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Explicit Construction of First Integrals with Quasi-monomial Terms from the Painlevé Series

The Painlevé and weak Painlevé conjectures have been used widely to identify new integrable nonlinear dynamical systems. For a system which passes the Painlevé test, the calculation of the integrals relies on a variety of methods which are independent from Painlevé analysis. The present paper proposes an explicit algorithm to build first integrals of a dynamical system, expressed as 'quasi-polynomial' functions, from the information provided solely by the Painlevé -Laurent series solutions of a system of ODEs. Restrictions on the number and form of quasi-monomial terms appearing in a quasi-polynomial integral are obtained by an application of a theorem by Yoshida (1983). The integrals are obtained by a proper balancing of the coefficients in a quasi-polynomial function selected as initial ansatz for the integral, so that all dependence on powers of the time τ = t -t 0 is eliminated. Both right and left Painlevé series are useful in the method. Alternatively, the method can be used to show the non-existence of a quasi-polynomial first integral. Examples from specific dynamical systems are given.

Introduction

The present paper deals with autonomous dynamical systems described by ordinary differential equations of the form ẋi = F i (x 1 , x 2 , ..., x n ), i = 1, 2, ..., n.

where the functions F i are of the form

F i = N j=1 a ij x Q ij (2)
with x ≡ (x 1 , x 2 . . . x n ), Q ij ≡ (q ij1 , q ij2 , . . . , q ijn ), x Q ij ≡ n k=1 x q ijk k , and the exponents q ijk are assumed to be rational numbers, i.e., the r.h.s. of Eq.( 2) is a sum of quasimonomials [START_REF] Goriely | Investigation of Painlevé property under time singularities transformations[END_REF].

A question of particular interest concerns the existence of first integrals of the system of ordinary differential equations [START_REF] Abenda | On the connection between hyperelliptic separability and Painlevé integrability[END_REF]. A first integral is a function I(x i ) satisfying the equality dI/dt = ∇ x I • ẋ(t) = 0, where x(t) ≡ (x 1 (t), . . . , x n (t) is any possible solution of [START_REF] Abenda | On the connection between hyperelliptic separability and Painlevé integrability[END_REF]. First integrals are important because they allow one to constrain the orbits on manifolds of dimensionality lower than n. In particular, a system (1) is called completely integrable if it admits n -1 independent and single-valued first integrals. Integrable systems exhibit regular dynamics, while the lack of a sufficient number of first integrals very often results in complex, chaotic dynamics.

The question of the existence of an algorithmic method which can determine all the first integrals of [START_REF] Abenda | On the connection between hyperelliptic separability and Painlevé integrability[END_REF] is an important open problem in the theory of ordinary differential equations. Most relevant to this question are the methods of a) direct search or method of undetermined coefficients (e.g. [START_REF] Hietarinta | A search for integrable two-dimensional hamiltonian systems with polynomial potential[END_REF][START_REF] Hietarinta | Direct methods for the search of the second invariant[END_REF] b) normal forms and formal integrals (see [START_REF] Arnold | Encyclopedia of Dynamical Systems[END_REF][START_REF] Haller | Chaos near Resonance[END_REF]and Gorielly (2001) for a review), and c) Lie group symmetry methods (e.g. Lakshmanan and Senthil Velan (1992a,b), [START_REF] Marcelli | Lie point symmetries and first integrals: the Kowalevsky top[END_REF]).

Even more difficult is the question of an algorithmic method probing the integrability of Eqs. [START_REF] Abenda | On the connection between hyperelliptic separability and Painlevé integrability[END_REF]. The most relevant method here is singularity analysis. According to the 'Painlevé conjecture' [START_REF] Ablowitz | A connection between nonlinear evolution equations and ordinary differential equations of P-type[END_REF], a system possessing the Painlevé property should be integrable. The Painlevé property means that any global solution of (1) in the complex time plane should be free of movable critical points other than poles. According to the 'weak-Painlevé conjecture [START_REF] Ramani | Painlevé Conjecture Revisited[END_REF][START_REF] Grammaticos | Hamiltonians with high-order integrals and the "weak-Painlevé" concept[END_REF][START_REF] Abenda | On the connection between hyperelliptic separability and Painlevé integrability[END_REF]), however, certain types of movable branch points are compatible with integrability. Algorithms providing necessary conditions for a system to be Painlevé are a) the classical ARS test [START_REF] Ablowitz | A connection between nonlinear evolution equations and ordinary differential equations of P-type[END_REF]) b) the perturbative Painlevé -Fuchs test [START_REF] Fordy | Analysing negative resonances in the Painlevé test[END_REF] which examines the role of negative resonances, and c) the generalized Painlevé test of [START_REF] Goriely | Investigation of Painlevé property under time singularities transformations[END_REF] which introduces coordinate transformations clarifying the nature of the singularity structure in the complex time domain. On the other hand, there is no algorithm, to the present, determining sufficient conditions for a system to be Painlevé. The most important obstacle is the search for essential singularities, which are not detectable by any of the above Painlevé tests.

