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In large scale distributed systems, replication is essential in order to provide availability and partition tolerance. Such systems are abstracted by the wait-free model, composed of asynchronous processes that communicate by sending and receiving messages, and in which any process may crash. The CAP theorem states that strong consistency is unachievable in the wait-free model. Weaker consistency criteria, such as eventual consistency, update consistency and causal convergence, have been identified as potential substitutes to strong consistency for the management of replicated objects. Complexity in local memory has already been studied for several objects, including sets, databases and collaborative editors. However, the literature has focused on a subclass of algorithms, called the operational model, in which processes can only broadcast one message per update operation and the read operation incurs no communication.

This paper tackles the following question: are the operational model and the wait-free model equivalent from the complexity point of view? We show that eventual consistency allows implementations in the wait-free model that require strictly less local memory than their counterparts in the operational model. On the other side, we propose, for the wait-free model, a universal construction that provides a garbage collection mechanism for old messages that never violates consistency even when there is no bound on the relative transmission delays.

Introduction

Reliability of large scale systems is a big challenge when building massive distributed applications over the Internet. At this scale, data replication is essential to ensure availability and faulttolerance. In a perfect world, distributed objects should behave as if there is a unique physical shared object that evolves following the atomic operations issued by the participants 1 . This means that all the operations on the object, possibly concurrent or interleaving, appear as if they have been executed atomically and sequentially. This is the aim of strong consistency criteria such as linearizability and sequential consistency. These criteria serialize all the operations so that they look as if they happened sequentially, but they are costly (when not impossible) to implement in message-passing systems. If one considers a distributed implementation of a shared register, the worst-case response time must be proportional to the uncertainty on the latency of the network either for the reads or for the writes to be sequentially consistent [START_REF] Lipton | PRAM: A scalable shared memory[END_REF] and for all the operations for linearizability [START_REF] Attiya | Sequential consistency versus linearizability[END_REF]. This generalizes to many objects [START_REF] Attiya | Sequential consistency versus linearizability[END_REF]. Moreover, the availability of the shared object cannot be ensured in asynchronous systems where more than a minority of the processes of a system may crash [START_REF] Attiya | Sharing memory robustly in message-passing systems[END_REF] (which we call the wait-free model), or when partitions may occur, isolating some processes from the others. In large modern distributed systems such as Amazon's cloud, partitions do occur between data centers, as well as inside data centers [START_REF] Vogels | Eventually consistent[END_REF]. Moreover, it is economically unacceptable to sacrifice availability. The only solution is then to provide weaker consistency criteria. Several weak consistency criteria have been considered for modeling shared memory such as PRAM [START_REF] Lipton | PRAM: A scalable shared memory[END_REF] or causality [START_REF] Ahamad | Causal memory: Definitions, implementation, and programming[END_REF]. They expect the local histories observed by each process to be plausible, regardless of the other processes. However, these criteria do not impose that the data eventually converges to a consistent state. Eventual consistency [START_REF] Vogels | Eventually consistent[END_REF] is another weak consistency criterion which was introduced to overcome this issue. It states that, after update operations stop taking place, the different replicas will eventually converge to an identical state. The relevance of eventual consistency has been illustrated many times. It is used in practice in many large scale applications such as Amazon's Dynamo highly available key-value store [START_REF] Decandia | Dynamo: amazon's highly available store[END_REF]. It has been widely studied and many algorithms have been proposed to implement eventually consistent shared object.

In this context, Conflict-Free Replicated Data Types (CRDTs) [START_REF] Shapiro | Conflict-free replicated data types[END_REF] constitute a family of objects designed to achieve eventual consistency. Those are based on a theorem stating the equivalence between two kinds of objects: the Commutative Replicated Data Types (CmRDTs), in which all update operations commute, and Convergent Replicated Data Types (CvRDTs), whose states form a lattice. For example, the G-set (grow-only set) provides two different operations: an update operation that inserts an element and a query operation that reads if a specific element belongs to the set. On the CmRDT point of view, inserting x and inserting y commute. On the CvRDT point of view, the set inclusion is a lattice order on the states of the set. Unfortunately, many useful objects are not CRDTs. This paper focuses on universal constructions of eventually consistent shared objects. The behavior of an object (counter, stack, ...) is described by a sequential specification. A universal construction is an algorithm that is parametrized by the sequential specification of a data type and automatically transforms it into a concurrent data structure respecting a given consistency criterion. Unfortunately, eventual consistency requires the convergence towards a common state without specifying which states are legal. This means that an algorithm that always leaves the shared object in its initial state would, indeed, be a (useless) eventually consistent universal construction. The limitations of eventual consistency led to the study of stronger criteria such as update consistency [START_REF] Perrin | Update consistency for wait-free concurrent objects[END_REF]. Update consistency strengthens eventual consistency by stating that the convergence state must be obtainable in a sequentially consistent execution. In other words, it can be obtained by a sequential ordering of the update operations.

Problem statement This paper explores the following issue: what is the complexity of update consistent universal constructions in partition-prone systems? Two metrics are relevant: the number of messages that are sent for each operation, and the size of the metadata stored at each replica.

The operational model has been proposed to abstract the implementation of CRDTs. In the op-erational model, each replica maintains a local state on which the operations are done. An update operation is divided into two parts. First, the update operation is prepared locally by the replica where the update operation is issued and a message is broadcast to inform all the other replicas. Second, the local state of each replica is updated upon the reception of the update message. Thanks to commutativity, all replicas converge to the same state when no update operation is in progress. As only n messages are sent by each update operation, the operational model naturally leads to algorithms that are optimal in the number of sent messages.

