
HAL Id: hal-03813789
https://hal.science/hal-03813789v1

Preprint submitted on 13 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexity of Update Consistent Universal
Constructions

Grégoire Bonin, Achour Mostefaoui, Matthieu Perrin, Olivier Ruas

To cite this version:
Grégoire Bonin, Achour Mostefaoui, Matthieu Perrin, Olivier Ruas. Complexity of Update Consistent
Universal Constructions. 2022. �hal-03813789�

https://hal.science/hal-03813789v1
https://hal.archives-ouvertes.fr

Complexity of Update Consistent Universal Constructions
Grégoire Bonin† Achour Mostéfaoui† Matthieu Perrin† Olivier Ruas‡

† LS2N, Université de Nantes, 44322 Nantes Cedex, France
‡ Peking University, Beijing, P.R. China

Abstract

In large scale distributed systems, replication is essential in order to provide availability
and partition tolerance. Such systems are abstracted by the wait-free model, composed of
asynchronous processes that communicate by sending and receiving messages, and in which
any process may crash. The CAP theorem states that strong consistency is unachievable in the
wait-free model. Weaker consistency criteria, such as eventual consistency, update consistency
and causal convergence, have been identified as potential substitutes to strong consistency for
the management of replicated objects. Complexity in local memory has already been studied
for several objects, including sets, databases and collaborative editors. However, the literature
has focused on a subclass of algorithms, called the operational model, in which processes can
only broadcast one message per update operation and the read operation incurs no communi-
cation.

This paper tackles the following question: are the operational model and the wait-free
model equivalent from the complexity point of view? We show that eventual consistency al-
lows implementations in the wait-free model that require strictly less local memory than their
counterparts in the operational model. On the other side, we propose, for the wait-free model,
a universal construction that provides a garbage collection mechanism for old messages that
never violates consistency even when there is no bound on the relative transmission delays.

Keywords: Consistency Criteria, Eventual Consistency, Replicated Object, Sequential Consis-
tency, Space Complexity, Universal Construction, Update Consistency.

1 Introduction

Reliability of large scale systems is a big challenge when building massive distributed applica-
tions over the Internet. At this scale, data replication is essential to ensure availability and fault-
tolerance. In a perfect world, distributed objects should behave as if there is a unique physi-
cal shared object that evolves following the atomic operations issued by the participants1. This
means that all the operations on the object, possibly concurrent or interleaving, appear as if they
have been executed atomically and sequentially. This is the aim of strong consistency criteria such
as linearizability and sequential consistency. These criteria serialize all the operations so that they
look as if they happened sequentially, but they are costly (when not impossible) to implement in
message-passing systems. If one considers a distributed implementation of a shared register, the

1We use indifferently participant or process to designate the computing entities that invoke the operations of the
distributed object.

1

worst-case response time must be proportional to the uncertainty on the latency of the network
either for the reads or for the writes to be sequentially consistent [1] and for all the operations for
linearizability [2]. This generalizes to many objects [2]. Moreover, the availability of the shared
object cannot be ensured in asynchronous systems where more than a minority of the processes
of a system may crash [3] (which we call the wait-free model), or when partitions may occur, iso-
lating some processes from the others. In large modern distributed systems such as Amazon’s
cloud, partitions do occur between data centers, as well as inside data centers [4]. Moreover, it
is economically unacceptable to sacrifice availability. The only solution is then to provide weaker
consistency criteria. Several weak consistency criteria have been considered for modeling shared
memory such as PRAM [1] or causality [5]. They expect the local histories observed by each
process to be plausible, regardless of the other processes. However, these criteria do not impose
that the data eventually converges to a consistent state. Eventual consistency [4] is another weak
consistency criterion which was introduced to overcome this issue. It states that, after update
operations stop taking place, the different replicas will eventually converge to an identical state.
The relevance of eventual consistency has been illustrated many times. It is used in practice in
many large scale applications such as Amazon’s Dynamo highly available key-value store [6].
It has been widely studied and many algorithms have been proposed to implement eventually
consistent shared object.

In this context, Conflict-Free Replicated Data Types (CRDTs) [7] constitute a family of objects
designed to achieve eventual consistency. Those are based on a theorem stating the equivalence
between two kinds of objects: the Commutative Replicated Data Types (CmRDTs), in which all
update operations commute, and Convergent Replicated Data Types (CvRDTs), whose states form
a lattice. For example, the G-set (grow-only set) provides two different operations: an update
operation that inserts an element and a query operation that reads if a specific element belongs to
the set. On the CmRDT point of view, inserting x and inserting y commute. On the CvRDT point
of view, the set inclusion is a lattice order on the states of the set. Unfortunately, many useful
objects are not CRDTs.

This paper focuses on universal constructions of eventually consistent shared objects. The
behavior of an object (counter, stack, ...) is described by a sequential specification. A universal
construction is an algorithm that is parametrized by the sequential specification of a data type
and automatically transforms it into a concurrent data structure respecting a given consistency
criterion. Unfortunately, eventual consistency requires the convergence towards a common state
without specifying which states are legal. This means that an algorithm that always leaves the
shared object in its initial state would, indeed, be a (useless) eventually consistent universal con-
struction. The limitations of eventual consistency led to the study of stronger criteria such as
update consistency [8]. Update consistency strengthens eventual consistency by stating that the
convergence state must be obtainable in a sequentially consistent execution. In other words, it can
be obtained by a sequential ordering of the update operations.

Problem statement This paper explores the following issue: what is the complexity of update
consistent universal constructions in partition-prone systems? Two metrics are relevant: the num-
ber of messages that are sent for each operation, and the size of the metadata stored at each replica.

The operational model has been proposed to abstract the implementation of CRDTs. In the op-

2

erational model, each replica maintains a local state on which the operations are done. An update
operation is divided into two parts. First, the update operation is prepared locally by the replica
where the update operation is issued and a message is broadcast to inform all the other repli-
cas. Second, the local state of each replica is updated upon the reception of the update message.
Thanks to commutativity, all replicas converge to the same state when no update operation is in
progress. As only n messages are sent by each update operation, the operational model naturally
leads to algorithms that are optimal in the number of sent messages.

On a computability point of view, update consistent universal constructions have already been
proposed in the operational model [8, 9]. The key idea of these algorithms is to order the oper-
ations a priori using a timestamp given during the preparation phase, and to keep a log of all
operations ordered according to these timestamps in the update phase. When two processes have
received the same set of messages, they agree on their respective log, so they converge to the same
state as well. The main problem of this approach is the size of the log, that keeps increasing as
new operations are invoked. One can advocate that even though the system is asynchronous, it is
very unlikely that the transfer delay of a message exceeds for example one day and consequently,
all ”very old” states can be garbaged as no old message can force to re-execute newer operations.
This may work but is not safe, as if, for some reason, a message transmission exceeds this maximal
assumed delay, convergence is no more guaranteed. Hence the following questions: is it possible
to safely prune the log from very old operations, and, if yes, at which cost?