The present paper explores the following question: Is it possible to recover the first integrals of a system by the information provided solely by singularity analysis of its differential equations? Our answer is partially affirmative. We cannot circumvent the difficulty concerning the choice of initial ansatz for the functional form of the integral. The most natural choice for quasi-polynomial equations ( 2) is to consider also a quasi-polynomial ansatz for the integral, with undetermined quasi-monomial coefficients.

This freedom in the initial ansatz notwithstanding, we show in the present paper that singularity analysis gives indeed the remaining information needed to recover the integrals.

First, as proposed by [START_REF] Roekaerts | Painlevé analysis, Yoshida's theorems and direct methods in the search for integrable Hamiltonians[END_REF], a theorem by Yoshida (1983) on the relation between Kowalevski exponents and weights of weighted-homogeneous integrals, can be used to impose restrictions on the degree of the quasi-monomial terms in the integral by analysing the resonances found by the Painlevé method. Now, Yoshida's theorem for weighted-homogeneous integrals is applicable on two conditions: If b i τ -λ i is a balance of the system (τ = t -t 0 is the time around the singularity t 0 ), and I is a weighted homogeneous integral, the theorem holds if a) ∇I(b i ) is finite, and b) ∇I(b i ) = 0. These conditions shall be refered to as 'Yoshida's conditions'. The latter impose a severe restriction in the search for first integrals, because one cannot specify in advance whether these conditions are satisfied until the integrals are determined. In conclusion, the theorem of Yoshida has only indicative power as regards restrictions on the degree of quasimonomial terms in the integral. On the other hand, an analysis of the integrable Hamiltonian systems of two degrees of freedom with a polynomial potential given by Hiterinta (1983) shows that they all satisfy Yoshida's condition when the balance is taken equal to the 'principal' balance, in which all the b i are different from zero. Yet, the extent of applicability of this result to other types of systems is unknown. In fact, we were able to find also a counterexample concerning a Hamiltonian proposed by [START_REF] Holt | Construction of new integrable Hamiltonians in two degrees of freedom[END_REF].

Assuming a quasi-polynomial functional form of the integral, say Φ(x; c 1 , c 2 , ..., c M ),as above, with undetermined quasi-monomial coeficients c i , i = 1, . . . M , the question now is whether it is possible to determine the coefficients c i by the series derived via singularity analysis. The answer to this question is affirmative. Namely, by the usual Painlevé tests, the Painlevé-type series solutions around movable singularities are first identified

x i (τ ) = 1 τ λ i ∞ m=0 b m τ m , i = 1, . . . n (3) 
Then, the series ( 3) is substituted into the quasi-polynomial function Φ(x; c 1 , c 2 , ..., c M ). The resulting expression is a Puisseux series, i.e., a series in rational powers of τ

Φ(x 1 (τ ), . . . , x n (τ ); c 1 , c 2 , ..., c M ) = τ q/p ∞ m=0 d m (b i ; c i )τ m/p (4) 
with q, p, m integers. The coefficients d m (b i ; c i ) are nonlinear functions of the coefficients b i (determined by (3), i.e., by singularity analysis), and linear functions of the undetermined coefficients c i . But the function Φ is an integral of the system if it is constant along all the solutions of the system, including (3). As a result, the functions d m satisfy the set of linear equations

d m (b i ; c i ) = 0, i = 0, 1, . . . , i = -q (5) 
This is an infinite number of homogeneous linear equations with a finite number of unknowns (the coefficients c i ). If M is the number of unknown coefficients, Eq.( 5) can be written as

A(b i ) • C = 0 ( 6 
)
where C = (c 1 , . . . , c M ) T and A(b i ) is a matrix with M columns and an infinite number of lines. The entries of A depend only on the coefficients b i which were previously determined by singularity analysis. In this representation, the first integrals are functions with quasimonomial coefficients given by the basis vectors of ker(A) (or linear combinations of them).

In computer algebraic implementations of the method, we work on a sub-matrix A f defined by a finite number of lines, which is equal or larger than M . A basis for the subspace ker(A f ) is determined by the singular value decomposition algorithm. Then, it is checked with direct differentiation that the resulting expression is an integral. This completes the determination of all quasi-polynomial first integrals for the given system. This method was implemented in a number of examples presented below. Following some preliminary notions exposed in section 2, the results are presented in section 3, along with various details and implications in the implementation of the algorithm. Section 4 summarizes the main conclusions of the present study.

Preliminary notions

Following Yoshida (1983), a system of the form (1) is called scale-invariant if the equations remain invariant under the scale transformation x i → a λ i x i , t → a -1 t for some λ i . Then, the system (1) has exact special solutions of the form

x i = b i τ λ i (7) 
where b i , i = 1, . . . n is any of the sets of roots of the system of algebraic equations