On a computability point of view, update consistent universal constructions have already been proposed in the operational model [START_REF] Perrin | Update consistency for wait-free concurrent objects[END_REF][START_REF] Perrin | Causal consistency: Beyond memory[END_REF]. The key idea of these algorithms is to order the operations a priori using a timestamp given during the preparation phase, and to keep a log of all operations ordered according to these timestamps in the update phase. When two processes have received the same set of messages, they agree on their respective log, so they converge to the same state as well. The main problem of this approach is the size of the log, that keeps increasing as new operations are invoked. One can advocate that even though the system is asynchronous, it is very unlikely that the transfer delay of a message exceeds for example one day and consequently, all "very old" states can be garbaged as no old message can force to re-execute newer operations. This may work but is not safe, as if, for some reason, a message transmission exceeds this maximal assumed delay, convergence is no more guaranteed. Hence the following questions: is it possible to safely prune the log from very old operations, and, if yes, at which cost?

Contributions of the paper This paper has two main contributions.

• This paper first proves that the answer is "no" in the operational model, but "yes" in the wait-free model. For that we introduce an object called l-countdown-append, where l is an integer parameter. We prove that O(l) bits are necessary in the operational model to implement an update consistent l-countdown-append object. On the other side, we give a logarithmic space complexity algorithm in the wait-free model. This contribution has deep theoretical implications, as it proves that the two models are not equivalent regarding complexity, which questions the relevance of already known complexity results regarding CRDT algorithms.

• Unfortunately, the logarithmic algorithm presented in the first contribution for the wait-free model requires O(n 2 ) messages per operation. We propose a practical trade-off, a universal construction called U C[k], that only requires n messages per operation when there is a bound k and provides a garbage collection mechanism for old messages that is safe even when the bound is violated. The parameter k reports on the relationship between the relative transmission delay of messages and the number of issued update operations during the transmission of one message.

Organization of the paper

The remainder of this paper is organized as follows. In Section 2, we define more formally the concepts and objects considered in this paper. Section 3 presents more precisely the wait-free and operational computing models. Section 4 recalls the universal construction U C ∞ in the operational model, that was introduced in [START_REF] Perrin | Update consistency for wait-free concurrent objects[END_REF]. Section 5 proves the lower bound in the operational model and gives an upper bound in the wait-free model, proving that the two models are not equivalent when we consider complexity. Section 6 presents the practical universal construction U C[k]. Finally, Section 7 concludes the paper.

Update consistent universal constructions

In distributed systems, several kinds of shared objects have been proposed to provide the processes with higher-level abstractions. There are two main kinds of objects. On the one hand, one-shot objects like consensus and renaming are a generalization, to concurrent systems, of the concept of function in sequential systems, where each process proposes an input and decides an output. One-shot objects are specified by a binary relation that relates input vectors to the admitted output vectors. On the other hand, long-lived objects, such as registers and queues, are a generalization of data structures in sequential programming, aiming at storing and organizing data in memory. This paper only considers long-lived objects.

A long-lived object is defined by three components: a sequential specification that describes its expected behavior when accessed sequentially (queue, stack, ...), a consistency criterion that describes how concurrency affects the object (linearizability, eventual consistency, ...), and a progress condition that enforces liveness guarantees. The only progress condition we address in this paper is wait-freedom: all operations invoked by non-faulty processes, terminate regardless of the failure pattern and the message schedule.

Sequential specifications

A long-lived object exposes operations that can be invoked by processes and may return a value. The sequential specification of an object is the set of all sequential histories admitted by the object, i.e. the finite or infinite sequences of operation invocations and responses that can be produced when all the operations on the object are issued by a unique sequential process.

A universal construction is an algorithm that exposes a single operation, apply, and that can simulate the operations of any object whose sequential specification is described by an abstract data type as an automaton [START_REF] Perrin | Causal consistency: Beyond memory[END_REF]. An abstract data type is a tuple (O, R, S, s 0 , u, q) where:

• O is a countable set containing all the operations on the object, and that can be passed as argument to the operation apply. If an operation has parameters, each combination of different parameters is abstracted as a different symbol in O.

• R is a countable set containing all the values that can be returned by operations on the object, as well as by the operation apply. R may possibly include dummy values for operations that do not have a return value.

• S is a countable set of states and s 0 ∈ S is the initial state;

• u : S × O → S, called the update function, encodes the side effects of an operation on the current state of the object. An update operation is an operation o for which the update function is not the identity, i.e. for some state s, u(s, o) = s.

• q : S × O → R is the query function, that encodes the value returned by an operation, depending on the state on which it is invoked. A query operation is an operation whose return value depends on the state on which it is performed, i.e. there exist two states s = s such that q(s, o) = q(s , o).

Remark that, in the most general case, an operation may be both an update and a query operation. For example, the pop operation on a stack removes the last element added to the stack (its update part), and also returns it (its query part).

Consistency

A consistency criterion defines how concurrency affects the distributed behavior of an object. Formally, it identifies which distributed histories are admissible for a given sequential specification. A distributed history models a distributed execution of a program accessing a shared object. It is composed of a (finite or infinite) set of events labelled by the operations of the object (or the operations passed as arguments to apply in the case of a universal construction) and their return values. This set is ordered by the process order, a partial order such that e → e if e and e have been executed by the same process in that order.

A sequential history is a linearization of a distributed history H if it contains the same operations and returned values as H, and the order of appearance of the operations, in the sequential history, does not contradict the process order defined above. We now define formally the consistency criterion used in this paper: update consistency.

Update consistency A history is update consistent [START_REF] Perrin | Update consistency for wait-free concurrent objects[END_REF] for an object O if, when all the processes stop executing update operations, they eventually converge towards a state resulting from a linearization of all issued update operations. Formally, a history H is update consistent if it falls under one of the following two cases.

• The processes never stop updating, i.e. H contains an infinity of update operations.

• It is possible to change the returned value of a finite number of query operations, so that the resulting history has a linearization in the sequential specification of O.

Computing models

We now present the two computing models used in this paper: the wait-free model and the operational model.

Wait-free model

The wait-free asynchronous message-passing system model, or simply wait-free model, is composed of n processes called p 1 , . . . p n . The number n of participating processes is finite, although it may not be known to the processes. Processes are asynchronous, in the sense that there is no bound on their relative speed. Moreover, processes can fail by crashing: a faulty process executes correctly until it crashes, and then stops operating. A process that does not crash during an execution is called correct.