Contributions of the paper This paper has two main contributions.

• This paper first proves that the answer is “no” in the operational model, but “yes” in the
wait-free model. For that we introduce an object called l-countdown-append, where l is
an integer parameter. We prove that O(l) bits are necessary in the operational model to
implement an update consistent l-countdown-append object. On the other side, we give a
logarithmic space complexity algorithm in the wait-free model. This contribution has deep
theoretical implications, as it proves that the two models are not equivalent regarding com-
plexity, which questions the relevance of already known complexity results regarding CRDT
algorithms.

• Unfortunately, the logarithmic algorithm presented in the first contribution for the wait-free
model requires O(n2) messages per operation. We propose a practical trade-off, a universal
construction called UC[k], that only requires n messages per operation when there is a bound
k and provides a garbage collection mechanism for old messages that is safe even when
the bound is violated. The parameter k reports on the relationship between the relative
transmission delay of messages and the number of issued update operations during the
transmission of one message.

Organization of the paper The remainder of this paper is organized as follows. In Section 2,
we define more formally the concepts and objects considered in this paper. Section 3 presents
more precisely the wait-free and operational computing models. Section 4 recalls the universal
construction UC∞ in the operational model, that was introduced in [8]. Section 5 proves the lower
bound in the operational model and gives an upper bound in the wait-free model, proving that

3

the two models are not equivalent when we consider complexity. Section 6 presents the practical
universal construction UC[k]. Finally, Section 7 concludes the paper.

2 Update consistent universal constructions

In distributed systems, several kinds of shared objects have been proposed to provide the pro-
cesses with higher-level abstractions. There are two main kinds of objects. On the one hand,
one-shot objects like consensus and renaming are a generalization, to concurrent systems, of the
concept of function in sequential systems, where each process proposes an input and decides an
output. One-shot objects are specified by a binary relation that relates input vectors to the ad-
mitted output vectors. On the other hand, long-lived objects, such as registers and queues, are
a generalization of data structures in sequential programming, aiming at storing and organizing
data in memory. This paper only considers long-lived objects.

A long-lived object is defined by three components: a sequential specification that describes its
expected behavior when accessed sequentially (queue, stack, ...), a consistency criterion that de-
scribes how concurrency affects the object (linearizability, eventual consistency, ...), and a progress
condition that enforces liveness guarantees. The only progress condition we address in this pa-
per is wait-freedom: all operations invoked by non-faulty processes, terminate regardless of the
failure pattern and the message schedule.

2.1 Sequential specifications

A long-lived object exposes operations that can be invoked by processes and may return a value.
The sequential specification of an object is the set of all sequential histories admitted by the object, i.e.
the finite or infinite sequences of operation invocations and responses that can be produced when
all the operations on the object are issued by a unique sequential process.

A universal construction is an algorithm that exposes a single operation, apply, and that can
simulate the operations of any object whose sequential specification is described by an abstract
data type as an automaton [9]. An abstract data type is a tuple (O,R,S, s0, u, q) where:

• O is a countable set containing all the operations on the object, and that can be passed as
argument to the operation apply. If an operation has parameters, each combination of
different parameters is abstracted as a different symbol in O.

• R is a countable set containing all the values that can be returned by operations on the object,
as well as by the operation apply. R may possibly include dummy values for operations
that do not have a return value.

• S is a countable set of states and s0 ∈ S is the initial state;

• u : S × O → S, called the update function, encodes the side effects of an operation on the
current state of the object. An update operation is an operation o for which the update function
is not the identity, i.e. for some state s, u(s, o) 6= s.

4

• q : S × O → R is the query function, that encodes the value returned by an operation,
depending on the state on which it is invoked. A query operation is an operation whose
return value depends on the state on which it is performed, i.e. there exist two states s 6= s′

such that q(s, o) 6= q(s′, o).

Remark that, in the most general case, an operation may be both an update and a query oper-
ation. For example, the pop operation on a stack removes the last element added to the stack (its
update part), and also returns it (its query part).

2.2 Consistency

A consistency criterion defines how concurrency affects the distributed behavior of an object. For-
mally, it identifies which distributed histories are admissible for a given sequential specification.
A distributed history models a distributed execution of a program accessing a shared object. It
is composed of a (finite or infinite) set of events labelled by the operations of the object (or the
operations passed as arguments to apply in the case of a universal construction) and their return
values. This set is ordered by the process order, a partial order such that e 7→ e′ if e and e′ have
been executed by the same process in that order.

A sequential history is a linearization of a distributed history H if it contains the same opera-
tions and returned values as H , and the order of appearance of the operations, in the sequential
history, does not contradict the process order defined above. We now define formally the consis-
tency criterion used in this paper: update consistency.

Update consistency A history is update consistent [8] for an object O if, when all the processes
stop executing update operations, they eventually converge towards a state resulting from a lin-
earization of all issued update operations. Formally, a history H is update consistent if it falls
under one of the following two cases.

• The processes never stop updating, i.e. H contains an infinity of update operations.

• It is possible to change the returned value of a finite number of query operations, so that the
resulting history has a linearization in the sequential specification of O.

3 Computing models

We now present the two computing models used in this paper: the wait-free model and the oper-
ational model.

3.1 Wait-free model

The wait-free asynchronous message-passing system model, or simply wait-free model, is composed of
n processes called p1, . . . pn. The number n of participating processes is finite, although it may not

5

be known to the processes. Processes are asynchronous, in the sense that there is no bound on
their relative speed. Moreover, processes can fail by crashing: a faulty process executes correctly
until it crashes, and then stops operating. A process that does not crash during an execution is
called correct.

Processes can communicate by sending and receiving messages. Communication channels are
reliable, as all sent messages are eventually received by correct processes. However, channels
are asynchronous, in the sense that there is no bound on the time it takes for one message to be
delivered. We suppose that all sent messages can be uniquely identified.

Remark that the wait-free model also captures partition tolerance because a process cannot
wait for an acknowledgment from any other process, since they may all have crashed.

We assume that processes have access to a causal broadcast abstraction that provides them with
a broadcast m operation and a ”when a message m is received from pj” event, where m is a
message and pj is a process, respecting the following properties.

Validity. If a process receives a message m from pj , then m was broadcast by pj .

Uniformity. If a process receives a message m, then all correct processes receive m.

Termination. If a correct process pi attempts to broadcast m, then pi terminates its broadcast in-
vocation and eventually receives m.

Causal delivery. If a process receives a message m and then broadcasts a message m′, then all
processes receiving m′ have previously received m.

