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PROBING THE LOCAL DYNAMICS OF PERIODIC ORBITS BY THE GENERALIZED ALIGNMENT INDEX (GALI) METHOD
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As originally formulated, the Generalized Alignment Index (GALI) method of chaos detection has so far been applied to distinguish quasiperiodic from chaotic motion in conservative nonlinear dynamical systems. In this paper we extend its realm of applicability by using it to investigate the local dynamics of periodic orbits. We show theoretically and verify numerically that for stable periodic orbits the GALIs tend to zero following particular power laws for Hamiltonian flows, while they fluctuate around non-zero values for symplectic maps. By comparison, the GALIs of unstable periodic orbits tend exponentially to zero, both for flows and maps. We also apply the GALIs for investigating the dynamics in the neighborhood of periodic orbits, and show that for chaotic solutions influenced by the homoclinic tangle of unstable periodic orbits, the GALIs can exhibit a remarkable oscillatory behavior during which their amplitudes change by many orders of magnitude. Finally, we use the GALI method to elucidate further the connection between the dynamics of Hamiltonian flows and symplectic maps. In particular, we show that, using for the computation of GALIs the components of deviation vectors orthogonal to the direction of motion, the indices of stable periodic orbits behave for flows as they do for maps.

Introduction

The method of the Generalized Alignment Indices (GALIs) was originally introduced in [START_REF] Skokos | Geometrical properties of local dynamics in Hamiltonian systems: The Generalized Alignment Index (GALI) method[END_REF] as an efficient chaos detection method. To date, the GALI method has been successfully applied to a wide variety of conservative dynamical systems for the discrimination between regular and chaotic motion, as well as for the detection of regular motion on low dimensional tori [Antonopoulos & Bountis, 2006;[START_REF] Christodoulidi | Low-dimensional quasiperiodic motion in Hamiltonian systems[END_REF][START_REF] Skokos | Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi-Pasta-Ulam lattices by the Generalized Alignment Index method[END_REF]Manos et al., 2008a[START_REF] Manos | Global dynamics of coupled standard maps[END_REF][START_REF] Bountis | Application of the GALI method to localization dynamics in nonlinear systems[END_REF][START_REF] Skokos | Numerical integration of variational equations[END_REF][START_REF] Manos | Scaling with system size of the Lyapunov exponents for the Hamiltonian Mean Field model[END_REF][START_REF] Manos | Regular and chaotic orbits in barred galaxies -I. Applying the SALI/GALI method to explore their distribution in several models[END_REF][START_REF] Gerlach | Efficient integration of the variational equations of multidimensional Hamiltonian systems: Application to the Fermi-Pasta-Ulam lattice[END_REF].

In the present paper we extend and complete the study of the GALI method, focusing on its behavior for the special case of periodic orbits and their neighborhood in conservative dynamical systems. The detection of periodic orbits and the determination of their stability are fundamental approaches for the study of nonlinear dynamical systems, since they provide valuable information for the structure of their phase space. In particular, stable periodic orbits are associated with regular motion, since they are surrounded by tori of quasiperiodic motion, while in the vicinity of unstable periodic orbits chaotic motion occurs.

The GALI method is related to the evolution of several deviation vectors from the studied orbit, and therefore is influenced by the characteristics of the system's tangent space. The main goal of the paper is to determine the usefulness of the method for probing the local dynamics of periodic orbits with different stability types. We manage to achieve this goal by deriving theoretical predictions for the behavior of GALIs for stable and unstable periodic orbits. We also verify numerically the validity of these predictions, by studying the evolution of GALIs for periodic orbits of several Hamiltonian flows and symplectic maps, clarifying also the connections of such dynamical systems. In addition, we show how the properties of the index can be used to locate stable periodic orbits, and to understand the dynamics in the vicinity of unstable ones.

The paper is organized as follows: in the first two introductory sections we recall the definition of the GALI, describing also its behavior for regular and chaotic orbits (Sect. 2), and report the several stability types of periodic orbits in conservative systems (Sect. 3). In Sect. 4 we first study theoretically the behavior of the index for stable and unstable orbits, and then present applications of the GALI to particular orbits of Hamiltonian flows and symplectic maps. Sect. 5 is devoted to the dynamics in the neighborhood of periodic orbits, while Sect. 6 is dedicated to the relation between the GALIs of stable periodic orbits for flows and maps. Finally, in Sect. 7, we summarize our results.