F i (b 1 , b 2 , ..., b n ) + λ i b i = 0
and the time τ = t -t 0 is considered around any movable singularity t 0 in the complex time plane. Any solution of the form ( 7) is called a 'balance'. If the system (1) is scale-invariant and the functions F i are of the form (2), the exponents λ i associated with any of the balances are rational numbers. It should be stressed that the definition above does not require that all the b i be non-zero. Balances of the form x i ∼ 0/τ λ i , for some i, are also considered. The latter remark is essential in order to avoid the confusion which is sometimes made between 'balances' and 'dominant terms' in the ARS test (see e. The second step in the ARS algorithm is to look for series solutions that we call 'Painlevé series'. These are expansions of the form (3) starting with dominant terms of the form [START_REF] Goriely | Investigation of Painlevé property under time singularities transformations[END_REF]. They are Laurent (Taylor) series when the λ i 's are integers (positive integers), otherwise they can be series in rational powers of τ , which are called 'Puisseux series'. To build up the series, one first specifies the resonances, i.e. the values of r for which the coefficients of the terms τ r-λ i in the series are arbitrary. In the case when the coefficients of the balance b i are all non-zero, the resonances are equal to the eigenvalues of the Kowalevski matrix K ij = (∂F i /∂x j + δ ij λ i )| x i =b i which are called 'Kowalevski exponents'. If, however, some of the b i s are equal to zero, then the resonances are not equal one to one to the Kowalevski exponents, but some resonances differ from the corresponding Kowalevski exponents by a quantity equal to the difference between the exponent λ i in the balance and the exponent of the first non-zero dominant term in the Laurent-Puisseux series of x i (τ ), as specified in the first step of the ARS algorithm [START_REF] Ramani | Comment on 'Singular point analysis, resonances and Yoshida's theorem[END_REF].

At this point, we are not interested in whether the system passes the generalized Painlevé (or weak Painlevé) test. This means that we do not require that all the solutions of the system (1) can be written locally (around a movable singularity) in the form (3), or that there is at least one solution of the form (3) which contains n arbitrary constants (including t 0 ). On the other hand, we do check the compatibility conditions to ensure that no logarithms enter in the series. As regards positive resonances, compatibility is fulfilled automatically for scaleinvariant systems. In summary, we are interested only that the system have special solutions of the form (3), but no other claim on it being Painlevé or not is required. Thus, the results are valid also for partially integrable systems, i.e., systems with a number of first integrals smaller than n.

Let us now assume that (1) possesses a weighted -homogeneous first integral Φ of weight M , i.e. an integral function Φ which satisfies the relation:

Φ(a λ 1 x 1 , a λ 2 x 2 , ..., a λn x n ) = a M Φ(x 1 , x 2 , ..., x n ) (8)
for some M . Then we have the following Theorem 1 (Yoshida 1983): If, for a particular balance [START_REF] Goriely | Investigation of Painlevé property under time singularities transformations[END_REF] the following conditions hold: a)∇Φ(b i ) is finite, and b) ∇Φ(b i ) = 0, then M is equal to one of the Kowalevski exponents associated with that balance.

There has been a number of theorems in the literature linking Kowalevski exponents with the weights of homogeneous or quasi-homogeneous integrals of a system. Some characteristic papers on this subject are [START_REF] Llibre | Polynomial first integrals for quasi-homogeneous polynomial differential systems[END_REF], Tsygvinsev (2001), [START_REF] Goriely | Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations[END_REF] and [START_REF] Furta | On non-integrability of general systems of differential equations[END_REF]. However, the application of Yoshida's original theorem in the search for weighted-homogeneous integrals seems to be the most practical. Furthermore, Yoshida's theorem can be reformulated in an interesting way: consider the Painlené series starting with one of the balances [START_REF] Goriely | Investigation of Painlevé property under time singularities transformations[END_REF]. It follows that the series can be written as:

x i = x iE + R i = b i τ λ i + ... + A i τ r-λ i + R i ( 9 
)
where r is the maximum Kowalevski exponent associated with this balance and A i is the corresponding arbitrary coefficient entering in the Painlevé series (9) for the variable x i . The sum x iE = b i τ λ i + ... + A i τ r-λ i will be called essential part of the series and the remaining part R i remainder of the series. The remainder R i starts with terms of degree r -λ i + 1/p where p is the denominator of λ i written as a rational λ i = q/p with q, p coprime integers. A quasi-polynomial integral Φ has the form

Φ = c k1,k2,...,kn n i=1 x k i i ( 10 
)
where the exponents k i are rational numbers. If the integral Φ is weighted-homogeneous of weight M , we have

n i=1 k i λ i = M (11) 
due to [START_REF] Goriely | Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations[END_REF]. Taking into account the fact that the remainder R i starts with terms of degree O(τ r-λ i +1/p ), it follows that the contribution of R i in x k i i is in terms of degree O(τ -λ i k i +r+1/p ) or higher. This means that if the series ( 9) is substituted in the integral Φ(x i ), the contribution of R i in Φ(x i ) is of degree O(τ -λ i k i +r+1/p ) = O(τ -M +r+1/p ) or higher. But r ≥ M . Thus, the remainder R i contributes only to terms of positive degree in τ . On the other hand, since Φ is an integral, the time τ as a denominator must be eliminated in Φ(x i ). But since there are no negative powers of τ generated in Φ by R i , it follows that all the negative powers of τ are already eliminated by substituting the expression x iE alone into Φ. Hence, we have the following Proposition 2: If the conditions of Yoshida's theorem hold for a weighted-homogeneous integral of (1) and a particular balance [START_REF] Goriely | Investigation of Painlevé property under time singularities transformations[END_REF], then the expression Φ(x iE ), where x iE are the essential parts of Painlevé series x i (τ ) initiated with the same balance, does not contain singular terms in τ .