Processes can communicate by sending and receiving messages. Communication channels are reliable, as all sent messages are eventually received by correct processes. However, channels are asynchronous, in the sense that there is no bound on the time it takes for one message to be delivered. We suppose that all sent messages can be uniquely identified.

Remark that the wait-free model also captures partition tolerance because a process cannot wait for an acknowledgment from any other process, since they may all have crashed.

We assume that processes have access to a causal broadcast abstraction that provides them with a broadcast m operation and a "when a message m is received from p j " event, where m is a message and p j is a process, respecting the following properties.

Validity. If a process receives a message m from p j , then m was broadcast by p j .

Uniformity. If a process receives a message m, then all correct processes receive m.

Termination. If a correct process p i attempts to broadcast m, then p i terminates its broadcast invocation and eventually receives m.

Causal delivery. If a process receives a message m and then broadcasts a message m , then all processes receiving m have previously received m.

Note that causal broadcast can be implemented in the wait-free model [START_REF] Raynal | The causal ordering abstraction and a simple way to implement it[END_REF] without additional computing power. However, this implementation has a cost in local memory. We choose to include the primitive in the model to isolate the complexity needed to maintain consistency of the shared objects from the complexity needed to ensure causality, and therefore reducing the noise on the complexity results we obtain in the next sections.

Operational model

The operational model is composed of n replicas r 1 , . . . , r n , where n ∈ N may not be known to each of them.

All replicas execute the same algorithm following a very specific format, which defines the model, presented thereafter.

Each replica maintains a local state, called its payload, and can interact with the system by invoking update or query operations. A query operation o returns a value query o (payload) that is locally computed based on the local state of the replica. An update operation o is separated into a prepare o function and an effect o function. The prepare o function computes locally a piece of information data based on the update function and the local state. Then, effect o (data, payload) is applied asynchronously on the local state of all replicas. It is required that all effect o functions commute, so that all replicas eventually converge to a common state, ensuring eventual consistency.

Algorithm 1: Wait-free model translation of an operational model algorithm

1 operation apply(o ∈ O) ∈ R 2 if o is an update then 3 broadcast mUpdate(o, prepare o (payload i )); 4 return query o (payload); 5 when a message mUpdate(o j , x j ) is received from p j 6 payload i ← effect o j (x j , payload i );
Algorithms in the operational model can be seen as a special case of algorithms in the wait-free model. More precisely, Algorithm 1 is a canonical injection that maps any algorithm in the operational model into an algorithm in the wait-free model. Each replica from the operational model is embedded on a process in the wait-free model, that maintains the payload as its local state. When a process p i performs an operation o of the operational model, it invokes the operation apply(o) of Algorithm 1. Process p i evaluates queries operations using the same algorithm query o , applied on its local state (Line 4). If o is an update operations, the result of the prepare o function is transmitted to the effect o function as a single message broadcast on the network (Line 3).

Thanks to this transformation, the operational model can be viewed as a restriction of the waitfree model, where additional constraints on the use of the messages have been added: a message can only be broadcast on the network when an update operation is issued. By a slight abuse of language, from now on, we will use the term "algorithm" (without precision), to refer to algorithms in the wait-free model, and we will say that an algorithm in the wait-free model belongs to the operational model if it is an image of an algorithm in the operational model by the canonical injection, i.e. if it respects the constraints on message broadcasts. Further notions defined on algorithms are extended to algorithms from the operational model thanks to the canonical injection.

A universal construction in the operational model

We now recall the update consistent universal construction in the operational model, that was introduced in [START_REF] Perrin | Update consistency for wait-free concurrent objects[END_REF]. The code of Algorithm 2 is given for process p i .

The principle is to build a total order on the updates on which all the participants agree a priori, and then to rewrite the history a posteriori so that every replica of the object eventually reaches the state corresponding to the common sequential history. In Algorithm 2, this order is built from a Lamport's clock [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF] that contains the happened-before precedence relation. In order to have a total order, the events are timestamped with a pair composed of the logical time and the identifier of the process that produced it.

Each process p i manages its view time i of the logical clock and a list history i of all timestamped update events process p i is aware of. The list history i contains triplets (t, j, o) where o is an update operation and (t, j) the associated timestamp. This list is sorted according to the timestamps of the updates: (t, j) < (t , j ) if (t < t ) or (t = t and j < j ). 

Algorithm 2: Universal construction U C ∞ (O, R, S, s 0 , u, q) : code for p i 1 operation apply(o ∈ O) ∈ R 2 var s ∈ S ← s 0 ; 3 if o is
history i ← history i ∪ {(t j , j, o j )};
When an update is issued locally, process p i timestamps it and informs all the other processes by reliably broadcasting a message to all other processes (including itself), on Line 5. Hence, all processes will eventually be aware of all updates. When a mUpdate(t j , o j ) message is received, p i updates its clock and inserts the event into the list history i (Line 7). When a query is issued, p i replays locally the whole list of update events it is aware of starting from the initial state then it executes the query on the state it obtains (Line 4).

In an execution that contains only a finite number of update operations, then eventually all processes will be aware of the same set of updates and sort them in the same order to evaluate their query operations. This implies update consistency. Whenever an operation is issued, its is completed without waiting for any other process. This corresponds to wait-free executions in shared memory distributed systems and implies fault-tolerance.

Comparison of the computing models

Algorithms from the operational model are naturally partition tolerant and, as only one message is broadcast per update operation, they are by design optimal in terms of the number of sent messages. However, the operational model imposes limitations on the form of its admissible algorithms. It is for example impossible to acknowledge or forward messages, to execute local steps without the reception of a message, or to propagate information during read operations. This prevents algorithms from using more advanced techniques like message patterns used by checkpointing protocols [START_REF] Randell | Reliability issues in computing system design[END_REF][START_REF] Baldoni | Characterization of consistent global checkpoints in large-scale distributed systems[END_REF].