The Generalized Alignment Index (GALI)

Let us briefly recall the definition of the GALIs and their behavior for regular and chaotic motion in conservative dynamical systems. Consider an autonomous Hamiltonian system of N degrees of freedom (N dof), described by the Hamiltonian H(q 1 , q 2 , . . . , q N , p 1 , p 2 , . . . , p N ), where q i and p i , i = 1, 2, . . . , N are the generalized coordinates and conjugate momenta respectively. An orbit in the 2N -dimensional phase space S of this system is defined by a vector x(t) = (q 1 (t), q 2 (t), . . . , q N (t), p 1 (t), p 2 (t), . . . , p N (t)), with x i = q i , x i+N = p i , i = 1, 2, . . . , N . The time evolution of this orbit is governed by Hamilton's equations of motion

d x dt = V( x) = ∂H ∂ p , - ∂H ∂ q , (1) 
while the time evolution of an initial deviation vector w(0) = (dx 1 (0), . . . , dx 2N (0)) from the x(t) solution of Eqs. (1), obeys the variational equations

d w dt = M( x(t)) • w , (2) 
where M = ∂ V/∂ x is the Jacobian matrix of V.

Let us also consider a discrete time t = n ∈ N conservative dynamical system defined by a 2Ndimensional (2N D) symplectic map F . The evolution of an orbit in the 2N -dimensional space S of the map is governed by the difference equation

x(n + 1) ≡ x n+1 = F ( x n ).
(3)

In this case, the evolution of a deviation vector w(n) ≡ w n , with respect to a reference orbit x n , is given by the corresponding tangent map

w(n + 1) ≡ w n+1 = ∂F ∂ x ( x n ) • w n . (4) 
For N dof Hamiltonian flows and 2N D maps the Generalized Alignment Index of order k (GALI k ), 2 ≤ k ≤ 2N , is determined through the evolution of k initially linearly independent deviation vectors w k (0). To avoid overflow problems, the resulting deviation vectors w k (t) are continually normalized, but their directions are kept intact. Then, according to [START_REF] Skokos | Geometrical properties of local dynamics in Hamiltonian systems: The Generalized Alignment Index (GALI) method[END_REF] GALI k is defined as the volume of the k-parallelogram having as edges the k unit deviation vectors ŵi (t) = w i (t)/ w i (t) , i = 1, 2, . . . , k, determined through the wedge product of these vectors as

GALI k (t) = ŵ1 (t) ∧ ŵ2 (t) ∧ • • • ∧ ŵk (t) , (5) 
with • denoting the usual norm. From this definition it is evident that if at least two of the deviation vectors become linearly dependent, the wedge product in Eq. ( 5) becomes zero and the GALI k vanishes.

In the 2N -dimensional phase space S of an N dof Hamiltonian flow or a 2N D map, regular orbits lie on s-dimensional tori, with 2 ≤ s ≤ N for Hamiltonian flows, and 1 ≤ s ≤ N for maps. For such orbits, all deviation vectors tend to fall on the s-dimensional tangent space of the torus on which the motion lies. Thus, if we start with k ≤ s general deviation vectors, these will remain linearly independent on the s-dimensional tangent space of the torus, since there is no particular reason for them to become linearly dependent. As a consequence GALI k remains practically constant and different from zero for k ≤ s. On the other hand, GALI k tends to zero for k > s, since some deviation vectors will eventually have to become linearly dependent. In particular, the generic behavior of GALI k for regular orbits lying on s-dimensional tori is given by [START_REF] Christodoulidi | Low-dimensional quasiperiodic motion in Hamiltonian systems[END_REF][START_REF] Skokos | Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi-Pasta-Ulam lattices by the Generalized Alignment Index method[END_REF] 

GALI k (t) ∝    constant if 2 ≤ k ≤ s 1 t k-s if s < k ≤ 2N -s 1 t 2(k-N) if 2N -s < k ≤ 2N . ( 6 
)
Note that these estimations are valid only when the conditions stated above are exactly satisfied. For example, in the case of 2D maps, where the only possible torus is an s = 1-dimensional invariant curve, the tangent space is 1-dimensional. Thus, the behavior of GALI 2 (which is the only possible index in this case) is given by the third branch of Eq. ( 6), i.e. GALI 2 ∝ 1/t 2 , since the first two cases of Eq. ( 6) are not applicable. From Eq. ( 6) we deduce that, for the usual case of regular orbits lying on an N -dimensional torus, the behavior of GALI k is given by

GALI k (t) ∝ constant if 2 ≤ k ≤ N 1 t 2(k-N) if N < k ≤ 2N . (7) 
On the other hand, for a chaotic orbit all deviation vectors tend to become linearly dependent, aligning themselves in the direction defined by the maximum Lyapunov characteristic exponent (mLCE) and hence, in that case, GALI k tends to zero exponentially following the law [START_REF] Skokos | Geometrical properties of local dynamics in Hamiltonian systems: The Generalized Alignment Index (GALI) method[END_REF] 

GALI k (t) ∝ e -[(σ 1 -σ 2 )+(σ 1 -σ 3 )+•••+(σ 1 -σ k )]t , (8) 
where σ 1 , . . . , σ k are the first k largest Lyapunov characteristic exponents (LCEs) of the orbit.

