However, they have
showed uniqueness only in the bounded case. In this paper, we use the convexity of the generator of our BSDE to show
the uniqueness of solution of the BSDE by extending the work of Briand and Hu (2008) in the Brownian setting.
The paper is structured as follows. Section 2 establishes the general framework, in which we assume the existence of
a stochastic basis carrying a Brownian motion and a compensated integer-valued random measure that possesses a
weak predictable representation property. In section 3, we give a number of estimates for subsequent use. We then
prove with the help of Komlòs theorem that there exists an optimal probability Q∗. Finally, in section 4, we treat our
optimization problem from a stochastic control point of view, and show, thanks to Bellman Optimality Principle, that
the corresponding value process is the unique solution of a QEBSDEJ.

2 Framework of the optimization problem

2.1 Setting and notations

This section sets out the notation and the assumptions that will be assumed to hold in the sequel. Let (Ω,F,F, P )
be a filtered probability space with a finite time horizon T <∞ and a filtration F = (Ft)t∈[0,T ] satisfying the usual
conditions of right continuity and completeness, in which all semimartingales are taken to have right continuous paths
with left limits. We assume that that F0 is trivial and F = FT . On this stochastic basis, let W be a d-dimensional
standard Brownian motion and let µ(dt, dx) = (µ(w, dt, dx)|w ∈ Ω) denote an integer-random valued measure on
([0, T ]×E,B([0, T ])⊗ E) with compensator ν := νP (w, dt, dx) under P , where E := Rd\{0} is equipped with its
Borel σ-field E := B(E).
On (Ω̃, F̃) := (Ω× [0, T ]× E,F ⊗B[0, T ]⊗ E), we define the measure P × ν by

P × ν(B̃) = E

[∫
[0,T ]×E

1B̃(w, t, x)ν(w, dt, dx)

]
, B̃ ∈ F̃. (2)

We denote by P̃ := P⊗ E where P is the predictable σ-field on Ω× [0, T ]. We say that a function on Ω̃ is predictable
if it is P̃-measurable.
We will assume that the compensator ν is absolutely continuous with respect to the λ⊗ dt with a density ξ:

ν(w, dt, dx) = ξt(w, x)λ(dx)dt, (3)

where λ is a σ-finite measure on (E,E), that satisfies the following condition:
∫
E

1∧ |x|2λ(dx) <∞ and the density ξ
is P̃-measurable, positive and bounded:

0 < ξt(w, x) ≤ Cν <∞, P × λ(dx)× dt− a.e. for some constant Cν . (4)
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Note that, thanks to (3), we have that ν({t} × E) = 0 for all t, and ν([0, T ]× E) ≤ CνTλ(E).
For ψ a predictable function on Ω̃, we define its integral process with respect to µ as:

(ψ ? µ)t :=


∫

[0,t]×E
ψt(x)µ(w, ds, dx) if

∫
[0,t]×E

|ψt(w, x)|µ(w, ds, dx) <∞,

+∞ otherwise.
(5)

In the same way, we define the integral process with respect to ν.
Let µ̃ be the compensated measure of µ

µ̃(w, dt, dx) = µ(w, dt, dx)− ν(w, dt, dx). (6)

To alleviate the notations, we will omit the dependence on w in the different stochastic quantities. In the following, we
recall some properties that can be found in Becherer (2006) or Jacod and Shiryaev (2013). First, for any predictable
function ψ, the process ψ ?ν is a predictable process whereas ψ ?µ is an optional process. We recall that E[|ψ| ?µT ] =
E[|ψ|?νT ]. If (|ψ|2 ?µ)1/2 is locally integrable, then ψ is integrable with respect to µ̃ and ψ ? µ̃ is defined as the purely
discontinuous local martingale (under P ) with jump process

∫
E
Uµ({t}, dx). If the increasing process |ψ| ? µ (or

equivalently, |ψ| ? ν) is locally integrable, then again, ψ is integrable with respect to µ̃ and is the purely discontinuous
local martingale as in the first case and we have ψ ? µ̃ = ψ ?µ−ψ ? ν. Finally, if the process |ψ|2 ? ν is integrable, then
U is integrable with respect to µ̃ and Z̃ ? µ̃ is a square integrable martingale, purely discontinuous, with predictable
quadratic variation 〈ψ ? µ̃〉 = |ψ|2 ? ν. These properties and their proofs can be found in Section II.1.d of Jacod and
Shiryaev (2013).
We will assume that W and µ̃ satisfy the following weak representation property with respect to P and F: Every local
martingale M with respect to (F, P ) admits the following decomposition:

Mt = M0 + (η ·W )t + (ψ ? µ̃)t := M0 +

∫ t

0

ηsdWs + (ψ ? µ̃)t, ∀t ≥ 0, P − a.s. (7)

where η is a progressively measurable process and ψ a predictable process such that∫ T

0

|ηs|2ds <∞, (|ψ|2 ? ν)T <∞, P − a.s. (8)

We introduce the following spaces:

• Lexp is the space of all FT -measurable random variables X such that:

E[exp(γ|X|)] <∞, ∀γ > 0.

• D
exp
0 is the space of progressively measurable processes (Xt)0≤t≤T with

E

[
exp

(
γ ess sup

0≤t≤T
|Xt|

)]
<∞, ∀γ > 0.

• D
exp
1 is the space of progressively measurable processes (Xt)0≤t≤T with

E

[
exp

(
γ

∫ T

0

|Xs|ds

)]
<∞, ∀γ > 0.

• H
2,p
λ is the space of predictable processes ψ such thatE [∫ T

0

|ψ|2s,λds

] p
2

 1
p

,

where
|ψ|2s,λ :=

∫
E

|ψs(x)|2ξs(x)λ(dx).

• H2,p is the set of all predictable processes η such that

E

(∫ T

0

|ηs|2ds

) p
2

 1
p

<∞.
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2.2 The optimization problem

For every probability Q � P on FT , we denote by D = (Dt)0≤t≤T its Radon-Nikodym density with respect to P ,
that is,

Dt = E

[
dQ

dP

∣∣∣∣Ft] , t ≥ 0.

D is a càdlàg nonnegative P -martingale. Let τn := inf{t ≥ 0, Dt ≤ 1/n} and consider the local martingale
Mn
t =

∫ t∧τn
0

D−1
s− dDs. Thanks to the weak representation property, there exist two predictable processes (ηns ) and

(ψns ), s ≤ τn, such that,
∫ t∧τn

0
|ηns |2ds <∞ and (|ψ)|2 ? ν)t∧τn <∞ and

Dt∧τn = E ((ηn ·W ). + (ψn ? µ̃).)t∧τn , t ≥ 0, P − a.s.

Consistency requires that we should have ηnt = ηn+1
t dt ⊗ dP -a.e and ψnt (x) = ψn+1

t (x) ν(dx) ⊗ dt ⊗ dP -a.e on
{t ≤ τn ∧ T}. By the fact that τn ↗∞ Q-a.s., we obtain the existence of Q-a.s. defined predictable processes η and ψ
such that,

Dt = E ((η ·W ). + (ψ ? µ̃).)t , t ≥ 0, Q− a.s. (9)

where
∫ T

0
|ηs|2ds <∞ and (|ψ|2 ? ν)T <∞ Q− a.s.. Note that since for all t ∈ [0, T ], Dt > 0 Q-a.s., then we must

have for every t ∈ [0, T ], ψt(x) > −1 dQ× ν(dx, dt)-a.e. and we can rewrite (Dt) as in the following:

Dt = exp

(
(η ·W )t + (ψ ? µ̃)t −

1

2

∫ t

0

|ηs|2ds+ ((ln(1 + ψ)− ψ) ? µ)t

)
Q− a.s. (10)

We now introduce the following time consistent penalty for a probability Q� P on FT :

γt(Q) := EQ

[∫ T

t

r(s, w, ηs, ψs)ds

∣∣∣∣∣Ft
]
, (11)

where r : [0, T ] × Ω × Rd × L2(E, λ) → [0,+∞] is suitable measurable function that is convex and lower-
semicontinuous in (η, ψ) and such that r(t, 0, 0) = 0. Note that, since r is non-negative, r is minimal at η = 0
and ψ = 0 and this corresponds to the probabilistic model P . Therefore, the reference probability has the highest
plausibility. In the following, we will consider probabilities Q ∈ Qf where

Qf = {Q� P, γ0(Q) <∞}. (12)

In order to solve the stochastic control problem with BSDEs, we need to impose some regularity and growth conditions
on the penalty function. In a Brownian setting, Faidi et al. (2013) assumed the penalty function to be bounded from
below by the relative entropy. In the same way, we will assume that there exists K̃2, K̃1 > 0 such that,

γ0(Q) ≥ −K̃2 + K̃1H(Q|P ).