Note that causal broadcast can be implemented in the wait-free model [10] without additional
computing power. However, this implementation has a cost in local memory. We choose to include
the primitive in the model to isolate the complexity needed to maintain consistency of the shared
objects from the complexity needed to ensure causality, and therefore reducing the noise on the
complexity results we obtain in the next sections.

3.2 Operational model

The operational model is composed of n replicas r1, . . . , rn, where n ∈ N may not be known to each
of them.

All replicas execute the same algorithm following a very specific format, which defines the
model, presented thereafter.

Each replica maintains a local state, called its payload, and can interact with the system by in-
voking update or query operations. A query operation o returns a value queryo(payload) that is
locally computed based on the local state of the replica. An update operation o is separated into a
prepareo function and an effecto function. The prepareo function computes locally a piece of
information data based on the update function and the local state. Then, effecto(data,payload)
is applied asynchronously on the local state of all replicas. It is required that all effecto functions
commute, so that all replicas eventually converge to a common state, ensuring eventual consis-
tency.

6

Algorithm 1: Wait-free model translation of an operational model algorithm

1 operation apply(o ∈ O) ∈ R
2 if o is an update then
3 broadcast mUpdate(o,prepareo(payloadi));

4 return queryo(payload);

5 when a message mUpdate(oj , xj) is received from pj
6 payloadi ← effectoj (xj ,payloadi);

Algorithms in the operational model can be seen as a special case of algorithms in the wait-free
model. More precisely, Algorithm 1 is a canonical injection that maps any algorithm in the opera-
tional model into an algorithm in the wait-free model. Each replica from the operational model is
embedded on a process in the wait-free model, that maintains the payload as its local state. When
a process pi performs an operation o of the operational model, it invokes the operation apply(o)
of Algorithm 1. Process pi evaluates queries operations using the same algorithm queryo, ap-
plied on its local state (Line 4). If o is an update operations, the result of the prepareo function is
transmitted to the effecto function as a single message broadcast on the network (Line 3).

Thanks to this transformation, the operational model can be viewed as a restriction of the wait-
free model, where additional constraints on the use of the messages have been added: a message
can only be broadcast on the network when an update operation is issued. By a slight abuse of
language, from now on, we will use the term “algorithm” (without precision), to refer to algo-
rithms in the wait-free model, and we will say that an algorithm in the wait-free model belongs to
the operational model if it is an image of an algorithm in the operational model by the canonical
injection, i.e. if it respects the constraints on message broadcasts. Further notions defined on algo-
rithms are extended to algorithms from the operational model thanks to the canonical injection.

4 A universal construction in the operational model

We now recall the update consistent universal construction in the operational model, that was
introduced in [8]. The code of Algorithm 2 is given for process pi.

The principle is to build a total order on the updates on which all the participants agree a priori,
and then to rewrite the history a posteriori so that every replica of the object eventually reaches the
state corresponding to the common sequential history. In Algorithm 2, this order is built from a
Lamport’s clock [11] that contains the happened-before precedence relation. In order to have a
total order, the events are timestamped with a pair composed of the logical time and the identifier
of the process that produced it.

Each process pi manages its view timei of the logical clock and a list historyi of all timestamped
update events process pi is aware of. The list historyi contains triplets (t, j, o) where o is an update
operation and (t, j) the associated timestamp. This list is sorted according to the timestamps of
the updates: (t, j) < (t′, j′) if (t < t′) or (t = t′ and j < j′).

7

Algorithm 2: Universal construction UC∞(O,R,S, s0, u, q) : code for pi
1 operation apply(o ∈ O) ∈ R
2 var s ∈ S ← s0;
3 if o is a query then
4 for (t, j, o′) ∈ historyi sorted according to (t, j) do s← u(s, o′) ;

5 if o is an update then timei ← timei + 1; broadcast mUpdate (timei, o) ;
6 return q(s, o);

7 when a message mUpdate (tj ∈ N, oj ∈ O) is received from pj
8 timei ← max(timei, tj) ;
9 historyi ← historyi ∪ {(tj , j, oj)};

When an update is issued locally, process pi timestamps it and informs all the other processes
by reliably broadcasting a message to all other processes (including itself), on Line 5. Hence, all
processes will eventually be aware of all updates. When a mUpdate(tj , oj) message is received,
pi updates its clock and inserts the event into the list historyi (Line 7). When a query is issued, pi
replays locally the whole list of update events it is aware of starting from the initial state then it
executes the query on the state it obtains (Line 4).

In an execution that contains only a finite number of update operations, then eventually all
processes will be aware of the same set of updates and sort them in the same order to evaluate
their query operations. This implies update consistency. Whenever an operation is issued, its
is completed without waiting for any other process. This corresponds to wait-free executions in
shared memory distributed systems and implies fault-tolerance.

5 Comparison of the computing models

Algorithms from the operational model are naturally partition tolerant and, as only one message
is broadcast per update operation, they are by design optimal in terms of the number of sent
messages. However, the operational model imposes limitations on the form of its admissible
algorithms. It is for example impossible to acknowledge or forward messages, to execute local
steps without the reception of a message, or to propagate information during read operations.
This prevents algorithms from using more advanced techniques like message patterns used by
checkpointing protocols [12, 13].

Following our quest to an efficient universal construction, we study the impact that these limi-
tations have on the memory complexity of concurrent algorithms. Indeed, the amount of metadata
that must be stored on each replica to ensure convergence in the operational model is problematic
and has been widely studied for several objects including sets, counters and registers [14], data
stores [15] and collaborative editors [16].

In this section, we prove that the operational model is not equivalent to the wait-free model in
terms of memory complexity. More precisely, we exhibit a family of objects, called l-countdown-
append objects, and we prove that any update consistent algorithm implementing them in the

8

operational model requires at least O(l) bits of metadata in some specific executions. On the other
hand, only a logarithmic number of bits are required in the wait-free model.

This result has an impact on the complexity of universal constructions. The linear lower bound
proven for the l-countdown-append object in the operational model is similar to the upper bound
given on universal constructions by Algorithm 2. In particular, it suggests that it is impossible to
safely prune the log of from very old operations, while remaining in the operational model. This
is nevertheless possible in the wait-free model, at the cost of an increased number of messages.

On a theoretical point of view, this result also questions the generality of the complexity studies
of various CRDTs mentioned above, since these studies only take into account algorithms in the
operational model.

5.1 Complexity of update consistent l-countdown-append objects

Our proof of non-equivalence compares the number of bits necessary to encode the local states of
processes when executing a specific pattern of operations on a specific family of objects. We first
need to precisely specify our notion of complexity and define l-countdown-append objects.