Following our quest to an efficient universal construction, we study the impact that these limitations have on the memory complexity of concurrent algorithms. Indeed, the amount of metadata that must be stored on each replica to ensure convergence in the operational model is problematic and has been widely studied for several objects including sets, counters and registers [START_REF] Burckhardt | Replicated data types: specification, verification, optimality[END_REF], data stores [START_REF] Attiya | Limitations of highly-available eventually-consistent data stores[END_REF] and collaborative editors [START_REF] Attiya | Specification and complexity of collaborative text editing[END_REF].

In this section, we prove that the operational model is not equivalent to the wait-free model in terms of memory complexity. More precisely, we exhibit a family of objects, called l-countdownappend objects, and we prove that any update consistent algorithm implementing them in the operational model requires at least O(l) bits of metadata in some specific executions. On the other hand, only a logarithmic number of bits are required in the wait-free model. This result has an impact on the complexity of universal constructions. The linear lower bound proven for the l-countdown-append object in the operational model is similar to the upper bound given on universal constructions by Algorithm 2. In particular, it suggests that it is impossible to safely prune the log of from very old operations, while remaining in the operational model. This is nevertheless possible in the wait-free model, at the cost of an increased number of messages.

On a theoretical point of view, this result also questions the generality of the complexity studies of various CRDTs mentioned above, since these studies only take into account algorithms in the operational model.

Complexity of update consistent l-countdown-append objects

Our proof of non-equivalence compares the number of bits necessary to encode the local states of processes when executing a specific pattern of operations on a specific family of objects. We first need to precisely specify our notion of complexity and define l-countdown-append objects.

Complexity of deterministic algorithms

Executions of different algorithms in the wait-free model can be very different, so we can only compare algorithms based on distributed histories, that form the basis of their specification. We define the H-complexity as the maximal size of a local state reachable during an execution abstracted by the history H.

Definition 1 (H-complexity)

. Let H be a history that contains a finite number of updates, and A an algorithm. Let, also, S be the set of all local states reachable by any process executing A during an execution that can be abstracted by H.

We define the H-complexity of A as follows:

• if S = ∅ (i.e. if H is not admitted by A), the H-complexity is 0;

• if S is infinite (i.e. if S contains states of unbounded size), the H-complexity is ∞;

• otherwise, the H-complexity is the maximal size of a state in S.

Countdown-append object

The l-countdown-append object, where l ∈ N, exposes 4 update operations, a, b, c and d, and one query operation q. Figure 1 represents the behavior of the object as an automaton. It is divided into two phases: during the first phase, the object counts the number of update operations, starting from l, down to 1, then ε (the empty word). In the second phase, the operations are concatenated at the end of the state. Finally, the query operation returns the local state of the objects each time it is executed. For all words v = u 1 ...u l ∈ {U l } consisting of l update operations of the l-countdown-append object, we denote by H v the distributed history in which one process performs all updates of v in their order of appearance in v. In the next sections, we study the H v -complexity of algorithms in the operational model and in the wait-free model. 

P 1 u 1,1 u 2,1 . . . u l-1,1 u l,1 P 2 u 1,2 u 2,2 . . . u l-1,2 u l,2 U 2 U 1 . . . q → ε q → ε q → s c q → s c

Lower bound in the operational model

We now prove that any algorithm in the operational model has a H v -complexity of at least l 2 -1 bits for some v. Our proof follows the scheme introduced in [START_REF] Burckhardt | Replicated data types: specification, verification, optimality[END_REF]: we build a family of executions such that, at some point in the execution, process p i performing the operations of v is unable to distinguish between all these executions and an execution modeled by H v . Then, in a later stage of the execution, p i must be able to distinguish between enough of them in order to keep convergence possible.

Theorem 1. For any deterministic algorithm A that implements an update consistent l-countdown-append object in the operational model, there exists v such that the H v -complexity of A is at least l 2 -1 bits.

Proof. Let A be an algorithm in the operational model implementing an update consistent lcountdown-append object. For each pair of words of update operations (v 1 , v 2 ), where v 1 ∈ {a, b} l and v 2 ∈ {c, d} l , we define the execution X (v 1 ,v 2 ) , illustrated on Figure 2, as follows. Only two processes p 1 and p 2 take steps in X (v 1 ,v 2 ) . All other processes crash before the beginning of the execution. Initially, process p 1 (resp. p 2 ) executes sequentially, in order, the operations forming v 1 (resp. v 2 ). In accordance to the operational model, they broadcast a single message during each operation. In a later stage, they both receive the others' messages, respecting the FIFO ordering (recall that causal deliveries implies FIFO order). Finally, both processes perform a query operation. We denote by

X = {X (v 1 ,v 2 ) : v 1 ∈ {a, b} l ∧ v 2 ∈ {c, d} l } the set of all X (v 1 ,v 2 ) executions.
Let us first remark that update consistency imposes that both query operations returns the same value v c , which is a suffix of size l, of an interleaving of v 1 and v 2 . Let f (v 1 , v 2 ) be the number of c and d operations in v c . Note that f is well defined because A is deterministic.

The executions can be distinguished depending on which process has a majority of operations in the convergence state. We define

X 1 = {X (v 1 ,v 2 ) ∈ X : f (v 1 , v 2 ) ≥ l 2 } and X 2 = X \ X 1 .
As X 1 and X 2 form a partition of X which has a size 2 2l , we have

|X 1 | ≥ 2 2l-1 or |X 2 | ≥ 2 2l-1 . Without loss of generality, we suppose that |X 1 | ≥ 2 2l-1 .
We now partition X 1 based on the value of v 1 . For each word

v 1 ∈ {a, b} l , let X 1 (v 1 ) = {X (v,v 2 ) ∈ X 1 : v = v 1 }. As there are 2 l possible values for v 1 , at least one of them is such that |X 1 (v 1 )| ≥ |X 1 | |{a,b} l | = 2 2l-1 2 l = 2 l-1 . Let us fix such a v 1 . Let v 2 and v 2 such that X (v 1 ,v 2 ) and X (v 1 ,v 2 ) belong to X 1 (v 1 ). By definition of f , if X (v 1 ,v 2 )
and X (v 1 ,v 2 ) converge to the same state, then v 2 and v 2 differ at most by their l -f (v 1 , v 2 ) ≤ l 2 first operations. Consequently, there are at least 2 l-1

2 l 2 = 2 l 2 -1 different values for v 2 for which X (v 1 ,v 2 ) lead to different convergence states. Let X be a subset of X 1 (v 1 ) of size 2 l 2 -1
, in which all convergence states are different.