Let f be the function defined as follow:

f(x) =

{
(1 + x) log(1 + x)− x, if x ≥ −1;

∞ otherwise;
(13)

For the latter inequality to be verified, a sufficient condition on r will be the following:

(Ar) There exists K1,K2 > 0 such that for all w ∈ Ω, t ∈ [0, T ], η ∈ Rd and ψ ∈ L2(E, λ;R), we have,

r(t, w, η, ψ) ≥ −K2 +K1

(
|η|2

2
+

∫
E

f(ψ(x))ξt(w, x)λ(dx)

)
.

The following proposition shows that the entropic penalty can be retrieved with a special choice for r. A detailed proof
is given in the Appendix 5.

4
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Proposition 2.1. Let r(t, η, ψ) = 1
2 |η|

2 +
∫
E
f(ψ(x))ξt(x)λ(dx) and Q ∈ Qf . Then, the penalty function corresponds

to the relative entropy, that is

γ0(Q) =
(∆)

EQ

[∫ T

0

(
|ηt|2

2
+

∫
E

f(ψt(x))ξt(x)λ(dx)

)
dt

]
= H0(Q|P ),

where,

Ht(Q|P ) = EQ

[
log

(
dQ

dP

)∣∣∣∣Ft] . (14)

Moreover, we have for a general r verifying (Ar),

H(Q|P ) ≤ γ0(Q)

K1
+
TK2

K1
. (15)

In particular, H(Q|P ) is finite for all Q ∈ Qf .

Remark 2.2. Let r∗(t, z, z̃) = sup
η∈Rd,ψ∈L2(λ)

(z · η +
∫
E
z̃(x)ψ(x)λ(dx) − r(t, η, ψ)) the Fenchel conjugate r.

Assumption (Ar) implies that, for w ∈ Ω, z ∈ Rd, t ∈ [0, T ] and z̃ ∈ L2(E, λ;R),

r∗(t, w, z, z̃) ≤ K2 +
|z|2

2K1
+K1

∫
E

f∗
(

z̃(x)

K1ξt(x)

)
ξt(x)λ(dx), (16)

where f∗(x) := ex − x− 1 is the Fenchel conjugate of the function f .

Now, given a positive adapted process δ, we define the discounting process:

Sδt := exp

(
−
∫ t

0

δsds

)
, 0 ≤ t ≤ T,

and the auxiliary quantities,

Uδt,T := α

∫ T

t

Sδs
Sδt
Usds+ α

SδT
Sδt
UT , 0 ≤ t ≤ T, α, α ≥ 0,

Rδt,T (Q) :=

∫ T

t

Sδs
Sδt
r(s, ηs, ψs)ds, 0 ≤ t ≤ T.

Now we consider the cost functional

c(w,Q) := Uδ0,T (w) + βR0,T (Q)(w), (17)

which consists of two terms. The first one is a discounted utility term that is the sum of a final utility UT and a
continuous utility with utility rate (Us). For instance, (Us) ca be seen as the utility coming from investing/consuming
and UT as the utility coming from the terminal wealth. The second term is simply the penalty term and measure the
“distance” between the probability Q and the reference probability P . The parameter β might be viewed as measuring
the degree of confidence of the reference probability P . The higher β is, the more confident we are in P , with the
limiting case β ↑ ∞ (respectively β ↓ ∞) corresponding to full degree of confidence (respectively distrust).
Our objective is to solve the following optimization problem:

Minimize the functional Q 7→ Γ(Q) := EQ[c(., Q)], (18)

over the set Qf . To guarantee the well-posedeness of the problem, we will assume the following:

(Au) i. The discounting process is bounded by some constant ||δ||∞;
ii. The process U belongs to Dexp

1 ;
iii. The terminal utility UT belongs to Lexp.

5
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Remark 2.3. Under assumption (Au), we have

E

[
exp

(
λ

∫ T

0

|Us|ds+ µ|UT |

)]
<∞, ∀λ, µ ∈ R+. (19)

Indeed, using the convexity of the exponential function, we get,

E

[
exp

(
λ

∫ T

0

|Us|ds+ µUT

)]
= E

[
exp

(
1

2
× 2λ

∫ T

0

|Us|ds+
1

2
× 2µUT

)]

≤ E

[
1

2
exp

(
2λ

∫ T

0

|Us|ds

)
+

1

2
exp

(
2µ|UT |

)]

=
1

2
E

[
exp

(
2λ

∫ T

0

|Us|ds

)]
+

1

2
E
[
exp

(
2µ|UT |

)]
<∞,

where the finiteness of the two last expectations is due to assumption (Au).

3 Some helpful estimates and existence of optimal probability

3.1 Auxiliary estimates

The main objective of this section is to prove the existence of an optimal probability Q∗ that minimizes the functional Γ.
To achieve this, we start by proving some useful auxiliary estimates. We will adapt the steps in Bordigoni et al. (2007)
and the inequalities therein into our setting.

Proposition 3.1. Under assumption (Ar) and (Au), there exists a constant C ∈ (0,∞) which depends only on
α, α, β, δ, T, U, UT such that

Γ(Q) ≤ EQ[|c(·, Q)|] ≤ C(1 + γ0(Q)), for all Q ∈ Qf . (20)

In particular, this shows that Γ(Q) is well defined and finite for every Q ∈ Qf .

Proof. The first inequality is obvious. As for the second, denoting U := α
∫ T

0
|Ut|dt+ α|UT |, we have for Q ∈ Qf ,

using the fact that, 0 ≤ Sδt ≤ 1,

EQ[|c(·, Q)|] ≤ EQ

[
α

∫ T

0

|Ut|dt+ α|UT |

]
+ βEQ

[∫ T

0

r(t, ηt, ψt)dt

]
(21)

= EQ[U] + βγ0(Q). (22)

Fenchel inequality applied to x 7→ x log(x), gives

xy ≤ 1

λ
(x log(x) + eλy−1), ∀(x, y, λ) ∈ R∗+ × R∗+ × R∗. (23)

Therefore, using this inequality with λ = 1, we get,

EQ[U] = E

[
dQ

dP
U
]

≤ E
[
dQ

dP
log

(
dQ

dP

)]
+ E[eU−1]

= H(Q|P ) + E[eU−1]

≤ γ0(Q)

K1
+
TK2

K1
+ e−1E[eU],

6
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where we used (15) in the last inequality. Going back to (21), we obtain,

EQ[|c(·, Q)|] ≤
(
β +

1

K1

)
γ0(Q) +

(
TK2

K1
+ e−1E[eU]

)
,

where the term E[eU] is finite as pointed out in remark 2.3. We then conclude by setting C :=

max
(
β + 1

K1
, TK2

K1
+ e−1E[eU]

)
.

The next result shows that Γ is bounded from below by γ0(Q). This will be very useful for proving the existence of an
optimal probability.
Proposition 3.2. Assume (Ar) and (Au) hold. Then, there exists C ∈ (0,∞) depending on α, α, β, δ, T, U, UT such
that for all Q ∈ Qf

γ0(Q) ≤ C(1 + Γ(Q)). (24)
In particular, we have inf

Q∈Qf
Γ(Q) > −∞

Proof. Using the same notation as in the proof of the previous proposition, we have,

EQ[Uδ0,T ] ≥ −EQ[U].

For every λ ∈ R∗, using the inequality (23), we get,

EQ[U] ≤ 1

λ
H(Q|P ) +

1

λ
E[eλU−1]

≤ 1

λ

(
γ0(Q)

K1
+
TK2

K1

)
+
e−1

λ
E[eλU],

where we used (15) in the last inequality. On the other hand, since the discounting process is bounded from above, we
have

EQ[R0,T ] =
(∆)

EQ

[∫ T

0

Sδt r(t, ηt, ψt)dt

]
≥ e−||δ||∞TEQ

[∫ T

0

r(t, ηt, ψt)dt

]
= e−||δ||∞T γ0(Q).

Combining the two previous inequalities leads to the following,

Γ(Q) = EQ[Uδ0,T + βRδ0,T ] ≥
(
βe−||δ||∞T − 1

λK1

)
γ0(Q)− TK2

λK1
− e−1

λ
E[eλU ]

Choosing λ large enough such that µ := βe−||δ||∞T − 1
λK1

> 0, we get the desired result by setting C :=

1
µ max

(
1, TK2

λK1
+ e−1

λ E[eλU ]
)

.