Complexity of deterministic algorithms Executions of different algorithms in the wait-free model
can be very different, so we can only compare algorithms based on distributed histories, that form
the basis of their specification. We define the H-complexity as the maximal size of a local state
reachable during an execution abstracted by the history H .

Definition 1 (H-complexity). Let H be a history that contains a finite number of updates, and A
an algorithm. Let, also, S be the set of all local states reachable by any process executing A during
an execution that can be abstracted by H .

We define the H-complexity of A as follows:

• if S = ∅ (i.e. if H is not admitted by A), the H-complexity is 0;

• if S is infinite (i.e. if S contains states of unbounded size), the H-complexity is∞;

• otherwise, the H-complexity is the maximal size of a state in S.

Countdown-append object The l-countdown-append object, where l ∈ N, exposes 4 update
operations, a, b, c and d, and one query operation q. Figure 1 represents the behavior of the object
as an automaton. It is divided into two phases: during the first phase, the object counts the number
of update operations, starting from l, down to 1, then ε (the empty word). In the second phase, the
operations are concatenated at the end of the state. Finally, the query operation returns the local
state of the objects each time it is executed.

For all words v = u1...ul ∈ {U l} consisting of l update operations of the l-countdown-append
object, we denote by Hv the distributed history in which one process performs all updates of v in
their order of appearance in v. In the next sections, we study the Hv-complexity of algorithms in
the operational model and in the wait-free model.

9

l
a, b

c, d
l − 1

a, b

c, d
. . .

a, b

c, d
2

a, b

c, d
1

a, b

c, d
ε

a

b
c

d

a

b

c

d

a

b
c

d

ba

bb

bc

bd

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: Representation of a l-countdown-append object as an automaton. The unrepresented
read operation returns the label of the state on which it is applied.

P1

u1,1 u2,1 . . . ul−1,1 ul,1

P2 u1,2 u2,2 . . . ul−1,2 ul,2

U2

U1

︸ ︷︷ ︸

︷ ︸︸ ︷
. . .

q → ε

q → ε

q → sc

q → sc

Figure 2: Typical execution in the proof of Theorem 1

5.2 Lower bound in the operational model

We now prove that any algorithm in the operational model has a Hv-complexity of at least l
2 − 1

bits for some v. Our proof follows the scheme introduced in [14]: we build a family of executions
such that, at some point in the execution, process pi performing the operations of v is unable to
distinguish between all these executions and an execution modeled by Hv. Then, in a later stage of
the execution, pi must be able to distinguish between enough of them in order to keep convergence
possible.

Theorem 1. For any deterministic algorithm A that implements an update consistent l-countdown-append
object in the operational model, there exists v such that the Hv-complexity of A is at least l

2 − 1 bits.

Proof. Let A be an algorithm in the operational model implementing an update consistent l-
countdown-append object. For each pair of words of update operations (v1, v2), where v1 ∈ {a, b}l
and v2 ∈ {c, d}l, we define the execution X(v1,v2), illustrated on Figure 2, as follows. Only two
processes p1 and p2 take steps in X(v1,v2). All other processes crash before the beginning of the
execution. Initially, process p1 (resp. p2) executes sequentially, in order, the operations forming
v1 (resp. v2). In accordance to the operational model, they broadcast a single message during
each operation. In a later stage, they both receive the others’ messages, respecting the FIFO or-
dering (recall that causal deliveries implies FIFO order). Finally, both processes perform a query

10

operation. We denote by X = {X(v1,v2) : v1 ∈ {a, b}l∧v2 ∈ {c, d}l} the set of all X(v1,v2) executions.

Let us first remark that update consistency imposes that both query operations returns the
same value vc, which is a suffix of size l, of an interleaving of v1 and v2. Let f(v1, v2) be the
number of c and d operations in vc. Note that f is well defined because A is deterministic.

The executions can be distinguished depending on which process has a majority of operations
in the convergence state. We define X1 = {X(v1,v2) ∈ X : f(v1, v2) ≥ l

2} and X2 = X \ X1. As X1

and X2 form a partition of X which has a size 22l, we have |X1| ≥ 22l−1 or |X2| ≥ 22l−1. Without
loss of generality, we suppose that |X1| ≥ 22l−1.

We now partition X1 based on the value of v1. For each word v1 ∈ {a, b}l, let X1(v1) =
{X(v,v2) ∈ X1 : v = v1}. As there are 2l possible values for v1, at least one of them is such
that |X1(v1)| ≥ |X1|

|{a,b}l| =
22l−1

2l
= 2l−1. Let us fix such a v1.

Let v2 and v′2 such that X(v1,v2) and X(v1,v′2)
belong to X1(v1). By definition of f , if X(v1,v2)

and X(v1,v′2)
converge to the same state, then v2 and v′2 differ at most by their l − f(v1, v2) ≤ l

2

first operations. Consequently, there are at least 2l−1

2
l
2

= 2
l
2
−1 different values for v2 for which

X(v1,v2) lead to different convergence states. Let X ′ be a subset of X1(v1) of size 2
l
2
−1, in which all

convergence states are different.

In the operational model, the local state of Process p2 at the end of the execution only depends
on its local state after executing its own l update operations, and the messages received from p1
afterwards. In all the executions of X ′, the messages received by p2 are the same in all executions
because v1 is fixed. Moreover, the local state of p2 at the end of all executions is different. This
means that the local state of p2 after doing its updates is also different in all executions. Conse-
quently, there is a word v2 such that, after executing all update operations in v2 (execution X), the
local state of p2 requires at least l

2 − 1 bits.

Finally, let us consider the execution X ′ in which only p2 takes steps, executing the sequence of
update operations of v2. Just after executing its updates, p2 cannot distinguish between executions
X and X ′, so its local state in X ′ also requires l

2−1 bits. Moreover, X ′ is modeled by Hv2 . Therefore,
the Hv2-complexity of A is at least l

2 − 1 bits.

5.3 Upper bound in the wait-free model

A consequence of Theorem 1 is that any update consistent universal construction in the opera-
tional model must maintain metadata whose size is at least linear in the number of update oper-
ations in some executions. Although this does not imply that this metadata must be stored in the
form of a history containing all the update operations like in Algorithm 2, this does imply that the
metadata required by UC∞ cannot be drastically reduced, and in particular that it is impossible to
safely prune the history of Algorithm 2 from old operations in the operational model. Differently,
Theorem 1 does not apply to the more general wait-free model. In this section, we propose Algo-
rithm 3, called UC0, whose metadata mainly consist of a vector clock of size O(n log(m)) where n
is the number of processes and m the total number of issued query operations.