In the operational model, the local state of Process p 2 at the end of the execution only depends on its local state after executing its own l update operations, and the messages received from p 1 afterwards. In all the executions of X , the messages received by p 2 are the same in all executions because v 1 is fixed. Moreover, the local state of p 2 at the end of all executions is different. This means that the local state of p 2 after doing its updates is also different in all executions. Consequently, there is a word v 2 such that, after executing all update operations in v 2 (execution X), the local state of p 2 requires at least l 2 -1 bits. Finally, let us consider the execution X in which only p 2 takes steps, executing the sequence of update operations of v 2 . Just after executing its updates, p 2 cannot distinguish between executions X and X , so its local state in X also requires l 2 -1 bits. Moreover, X is modeled by H v 2 . Therefore, the H v 2 -complexity of A is at least l 2 -1 bits.

Upper bound in the wait-free model

A consequence of Theorem 1 is that any update consistent universal construction in the operational model must maintain metadata whose size is at least linear in the number of update operations in some executions. Although this does not imply that this metadata must be stored in the form of a history containing all the update operations like in Algorithm 2, this does imply that the metadata required by U C ∞ cannot be drastically reduced, and in particular that it is impossible to safely prune the history of Algorithm 2 from old operations in the operational model. Differently, Theorem 1 does not apply to the more general wait-free model. In this section, we propose Algorithm 3, called U C 0 , whose metadata mainly consist of a vector clock of size O(n log(m)) where n is the number of processes and m the total number of issued query operations.

The principle of U C 0 is to dissociate the safety and liveness parts of update consistency. On the safety side, each process maintains its own vision of the state of the object, making sure it results from some possible linearization of all the update operations it is aware of. This ensures that, if all processes but one crash, all the query operations performed by the remaining process are done in a consistent state. On the liveness side, processes exchange their visions of the state, striving to converge to a common state. More precisely, for a given set of update operations, represented by a version vector, processes will always adopt the state proposed by the process with the lowest identifier, which they call their leader. This ensures update consistency since, if all processes stop updating, all correct processes will eventually adopt the state forged by the correct process with the lowest identifier.

Process p i maintains three variables. Variable state i ∈ S represents the current local state at p i , initialized as the initial state s 0 . Variable clock i ∈ N N is the equivalent of a version vector, such that clock i [j] represents the number of update operations received by p i from process p j . As p i does not know the number of participants, it is encoded as an associative array, rather than a vector. Finally, variable leader i ∈ N is the identifier of a process such that, if clock i = clock leader i , then p i and p leader i are in the same local state.

When process p i invokes a query operation, it issues it locally on its local state state i (Line 4). When p i invokes an update operation, it broadcasts a message mUpdate (Line 3). At reception of such a message from p j , p i executes the operation on its local state and updates its vector clock. It also resets its variable leader i to i, which signifies that its local state was computed by itself. Then, p i broadcasts a mCorrect message containing its current version of the state and the associated version vector. When p i receives a mCorrect message from p j , it first checks the version of the state by comparing the version cl j of the message with its own version vector clock i . Thanks to causal delivery, clock i cannot be older than cl j . If cl j [k] < clock i [k] for some k, the last updates of p k are already known by p i , but not by p j . In that case, process p i simply ignores the message. Otherwise, if cl j = clock i , p i keeps the state computed by the process with smallest identifier, which it remembers by updating its variable leader i .

Theorem 2 (Correctness). Algorithm 3 is a wait-free, update consistent universal construction.

Proof. The operation apply in Algorithm 3 terminates because it contains no loop.

Let H be a history admitted by Algorithm 3. If H contains a finite number of queries or an infinite number of updates, it is update consistent by definition. Let us suppose that H contains an infinite number of queries and a finite number m of updates (we only consider updates for which a message mUpdate was sent). Let us denote by m i the number of updates performed by p i , such that m = n i=1 m i . Some processes are correct because at least one of them performs an infinite number of queries, and all correct processes p i send a message mCorrect(cl max , s i ), with cl max = [m 1 , . . . , m n ], after they have received all mUpdate messages (Line 7). Let p leader be the process with the smallest identifier that sent such a message, called m leader . Thanks to causal delivery, any correct process p i received all mUpdate messages before m leader , so at reception of m leader , it had clock i = cl max and, by definition of p leader , leader < leader i . Therefore, p i adopted s leader as its own state, and for any subsequent reception of a message mCorrect(cl j , s j ) by p i , either cl j < clock i = cl max or leader = leader i < j. Therefore, all correct processes p i converge to the same state s leader .

Let us now prove that, at any time, clock i [j] represents the number of mUpdate received by p i from p j , and the state state i of p i can be obtained by a linearization of the corresponding updates. We prove this by induction on the number of times state i and clock i has changed at some process p i . Initially, clock i [j] = 0 and state i = s 0 . Suppose the property was always true until process p i updates clock i [j] or state i . If this happens after reception of a mUpdate message from p j , the property remains true because causal broadcast implies FIFO reception. If this happens after reception of a mCorrect message from p j , then the property was previously true on process p j , on the clock cl j and the state s j , so it remains true after the update on the clock clock i = cl j and the state state i = s j .

Finally, all the query operations done after all messages have been received are done in the same state s leader , that can be obtained by a linearization of all the update operations. This implies update consistency.

We can finally conclude on the non-equivalence between the two computing model in the implementation of update consistency.

Corollary 1.

There exists an object O and an algorithm A wf implementing an update consistent object O in the wait-free model, such that, for any algorithm A om implementing an update consistent object O in the operational model, there is a history H such that A wf has a strictly lower H-complexity than A om .