The following is a direct consequence of the previous proposition and inequality (15).
Corollary 3.3. Under assumptions (Ar) and (Au), there exists K ∈ (0,∞) such that for every Q ∈ Qf , we have the
following

H(Q|P ) ≤ K(1 + Γ(Q)). (25)

In the same spirit of the proof of the above proposition, we have the following estimate that is crucial in proving the
existence of an optimal probability Q∗ ∈ Qf .
Lemma 3.4. For any λ > 0 and any measurable set A ∈ FT , we have for every Q ∈ Qf

EQ[|Uδ0,T |1A] ≤ γ0(Q)

λK1
+
TK2

λK1
+
e−1

λ
E

[
1A exp(λα

∫ T

0

|Us|ds+ λα|UT |)

]
. (26)

Proof. Using inequality (23), we have for every λ > 0 and Q ∈ Qf ,

dQ

dP
|Uδ0,T |1A ≤

1

λ

(
dQ

dP
log

(
dQ

dP

)
+ e−1eλU

)
1A.

Taking the expectation under P and using (15), we consequently get, EQ[|Uδ0,T |1A] ≤ γ0(Q)
λK1

+ TK2

λK1
+

e−1

λ E[1A exp(λU)].

7
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3.2 Existence of optimal probability

In this subsection, we prove the existence of an optimal probability Q∗ ∈ Qf using a standard Komlòs-type argument,
but before let us show two important properties of the functionals Γ and γ0. We will introduce the following Linderberg
condition on sequences of martingales converging almost surely to 0. This technical assumption is needed to prove the
lower-semicontinuity of γ0:

(AL) Every sequence (Mn) of locally square integrable martingales with the representation dMn
t = ηnt dWt +∫

E
ψnt (x)µ̃(dt, dx) converging P -a.s. to 0 for each t ∈ [0, T ], verifies the following Linderberg condition:

∀ε ∈ (0, 1],

∫ T

0

∫
E

|ψnt (x)|21|ψnt (x)|≥ε|ν(dt, dx) →
n→∞

0, in P − Probability

Proposition 3.5. Under the assumption (AL), we have the following:

1. Qf is a convex set and the functional Q ∈ Qf 7→ Γ(Q) is convex.

2. γ0 is lower-semicontinuous for L1(P ) convergence.

Proof. 1. Let λ ∈ (0, 1), Q, Q̃ ∈ Qf and Qλ := λQ+ (1−λ)Q̃. Let D and D̃ denote the corresponding density
processes and (η, ψ), (η̃, ψ̃) the associated processes via (9). Consider the following processes:

ηλt :=
λDt−ηt + (1− λ)D̃t− η̃t

Dλ
t−

1Dλ
t−
>0,

ψλt :=
λDt−ψt + (1− λ)D̃t− ψ̃t

Dλ
t−

1Dλ
t−
>0,

where Dλ := λD + (1− λ)D̃ is the density process of Qλ with respect to P . It is easy to see that the density
Dλ satisfies the following SDE:

dDλ
t = Dλ

t−

(
ηλt dWt +

∫
E

ψλt (x)µ̃(dt, dx)

)
, t ∈ [0, T ], Qλ − a.s.

Hence, using the convexity assumption of r, we have,

γ0(Qλ) = EQλ

[∫ T

0

r(t, ηλt , ψ
λ
t )dt

]

≤ EQλ

[∫ T

0

(
λDt−

Dλ
t−

r(t, ηt, ψt) +
(1− λ)D̃t−

Dλ
t−

r(t, η̃t, ψ̃t)

)
1Dλ

t−
>0dt

]

= E

[
Dλ
T

∫ T

0

(
λDt−

Dλ
t−

r(t, ηt, ψt) +
(1− λ)D̃t−

Dλ
t−

r(t, η̃t, ψ̃t)

)
1Dλ

t−
>0dt

]
.

Using Fubini’s Theorem to interchange integral and expectation followed by conditioning on Ft and the
martingale property of the density process Dλ, yields,

γ0(Qλ) ≤ E

[∫ T

0

Dλ
t

(
λDt−

Dλ
t−

r(t, ηt, ψt) +
(1− λ)D̃t−

Dλ
t−

r(t, η̃t, ψ̃t)

)
1Dλ

t−
>0dt

]
.

Since Dλ is right continuous, the set {t ∈ [0, T ], Dλ
t 6= Dλ

t−} is countable. Therefore, we have,

γ0(Qλ) = E

[∫ T

0

Dλ
t−

(
λDt−

Dλ
t−

r(t, ηt, ψt) +
(1− λ)D̃t−

Dλ
t−

r(t, η̃t, ψ̃t)

)
1Dλ

t−
>0dt

]

≤ E

[∫ T

0

λDt−r(t, ηt, ψt) + (1− λ)D̃t−r(t, η̃t, ψ̃t)dt

]
= λγ0(Q) + (1− λ)γ0(Q̃) <∞.

8
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We have showed then that Qf is convex. The convexity of the functional Γ follows readily by using the same
arguments used above.

2. Let (Qn) be a sequence of probability measures that converges to Q in L1(Ω, P ), i.e., Dn
T → DT in L1(Ω, P )

where Dn and D the corresponding densities processes. Let (ηn, ψn) and (η, ψ) (resp.) be the processes
given by (9) of Dn and D (resp.). Since we know that Dn

T converges to DT in L1(P ), the maximal Doob’s
inequality

P ( sup
0≤t≤T

|Dn
t −Dt| ≥ ε) ≤

1

ε
E[|Dn

T −DT |], ∀ε > 0,

implies that ( sup
0≤t≤T

|Dn
t −Dt|) converges to 0 in P -probability. By passing by a subsequence, we can assume

that ( sup
0≤t≤T

|Dn
t −Dt|) converges to 0 P − a.s.

We denote Mn
t := sup

0≤s≤t
|Dn

s −Ds| and introduce the following stopping time τn := inf{t ∈ [0, T ],Mn
t ≥

1} ∧ T . We have Mn
τn ≤M

n
τ−n

+ |Dn
τn −Dτn | and by taking expectation in the latter we get

E[Mn
τn ] ≤ E[Mn

τ−n
] + E[|Dn

τn −Dτn |]. (27)

Recall thatMn
T →
n→∞

0 and since (Mn
t )t is a nondecreasing process we haveMτ−n

≤Mn
T so thatMn

τ−n
−→
n→∞

0.
We also have by the definition of the stopping time τn that Mn

τ−n
≤ 1. Hence, by the dominated convergence

theorem, we obtain that

E[Mn
τ−n

]→ 0 as n→∞. (28)

Furthermore,

E[|Dn
τn −Dτn |] = E[|E[Dn

T |Fτn ]− E[DT |Fτn ]|] = E[|E[Dn
T −DT |Fτn ]|]

≤ E[E[|Dn
T −DT ||Fτn ]] = E[|Dn

T −DT |] −→
n→∞

0.
(29)

Combining (27), (28) and (29), we deduce that Mn
τn converges to 0 in L1(P ). Then, by Burkholder-Davis-

Gundy’s inequality, we get that [Dn −D]
1
2
τn converges to 0 in L1(P ) and a fortiori in P -probability. Now, as

[Dn −D]T = [Dn −D]τn1τn=T + [Dn −D]T1τn<T , then for every ε > 0,

P ([Dn −D]T ≥ ε) ≤ P ([Dn −D]τn1τn=T ≥ ε) + P ([Dn −D]T1τn<T ≥ ε)
≤ P ([Dn −D]τn ≥ ε) + P (τn < T ),

and

P (τn < T ) = P (∃t ∈ [0, T ] s.t. Mn
t ≥ 1) ≤ P (Mn

T ≥ 1) −→
n→∞

0.

So, we get that [Dn −D]T converges to 0 in P -probability. On the other hand, since Dn
t −Dt → 0, thanks

to the assumption (AL), we get from Corollary 1 in Shiryayev (1981) that 〈Dn − D〉T converges to 0 in
P -probability and by passing to a subsequence while keeping the same notation, we may say that 〈Dn −D〉T
converges to 0 P − a.s.. But, we know that,

〈Dn −D〉T =

∫ T

0

|Dn
t−η

n
t −Dt−ηt|2dt+

∫ T

0

∫
E

|Dn
t−ψ

n
t (x)−Dt−ψt(x)|2ν(dt, dx).