Consider next the case when the functions F i in (1) are not homogeneous. By the restrictions imposed by [START_REF] Ablowitz | A connection between nonlinear evolution equations and ordinary differential equations of P-type[END_REF], it follows that the functions F i can be decomposed in sums of the form

F i = F (m i0 ) i + F (m i0 +1/p) i + ... + F (m i0 +q/p) i (12)
where the functions F (j) i are homogeneous of degree j, with j, m i0 rational, p, q integer, and p is the denominator in the simplest fraction giving m i0 . In this case, if the system (1) has Painlevé type solutions, the dominant behaviors and associated resonances of these solutions are determined by the homogeneous term of the highest degree F (m i0 +q/p) i . On the other hand, the functions F (j) i , j < m i0 + q/p must have a special form to ensure that compatibility conditions are fulfilled and the series solution is of the Painlevé type. Finally, as regards potential first integrals, the assumption that they consist of a sum of quasi-monomial terms implies that they can also be written as sums of the form [START_REF] Hietarinta | A search for integrable two-dimensional hamiltonian systems with polynomial potential[END_REF]. The selection of terms in the quasi-polynomial integral can be determined by Yoshida's theorem (or proposition 2) implemented in the scale-invariant systems ẋi = F

(m i0 ) i (x i ) (13) 
and ẋi = F (m i0 +q/p) i

(x i ) (14) 
respectively (Nakagawa 2002).

3 Explicit construction of integrals with quasi-monomial terms

An elementary example

Consider the two-dimensional nonlinear system

ẋ1 = x 2 , ẋ2 = -x 1 -3x 2 1 ( 15 
)
The only first integral of this system

Φ = x 2 1 + x 2 2 + 2x 3 1 ( 16 
)
can be recovered by elementary means. However, we will use this example to illustrate the steps used by the present method. The corresponding homogeneous system containing the terms of maximum degree ẋ1

= x 2 , ẋ2 = -3x 2 1 ( 17 
)
has the unique balance x 1 = -2/τ 2 , x 2 = 4/τ 3 , with Kowalevski exponents (equal to resonances) -1 and 6. Combatibility conditions are fulfilled for the system [START_REF] Lakshmanan | Direct integration of generalized Lie or dynamical symmetries of three degrees of freedom nonlinear Hamiltonian systems: Integrability and separability[END_REF], which admits the Laurent series solution

x 1 (τ ) = -2 τ 2 - 1 6 - 1 120 τ 2 + a 4 τ 4 + O(τ 6 ) x 2 (τ ) = 4 τ 3 - 1 60 τ + 4a 4 τ 3 + O(τ 5 ) ( 18 
)
where a 4 is an arbitrary parameter. Following Yoshida's theorem, we shall look for an integral of the system (15) by requesting that this integral be a sum of weighted-homogeneous functions of weight not higher than M = 6. Since the equations ( 15) are polynomial, the integral will also be assumed polynomial. According to the definition of the weighted-homogeneous functions [START_REF] Goriely | Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations[END_REF], the undetermined integral contains terms of the form x q 1 1 x q 2 2 the exponents of which are restricted by the relation 2q 1 + 3q 2 ≤ 6. This leaves only six possibilities, namely (q 1 = 1, q 2 = 0), (q 1 = 0, q 2 = 1), (q 1 = 2, q 2 = 0), (q 1 = 1, q 2 = 1), (q 1 = 0, q 2 = 2), (q 1 = 3, q 2 = 0). Thus the integral is assumed to have the form

Φ = c 10 x 1 + c 01 x 2 + c 20 x 2 1 + c 11 x 1 x 2 + c 02 x 2 2 + c 30 x 3 1 ( 19 
)
Up to now, the steps are exactly as proposed by [START_REF] Roekaerts | Painlevé analysis, Yoshida's theorems and direct methods in the search for integrable Hamiltonians[END_REF]. At this point, however, we do not proceed by the 'direct method'; instead, the series ( 18) is substituted into (19). Then, terms of equal power in τ are separated and their respective coefficients are set equal to zero. We must determine at least as many equations as the number of unknown coefficients c ij , i.e., six equations. These are:

Order O(1/τ 6 ) : 16c 02 -8c 30 = 0

Order O(1/τ 5 ) :

- These equations can be written in matrix form:

8c
         0 0 0 0 16 -8 0 0 0 -8 0 0 0 0 4 0 0 -2 0 4 0 -2/3 0 0 -2 0 2/3 0 -2/15 -4/15 0 0 0 0 0 0                   c 10 c 01 c 20 c 11 c 02 c 30          =          0 0 0 0 0 0          (20) 
or simply

A f • C = 0 ( 21 
)
where C is a six-dimensional vector and A f is a 6 × 6 matrix with constant entries. The singular value decomposition of A f yields a one-dimensional null space:

ker(A f ) = λ(0, 0, 1, 0, 1, 2, 0) (22) 
The basis vector (0, 0, 1, 0, 1, 2) corresponds to the first integral Φ = x 2 1 + x 2 2 + 2x 3 1 . A few remarks are here in order: a) the last line of A f has only zero entries, since it corresponds to the identity 0 = 0 for the O(1/τ ) terms. This is not a problem, because lines with zero elements are allowed by the singular value decomposition algorithm which determines the subspace ker(A f ).