Proof. Let l ∈ N and let O l be the l-countdown-append object. Let v ∈ U l . In any execution of Algorithm 3 abstracted by H v , there is a process p i that performs all l update operations. At the end of the execution, clock j only contains one pair (i, l) that can be encoded in O(log(nl)) bits, state j = ε has a constant size, and leader j is the identifier of a process, of size O(log(n)) bits. Therefore, there exists a constant x > 1 such that, for any v, the H v complexity of Algorithm 3 is strictly lower than x log(nl) bits.

Let l > 2 -1+x log n x . We have x log(nl) < l 2 -1. Let O be the l-countdown-append object, and let A om implementing an update consistent O in the operational model. By Theorem 1, there exists v such that the H v -complexity of A om is at least l 2 -1 bits. Therefore, Algorithm 3 has a strictly lower H v -complexity than A om .

A practical solution

In previous sections, we encountered two different strategies in order to implement an update consistent universal construction. On the one hand, Algorithm U C ∞ belongs to the operational model, and therefore has an optimal complexity in the number of exchanged messages. The limit of this algorithm is that it requires an unbounded amount of memory and computation power, as the stored history may grow forever. According to Theorem 1, this limit cannot be overtaken while remaining in the operational model. On the other hand, Algorithm U C 0 manages to dispose of the stored history thanks to a synchronization mechanism that is forbidden in the operational model. The limitation of this algorithm is its complexity in network communication, as a complete state is broadcast by all processes for every updates. This section presents Algorithm U C[k], which takes the best of both methods. It builds on the observation that, in real systems, asynchrony is often used as a convenient abstraction for systems in which transmission delays are actually bounded, but the bound is too large to be used in practice, or unknown. This means that after some time, old messages from the first strategy can be garbage collected. The second strategy is used to ensure safety of this garbage collection: if old messages are received later than expected, the a priori total order can be altered and states must be exchanged to ensure convergence. Thus, the overhead in memory and computation time remains bounded by a parameter k that affects the size of the list, while more bandwidth is required only when messages are abnormally delayed, for example to recover from a partition. U C ∞ is the limit of U C[k] when k → ∞, and U C[0] corresponds to an improvement of U C 0 . The value k can be seen as a parameter that combines the issuing rate of update operations and the the message transmission delay.

Presentation of the universal construction

The code for U C[k] executed by process p i is given on Algorithm 4. The current local state of the object at process p i is divided into two parts. On the one hand, the most recent updates known by p i are stored with timestamps in a list of updates, in a similar fashion as in Algorithm U C ∞ . On the other hand, older updates are pruned and recorded in a state of the object, that is maintained similarly to Algorithm U C 0 . The separation between old and recent updates is arbitrary and abstracted by the parameter k of the algorithm: at any time, the difference between all timestamps in the list of recent updates must be at most k. Unlike in Algorithm U C 0 , the local state of the object is not sent each time an update is received, but only after a conflict has been detected: a conflict occurs at p i when p i receives a mUpdate message for an update operation, whose timestamp indicates that it should already be part of the recorded state. The counterpart of this optimization is that a mCorrect message may be sent by p i in response to another mCorrect message sent by p j , if p j detected a conflict but p i did not. Each process p i manages the seven following local variables. Variables time i ∈ N, initially 0, and history i ⊂ N × N × O, initially empty, are respectively the state of the Lamport clock and the ordered list of recent updates. They play a similar role as in Algorithm U C ∞ , except that history i is regularly pruned of its oldest updates. Variables state i ∈ S, initially s 0 , clock i ∈ N N , initially [0, . . . , 0], and leader i ∈ N, initially i, play a similar role as in Algorithm U C 0 , but only encode older updates: state i is the recorded state computed from old updates, and clock i is the version vector that describes the set of updates used by p leader i to craft state i . Variable rtime i ∈ N, initially -k, encodes the timestamp that separates old updates and recent updates. Usually, rtime i = time i -k, but it can be different if processes do not agree on the value of k, as discussed in Section 6.3. Finally, sent i is a Boolean value, initially true, that encodes whether or not state i was broadcast on the network, in order to minimize the traffic.

When process p i executes a query operation, it first applies all the updates stored in history i on state i according to the lexicographic order on their timestamps and computes the return value by applying the query to the obtained state.

When process p i executes an update operation o, it causally broadcasts a mUpdate(t, o) message, where o identifies the update operation, and t is the virtual time generated using the Lamport clock time i used in the timestamp of the operation.

When process p i receives a message mUpdate(t j , o j ) from p j , it first updates its local virtual time time i and inserts o j in the update list history i . Then, p i applies all the updates whose timestamps are lower than time i -k to state i by executing record(time i -k). Two cases are possible, depending on the relative values of t j and of rtime i at reception of the message. Normally, rtime i < t j , which means that o j is a recent update that belongs to history i , and p i has nothing else to do. Otherwise, o j should already have been included into state i . By executing o j on state i , p i may have jeopardized convergence since another process may have executed the operations in a different order. As p i applied the update to state i , it has changed the linearization order, but this new order is correct thanks to causal reception. It therefore notifies the other processes of its choice by broadcasting a message mCorrect containing its new state.

When process p i receives a message mCorrect(cl j , t j , s j ) from p j , it knows that p j has faced a conflict and changed its linearization order. It can either accept or reject the correction, depending on the version vector cl j associated to the state s j of the correction, and the version vector clock i associated to its own state state i . Thanks to causal delivery, p i has received at least the same messages mUpdate before the message mCorrect, as p j received before sending the message mCorrect. Process p i then executes record(t j ) to make sure that clock i ≥ cl j (this is not necessary if all processes share the same value for k. The two following cases are possible:

• If clock i = cl j , both states have been produced with the same updates but possibly in a different order. In this case, arbitration is done considering which process has the smallest identifier. If j < leader i then p i accepts the correction and update its local variables. Otherwise, p i chooses to keep its own state. Instead, it broadcasts it so everyone can also adopt its state. If this situation occurs several times successively, it is necessary to compare all identifiers together, so the comparison is done with variable leader i , that contains the identifier of the process whose state was chosen. The variable sent i is used to prevent p i from broadcasting the same state several times.