The principle of UC0 is to dissociate the safety and liveness parts of update consistency. On the

11

Algorithm 3: Universal construction UC0(O,R,S, s0, u, q) : code for pi
1 operation apply(o ∈ O) ∈ R
2 var s ∈ S ← statei;
3 if o is an update then broadcast mUpdate(o) ;
4 return q(s, o);

5 when a message mUpdate (oj ∈ O) is received from pj
6 statei ← u(statei, oj); clocki[j]← clocki[j] + 1; leaderi ← i;
7 broadcast mCorrect (clocki, statei);

8 when a message mCorrect (clj ∈ NN, sj ∈ S) is received from pj
9 if clocki = clj ∧ j ≤ leaderi then

10 statei ← sj ; leaderi ← j;

safety side, each process maintains its own vision of the state of the object, making sure it results
from some possible linearization of all the update operations it is aware of. This ensures that, if
all processes but one crash, all the query operations performed by the remaining process are done
in a consistent state. On the liveness side, processes exchange their visions of the state, striving
to converge to a common state. More precisely, for a given set of update operations, represented
by a version vector, processes will always adopt the state proposed by the process with the lowest
identifier, which they call their leader. This ensures update consistency since, if all processes stop
updating, all correct processes will eventually adopt the state forged by the correct process with
the lowest identifier.

Process pi maintains three variables. Variable statei ∈ S represents the current local state at pi,
initialized as the initial state s0. Variable clocki ∈ NN is the equivalent of a version vector, such that
clocki[j] represents the number of update operations received by pi from process pj . As pi does
not know the number of participants, it is encoded as an associative array, rather than a vector.
Finally, variable leaderi ∈ N is the identifier of a process such that, if clocki = clockleaderi , then pi
and pleaderi are in the same local state.

When process pi invokes a query operation, it issues it locally on its local state statei (Line 4).
When pi invokes an update operation, it broadcasts a message mUpdate (Line 3). At reception of
such a message from pj , pi executes the operation on its local state and updates its vector clock. It
also resets its variable leaderi to i, which signifies that its local state was computed by itself. Then,
pi broadcasts a mCorrect message containing its current version of the state and the associated
version vector. When pi receives a mCorrect message from pj , it first checks the version of the
state by comparing the version clj of the message with its own version vector clocki. Thanks to
causal delivery, clocki cannot be older than clj . If clj [k] < clocki[k] for some k, the last updates
of pk are already known by pi, but not by pj . In that case, process pi simply ignores the message.
Otherwise, if clj = clocki, pi keeps the state computed by the process with smallest identifier,
which it remembers by updating its variable leaderi.

Theorem 2 (Correctness). Algorithm 3 is a wait-free, update consistent universal construction.

Proof. The operation apply in Algorithm 3 terminates because it contains no loop.

12

Let H be a history admitted by Algorithm 3. If H contains a finite number of queries or an
infinite number of updates, it is update consistent by definition. Let us suppose that H contains
an infinite number of queries and a finite number m of updates (we only consider updates for
which a message mUpdate was sent). Let us denote by mi the number of updates performed by
pi, such that m =

∑n
i=1mi.

Some processes are correct because at least one of them performs an infinite number of queries,
and all correct processes pi send a message mCorrect(clmax, si), with clmax = [m1, . . . ,mn], after
they have received all mUpdate messages (Line 7). Let pleader be the process with the smallest
identifier that sent such a message, called mleader . Thanks to causal delivery, any correct process
pi received all mUpdate messages before mleader , so at reception of mleader , it had clocki = clmax

and, by definition of pleader , leader < leaderi. Therefore, pi adopted sleader as its own state, and
for any subsequent reception of a message mCorrect(clj , sj) by pi, either clj < clocki = clmax or
leader = leaderi < j. Therefore, all correct processes pi converge to the same state sleader .

Let us now prove that, at any time, clocki[j] represents the number of mUpdate received by pi
from pj , and the state statei of pi can be obtained by a linearization of the corresponding updates.
We prove this by induction on the number of times statei and clocki has changed at some process
pi. Initially, clocki[j] = 0 and statei = s0. Suppose the property was always true until process
pi updates clocki[j] or statei. If this happens after reception of a mUpdate message from pj , the
property remains true because causal broadcast implies FIFO reception. If this happens after re-
ception of a mCorrect message from pj , then the property was previously true on process pj , on
the clock clj and the state sj , so it remains true after the update on the clock clocki = clj and the
state statei = sj .

Finally, all the query operations done after all messages have been received are done in the
same state sleader , that can be obtained by a linearization of all the update operations. This implies
update consistency.

We can finally conclude on the non-equivalence between the two computing model in the
implementation of update consistency.

Corollary 1. There exists an object O and an algorithm Awf implementing an update consistent object O
in the wait-free model, such that, for any algorithm Aom implementing an update consistent object O in the
operational model, there is a history H such that Awf has a strictly lower H-complexity than Aom.

Proof. Let l ∈ N and let Ol be the l-countdown-append object. Let v ∈ U l. In any execution of
Algorithm 3 abstracted by Hv, there is a process pi that performs all l update operations. At the
end of the execution, clockj only contains one pair (i, l) that can be encoded in O(log(nl)) bits,
statej = ε has a constant size, and leaderj is the identifier of a process, of size O(log(n)) bits.
Therefore, there exists a constant x > 1 such that, for any v, the Hv complexity of Algorithm 3 is
strictly lower than x log(nl) bits.

Let l > 2−
1+x logn

x . We have x log(nl) < l
2 − 1. Let O be the l-countdown-append object, and let

Aom implementing an update consistent O in the operational model. By Theorem 1, there exists
v such that the Hv-complexity of Aom is at least l

2 − 1 bits. Therefore, Algorithm 3 has a strictly
lower Hv-complexity than Aom.

13

6 A practical solution

In previous sections, we encountered two different strategies in order to implement an update
consistent universal construction. On the one hand, Algorithm UC∞ belongs to the operational
model, and therefore has an optimal complexity in the number of exchanged messages. The limit
of this algorithm is that it requires an unbounded amount of memory and computation power,
as the stored history may grow forever. According to Theorem 1, this limit cannot be overtaken
while remaining in the operational model. On the other hand, Algorithm UC0 manages to dispose
of the stored history thanks to a synchronization mechanism that is forbidden in the operational
model. The limitation of this algorithm is its complexity in network communication, as a complete
state is broadcast by all processes for every updates.

This section presents Algorithm UC[k], which takes the best of both methods. It builds on
the observation that, in real systems, asynchrony is often used as a convenient abstraction for
systems in which transmission delays are actually bounded, but the bound is too large to be used
in practice, or unknown. This means that after some time, old messages from the first strategy can
be garbage collected. The second strategy is used to ensure safety of this garbage collection: if old
messages are received later than expected, the a priori total order can be altered and states must be
exchanged to ensure convergence. Thus, the overhead in memory and computation time remains
bounded by a parameter k that affects the size of the list, while more bandwidth is required only
when messages are abnormally delayed, for example to recover from a partition. UC∞ is the
limit of UC[k] when k → ∞, and UC[0] corresponds to an improvement of UC0. The value k can
be seen as a parameter that combines the issuing rate of update operations and the the message
transmission delay.