b) The entries of A f are constant numbers which depend only on the coefficients of the Laurent series [START_REF] Marcelli | Lie point symmetries and first integrals: the Kowalevsky top[END_REF]. This is the crucial remark; it implies that the information on the first integral is contained in the Painlevé series built by singularity analysis.

c) The arbitrary parameter a 4 in (18) does not appear in A f . This phenomenon is not generic. In general, all the arbitrary parameters of the Painlevé series appear in A f . In the computer implementation of the algorithm, we proceed by giving fixed values to the arbitrary parameters. Although the choice of values affects the convergence of the Painlevé series, it does not influence the present algorithm which is based only in the formal properties of the series.

Further examples

Of particular interest in nonlinear dynamics are autonomous Hamiltonian systems of two degrees of freedom of the form

H ≡ 1 2 (p 2 x + p 2 y ) + V (x, y) (23) 
where V (x, y) is of the form (2). The easiest examples are systems with a polynomial potential (e.g. [START_REF] Hietarinta | A search for integrable two-dimensional hamiltonian systems with polynomial potential[END_REF][START_REF] Hietarinta | Direct methods for the search of the second invariant[END_REF]. For example:

H ≡ 1 2 (p 2 x + p 2 y + x 2 + y 2 ) -x 2 y -2y 3 (24) 
This system passes the Painlevé test and it is integrable [START_REF] Bountis | Integrable Hamiltonian systems and the Painlevé property[END_REF]. Keeping only the highest order terms of the potential (-x 2 y -2y 3 ) yields the principal balance x = 6i/τ 2 , y = 3/τ 2 with resonances r = -3, -1, 6, 8, which are equal to the corresponding Kowalevski exponents. The Painlevé series generated by the Hamiltonian (24) and the above principal balance satisfies the compatibility conditions of the ARS test. Assuming now a polynomial first integral Φ of ( 24), only the monomial terms of weight less or equal to 8 will be included to it. Since the leading terms of the momenta are p x ∼ p y ∼ O(1/τ 3 ), the selected monomial terms are:

x 4 , x 3 y, x 2 y 2 , xy 3 , y 4 , p 2 x x, p x p y x, p 2 y x, p 2 x y, p x p y y, p 2 y y (weight 8) p x x 2 , p x xy, p x y 2 , p y x 2 , p y xy, p y y 2 , (weight 7)

x 3 , x 2 y, xy 2 , y 3 , p 2 x , p x p y , p 2 y , x 3 , x 2 y, xy 2 , y 3 (weight 6) p x x, p x y, p y x, p y y, (weight 5)

x 2 , xy, y 2 , p x , p y , x, y (weights 4,3,2)

It should be stressed that there are several other restrictions that reduce the number of eligible terms. For example, the integral Φ is either even or odd in the momenta [START_REF] Nakagawa | A list of all integrable two-dimensional homogeneous polynomial potentials with a polynomial integral of order at most four in the momenta[END_REF]). Furthermore, the linear terms can be omitted by appropriate transformations. However, in the practical implementation of the algorithm these restrictions only introduce a complication, because, if an integral Φ exists, the singular value decomposition algorithm selects the basis for the corresponding null space of the matrix A f without needing any extra information on restrictions which are specific for the system under study, e.g. hamiltonian or other.

Following the selection of monomial terms, the algorithm proceeds in building the homogeneous system (6) as well as the finite restriction A f of the matrix A. In this case, the dimension of A f should be M × 38, with M ≥ 38, since there are 38 unknown coefficients of the above monomial terms. At this point, it does not matter which balance and Laurentgenerated series are used to build the matrix A f . In the above example, the principal balance leads to a 'special solution', since there are only two positive resonances (r = 6, 8) meaning that there are three arbitrary parameters in total entering in the series. On the other hand, the general Laurent series solution with four arbitrary constants is given by a different balance, namely x = 0/τ 2 , y = 1/τ 2 so that x starts with dominant terms of O(1/τ ), i.e.

x(τ ) = A τ + a 1 τ + Bτ 2 + a 3 τ 3 + a 4 τ 4 a 5 τ 5 + O(τ 6 ) y(τ ) = 1 τ 2 + b 0 + b 2 τ 2 + b 3 τ 3 + Cτ 4 + O(τ 5 ) ( 25 
)
p x (τ ) = - A τ 2 + a 1 + 2Bτ + 3a 3 τ 2 + 4a 4 τ 3 5a 5 τ 4 + O(τ 5 ) y(τ ) = - 2 τ 3 + 2b 2 τ + 3b 3 τ 2 + 4Cτ 3 + O(τ 4 )
where A, B, C together with t 0 = t -τ are arbitrary, and [START_REF] Marcelli | Lie point symmetries and first integrals: the Kowalevsky top[END_REF]. In this solution, the resonances r = -1, 0, 3, 6 do not coincide one by one to the Kowalevski exponents (-1, 1, 4, 6) deduced by the Kowalevski matrix associated with the above balance. Nevertheless, the general solution [START_REF] Steeb | Singular point analysis, resonances and Yoshida's theorem[END_REF], as well as any other solution work equally well in determining the matrix A f . In our case, by performing the singular value decomposition of A f , the subspace ker(A f ) yields two independent integrals in involution, with coefficients (up to the computer precision)