Correctness

In this section, we prove that Algorithm 4 implements update consistency, i.e. that all the histories it allows are update consistent. To this end, we prove three intermediate lemmas: Lemma 1 ensures, among other properties concerning the global state of the system, that the virtual local state of a process is always valid with respect to the updates it has heard of; Lemma 2 proves that, if all processes stop updating, then eventually, no message will be sent to maintain consistency and in this situation, Lemma 3 proves that, all processes have converged to a common state. Finally, Theorem 3 proves that Algorithm 4 is update consistent. Remark that, whenever an operation is issued, it is completed without waiting for any other process, so the algorithm is wait-free.

We consider an object O = (O, R, S, s 0 , u, q) and a history H that models an execution of Algorithm 4. Let us introduce the following notations.

• The superscript notation on variables of the algorithm, e.g. state x i , denotes the value of a variable at a time x.

• vs x i ∈ S denotes the virtual state of process p i at time x, obtained by executing the operations contained in history x i on state x i , respecting the lexicographic order on their timestamps, similarly to the state on which the queries are done and contained in variable s after line 4.

• vcl x i ∈ N N denotes the virtual clock of process p i at time x, that represents the set of mUpdate messages received by p i at time x. It is defined, for all j ∈ {1, . . . , n}, by vcl

x i [j] = clock x i [j] + |{(t, k, o) ∈ history x i : k = j}|.
• For cl ∈ N N and s ∈ S, cl s expresses the fact that the prefix of the history containing the cl[j] first update operations of each process p j can lead to state s.

Lemma 1 (Validity). At each time x, for each process p i that is not executing a part of the algorithm, and for each message mCorrect(cl i , t i , s i ) sent by p i before time x, we have:

1. vcl x i vs t i , 2. clock x i state x i , 3. cl i s i .
Proof. We proceed by induction on the succession of the global states of the system. Initially, there is no message in transit, and for each process p i , [0, ..., 0] = clock 0 i = vcl 0 i vs 0 i = state 0 i = s 0 . We suppose now that at a time x -, the property is verified and the global state changes. We prove that the property is still verified at x + , just after the changes, that we consider to happen on p i . The variables mentioned in the lemma are only changed at the reception of a message, so two cases must be distinguished.

Reception of mUpdate(t j , o j ) sent by p j . Before calling the function record, vcl x i [j] was incremented and vs x i was updated by the insertion of o j in history i . As causal broadcast ensures the FIFO reception of messages from p j by p i , (1) still holds, while (2) and (3) remain unchanged.

During each iteration of the loop of record, neither vcl x i nor vs x i is modified, because the order in which the updates are sorted on line 9 and in the definition of vs x i are the same, so (1) remains valid. After the loop, ( 2) is still true since the updates are applied and remove from history i in a order defined by a Lamport clock, which contains the process order.

The messages mCorrect present in the system are those present at t -, which verify (3), and possibly the one sent on line 17, with cl i = clock x+ i state x+ i = s i so (3) holds.

Reception of mCorrect(cl j , t j , s j ) sent by p j . Like above, the properties are respected after the call to record (time x R ).

If the condition of Line 20 is true, (3) holds because no new message mCorrect(cl i , t i , s i ) is sent by p i and (2) holds because clock x + i = cl j s j = state x + i . The virtual clock vcl x + i remains unchanged and the concatenation of the linearization given by ( 2), and all the updates in history x + i is still a valid linearization that leads to vs x + i thanks to causal delivery, so (1) holds. If the condition is false, (1) and ( 2) are not impacted, and (3) holds because the message mCorrect(cl i , t i , s i ) sent by p i is such that

cl i = clock x+ i state x+ i = s i .
Lemma 2 (Quiescence). If each process p i performs a finite number m i of updates, there is a time x quiet such that, for all x > x quiet , no message is in transit in the network at x, and for all processes p i , vcl

x i = [m 1 , ..., m n ].
Proof. As messages mUpdate are only broadcast on line 5, when a new update is performed, only a finite number of them are sent. Moreover, p i cannot send two messages mCorrect with the same value of clock i : if the broadcast is done on line 17, conflict is true so clock i was incremented just before during the call of record (clock i is increased because, at least, the received update is applied since there was a conflict), and if the broadcast is done on line 23, sent i was set to false in function record just after an increment of clock i . As clock i is bounded by [m 1 , ..., m n ], a bounded number of messages mCorrect are sent. As all the messages eventually arrive, there is a time x quiet such that for all x > x quiet , all the messages have been received and processed. In particular, all messages mUpdate have been received by p i , so vcl

x quiet i = [m 1 , .., m n ].
Lemma 3 (Convergence). At each time x, if there is no message in transit at x, then for all processes p i and p j , vs x i = vs x j .

Proof. Let x be a time at which no message is in transit, and let p i and p j be two processes.

Let us first suppose that a conflict occurred during the execution, and that a message mCorrect was sent. Let us consider a message m k of the form mCorrect(cl k , t k , s k ) sent by p k such that there is no other message mCorrect(cl l , t l , s l ) sent by p l with cl l > cl k , or cl l = cl k and l < k (m k might not be unique since the order on version vectors is partial, but it exists).

As no message is in transit at time x, p i already received m k , and after the execution of record at time x i , we have clock x i i ≥ cl k thanks to causal delivery. We know that clock x i i = cl k and k < leader x i i since, otherwise, p leader x i i would have sent a message m i = mCorrect(clock x i i , t, state x i i ), either because p i received it if leader x i i = i, or because p i executed Line 23 if sent x i i was false or Line 23 if sent x i i was true. In all cases, m i contradicts the definition of m k so it cannot exist. Therefore, p i executed Line 21, and accepted the correction. Moreover, no further conflict occurred at p i because such a conflict would result in a message mCorrect associated to a version vector strictly larger than cl k , contradicting the definition of m k . Similarly, p j adopted the correction of m k at some time x j and was not subject to any conflict later.