6.1 Presentation of the universal construction

The code for UC[k] executed by process pi is given on Algorithm 4. The current local state of
the object at process pi is divided into two parts. On the one hand, the most recent updates
known by pi are stored with timestamps in a list of updates, in a similar fashion as in Algorithm
UC∞. On the other hand, older updates are pruned and recorded in a state of the object, that
is maintained similarly to Algorithm UC0. The separation between old and recent updates is
arbitrary and abstracted by the parameter k of the algorithm: at any time, the difference between
all timestamps in the list of recent updates must be at most k. Unlike in Algorithm UC0, the local
state of the object is not sent each time an update is received, but only after a conflict has been
detected: a conflict occurs at pi when pi receives a mUpdate message for an update operation,
whose timestamp indicates that it should already be part of the recorded state. The counterpart of
this optimization is that a mCorrect message may be sent by pi in response to another mCorrect
message sent by pj , if pj detected a conflict but pi did not. Each process pi manages the seven
following local variables. Variables timei ∈ N, initially 0, and historyi ⊂ N×N×O, initially empty,
are respectively the state of the Lamport clock and the ordered list of recent updates. They play
a similar role as in Algorithm UC∞, except that historyi is regularly pruned of its oldest updates.
Variables statei ∈ S , initially s0, clocki ∈ NN, initially [0, . . . , 0], and leaderi ∈ N, initially i, play
a similar role as in Algorithm UC0, but only encode older updates: statei is the recorded state
computed from old updates, and clocki is the version vector that describes the set of updates used

14

Algorithm 4: Universal construction UC[k](O,R,S, s0, u, q) : code for pi
1 operation apply(o ∈ O) ∈ R
2 var s ∈ S ← statei;
3 if o is a query then
4 for (t, j, o′) ∈ historyi sorted according to (t, j) do s← u(s, o′) ;

5 if o is an update then timei ← timei + 1; broadcast mUpdate (timei, o) ;
6 return q(s, o);

7 function record(t ∈ N)
8 rtimei ← max(rtimei, t);
9 for (tj , j, oj) ∈ historyi with tj ≤ rtimei sorted according to (tj , j) do

10 statei ← u(statei, oj); historyi ← historyi \ {(tj , j, oj)};
11 clocki[j]← clocki[j] + 1; leaderi ← i; senti ← false;

12 when a message mUpdate(tj ∈ N, oj ∈ O) is received from pj
13 timei ← max(timei, tj);
14 historyi ← historyi ∪ {(tj , j, oj)};
15 var conflict ∈ {true, false} ← tj ≤ rtimei;
16 record(timei − k);
17 if conflict then senti ← true; broadcast mCorrect(clocki, rtimei, statei) ;

18 when a message mCorrect(clj ∈ NN, tj ∈ N, sj ∈ S) is received from pj
19 record(tj);
20 if clocki = clj ∧ j < leaderi then
21 statei ← sj ; leaderi ← j; senti ← true;
22 else if ¬senti then
23 senti ← true; broadcast mCorrect (clocki, rtimei, statei);

15

by pleaderi to craft statei. Variable rtimei ∈ N, initially −k, encodes the timestamp that separates
old updates and recent updates. Usually, rtimei = timei − k, but it can be different if processes do
not agree on the value of k, as discussed in Section 6.3. Finally, senti is a Boolean value, initially
true, that encodes whether or not statei was broadcast on the network, in order to minimize the
traffic.

When process pi executes a query operation, it first applies all the updates stored in historyi on
statei according to the lexicographic order on their timestamps and computes the return value by
applying the query to the obtained state.

When process pi executes an update operation o, it causally broadcasts a mUpdate(t, o) mes-
sage, where o identifies the update operation, and t is the virtual time generated using the Lamport
clock timei used in the timestamp of the operation.

When process pi receives a message mUpdate(tj , oj) from pj , it first updates its local virtual
time timei and inserts oj in the update list historyi. Then, pi applies all the updates whose times-
tamps are lower than timei − k to statei by executing record(timei − k). Two cases are possi-
ble, depending on the relative values of tj and of rtimei at reception of the message. Normally,
rtimei < tj , which means that oj is a recent update that belongs to historyi, and pi has nothing
else to do. Otherwise, oj should already have been included into statei. By executing oj on statei,
pi may have jeopardized convergence since another process may have executed the operations in
a different order. As pi applied the update to statei, it has changed the linearization order, but
this new order is correct thanks to causal reception. It therefore notifies the other processes of its
choice by broadcasting a message mCorrect containing its new state.

When process pi receives a message mCorrect(clj , tj , sj) from pj , it knows that pj has faced
a conflict and changed its linearization order. It can either accept or reject the correction, depend-
ing on the version vector clj associated to the state sj of the correction, and the version vector
clocki associated to its own state statei. Thanks to causal delivery, pi has received at least the
same messages mUpdate before the message mCorrect, as pj received before sending the mes-
sage mCorrect. Process pi then executes record(tj) to make sure that clocki ≥ clj (this is not
necessary if all processes share the same value for k. The two following cases are possible:

• If clocki = clj , both states have been produced with the same updates but possibly in a
different order. In this case, arbitration is done considering which process has the smallest
identifier. If j < leaderi then pi accepts the correction and update its local variables. Oth-
erwise, pi chooses to keep its own state. Instead, it broadcasts it so everyone can also adopt
its state. If this situation occurs several times successively, it is necessary to compare all
identifiers together, so the comparison is done with variable leaderi, that contains the iden-
tifier of the process whose state was chosen. The variable senti is used to prevent pi from
broadcasting the same state several times.

• If clocki > clj then statei takes updates into account which sj does not. The future reception
of these updates by pj will lead to a new conflict, so pi sends another mCorrect message to
help pj solve the conflict.

16

6.2 Correctness

In this section, we prove that Algorithm 4 implements update consistency, i.e. that all the histories
it allows are update consistent. To this end, we prove three intermediate lemmas: Lemma 1 en-
sures, among other properties concerning the global state of the system, that the virtual local state
of a process is always valid with respect to the updates it has heard of; Lemma 2 proves that, if
all processes stop updating, then eventually, no message will be sent to maintain consistency and
in this situation, Lemma 3 proves that, all processes have converged to a common state. Finally,
Theorem 3 proves that Algorithm 4 is update consistent. Remark that, whenever an operation is
issued, it is completed without waiting for any other process, so the algorithm is wait-free.

We consider an object O = (O,R,S, s0, u, q) and a history H that models an execution of
Algorithm 4. Let us introduce the following notations.