The GALI is a generalization of a similar indicator called the Smaller Alignment Index (SALI) [Skokos, 2001b;[START_REF] Skokos | How does the Smaller Alignment Index (SALI) distinguish order from chaos?[END_REF][START_REF] Skokos | Detecting order and chaos in Hamiltonian systems by the SALI method[END_REF], which has been used successfully for the detection of chaos in several dynamical systems [START_REF] Széll | Chaotic and stable behaviour in the Caledonian symmetric four-body problem[END_REF][START_REF] Panagopoulos | Existence and stability of localized oscillations in 1-dimensional lattices with soft spring and hard spring potentials[END_REF]Bountis & Skokos, 2006;[START_REF] Capuzzo-Dolcetta | Self-consistent models of cuspy triaxial galaxies with dark matter haloes[END_REF]Manos et al., 2008b;[START_REF] Macek | Classical and quantum properties of the semiregular arc inside the Casten triangle[END_REF][START_REF] Stránský | Quantum chaos in the nuclear collective model: Classicalquantum correspondence[END_REF][START_REF] Macek | Regularity-induced separation of intrinsic and collective dynamics[END_REF]. The generalization consists in the fact that the GALIs use information of more than two deviation vectors from the reference orbit, leading to a faster and clearer distinction between regular and chaotic motion compared with SALI. In practice, SALI is equivalent to GALI 2 since GALI 2 ∝ SALI (see Appendix B of [START_REF] Skokos | Geometrical properties of local dynamics in Hamiltonian systems: The Generalized Alignment Index (GALI) method[END_REF] for more details).

For the numerical computation of GALIs we consider the k × 2N matrix W(t) having as rows the coordinates w ij (t) of the unit deviation vectors ŵi (t), i = 1, 2, . . . , k, j = 1, 2, . . . , 2N , with respect to the usual orthonormal basis ê1 = (1, 0, 0, . . . , 0), ê2 = (0, 1, 0, . . . , 0),..., ê2N = (0, 0, 0, . . . , 1) of the 2Ndimensional phase space S. Thus, GALI k (t) can be evaluated as the square root of the sum of the squares of the determinants of all possible k × k submatrices of W [START_REF] Skokos | Geometrical properties of local dynamics in Hamiltonian systems: The Generalized Alignment Index (GALI) method[END_REF] 

GALI k =          1≤i 1 <i 2 <•••<i k ≤2N w 1i 1 w 1i 2 • • • w 1i k w 2i 1 w 2i 2 • • • w 2i k . . . . . . . . . w ki 1 w ki 2 • • • w ki k 2          1/2 . ( 9 
)
Here the sum is performed over all possible combinations of k indices out of 2N , |•| denotes the determinant, and the explicit dependence of all quantities on the time t is omitted for simplicity. Equation ( 9) is ideal for the theoretical determination of the asymptotic behavior of GALIs for chaotic and regular orbits. It has been used in [START_REF] Christodoulidi | Low-dimensional quasiperiodic motion in Hamiltonian systems[END_REF][START_REF] Skokos | Geometrical properties of local dynamics in Hamiltonian systems: The Generalized Alignment Index (GALI) method[END_REF][START_REF] Skokos | Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi-Pasta-Ulam lattices by the Generalized Alignment Index method[END_REF] for the derivation of Eqs. ( 6) and ( 8), and will be applied later on in Sect. 4.1 for the determination of GALIs' behavior for periodic orbits. However, from a practical point of view the application of Eq. ( 9) for the numerical evaluation of GALI k is not very efficient as it might require the computation of a large number of determinants. In [Antonopoulos & Bountis, 2006;[START_REF] Skokos | Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi-Pasta-Ulam lattices by the Generalized Alignment Index method[END_REF] a more efficient numerical technique for the computation of GALI k , which is based on the Singular Value Decomposition of matrix W(t) was presented. In particular, it has been shown that GALI k is equal to the product of the singular values

z i ≥ 0, i = 1, 2, . . . , k of W T (t) GALI k (t) = k i=1 z i (t), (10) 
where ( T ) denotes the transpose matrix.