If no conflict occurred during the execution, let us pose x i = x j = 0 the initial time. In both cases, we have clock x i i = clock

x j j , state x i i = state

x j j , and no conflict occurred on p i after x i , nor on p j after x j . Then, every message mUpdate(t k , o k ) received by p i at a time x r > x i is associated to a virtual time t k > rtime xr i , and the same can be said about p j . Therefore, p i and p j apply all the updates in record according to the same lexicographic order, which leads them to the same virtual state vs x i = vs x j . x i , which means there is a linearization of all the updates that leads to this common state s conv , in which all the queries done after x quiet are done. As only a finite number of queries were done before x quiet , H is update consistent.

Theorem 3 (Correctness

The trade-off k

There are two ways to understand Algorithm U C[k]. On the one hand, it can be seen as a garbage collection mechanism added to Algorithm U C ∞ , that allows the safe disposal of old operations. In that sense, the smaller the k, the least memory is necessary. On the other hand, Algorithm U C[k] can be seen as an optimization of Algorithm U C 0 in which the list of updates history i is used as a cache to store new updates as long as there is a risk that concurrent updates may be received, and thereby reducing the need for broadcasting correction messages. In that sense, the larger the k, the least frequent "cache-misses" should occur, and the least communication-intensive the algorithm is. Thus, the value k is a trade-off between the space used and the number of sent messages.

For each execution, there exists, however, a minimal value of k for which no mCorrect message is sent. Any larger value for k increases the memory needs while keeping the communication complexity constant, and any smaller value for k generates conflicts that cause the broadcast of expensive mCorrect messages. Since the timestamps of the list of updates history i , that span an interval of size at most k, are generated using a Lamport clock that encodes the "happenedbefore" relation, this optimal value corresponds to the length of the longest causal chain of update operations done during the transit of a single mUpdate message. This value depends on the transmission delay of messages, both relatively to other messages and relatively to the time between two updates done by a process.

The value of k has an important impact of the performances of the algorithm, but choosing the perfect value requires knowledge about the future execution. Interestingly, k is not used in the proof of correctness. An important consequence is that the algorithm remains correct even if processes do not share a common value of k. In particular, each process can update its value of k independently, depending on its own characteristics such as its available memory, or following some global strategy to adapt k to the specificities of the system. While updating a global parameter is highly costly, updating a local value for k is cheap: increasing k is free, while decreasing k only consists in executing record(time i -k) with the new value of k.

Conclusion

This paper explores the complexity of update consistent universal constructions in message passing systems composed of asynchronous processes that may fail by crashing. To be able to order operations despite asynchrony, U C ∞ , a previously-proposed construction, stores all operations in an ever-growing log. Although this construction is optimal in the number of exchanged messages, its space complexity may be prohibitive for many applications. The goal of this paper is to reduce the space complexity of update consistent universal constructions, but keeping the message complexity as low as possible.

Our first contribution is a proof that the optimal message pattern adopted in Algorithm U C ∞ , called the operational model, makes it necessary to store O(m) bits of information for an execution containing O(m) operations, which is the same asymptotic complexity as Algorithm U C ∞ . Contrastingly, we proved that algorithms with a logarithmic spatial complexity were available in the more general wait-free model, at the price of a greater communication complexity. This is an important theoretical result, as it negatively answers the following question: are the wait-free model and the operational model equivalent in terms of space complexity? It shows that the question of whether the operational model is well suited to represent partition tolerance is not simple, especially in the context of determining the complexity in local memory required to implement shared objects. An interesting open question is whether the lower bounds proved for several objects in the operational model can be extended to the wait-free model.

Our second contribution is a new update consistent universal construction. The performance of the proposed algorithm depends on a parameter k which cannot be chosen perfectly without knowledge about the future execution. A too low value of k may make the execution costly in terms of communication, while a high value of k requires more memory and computation resources. A possible future work would be to explore the best strategies to adapt dynamically k in function of some communication conditions, to optimize the need for resources.
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 1 Figure1: Representation of a l-countdown-append object as an automaton. The unrepresented read operation returns the label of the state on which it is applied.

Figure 2 :

 2 Figure 2: Typical execution in the proof of Theorem 1
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 3 Universal construction U C 0 (O, R, S, s 0 , u, q) : code for p i

	1 operation apply(o ∈ O) ∈ R

2 var s ∈ S ← state i ; 3 if o is an update then broadcast mUpdate(o) ; 4 return q(s, o); 5 when a message mUpdate (o j ∈ O) is received from p j 6 state i ← u(state i , o j ); clock i [j] ← clock i [j] + 1; leader i ← i; 7 broadcast mCorrect (clock i , state i ); 8 when a message mCorrect (cl j ∈ N N , s j ∈ S) is received from p j 9 if clock i = cl j ∧ j ≤ leader i then 10 state i ← s j ; leader i ← j;

  ). All histories allowed by Algorithm 4 are update consistent. Proof. Let H be a history allowed by Algorithm 4. If H contains an infinite number of updates or a finite number of queries, it is update consistent by definition. Let us suppose that each process p i performs a finite number m i of update operations. According to Lemma 2, there is a time x quiet such that, for all x > x quiet , no message is in transit in the network at x, and for all i, vcl x i = [m 1 , ..., m n ]. By Lemma 3, there is a state s conv ∈ S such that, for all process p i and all x > x quiet , vs x i = s conv . Moreover, as vcl x i = [m 1 , ..., m n ] and according to Lemma 1.1, vcl x
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We use indifferently participant or process to designate the computing entities that invoke the operations of the distributed object.

else if ¬sent i then

sent i ← true; broadcast mCorrect (clock i , rtime i , state i );

• If clock i > cl j then state i takes updates into account which s j does not. The future reception of these updates by p j will lead to a new conflict, so p i sends another mCorrect message to help p j solve the conflict.
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Algorithm 4: Universal construction U C[k](O, R, S, s 0 , u, q) : code for p i