Therefore, we immediately obtain that Dn
t−η

n
t → Dt−ηt dP × dt− a.e. and dP × dt− a.e., Dn

t−ψ
n
t (x)→

Dt−ψt(x) in L2(E, λ). Next, we will show that γ0(Q) ≤ lim inf
n→∞

γ0(Qn). Assume by way of contradiction

that γ0(Q) > l := lim inf
n→∞

γ0(Qn). By passing to a subsequence, we may assume that γ0(Qn) → l. Let

ζ := inf{t ∈ [0, T ], Dt = 0} and ζn := inf{t ∈ [0, T ], Dn
t = 0}. Since Dn

t = 0 on {t > ζn}, we must have

9
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ζ ≤ lim inf
n→∞

ζn. Hence, for ε := γ0(Q)−l
2 , there is k ∈ N such that for Tk := ζ ∧ {ζk, ζk+1, ...}, we have

γ0(Q) = EQ

[∫ T

0

r(t, ηt, ψt)dt

]
= E

[∫ ζ

0

Dt−r(t, ηt, ψt)dt

]

≤ E

[∫ Tk

0

Dt−r(t, ηt, ψt)dt

]
+ ε

= E

[∫ Tk

0

g(t,Dt− , Dt−ηt, Dt−ψt)dt

]
+ ε,

where g(t, x, y, z) := xr(t, yx ,
z
x ). Clearly, since r is lower-semicontinuous in (η, ψ), we get that also g is also

lower-semicontinuous. Hence, by Fatou’s lemma, we obtain

E

[∫ Tk

0

g(t,Dt− , Dt−ηt, Dt−ψt)dt

]
≤ lim inf

n≥k
E

[∫ Tk

0

g(t,Dn
t− , D

n
t−ηt, D

n
t−ψt)dt

]

≤ lim inf
n≥k

E

[∫ ζk

0

g(t,Dn
t− , D

n
t−η

n
t , D

n
t−ψ

n
t )dt

]
= lim inf

n≥k
γ0(Qn) = l,

so that we have γ0(Q) ≤ l + ε < γ0(Q) which is a contradiction.

In the next theorem, we show the existence of an optimal probability Q∗ ∈ Qf .
Theorem 3.6. Assume (Ar), (Au) and (AL) hold. Then there exists a probability measure Q∗ minimizing Q 7→ Γ(Q)
over Qf .

Proof. Let Qn a minimizing sequence in Qf such that

Γ(Qn) ↘↘
n→∞

inf
Q∈Qf

Γ(Q),

and we denote by Dn the corresponding density process. Since we have Dn
T ≥ 0, it follows from Komlòs’ lemma that

there exists a sequence denoted D
n

T with such that D
n

T ∈ conv(Dn
T , Z

n+1
T , ...) for each n ∈ N and (D

n

T ) converges
P − a.s. to a random variable D

∞
T . Now, we will show that D

∞
T is associated with a probability measure Q

∞
. First, we

have D
∞
T is nonnegative as the P − a.s. limit of the nonnegative sequence (D

n

T )n. Second, since Qf is convex, each
D
n

T is associated with a probability measure Q
n ∈ Qf . Now, thanks to the convexity of Γ and the fact that (Γ(Qn))n is

decreasing, we have the following,

Γ(Q
n
) ≤ sup

m≥n
Γ(Qn) = Γ(Qn) ≤ Γ(Q1). (30)

Consequently, using (25), we get,

sup
n∈N

E[D
n

T log(D
n

T )] = supH(Q
n|P ) ≤ K(1 + sup

n∈N
Γ(Q

n
)) ≤ K(1 + Γ(Q1)) <∞.

By Vallée-Poussin’s criterion, the sequence (D
n

T ) is P - uniformly integrable and therefore converges to D
∞
T in L1(P ).

Hence, we have, E[D
∞
T ] = lim

n→∞
E[D

n

T ] = 1 since E[D
n

T ] = 1 for all n ∈ N. This shows that D
∞
T can be associated

with a probability Q
∞

on FT such that dQ
∞

= D
∞
T dP . Our next step is to prove that this probability Q

∞
belongs to

Qf . By Proposition 3.5, we know that γ0 is lower-semicontinuous with respect to L1(Ω, P ) convergence. Therefore,

we get since D
n

T
L1

→ D
∞
T ,

γ0(Q
∞

) ≤ lim inf
n→∞

γ0(Q
n
).

10
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But, thanks to (24), we know that γ0(Q) ≤ C(1 + Γ(Q)). Consequently, we obtain that,

lim inf
n→∞

γ0(Q
n
) ≤ C(1 + sup

n∈N
Γ(Q

n
)).

The RHS of the last inequality is finite thanks to (30). We then conclude that γ0(Q
∞

) < ∞, i.e., Q
∞ ∈ Qf . It

remains to show that Q
∞

is optimal. Note that using the same arguments in the proof of Proposition 3.5, the function
Q 7→ EQ[Rδ0,T (Q)] = EQ[

∫ T
0
Sδt r(t, ηt, ψt)dt] is lower-semicontinuous for L1(Ω, P ) convergence and therefore we

get immediately that,
EQ∞

[
Rδ0,T (Q

∞
)
]
≤ lim inf

n→∞
EQn

[
Rδ0,T (Q

n
)
]
.

We denote Y
n

:= D
n

TU
δ
0,T and Y

∞
:= D

∞
T Uδ0,T . If we prove that we also have

E[Y
∞

] ≤ lim inf
n→∞

E[Y
n
], (31)

then we would have

Γ(Q
∞

) = E[Y
∞

] + EQ∞ [Rδ0,T (Q
∞

)]

≤ lim inf
n→∞

E[Y
n
] + lim inf

n→∞
EQn

[
Rδ0,T (Q

n
)
]

≤ lim inf
n→∞

E[Y
n
] + EQn

[
Rδ0,T (Q

n
)
]

= lim inf
n→∞

Γ(Q
n
) = inf

Q∈Qf
Γ(Q),

which proves that indeed Q
∞

is optimal. Although Y is linear in D
n

T , we cannot use Fatou’s lemma since ther term
Uδ0,T has no lower bound. To remediate this, we introduce the following:

R̃m := Uδ0,T1Uδ0,T≥−m
≥ −m, m ∈ N.

Hence, we have for n ∈ N ∪ {∞},

Y
n

= D
n

TU
δ
0,T = D

n

T R̃m +D
n

TU
δ
0,T1Uδ0,T<−m

.

Because now R̃m is bounded below by −m, we can use Fatou’s lemma to get,

E[D
∞
R̃m] ≤ lim inf

n→∞
E[D

n
R̃m].

Consequently, by adding and subtracting E[D
n

TU
δ
0,T1Uδ0,T<−m

], we obtain,

E[Y
∞

] ≤ lim inf
n→∞

E[D
n
R̃m] + E[D

n

TU
δ
0,T1Uδ0,T<−m

]

≤ lim inf
n→∞

E[Y
n
] + 2 sup

n∈N∪{∞}
E[Dn

T |Uδ0,T |1Uδ0,T<−m
].

The desired inequality (31) will follow once we prove that

lim
m→∞

sup
n∈N∪{∞}

E[Dn
T |Uδ0,T |1Uδ0,T<−m

] = 0,

and this is where we use Lemma 3.4. Indeed, thanks to this lemma, we have,

E[Dn
T |Uδ0,T |1Uδ0,T<−m

] = EQn [|Uδ0,T |1Uδ0,T<−m
] ≤ γ0(Q

n
)

λK1
+
TK2

λK1
+
e−1

λ
E[exp(λU)1Uδ0,T<−m

]

≤ C(1 + Γ(Q
n
))

λK1
+
TK2

λK1
+
e−1

λ
E[exp(λU)1Uδ0,T<−m

].

11
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Using (30), we deduce that

E[Dn
T |Uδ0,T |1Uδ0,T<−m

] ≤ C(1 + max(Γ(Q1),Γ(Q
∞

)))

λK1
+
TK2

λK1
+
e−1

λ
E[exp(λU)1Uδ0,T<−m

].

By the dominated convergence theorem, the third term in the RHS of the previous inequality goes to 0 as m → ∞.
Hence, we for all λ > 0, we have

lim
m→∞

E[Dn
T |Uδ0,T |1Uδ0,T<−m

] ≤ C(1 + max(Γ(Q1),Γ(Q
∞

)))

λK1
+
TK2

λK1
.