b 0 = (1 -A 2 )/12, a 1 = A(1 -2b 0 )/2, b 2 = (b 0 -6b 2 0 -2Aa 1 )/10, a 3 = (2b 0 a 1 -a 1 +2Ab 2 )/4, b 3 = -AB/3, a 4 = (2Ab 3 -B-2Bb 0 )/10, a 5 = (2AC + 2a 1 b 2 + 2b 0 a 3 -a 3 )/
Φ 1 = 0.211944988455(y 2 + p 2 y -4y 3 ) + 0.049612730813(x 2 + p 2 x ) +0.216443010189(xp x p y -p 2 x y -x 2 y 2 - 1 4 x 4 ) (26) 
-0.207446966722x 2 y Φ 2 = 0.035960121414(y 2 + p 2 y -4y 3 ) + 0.342416478352(

x 2 + p 2 x ) -0.408608475918(xp x p y -p 2 x y -x 2 y 2 - 1 4 x 4 ) (27) 
-0.480528718746x 2 y in terms of which we can express the Hamiltonian

H = 2.1645645936295Φ 1 + 1.146586289822Φ 2 (28) 
and find a second integral orthogonal to the hamiltonian

I 2 = -2.1645645936295Φ 2 + 1.146586289822Φ 1 (29) 
The integral I 2 is a linear combination of the hamiltonian and of the integral I b given by Bountis et al. (1982)

I 2 = 0.1651752123636227(2H - 12 7 I b ) (30) 
Let us note that an alternative way to obtain the matrix A f is by considering only the essential parts of the Laurent series [START_REF] Steeb | Singular point analysis, resonances and Yoshida's theorem[END_REF], for as many different sets of values of the arbitrary parameters as requested in order to have a complete determination of the M × 38 elements of A f , with M ≥ 38. This approach is preferable in computer implementations of the algorithm, because one does not need to calculate the terms of the Laurent series (25) beyond the highest positive resonance. Furthermore, Proposition 2, instead of Yoshida's theorem, can be used to select the quasiminomial basis set.

A final remark concerns the applicability of Yoshida's condition ∇Φ(b i ) = 0. We checked whether this condition is satisfied in Hientarinta's table (1983) of integrable Hamiltonian systems of two degrees of freedom with a polynomial homogeneous potential. There are six non-trivial cases:

(a) V (x, y) = 2x 3 + xy 2 with integral Φ = yp x p y -xp 2 y + x 2 x 2 + 1 4 y 4 (b) V (x, y) = 16 3 x 3 + xy 2 with integral Φ = p 4 y + 4xy 2 p 2 y -4 3 y 3 p x p y -4 3 x 2 y 4 -2 9 y 6 (c) V (x, y) = 2x 3 + xy 2 + i √ 3 9 y 3 with integral Φ = p 4 y + 2 √ 3 ip x p 3 y + 2 √ 3 iy 3 p 2 x -(2y 3 + 2i √ 3xy 2 )p x p y + (4i √ 3x 2 y + 2i √ 3y 3 + 4xy 2 )p 2 y + 4 √ 3 ix 3 y 3 + 2 √ 3 ixy 5 -x 2 y 4 -5 9 y 6 (d) V (x, y) = 4 3 x 4 + x 2 y 2 + 1 12 y 4 with integral Φ = yp x p y -xp 2 y + ( 1 3 2x 3 + xy 2 )y 2 (e) V (x, y) = 4 3 x 4 + x 2 y 2 + 1 6 y 4
with integral Φ = p 4 y + 2 3 y 4 p 2 x -8 3 xy 3 p x p y + (4x 2 y 2 + 2 3 y 4 )p 2 y + 1 9 (y 8 + 4x 2 y6 + 4x 4 y 4 ) and

(f) V (x, y) = x 5 + x 3 y 2 + 3 16 xy 4
with integral Φ = yp x p y -xp 2 y + 1 2 x 4 y 2 + 3 8 x 2 y 4 + 1 32 y 6 . In all these cases, the principal balance, with all b i different from zero, satisfies Yoshida's condition. Note that case (f) the principal balance leads to 'weak-Painlevé' solutions, but the associated integral Φ is easily recoverable by the present algorithm. In fact, the role of Yoshida's condition is to exclude from Theorem 1 integrals which are composite functions of a simpler integral. For example, consider the integral I = Φ 2 , where Φ is the polynomial integral in any of the above six Hamiltonian systems. In all of them Φ is weighted-homogeneous for some weight M . Thus I is weighted-homogeneous of weight 2M . Substituting the special solution [START_REF] Goriely | Investigation of Painlevé property under time singularities transformations[END_REF] in the integral Φ yields Φ(b i /τ λ i ) = τ -M Φ(b i ). Since Φ is an integral, it should be time-independent, thus Φ(b i ) = 0. Similarily, I(b i ) = 0. However, while ∇Φ(b i ) = 0, we have ∇I = 2Φ∇Φ, thus ∇I(b i ) = 0. Thus, while Φ satisfies the Yoshida's condition, I does not. This ensures that while M is necessarily a Kowalevski exponent, the multiples of it, e.g. 2M are not necessarily Kowalevski exponents. Viewed under this context, it appears that the condition ∇Φ(b i ) = 0 makes a 'natural' choice of the simplest integral among an infinity of possible integrals which are composite functions of Φ.