• The superscript notation on variables of the algorithm, e.g. statex
i , denotes the value of a

variable at a time x.

• vsxi ∈ S denotes the virtual state of process pi at time x, obtained by executing the opera-
tions contained in historyxi on statex

i , respecting the lexicographic order on their timestamps,
similarly to the state on which the queries are done and contained in variable s after line 4.

• vclxi ∈ NN denotes the virtual clock of process pi at time x, that represents the set of mUpdate
messages received by pi at time x. It is defined, for all j ∈ {1, . . . , n}, by vclxi [j] = clockxi [j] +
|{(t, k, o) ∈ historyxi : k = j}|.

• For cl ∈ NN and s ∈ S, cl . s expresses the fact that the prefix of the history containing the
cl[j] first update operations of each process pj can lead to state s.

Lemma 1 (Validity). At each time x, for each process pi that is not executing a part of the algorithm, and
for each message mCorrect(cli, ti, si) sent by pi before time x, we have:

1. vclxi . vsti,

2. clockxi . statex
i ,

3. cli . si.

Proof. We proceed by induction on the succession of the global states of the system. Initially, there
is no message in transit, and for each process pi, [0, ..., 0] = clock0i = vcl0i . vs

0
i = state0

i = s0. We
suppose now that at a time x−, the property is verified and the global state changes. We prove that
the property is still verified at x+, just after the changes, that we consider to happen on pi. The
variables mentioned in the lemma are only changed at the reception of a message, so two cases
must be distinguished.

Reception of mUpdate(tj , oj) sent by pj . Before calling the function record, vclxi [j] was incre-
mented and vsxi was updated by the insertion of oj in historyi. As causal broadcast ensures
the FIFO reception of messages from pj by pi, (1) still holds, while (2) and (3) remain un-
changed.

17

During each iteration of the loop of record, neither vclxi nor vsxi is modified, because the
order in which the updates are sorted on line 9 and in the definition of vsxi are the same, so
(1) remains valid. After the loop, (2) is still true since the updates are applied and remove
from historyi in a order defined by a Lamport clock, which contains the process order.

The messages mCorrect present in the system are those present at t−, which verify (3), and
possibly the one sent on line 17, with cli = clockx+i . statex+

i = si so (3) holds.

Reception of mCorrect(clj , tj , sj) sent by pj . Like above, the properties are respected after the
call to record (time xR).

If the condition of Line 20 is true, (3) holds because no new message mCorrect(cli, ti, si) is
sent by pi and (2) holds because clockx

+

i = clj . sj = statex+

i . The virtual clock vclx
+

i remains
unchanged and the concatenation of the linearization given by (2), and all the updates in
historyx

+

i is still a valid linearization that leads to vsx
+

i thanks to causal delivery, so (1) holds.

If the condition is false, (1) and (2) are not impacted, and (3) holds because the message
mCorrect(cli, ti, si) sent by pi is such that cli = clockx+i . statex+

i = si.

Lemma 2 (Quiescence). If each process pi performs a finite number mi of updates, there is a time xquiet
such that, for all x > xquiet, no message is in transit in the network at x, and for all processes pi, vclxi =
[m1, ...,mn].

Proof. As messages mUpdate are only broadcast on line 5, when a new update is performed, only
a finite number of them are sent. Moreover, pi cannot send two messages mCorrect with the
same value of clocki: if the broadcast is done on line 17, conflict is true so clocki was incremented
just before during the call of record (clocki is increased because, at least, the received update is
applied since there was a conflict), and if the broadcast is done on line 23, senti was set to false in
function record just after an increment of clocki. As clocki is bounded by [m1, ...,mn], a bounded
number of messages mCorrect are sent. As all the messages eventually arrive, there is a time
xquiet such that for all x > xquiet, all the messages have been received and processed. In particular,
all messages mUpdate have been received by pi, so vcl

xquiet

i = [m1, ..,mn].

Lemma 3 (Convergence). At each time x, if there is no message in transit at x, then for all processes pi
and pj , vsxi = vsxj .

Proof. Let x be a time at which no message is in transit, and let pi and pj be two processes.

Let us first suppose that a conflict occurred during the execution, and that a message mCorrect
was sent. Let us consider a message mk of the form mCorrect(clk, tk, sk) sent by pk such that there
is no other message mCorrect(cll, tl, sl) sent by pl with cll > clk, or cll = clk and l < k (mk might
not be unique since the order on version vectors is partial, but it exists).

As no message is in transit at time x, pi already received mk, and after the execution of record
at time xi, we have clockxi

i ≥ clk thanks to causal delivery. We know that clockxi
i = clk and k <

leaderxi
i since, otherwise, pleaderxii

would have sent a message mi = mCorrect(clockxi
i , t, statexi

i),
either because pi received it if leaderxi

i 6= i, or because pi executed Line 23 if sentxi
i was false

18

or Line 23 if sentxi
i was true. In all cases, mi contradicts the definition of mk so it cannot exist.

Therefore, pi executed Line 21, and accepted the correction. Moreover, no further conflict occurred
at pi because such a conflict would result in a message mCorrect associated to a version vector
strictly larger than clk, contradicting the definition of mk. Similarly, pj adopted the correction of
mk at some time xj and was not subject to any conflict later.

If no conflict occurred during the execution, let us pose xi = xj = 0 the initial time. In both
cases, we have clockxi

i = clockxj

j , statexi
i = statexj

j , and no conflict occurred on pi after xi, nor on
pj after xj . Then, every message mUpdate(tk, ok) received by pi at a time xr > xi is associated
to a virtual time tk > rtimexr

i , and the same can be said about pj . Therefore, pi and pj apply all
the updates in record according to the same lexicographic order, which leads them to the same
virtual state vsxi = vsxj .

Theorem 3 (Correctness). All histories allowed by Algorithm 4 are update consistent.

Proof. Let H be a history allowed by Algorithm 4. If H contains an infinite number of updates or
a finite number of queries, it is update consistent by definition. Let us suppose that each process
pi performs a finite number mi of update operations. According to Lemma 2, there is a time
xquiet such that, for all x > xquiet, no message is in transit in the network at x, and for all i,
vclxi = [m1, ...,mn]. By Lemma 3, there is a state sconv ∈ S such that, for all process pi and all
x > xquiet, vsxi = sconv. Moreover, as vclxi = [m1, ...,mn] and according to Lemma 1.1, vclxi . vsxi ,
which means there is a linearization of all the updates that leads to this common state sconv, in
which all the queries done after xquiet are done. As only a finite number of queries were done
before xquiet, H is update consistent.