Stability of Periodic Orbits

Now, consider a T -periodic orbit (i.e. an orbit satisfying x(t + T ) = x(t)) of an N dof Hamiltonian flow or of a 2N D symplectic map. Its linear stability is determined by the eigenvalues of the so-called monodromy matrix Y(T ), which is obtained from the solution of the variational equations for one period T (see for example [START_REF] Broucke | Periodic orbits in restricted three body problem[END_REF][START_REF] Lichtenberg | Regular and Chaotic Dynamics[END_REF], Sect. 3.3][Skokos, 2001a;[START_REF] Hadjidemetriou | Periodic orbits in gravitational systems[END_REF]][Cvitanović et al., 2009, Chapt. 4, 5]). The monodromy matrix is symplectic1 , and its columns correspond to linearly independent solutions of the equations that govern the evolution of deviation vectors. In particular, the evolution of an initial deviation w(0) from a T -periodic orbit is given by

w(iT ) = [Y(T )] i • w(0), i = 1, 2, . . . . (11) 
Due to the symplectic nature of the monodromy matrix and the fact that its elements are real, the eigenvalues of Y(T ) have the following property: if λ is an eigenvalue then 1/λ and the complex conjugate λ * are also eigenvalues. This property shows that the eigenvalues λ = 1 and λ = -1 come in pairs and that complex eigenvalues with modulus not equal to 1 always appear in quartets. When all eigenvalues are on the unit circle the corresponding periodic orbit is said to be stable. If there exist eigenvalues off the unit circle the periodic orbit is unstable.

A few remarks on the connection of Hamiltonian systems with symplectic maps are necessary at this point. Since autonomous Hamiltonian systems are conservative, the constancy of the Hamiltonian function introduces a constraint which fixes an eigenvalue of the monodromy matrix to be equal to 1 and so, by the symplectic property, there must be a second eigenvalue equal to 1. Thus, for an N dof Hamiltonian system there are only 2(N -1) a priori unknown eigenvalues, and so we can reduce our study to a 2(N -1)dimensional subspace of phase space S. This subspace is obtained by the well-known method of the Poincaré surface of section (PSS) (e.g. [START_REF] Lichtenberg | Regular and Chaotic Dynamics[END_REF], p. 17-20][Cvitanović et al., 2009, Sect. 3.1, 3.2]). The corresponding monodromy matrix of the periodic orbit is also symplectic. Thus, in this sense, an N dof Hamiltonian system is dynamically equivalent to 2(N -1)D symplectic map.

The different stability types of a periodic orbit in Hamiltonian systems of 2dof and 3dof (or equivalently in 2D and 4D maps) have been studied in detail in [START_REF] Broucke | Periodic orbits in restricted three body problem[END_REF][START_REF] Hadjidemetriou | The stability of periodic orbits in the three-body problem[END_REF][START_REF] Dullin | Stability of minimal periodic orbits[END_REF][START_REF] Hadjidemetriou | Periodic orbits in gravitational systems[END_REF], while the stability of periodic orbits in higher dimensional conservative systems was considered in [START_REF] Howard | Linear stability of symplectic maps[END_REF][START_REF] Howard | Linear stability of natural symplectic maps[END_REF]Skokos, 2001a]. Following the terminology introduced in [Skokos, 2001a], the general stability type of a periodic orbit of an N dof Hamiltonian system, or equivalently a 2(N -1)D map, is denoted by

S p U m ∆ l , with p + m + 2l = N -1, ( 12 
)
which means that p couples of eigenvalues are on the unit circle, m couples are on the real axis and l quartets are on the complex plane but off the unit circle and the real axis. We conclude that a periodic orbit is stable only when its stability type is S N -1 . In all other cases the orbit is unstable since there exist eigenvalues of the monodromy matrix off the unit circle. For example, in the case of a 3dof Hamiltonian system or a 4D map a periodic orbit can be linearly stable (S 2 ) or have three different types of instability: S 1 U 1 , U 2 , ∆ 1 (often called simple unstable, double unstable and complex unstable respectively, see e.g. [START_REF] Contopoulos | Simple three-dimensional periodic orbits in a galactic-type potential[END_REF]).

4. The Behavior of the GALI for Periodic Orbits

Theoretical treatment

Let λ i , i = 1, 2, . . . , 2N be the (possibly complex) eigenvalues of the monodromy matrix

Y(T ) of a T - periodic orbit, ordered as |λ 1 | ≥ |λ 2 | ≥ • • • ≥ |λ 2N |. Then, the corresponding LCEs σ i , i = 1, 2, . . . , 2N are
given by [START_REF] Benettin | Lyapunov characteristic exponents and stochasticity[END_REF]Benettin et al., 1979;[START_REF] Skokos | Geometrical properties of local dynamics in Hamiltonian systems: The Generalized Alignment Index (GALI) method[END_REF][START_REF] Skokos | The Lyapunov characteristic exponents and their computation[END_REF]]

σ i = 1 T ln |λ i |. (13) 
In the case of unstable periodic orbits, where at least |λ 1 | > 1, we get σ 1 > 0, which implies that nearby orbits diverge exponentially from the periodic trajectory. Unstable periodic orbits of non-integrable Hamiltonian systems and symplectic maps are located inside chaotic domains. All non-periodic chaotic orbits in these domains have the same spectrum of LCEs, which in general differs from the spectrum of LCEs of the unstable periodic orbits of these domains.