However, there are interesting counterexamples which challenge this point of view. One example is the homogeneous limit of the [START_REF] Holt | Construction of new integrable Hamiltonians in two degrees of freedom[END_REF] Hamiltonian

H = 1 2 (p 2 x + p 2 y ) - 3 4 x 4/3 -y 2 x -2/3 (31) 
In this case, the potential is a homogeneous sum of quasi-monomials, of degree 4/3. The second integral reads: Φ = 2 ẏ3 + 3 ẏ ẋ2 -6 ẏy 2 x -2/3 + 9 ẏx 4/3 -18 ẋyx 1/3 (32

)
and it is weighted-homogeneous of degree M = -6. The principal balance is

x = 1 3 3/2 τ 3 , y = i 3 √ 2 τ 3 (33) 
with resonances (=Kowalevski exponents) r = -1, -2, -3, -4. This case is remarkable because a) all the resonances are negative, and b) they are not equal to the weight of the integral M = -6. Thus, Yoshida's theorem does not apply in the case of this balance. Substituting the balance b = ((1/3) 3/2 , 1/3 √ 2, 3(1/3) 3/2 , 1/ √ 2), i.e., Eq.( 33) in the gradient of the integral (32), ∇Φ(x, y, ẋ, ẏ) = (4 ẏy 2 x -5/3 + 12 ẏx 1/3 -6 ẋyx -2/3 , (34)

-12 ẏyx -2/3 -18 ẋx 1/3 , 6 ẋ ẏ -18yx 1/3 , 6 ẏ2 + 3 ẋ2 -6y 2 x -2/3 + 9x 4/3 )
yields ∇Φ(b) = 0. Thus none of the resonances has to be equal to the weight of the integral. However, the form of Φ or ∇Φ does not suggest that these functions are composite functions of some simpler integral. On the other hand, there is a second balance of the Hamiltonian (31), namely b = ((1/6) 3/2 , 0, 3(1/6) 3/2 , 0), which corresponds to the dominant behavior

x = 1 6 3/2 τ 3 , y = Aτ 4 (35) 
with A arbitrary. The resonances here are r = 0, -1, -4 and -7, but the Kowalevski exponents are r K = 1, -1, -4, -6 (two of them differ by one from the respective resonances). Now, the Kowalevski exponent r k = -6 is equal to the weight of the integral. If we look at ∇Φ, Eq.(34), we see that the components ∂Φ/∂y and ∂Φ/∂ ẏ contain terms independent of y and ẏ. Thus, for this particular balance ∇Φ(b) = 0, i.e., Yoshida's condition is satisfied. Thus, in the absence of a counterexample, we formulate the following Returning to the Holt Hamiltonian, the next step is the selection of quasi-monomial terms in the initial ansatz for a quasi-polynomial integral. Guided by the form of the Hamiltonian, natural exponents are adopted for the powers to which the momenta p x , p y , and of the variable y are raised, while the variable x is considered as raised to powers m/3, where m is integer (positive or negative). Even under these restrictions, there is an infinity of possible quasi-monomial terms of weight -6. For example, the terms p i x m/3 y (2-m)/3 , where p i is either p x or p y , are of weight -6 for all m ∈ Z. Thus an arbitrary lower limit has to be set to m. This is chosen as the lowest bound of m in the Hamiltonian, namely m = -2. Nevertheless, failure to find an integral with these restrictions on the quasi-monomial terms does not imply that an integral does not exist, because of the arbitrariness with respect to the lowest bound of negative exponents considered. This problem does not exist when there are only positive exponents present in the quasi-monomial terms of the equations of motion (or of the Hamiltonian).

With the above restrictions, the quasi-monomial terms considered are:

p 3 x , p 2 
x p y , p x p 2 y , p 3 y , p 2 x x 2/3 , p 2 x x -1/3 y p x p y x 2/3 , p x p y x -1/3 y, p 2 y x 2/3 , p 2 y x -1/3 y p x x 4/3 , p x x 1/3 y, p x x -2/3 y 2 , p y x 4/3 p y x 1/3 y, p y x -2/3 y 2 , x 2 , x y , y 2