6.3 The trade-off k

There are two ways to understand Algorithm UC[k]. On the one hand, it can be seen as a garbage
collection mechanism added to Algorithm UC∞, that allows the safe disposal of old operations. In
that sense, the smaller the k, the least memory is necessary. On the other hand, Algorithm UC[k]
can be seen as an optimization of Algorithm UC0 in which the list of updates historyi is used as a
cache to store new updates as long as there is a risk that concurrent updates may be received, and
thereby reducing the need for broadcasting correction messages. In that sense, the larger the k, the
least frequent ”cache-misses” should occur, and the least communication-intensive the algorithm
is. Thus, the value k is a trade-off between the space used and the number of sent messages.

For each execution, there exists, however, a minimal value of k for which no mCorrect mes-
sage is sent. Any larger value for k increases the memory needs while keeping the communication
complexity constant, and any smaller value for k generates conflicts that cause the broadcast of
expensive mCorrect messages. Since the timestamps of the list of updates historyi, that span
an interval of size at most k, are generated using a Lamport clock that encodes the “happened-
before” relation, this optimal value corresponds to the length of the longest causal chain of update
operations done during the transit of a single mUpdate message. This value depends on the trans-
mission delay of messages, both relatively to other messages and relatively to the time between
two updates done by a process.

19

The value of k has an important impact of the performances of the algorithm, but choosing
the perfect value requires knowledge about the future execution. Interestingly, k is not used in
the proof of correctness. An important consequence is that the algorithm remains correct even if
processes do not share a common value of k. In particular, each process can update its value of
k independently, depending on its own characteristics such as its available memory, or following
some global strategy to adapt k to the specificities of the system. While updating a global param-
eter is highly costly, updating a local value for k is cheap: increasing k is free, while decreasing k
only consists in executing record(timei − k) with the new value of k.

7 Conclusion

This paper explores the complexity of update consistent universal constructions in message pass-
ing systems composed of asynchronous processes that may fail by crashing. To be able to order
operations despite asynchrony, UC∞, a previously-proposed construction, stores all operations in
an ever-growing log. Although this construction is optimal in the number of exchanged messages,
its space complexity may be prohibitive for many applications. The goal of this paper is to reduce
the space complexity of update consistent universal constructions, but keeping the message com-
plexity as low as possible.

Our first contribution is a proof that the optimal message pattern adopted in Algorithm UC∞,
called the operational model, makes it necessary to store O(m) bits of information for an execu-
tion containing O(m) operations, which is the same asymptotic complexity as Algorithm UC∞.
Contrastingly, we proved that algorithms with a logarithmic spatial complexity were available in
the more general wait-free model, at the price of a greater communication complexity.

This is an important theoretical result, as it negatively answers the following question: are the
wait-free model and the operational model equivalent in terms of space complexity? It shows that
the question of whether the operational model is well suited to represent partition tolerance is
not simple, especially in the context of determining the complexity in local memory required to
implement shared objects. An interesting open question is whether the lower bounds proved for
several objects in the operational model can be extended to the wait-free model.

Our second contribution is a new update consistent universal construction. The performance
of the proposed algorithm depends on a parameter k which cannot be chosen perfectly without
knowledge about the future execution. A too low value of k may make the execution costly in
terms of communication, while a high value of k requires more memory and computation re-
sources. A possible future work would be to explore the best strategies to adapt dynamically k in
function of some communication conditions, to optimize the need for resources.

Acknowledgments

This work was partially supported by the French ANR project 16-CE25-0005 O’Browser.

20

References

[1] R. J. Lipton, J. S. Sandberg, PRAM: A scalable shared memory, Princeton University, Depart-
ment of Computer Science, 1988.

[2] H. Attiya, J. L. Welch, Sequential consistency versus linearizability, ACM Transactions on
Computer Systems (TOCS) 12 (2) (1994) 91–122.

[3] H. Attiya, A. Bar-Noy, D. Dolev, Sharing memory robustly in message-passing systems, J.
ACM 42 (1) (1995) 124–142.

[4] W. Vogels, Eventually consistent, Queue 6 (6) (2008) 14–19.

[5] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, P. W. Hutto, Causal memory: Definitions, imple-
mentation, and programming, Distributed Computing 9 (1) (1995) 37–49.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasub-
ramanian, P. Vosshall, W. Vogels, Dynamo: amazon’s highly available key-value store, in:
ACM SIGOPS Operating Systems Review, Vol. 41, ACM, 2007, pp. 205–220.

[7] M. Shapiro, N. Preguiça, C. Baquero, M. Zawirski, Conflict-free replicated data types, in:
Symposium on Self-Stabilizing Systems, Springer, 2011, pp. 386–400.

[8] M. Perrin, A. Mostefaoui, C. Jard, Update consistency for wait-free concurrent objects, in:
International Parallel and Distributed Processing Symposium, IEEE, 2015, pp. 219–228.

[9] M. Perrin, A. Mostefaoui, C. Jard, Causal consistency: Beyond memory, in: Proceedings of
the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’16), ACM, 2016, p. 26.

[10] M. Raynal, A. Schiper, S. Toueg, The causal ordering abstraction and a simple way to imple-
ment it, Information processing letters 39 (6) (1991) 343–350.

[11] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Communica-
tions of the ACM 21 (7) (1978) 558–565.

[12] B. Randell, P. Lee, P. C. Treleaven, Reliability issues in computing system design, ACM Com-
puting Surveys (CSUR) 10 (2) (1978) 123–165.

[13] R. Baldoni, J. Brzezinski, J.-M. Hélary, A. Mostefaoui, M. Raynal, Characterization of consis-
tent global checkpoints in large-scale distributed systems, in: Workshop on Future Trends of
Dist. Computing Systems, IEEE, 1995, pp. 314–323.

[14] S. Burckhardt, A. Gotsman, H. Yang, M. Zawirski, Replicated data types: specification, veri-
fication, optimality, in: ACM Sigplan Notices, Vol. 49, ACM, 2014, pp. 271–284.

[15] H. Attiya, F. Ellen, A. Morrison, Limitations of highly-available eventually-consistent data
stores, IEEE Trans. Parallel Distrib. Syst. 28 (1) (2017) 141–155.

[16] H. Attiya, S. Burckhardt, A. Gotsman, A. Morrison, H. Yang, M. Zawirski, Specification and
complexity of collaborative text editing, in: Symposium on Principles of Distributed Com-
puting, ACM, 2016, pp. 259–268.

21

	Introduction
	Update consistent universal constructions
	Sequential specifications
	Consistency

	Computing models
	Wait-free model
	Operational model

	A universal construction in the operational model
	Comparison of the computing models
	Complexity of update consistent l-countdown-append objects
	Lower bound in the operational model
	Upper bound in the wait-free model

	A practical solution
	Presentation of the universal construction
	Correctness
	The trade-off k

	Conclusion