Sending λ to∞, we finally obtain the desired result.

4 Related BSDE with jumps

This section is devoted to the study of the dynamic value process V associated to the optimization problem (18) using
stochastic control techniques. More precisely, we prove that the dynamic process is the unique solution of a certain
QEBSDEJ. This extends the previous work by Schroder and Skiadas (1999), Skiadas (2003) and Lazrak and Quenez
(2003).
We first introduce some notations that we will use below. Let S denote the set of all stopping time τ with values in
[0, T ] and D the space of all density processes DQ with Q ∈ Qf . We also define,

D(Q, τ) := {Q′ ∈ Qf , Q
′ = Q on Fτ},

Γ(Q, τ) := EQ[c(·, Q)|Fτ ].

As in Karoui (1981), we define the minimal conditional cost at time τ by

J(Q, τ) := Q− ess inf
Q′∈D(Q,τ)

Γ(Q′, τ).

For Q ∈ Qf and τ ∈ S, we now define the value of the control problem starting at time τ instead of 0 and assuming one
has used the model Q up to time τ ,

Ṽ (Q′, τ) := EQ′ [U
δ
τ,T |Fτ ] + βEQ′ [R

δ
τ,T (Q′)|Fτ ],

V (Q, τ) := Q− ess inf
Q′∈D(Q,τ)

Ṽ (Q′, τ).

The following martingale optimality principle is a consequence of Theorems 1.15, 1.17 and 1.21 in Karoui (1981). It is
the analogue of Proposition 3.4 in Faidi et al. (2013) in a Brownian setting but the proofs also hold in our setting with
obvious modifications.
Proposition 4.1. Under (Au) and (Ar), we have:

• The family {J(Q, τ)|τ ∈ S, Q ∈ Qf} is a submartingale system, that is for any Q ∈ Qf and stopping times
σ ≤ τ , we have,

EQ[J(Q, τ)|Fσ] ≥ J(Q, σ) Q− a.s. (32)

• Q̂ ∈ Qf is optimal if and only if the family {J(Q̂, τ)|τ ∈ S} is a Q̂-martingale system which means that for
any stopping times σ ≤ τ

EQ̂[J(Q̂, τ)|Fσ] = J(Q̂, σ) Q̂− a.s.

• For each Q ∈ Qf , there exists an adapted RCLL process JQ = (JQt )t∈[0,T ] which is a right closed Q-
submartingale such that for every stopping time τ

JQτ = J(Q, τ) Q− a.s.

Before stating the BSDE verified by the value process V , we will need to define a strong order relation on the set of
increasing processes defined below.
Definition 4.2. Let X and Y two increasing processes. We say that X � Y if the process Y −X is increasing.

12
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Theorem 4.3. Assume assumptions (Ar), (Au) and (AL) hold. If the optimal probability Q
∞

in Theorem 3.6 is
equivalent to P , then there exists Z and Z̃ such that (V,Z, Z̃) is solution in Dexp

0 ×H2,p ×H
2,p
λ of the following

BSDE: dVt =

(
δtVt − αUt + βr∗

(
t,
Zt
β
, ξt

Z̃t
β

))
dt− ZtdWt −

∫
E

Z̃t(x)µ̃(dx, dt),

VT = αUT .

(33)

Proof. We will split the proof into three steps: First, we will prove that the value process V is a P -special martingale,
that is it can be decomposed as V = V0 + MV + AV , where MV is a local martingale that can be written as
MV = (Z ·W ) + (Z̃ ? µ̃) and AV a predictable finite variation process. Then, we show that (V,Z, Z̃) is a solution of
the BSDE. Finally, we prove that (V,Z, Z̃) is in the required spaces.
Step 1: First, note that since we assumed that Q

∞ ∼ P , then,

inf
Q∈Qf

Γ(Q) = inf
Q∈Qef

Γ(Q),

where Qef := {Q ∈ Qf , Q ∼ P} and we define De(Q, τ) accordingly. Hence, we will restrict our attention to
probabilities Q ∈ Qef and all essential infinimums can be taken with respect to P in the expression of V (Q, τ) and
J(Q, τ), i.e.,

J(Q, τ) = P − ess inf
Q′∈De(Q,τ)

Γ(Q′, τ),

V (Q, τ) = P − ess inf
Q′∈De(Q,τ)

Ṽ (Q′, τ).

By Bayes’ formula and the definition of Rτ,T (Q′), it is easy to see that Ṽ (Q′, τ) depends only on the values of the
density process D′ of Q′ on [τ, T ] and is therefore independent of Q. Hence, we can denote V (Q, τ) by V (τ). From
the definition of Rδt,T (Q′) and Uδt,T , we have

Rδ0,T (Q′) =

∫ τ

0

Sδt r(t, q
′
t, ψ
′
t)dt+ SδτR

δ
τ,T (Q′),

Uδ0,T = α

∫ τ

0

StUtdt+ Uδτ,T .

Comparing V (τ) and J(Q, τ) yields for Q ∈ Qef with density process DQ = E((η ·W ) + (ψ ? µ̃)),

J(Q, τ) = SδτV (τ) + α

∫ τ

0

SδtUtdt+ β

∫ τ

0

Sδt r(t, ηt, ψt)dt, P − a.s. (34)

From the martingale optimality principle in Proposition 4.1, there exists an adapted RCLL process denoted JQ =

(JQt )t∈[0,T ] such that JQτ = J(Q, τ), Q − a.s. From (34), we deduce that we can choose an adapted RCLL process
(Vt)t∈[0,T ] such that Vτ = V (τ), P − a.s. for all τ ∈ S. We can then rewrite (34) as for every Q ∈ Qef ,

JQt = Sδt Vt + α

∫ t

0

SδsUsds+ β

∫ t

0

Sδsr(s, ηs, ψs)dt, dt× dP − a.e. (35)

As the probability P ∈ Qef corresponds to η = 0 and ψ = 0 and r(t, 0, 0) = 0, we get in particular for Q = P in
(35) that JP = SδV + α

∫
0
SδsUsds. By Proposition 4.1, JP is a P - submartingale and thus we deduce that V is a

P -special semimartingale, i.e. its canonical decomposition can be written as

V = V0 +MV +AV , (36)

where MV is a local martingale and AV is a predictable finite variation process. By the weak representation assumption,
the local martingale MV can be written as:

MV = −(Z ·W )− (Z̃ ? µ̃).

13
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Step 2: We now prove that (V,Z, Z̃) is a solution of QEBSDEJ in (33). Plugging (36) into (35) yields

dJQt = −δtSδt Vtdt+ αStUtdt+ Sδt

(
βr(t, ηt, ψt)dt− ZtdWt −

∫
E

Z̃t(x)µ̃(dx, dt) + dAVt

)
.

For each Q ∈ Qef , we have, DQ = E((η ·W ) + (ψ ? µ̃)), P − a.s. and by Girsanov’s theorem, we have, dWQ
t =

dWt − ηtdt is a Q Brownian motion and νQ(dx, dt) = (1 + ψt(x))ν(dt, dx) is the compensation of µ under Q.
Rewriting the dynamic of JQ, we obtain,

dJQt = −δtSδt Vtdt+ αStUtdt+ Sδt

(
βr(t, ηt, ψt)dt− Ztηtdt−

∫
E

Z̃t(x)ψt(x)ν(dx, dt) + dAVt

)
− Sδt

(
ZtdW

Q
t +

∫
E

Z̃t(x)µ̃Q(dx, dt)

)
. (37)

But, we know thanks to Proposition 4.1, that for every Q ∈ Qef , JQ is a Q- submartingale and JQ
∞

is a Q
∞

-martingale.
This means that we should have,

dAVt ≥ Ztηtdt+

∫
E

Z̃t(x)ψt(x)ν(dx, dt)− βr(t, ηt, ψt)dt+ δtVtdt− αSδtUtdt, dt× dQ− a.e.

dAVt = Ztη
∞
t dt+

∫
E

Z̃t(x)ψ
∞
t (x)ν(dx, dt)− βr(t, η∞t , ψ

∞
t ) + δtVtdt− αSδtUtdt, dt× dQ

∞ − a.e.

Note that the above inequality and equality are verified dt × dP − a.e. since Q ∈ Qef and by the assumption that
Q
∞ ∈ Qef , in which case they become equivalent to,

dAVt ≥ ess sup
ηt∈Rd,ψt∈L2(λ)

(
Ztηtdt+

∫
E

Z̃t(x)ψt(x)ν(dx, dt)− βr(t, ηt, ψt)dt
)

+ δtVtdt− αSδtUtdt, dt× dP − a.e.