The final step is to build the matrix A f as in the previous examples, i.e. by replacing the Painlevé series in the initial ansatz for the integral. An interesting point is that in the case of the Holt Hamiltonian (31) we have to consider left Painlevé series [START_REF] Pickering | Weak perturbative Painlevé analysis and descending series solutions[END_REF], i.e., series in descending powers of τ . This is because the balances ∼ τ 3 do not imply singular behavior as τ → 0. In this case, the limit |τ | → ∞ represents a singularity, but the left Painlevé series are convergent for all τ with |τ | > ǫ for some real positive ǫ. The series are constructed as:

x i (τ ) = τ λ ∞ k=0 b k τ -k (36) 
where λ > 0. Resonances and compatibilities are checked in the same way as in the usual Painlevé test. By this method, we were able to obtain the integral (32) by a proper balancing of the quasi-monomial coefficients c i so as to eliminate the coefficients of the terms of successive descending powers of τ in the integral expression. As a final remark, it should be stressed that the selection of a quasi-polynomial ansatz for the integrals of a system of the form (1), with the functions (2) being quasi-polynomial, is not exhaustive. This can be easily exemplified in a case with polynomial functions. The Bogoyavlensky -Volterra B-type systems are given in normalized coordinates u i by the following set of autonomous nonlinear ODEs: u1 = u 2 1 + u 1 u 2 ui = u i u i+1 -u i u i-1 , i = 2, ..., n -1 (37) un = -u n u n-1 the r.h.s. of Eqs.(37) are homogeneous functions of second degree in the variables u i . The system (37)) admits balances of the form of the form:

u i = a i τ (38) 
where τ = t -t 0 is the time near a singularity t 0 in the complex t-plane. In the case of the principal balance, the a i are non-zero solutions of the set of algebraic equations:

-a 1 = a 2 1 + a 1 a 2 -a i = a i a i+1 -a i a i-1 , i = 2, ..., n -1 (39)

-a n = -a n a n-1

and they are given by the recursion formulas 

a k+2 = a k -1, a 1 = (-1) n [ n + 1 2 ], a 2 = -1 -a 1 ( 
Assuming that the conditions for Yoshida's theorem hold, the weight of a weightedhomogeneous integral of (37) should be one of the resonances (42). Indeed, we find an integral by singularity analysis for any of the positive resonances given by equation (42). The integrals are given by the recurrent relations: = 0 for all m, n with n = 2, 3, . . . and m > n is adopted.

I (m)
For n = 3, the resonances are r = -3, -1, 2 and a polynomial integral is

I (2) 3 = c 2 = u 2 2 + u 2 3 + 2u 1 u 2 + 2u 2 u 3 (44) 
However, it is simple to see that this is not the only first integral of the system (37). Defining u = u 2 + u 3 , and using any constant value c of the integral (44), the equations of motion take the form u = 

  g. the discussion between[START_REF] Steeb | Singular point analysis, resonances and Yoshida's theorem[END_REF] and[START_REF] Ramani | Comment on 'Singular point analysis, resonances and Yoshida's theorem[END_REF]), and the associated difference between 'Kowalevski exponents' and 'resonances'. In the standard ARS algorithm[START_REF] Ablowitz | A connection between nonlinear evolution equations and ordinary differential equations of P-type[END_REF]) the solutions[START_REF] Goriely | Investigation of Painlevé property under time singularities transformations[END_REF] arise by the definition of the dominant behaviors, i.e., which is the first step in the implementation of the algorithm.
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Conjecture 3 :

 3 In any scale-invariant system of the form[START_REF] Abenda | On the connection between hyperelliptic separability and Painlevé integrability[END_REF][START_REF] Ablowitz | A connection between nonlinear evolution equations and ordinary differential equations of P-type[END_REF], which possesses a weightedhomogeneous first integral Φ, at least one of the balances b satisfies the condition ∇Φ(b) = 0.

  40) for k = 1, ..., n.The resonances of the principal balance (=Kowalevski exponents) are given by the characteristic equation, i.e., setting the determinant of the Kowalevski matrix equal to zero. The determinant has a tridiagonal form, i.e., solved easily yielding the resonances r k = (-1) k k, k = 1, ..., n

3 (

 3 u = -c coth( c(t -t 0 ) 2 ) (46)Using u instead of u 2 as a new independent variable yields the equation:u3 + uu 3 = u 2 47)

Which can be solved for u 3 yielding

where γ is an integration constant. By eliminating the time between the solutions (46) and (48), a new first integral of the original equations is found:

which is a transcendental function of the variables u j . This integral could not have been found by the initial polynomial ansatz.

Conclusions

In this paper we have explored the question of whether it is possible to recover the first integrals of systems of first-order nonlinear ordinary different equations involving quasipolynomial functions of the independent variables based on the information provided by singularity analysis. The main conclusions are: a) The theorem of Yoshida (1983) constrains the choice of an initial ansatz for an integral with undetermined parameters, leaving, however, an infinity of possible choices.

b) The condition of Yoshida's theorem (∇Φ(b i ) = 0 and finite) holds for all the integrable Hamiltonian systems of two degrees of freedom included in [START_REF] Hietarinta | A search for integrable two-dimensional hamiltonian systems with polynomial potential[END_REF] table, if b i is set equal to the principal balance b i = 0 for all i = 1, . . . 4. Other types of balances have to be considered in more general systems. c) Substitution of the Painlevé series in a quasi-polynomial function Φ(x; c), where c is the vector of undetermined parameters, allows to separate the terms in powers of the time and determine the parameters c by singular value decomposition. Thus the information on quasipolynomial integrals is contained in the Painlevé-type series solutions around any movable singularity.

d) In the case of balances τ λ with λ > 0, left Painlevé series must be used in the implementation of the algorithm.