(38)

dAVt = Ztη
∞
t dt+

∫
E

Z̃t(x)ψ
∞
t (x)ν(dx, dt)− βr(t, η∞t , ψ

∞
t ) + δtVtdt− αSδtUtdt, dt× dP − a.e. (39)

By denoting

r∗(t, z, z̃) = sup
η∈Rd,ψ∈L2(λ)

(z · η +

∫
E

z(x)ψ(x)λ(dx)− r(t, η, ψ)),

the Fenchel conjugate of r, equation (38) implies that dt× dP − a.e.,

dAVt = ess sup
ηt∈Rd,ψt∈L2(λ)

(
Ztηtdt+

∫
E

Z̃t(x)ψt(x)ν(dx, dt)− βr(t, ηt, ψt)dt
)

+ δtVtdt− αSδtUtdt

= βr∗(t,
1

β
Zt,

1

β
ξtZ̃t) + δtVtdt− αSδtUtdt

= Ztη
∞
t dt+

∫
E

Z̃t(x)ψ
∞
t (x)ν(dx, dt)− βr(t, η∞t , ψ

∞
t ) + δtVtdt− αSδtUtdt.

(40)

This shows in particular that (
Zt
β
,
Z̃t
β
ξt

)
∈ ∂r(t, η∞t , ψ

∞
t ), dt× dP − a.e. (41)

Going back to equation (36) and replacing the finite variation process AV by its expression in (40), it follows that
(V,Z, Z̃) is solution of the following equation,dVt =

(
δtVt − αUt + βr∗

(
t,
Zt
β
, ξt

Z̃t
β

))
dt− ZtdWt −

∫
E

Z̃(x)µ̃(dx, dt),

VT = αUT .
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Step 3: In this step, we show that the (V,Z, Z̃) ∈ Dexp
0 ×H

2,p
λ ×H2,2. V ∈ Dexp

0 follows as in Faidi et al. (2013).
As for Z and Z̃, the proof will lean on some exponential transform. We introduce the following processes defined for
t ∈ [0, T ] as:

Y −t = −CVt + C

∫ t

0

(α|Us|+K2β)ds+ C

∫ t

0

δs|Vs|ds,

Y +
t = CVt + C

∫ t

0

(α|Us|+K2β)ds+ C

∫ t

0

δs|Vs|ds,

K−t = exp(Y −t ), K+
t = exp(Y +

t ),

where C = 1
K1β

. For any p ≥ 1, we have

sup
t∈[0,T ]

(K±t )p = sup
t∈[0,T ]

exp(pY ±t ) ≤ sup
t∈[0,T ]

exp(pC|Vt|+ pC

∫ t

0

(α|Us|+K2β)ds+ pC

∫ t

0

δs|Vs|ds)

≤ exp(pC sup
t∈[0,T ]

|Vt|+ pCα

∫ T

0

|Us|ds+ pCK2βT + pC||δ||∞T sup
t∈[0,T ]

|Vt|).

Since V ∈ Dexp
0 and U ∈ Dexp

1 , from the above inequality we deduce that sup
t∈[0,T ]

K±t ∈ Lp(Ω). We turn our attention

to the process Y −. Using (33), the process Y − verifies:

dY −t = −CdVt + C(α|Ut|+K2β)dt+ Cδt|Vt|dt

= C

(
δt(|Vt| − Vt) + α(|Ut|+ Ut) +K2β − βr∗

(
t,
Zt
β
, ξt

Z̃t
β

))
dt+ CZtdWt +

∫
E

CZ̃t(x)µ̃(dt, dx)

=

(
CK2β − Cβr∗

(
t,
Zt
β
, ξt

Z̃t
β

)
+
|CZt|2

2
+

∫
E

f∗(CZ̃t(x))ξt(x)λ(dx)

)
dt+ Cδt(|Vt| − Vt)dt

+ Cα(|Ut|+ Ut)dt+ CZtdWt −
|CZt|2

2
dt+

∫
E

CZ̃t(x)µ̃(dt, dx)−
∫
E

f∗(CZ̃t(x))ξt(x)λ(dx)dt

= dI−t + dL−t ,

where 

dI−t =

(
Cδt(|Vt| − Vt) + Cα(|Ut|+ Ut) + CK2β + Cβr∗

(
t,
Zt
β
, ξt

Z̃t
β

)
+
|CZt|2

2

)
dt,

+

∫
E

f∗(CZ̃t(x))ξt(x)λ(dx)dt

dL−t = CZtdWt −
|CZt|2

2
dt+

∫
E

CZ̃t(x)µ̃(dt, dx)−
∫
E

f∗(CZ̃t(x))ξt(x)λ(dx)dt.

Thanks to inequality given in (16), we have the following:

−Cβr∗
(
t,
Zt
β
, ξt

Z̃t
β

)
+ CK2β +

|CZt|2

2
+

∫
E

f∗(CZ̃t(x))ξt(x))λ(dx) ≥ 0, dt× dP − a.e.

It is also easy to see, by the definition of Doléans-Dade’s exponential, that exp(L−t ) = E(M−)t where, dM−t =

CZtdWt +
∫
E

(eCZ̃t(x) − 1)µ̃(dt, dx). Therefore, we obtain,

K−t =
(∆)

exp(Y −t ) = exp(V0) exp(I−t ) exp(L−t ) = exp(V0) exp(I−t )E(M−)t.

Using the integration by part formula, we get, dK−t = K−t−(dM−t +dI−t ), which implies, that the predictable quadratic
variation of K− verifies, d〈K−〉t = (K−t−)2d〈M−〉t and as a consequence, d〈M−〉t = 1

(K−
t−

)2
d〈K−〉t. Hence,

〈M−〉T ≤ sup
t∈[0,T ]

(
1

(K−t )2

)
× 〈K−〉T . (42)
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Now, we need to have an estimate for 〈K−〉 in order to get one for 〈M−〉. Itô’s formula yields,

d(K−t )2 = 2K−t−dK
−
t + d[K−]t = 2(K−t−)2(dM−t + dI−t ) + d[K−]t.

Taking a sequence of stopping times (Tn) such that for each n ∈ N, (
∫ t∧Tn

0
2(K−s−)2dM−s )t is a uniformly integrable

martingale and integrating the above equation between a stopping time σ ≤ T and T ∧ Tn, we get,

[K−]T∧Tn − [K−]σ = (K−T∧Tn)2 − (K−σ )2 − 2

∫ T∧Tn

σ

(K−t−)2(dM−t + dI−t ).

Since
∫ Tn

0
(K−t−)2dI−t ≥ 0, by taking conditional expectations on both sides, we obtain,

E[〈K−〉T∧Tn − 〈K−〉σ|Fσ] = E[[K−]T∧Tn − [K−]σ|Fσ] ≤ E[(K−T∧Tn)2|Fσ] ≤ E[ sup
t∈[0,T ]

(K−t )2|Fσ].

Finally, passing to the limit as n→ +∞ and using the Monotone Convergence theorem, we have,

E[〈K−〉T − 〈K−〉σ|Fσ] ≤ E[ sup
t∈[0,T ]

(K−t )2|Fσ].

Now, since for every p ≥ 1, sup
t∈[0,T ]

K−t ∈ LP (Ω), it follows from Garcia and Neveu Lemma (see for example Lemma

4.3 in Barrieu and El Karoui (2013) or Neveu (1972)) that

E[〈K−〉pT ] <∞, ∀p ≥ 1. (43)

With the same arguments used to show that sup
t∈[0,T ]

K−t ∈ Lp(Ω), we have also that sup
t∈[0,T ]

1
K−t
∈ Lp(Ω) for any p ≥ 1.

From (42) and (43) together with Cauchy-Schwartz inequality, we deduce that

E[〈M−〉pT ] <∞, ∀p ≥ 1. (44)

As for the process Y +, it verifies, dY +
t = dI+

t + dL+
t where,

dI+
t =

(
Cδt(|Vt|+ Vt) + Cα(|Ut| − Ut) + CK2β + Cβr∗

(
t,
Zt
β
, ξt

Z̃t
β

)
+
|CZt|2

2

)
dt

+

∫
E

f∗(−CZ̃t(x))ξt(x)λ(dx)dt,

dL+
t = −CZtdWt −

|CZt|2

2
dt−

∫
E

CZ̃t(x)µ̃(dt, dx)−
∫
E

f∗(−CZ̃t(x))ξt(x)λ(dx)dt.

As r∗ and f∗ are positive functions, the process I+
t is increasing and as previously, by easy calculations, we can see

that exp(L+
t ) = E(M+)t where dM+

t = −CZtdWt +
∫
E

(e−CZ̃t(x) − 1)µ̃(dt, dx). Going through the same lines as
with Y −, we obtain,

E[〈M+〉pT ] <∞, ∀p ≥ 1. (45)
But, expressing the expression of predictable quadratic variation of M+ and M−, we get,

E

[(∫ T

0

|CZt|2dt+

∫ T

0

∫
E

(eCZ̃t(x) − 1)2ν(dt, dx)

)p]
<∞, p ≥ 1,

E

[(∫ T

0

|CZt|2dt+

∫ T

0

∫
E

(e−CZ̃t(x) − 1)2ν(dt, dx)

)p]
<∞, p ≥ 1.

This implies from one hand that,

E

[(∫ T

0

|Zt|2dt

)p]
<∞, p ≥ 1,
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and from the other hand, using the fact that |y|2 ≤ 2(|ey − 1|2 + |e−y − 1|2), y ∈ R, we get that,

E

[(∫ T

0

∫
E

|Z̃t(x)|2ν(dt, dx)

)p]
<∞, p ≥ 1.

In conclusion, we have showed that Z ∈ H2,p and Z̃ ∈ H
2,p
λ .

In the next proposition, we establish a comparison theorem for the class of BSDEs in (33). For two random variables,
we write A ≤ B if A ≤ BP − a.s. and for two processes X and Y , we write X ≤ Y if ∀t ∈ [0, T ], Xt ≤ Yt P − a.s.
Finally, we write (A,X) ≤ (B, Y ) if A ≤ B and X ≤ Y .

Proposition 4.4. Assume that for k = 1, 2, (V k, Zk, Z̃k) is a solution of the BSDE (33) in Dexp
0 × H2,p × H

2,p
λ

associated with (Uk, U
k

T ). If (U1, U
1

T ) ≤ (U2, U
2

T ), then,

∀t ∈ [0, T ], V 1
t ≤ V 2

t P − a.s.

Proof. In general, establishing comparison theorems for BSDE is obtained through an estimate of the quantity
((V 1 − V 2)+)2. Here, in order to take advantage of the convexity of the finite variation part of the BSDE, we will
rather estimate V 1 − θV 2 for each θ ∈ (0, 1). Similar idea was used in Briand and Hu (2008) for the continuous case.
Let θ ∈ (0, 1) and V θ = V 1 − θV 2. We define accordingly Zθ, Z̃θ, Uθ and U

θ

T . From (33), the dynamics of the
process V θ discounted are given by

dSδt V
θ
t = Sδt

[
−αUθt + β

(
r∗

(
t,
Z1
t

β
, ξt

Ẑ1
t

β

)
− θr∗

(
t,
Z2
t

β
, ξt

Ẑ2
t

β

))]
dt

− SδtZθt dWt −
∫
E

Sδt Z̃
θ
t (x)µ̃(dx, dt)

= Sδt (−αUθt + β(r∗,1 − θr∗,2))dt− SδtZθt dWt −
∫
E

Sδt Z̃
θ
t (x)µ̃(dx, dt),

where, to alleviate the notations, we have denoted, r∗,i = r∗(t,
Zit
β , ξt

Z̃it
β ). Now, since r∗ is convex, the term r∗,1−θr∗,2

can be bounded from above. Indeed,

r∗,1 = r∗

(
t,
Z1
t

β
, ξt

Ẑ1
t

β

)
≤ θr∗

(
t,
Z2
t

β
, ξt

Ẑ2
t

β

)
+ (1− θ)r∗

(
t,

Zθt
β(1− θ)

, ξt
Z̃θt

β(1− θ)

)
:= θr∗,2 + (1− θ)r∗,θ.

(46)

Moreover, thanks to (16), we have

r∗,θ ≤ K2 +
|Zθt |2

2K1β2(1− θ)2
+K1

∫
E

f∗

(
Z̃θt (x)

K1β(1− θ)

)
ξt(x)λ(dx).

Using this last inequality in (46), we get that,

β(r∗,1 − θr∗,2) ≤ K2β(1− θ) +
|Zθt |2

2K1β(1− θ)
+K1β(1− θ)

∫
E

f∗

(
Z̃θt (x)

K1β(1− θ)

)
ξt(x)λ(dx). (47)

To get rid of the quadratic and exponential terms in the inequality above, we will use an exponential change of variables.
More precisely, let c be a negative constant (to be specified later), and set Pt = exp(cSδt V

θ
t ), Qt = cSδt Pt−Z

θ
t and

17
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Q̃t = cSδt Pt−Z̃
θ
t . Using Itô formula, we deduce,

dPt = Pt−

[
cd(Sδt V

θ
t ) +

c2

2
d〈SδV θ〉t +

∫
E

f∗(−cSδt Z̃θt (x))µ(dx, dt)

]
= cPt−

[
Sδt (−αUθt + β(r∗,1 − θr∗,2))dt− SδtZθt dWt −

∫
E

Sδt Z̃
θ
t (x)µ̃(dx, dt)

+
c

2
|SδtZθt |2dt+

1

c

∫
E

f∗(−cSδt Z̃θt (x))µ(dx, dt)

]
= cSδt Pt−

[
−αUθt + β(r∗,1 − θr∗,2) +

c

2
Sδt |Zθt |2 +

1

cSδt

∫
E

f∗(−cSδt Z̃θt (x))ξt(x)λ(dx))

]
dt

−QtdWt −
∫
E

Q̃t(x)µ̃(dx, dt) + Pt−

∫
E

f∗(−cSδt Z̃θt (x))µ̃(dx, dt)

:= Gtdt−QtdWt −
∫
E

Q̃t(x)µ̃(dx, dt) + Pt−

∫
E

f∗(−cSδt Z̃θt (x))µ̃(dx, dt).

Thanks to equation (47), the Gt term is bounded from above,

Gt ≤ cSδt Pt−
[
−αUθt +K2β(1− θ) +

|Zθt |2

2

(
1

K1β(1− θ)
+ cSδt

)
+

∫
E

(
K1β(1− θ)f∗

(
Z̃θt (x)

K1β(1− θ)

)
− 1

−cSδt
f∗(−cSδt Z̃θt (x))

)
ξt(x)λ(dx)

]

:= cSδt Pt−

[
−αUθt +K2β(1− θ) +

|Zθt |2

2

(
1

K1β(1− θ)
+ cSδt

)
+

∫
E

(
h(K1β(1− θ), Z̃θt (x))− h(

−1

cSδt
, Z̃θt (x))

)
ξt(x)λ(dx)

]
,

(48)

where h : R × Rd → R defined as h(x, z) := xf∗(z/x) = xez/x − x − z. We need to choose c such that the term
next to |Zθt |2 is negative, that choose c such that,

1

K1β(1− θ)
≤ −cSδt .

Since Sδt ≥ e||δ||∞T , it is sufficient to set c(θ) := − e−||δ||∞T

K1β(1−θ) . Computing the derivative of h with respect to x, we get,

∂xh(x, z) = ez/x − (z/x)ez/x − 1. Studying the sign of the function x→ ex − xex − 1 by calculating its derivative,
we obtain that ex − xex − 1 ≤ 0, ∀x ∈ R. Therefore, we deduce that ∂xh(x, z) ≤ 0, ∀x ∈ R, that h is decreasing.
Hence, going back to (48), we get that,

Gt ≤ c(θ)Sδt Pt−(−αUθt +K2β(1− θ)) ≤ Sδt Pt−e−||δ||∞T
(

α

K1β
U1
t −

K2

K1

)
, (49)

where we have used, in the second inequality, the fact that,

Uθt = U1
t − θU2

t = θ(U1
t − U2

t ) + (1− θ)U1
t ≤ (1− θ)U1

t .

Finally, denoting Dt = exp
(
−e−||δ||∞T

∫ t
0
Sδs

(
α
K1β

U1
t − K2

K1

)
ds
)

, and introducing PDt := DtPt, QDt := QtDt

and Q̃Dt := Q̃tDt. Using again Itô’s formula, for any stopping time 0 ≤ t ≤ τ ≤ T ,

PDt ≥ PDτ +

∫ τ

t

QDs dWs +

∫ τ

t

Q̃Ds (x)µ̃(dx, ds)−
∫ τ

t

∫
E

Ps−Dsf
∗(−cSδs Z̃θs (x))µ̃(dx, ds).

Considering a localizing sequence of stopping time τn, such that the local martingales, in the above inequality, stopped
in τn are martingales, we obtain,

Pt ≥ E
[
Pτn exp

(
−e−||δ||∞T

∫ τn

t

Ss

(
α

K1β
U1
t −

K2

K1

)
ds

)∣∣∣∣Ft] .
18
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In view of the integrability assumptions on U1 and on V , by the dominated convergence theorem, we can deduce that,

Pt ≥ E

[
PT exp

(
−e−||δ||∞T

∫ T

t

Ss

(
α

K1β
U1
t −

K2

K1

)
ds

)∣∣∣∣∣Ft
]
.

But by definition of P , PT = exp(c(θ)SδTV
θ
T ) = exp(c(θ)SδT (U

1

T − θU
2

T )), and because U
1

T ≤ U
2

T and c(θ) is
negative, we get,

c(θ)SδTV
θ
T ≥ −

e−||δ||∞T

K1β
SδTU

1

T .

Therefore, we have,

Pt ≥ E

[
exp

(
−e−||δ||∞T

(
SδT
K1β

U
1

T +

∫ T

t

Ss

(
α

K1β
U1
t −

K2

K1

)
ds

))∣∣∣∣∣Ft
]
,

which implies that,

V θt ≤ −
K1β(1− θ)e||δ||∞T

Sθt
lnE

[
exp

(
−e−||δ||∞T

(
SδT
K1β

U
1

T +

∫ T

t

Ss

(
α

K1β
U1
t −

K2

K1

)
ds

))∣∣∣∣∣Ft
]
.

Taking the limit when θ ↗ 1, we finally get,
V 1
t ≤ V 2

t .

The following corollary is a direct consequence of the comparison result above.

Corollary 4.5. Under assumptions (Ar) and (Au), the BSDE (33) has a unique solution (V,Z, Z̃)Dexp
0 ×H2,p×H

2,p
λ .

5 Appendix

Lemma 5.1. Let r(t, η, ψ) = 1
2 |η|

2 +
∫
E
f(ψ(x))ξt(x)λ(dx) and Q ∈ Qf . Then, the following processes,

Mt =

∫ t

0

ηsdW
Q
s , M

′
t =

∫ t

0

∫
E

log(1 + ψs(x))µ̃Q(ds, dx),

are Q-martingales.

Proof. Since Q ∈ Qf , we have,

EQ

[∫ T

0

r(t, ηt, ψt)dt

]
= EQ

[∫ T

0

(
1

2
|ηt|2 +

∫
E

f(ψt(x))ξt(x)λ(dx)

)
dt

]
<∞. (50)

In particular, EQ
[∫ T

0
1
2 |ηt|

2dt
]
< ∞, which implies that M is Q- martingale. Now, we prove that M ′ is also a

Q-martingale. First, note that,

f(x) = (1 + x) log(1 + x)− x ≥ 1

6
(1 + x) log2(1 + x) ≥ 0, for − 1 ≤ x ≤ e2 − 1.

Hence, as the RHS of (50) is finite, we get that

log(1 + ψs(x))1ψs(x)≤e2−1 ∈ L2(dQ× νQ(ds, dx)). (51)

Moreover, for x > e2 − 1, we have,

(1 + x) log(1 + x) ≤ 2((1 + x) log(1 + x)− x).

Again, as the RHS of (50) is finite, we get that,

log(1 + ψs(x))1ψs(x)>e2−1 ∈ L1(dQ× νQ(ds, dx)). (52)

From (51) and (52), and using Theorem 1.8(i) in Jacod and Shiryaev (2013), we obtain that M ′ is Q-martingale.

19



A. TAMTALINI, A. MATOUSSI AND S. KAAKAI

Proposition 5.2. Let r(t, η, ψ) = 1
2 |η|

2 +
∫
E
f(ψ(x))ξt(x)λ(dx) and Q ∈ Qf . Then, we have,

H(Q|P ) = EQ

[∫ T

0

r(t, ηt, ψt)dt

]
= EQ

[∫ T

0

(
1

2
|ηt|2 +

∫
E

f(ψt(x))ξt(x)λ(dx)

)
dt

]
. (53)

Proof. Let Q ∈ Qf with corresponding (η, ψ). We introduce the following sequence of processes (ψm)m∈N∗ defined
as:

ψm,s(x) = ψs(x)1ψs(x)≤m1|x|≥1/m.

It is clear that ψm ∈ L2(dQ× νQ(ds, dx)). Developing the logarithm of Radon-Nikodym derivative of Q w.r.t P gives
Q-a.s.:

log

(
dQ

dP

)
= lim
m→∞

log

{
E

(∫ T

0

ηsdWs +

∫ T

0

∫
E

ψm,s(x)µ̃(ds, dx)

)}

= lim
m→∞

{∫ T

0

ηsdWs −
1

2

∫ T

0

|ηs|2ds+

∫ T

0

∫
E

ψm,s(x)µ̃(ds, dx)

+

∫ T

0

∫
E

(log(1 + ψm,s(x))− ψm,s(x))µ(ds, dx)

}

= lim
m→∞

{∫ T

0

ηsdW
Q
s +

1

2

∫ T

0

|ηs|2ds+

∫ T

0

∫
E

ψm,s(x)µ̃Q(ds, dx)

+

∫ T

0

∫
E

(log(1 + ψm,s(x))− ψm,s(x))µ̃Q(ds, dx)

+

∫ T

0

∫
E

[ψm,s(x)ψs(x) + (1 + ψs(x)) (log(1 + ψm,s(x))− ψm,s(x)) ν(ds, dx)]

}

= lim
m→∞

{∫ T

0

ηsdW
Q
s +

1

2

∫ T

0

|ηs|2ds+

∫ T

0

∫
E

log(1 + ψm,s(x))µ̃Q(ds, dx)

+

∫ T

0

∫
E

[(1 + ψs(x)) log(1 + ψm,s(x))− ψm,s(x)] ν(ds, dx)

}
,

(54)

where we used from the second to the third inequality that, by the definition of the process ψm, (1+ψs)(log(1+ψm,s)−
ψm,s) ∈ L1(ν(ds, dx)) and ψmψ ∈ L1(ν(ds, dx)). In particular,

∫ t
0

∫
E

(log(1 + ψm,s(x))− ψm,s(x)µ̃Q(ds, dx) is a
well defined. Lemma 5.1 above insures that the following processes:

Mt :=

∫ t

0

ηsdW
Q
s , M

′
t :=

∫ t

0

∫
E

log(1 + ψs(x))µ̃Q(ds, dx), M ′m,t :=

∫ t

0

∫
E

log(1 + ψm,s(x))µ̃Q(ds, dx),

are Q-martingales. Moreover, we also have that M ′m,T converges to M ′T in L1(Q). Indeed, decomposing M ′ and M ′m
as in Lemma 5.1 in the following way,

M ′m,t = M̂m,t + M̃m,t,

where,

M̂m,t :=

∫ t

0

∫
E

log(1 + ψs,m(x))1ψs,m(x)≤e2−1, M̃m,t :=

∫ t

0

∫
E

log(1 + ψs,m(x))1ψs,m(x)>e2−1.

We have the positive (resp. negative) part of log(1 + ψm,s(x))1ψs,m(x)≤e2−1 increases (resp. decreases) to the positive
(resp. negative) part of log(1 + ψs(x))1ψs(x)≤e2−1 as m goes to infinity and by the monotone convergence we deduce
that M̂m,T convergence to M̂T in L1(Q). Using the same argument, we have also M̃m,T converges to M̃T in L1(Q)
as m goes to infinity. Hence, we obtain that M ′m,T converges to M ′T as m → ∞. By passing to a subsequence, we
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may assume that M ′m,T converges to M ′T Q-a.s. Finally, by Monotone convergence theorem, the last term in (54) also

converges to
∫ T

0

∫
E
f(ψs(x))ν(ds, dx). Consequently, (54) becomes,

log

(
dQ

dP

)
=

∫ T

0

ηsdW
Q
s +

1

2

∫ T

0

|ηs|2ds+

∫ T

0

∫
E

log(1 + ψs(x))µ̃Q(ds, dx)

+

∫ T

0

∫
E

f(ψs(x))ν(ds, dx).

Taking the expectation under Q and using the fact that M and M ′ are martingales yields (53).
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