For determining the behavior of GALI k for unstable periodic orbits, one can apply the analysis presented in [START_REF] Skokos | Geometrical properties of local dynamics in Hamiltonian systems: The Generalized Alignment Index (GALI) method[END_REF] for chaotic orbits which also have σ 1 > 0. This approach leads to the conclusion that GALI k of unstable periodic orbits tends to zero exponentially following the law (8)

GALI k (t) ∝ e -[(σ 1 -σ 2 )+(σ 1 -σ 3 )+•••+(σ 1 -σ k )]t . ( 14 
)
However, the case of stable periodic orbits needs a more careful investigation. For this purpose let us consider an N dof Hamiltonian system expressed in action-angle variables J i , θ i , i = 1, 2, . . . , N . The equations of motion of a periodic orbit of this system are Ji = -

∂H ∂θ i = 0, θi = ∂H ∂J i = ω i (J 1 , J 2 , . . . , J N ), 1 ≤ i ≤ N. ( 15 
)
The frequencies ω i satisfy a relation of the form

ω 1 k 1 = ω 2 k 2 = . . . = ω N k N = Ω(J 1 , J 2 , . . . , J N ), (16) 
where k i , i = 1, 2, . . . , N , are integer numbers and Ω(J 1 , J 2 , . . . , J N ) = 2π/T with T being the period of the orbit. Equations ( 15) can be easily integrated to give

J i (t) = J i0 , θ i (t) = θ i0 + Ω(J 10 , J 20 , . . . , J N 0 )k i t, 1 ≤ i ≤ N, (17) 
where J i0 , θ i0 , i = 1, 2, . . . , N are the initial conditions.

Let us now denote by ξ i , η i , i = 1, 2, . . . , N , small deviations from J i and θ i respectively. Inserting Eqs. ( 15) and ( 16) into the variational equations of the Hamiltonian system we get

ξi = 0, ηi = k i N j=1 Ω j ξ j , 1 ≤ i ≤ N, (18) 
where Ω j = ∂Ω/∂J j are computed for the initial constant values J j0 , j = 1, 2, . . . , N . Using as basis of the 2N -dimensional tangent space of the Hamiltonian flow the 2N unit vectors {v 1 , v2 , . . . , v2N }, such that the first N of them correspond to the N action variables and the remaining ones to the N conjugate angle variables, any initial deviation vector w i (0) = (ξ i 1 (0), ξ i 2 (0), . . . , ξ i N (0), η i 1 (0), η i 2 (0), . . . , η i N (0)), evolves in time as

w i (t) = N j=1 ξ i j (0) vj + N j=1 η i j (0) + N l=1 Ω l ξ i l (0) k j t vN+j . ( 19 
)
From the above it readily follows that for sufficiently long times w i (t) ∝ t.

Let us now consider k, initially linearly independent, randomly chosen, unit deviation vectors { ŵ1 , . . . , ŵk }, with 2 ≤ k ≤ 2N , and let W be the matrix having as rows the coordinates of these vectors with respect to the {v 1 , v2 , . . . , v2N } basis. Defining by ξ k i and η k i , i = 1, 2, . . . , N , the k ×1 column matrices

ξ k i = ξ 1 i (0) ξ 2 i (0) . . . ξ k i (0) T , η k i = η 1 i (0) η 2 i (0) . . . η k i (0) T , (20) 
W(t) assumes the form

W(t) ∝ 1 t k • W k (t) = 1 t k ξ k 1 . . . ξ k N η k 1 + N l=1 Ω l ξ k l k 1 t . . . η k N + N l=1 Ω l ξ k l k N t , (21) 
where we have considered k i=1 w i (t) ∝ t k . Then, Eq. ( 9) can be used for the computation of GALI k . In order to determine the leading order behavior of GALI k as t grows, we look for the fastest increasing determinants of all k × k minors of matrix W k . For 2 ≤ k ≤ 2N -1, these determinants include only one column of W k containing the term N l=1 Ω l ξ k l and grow proportional to t, since determinants with more than one columns proportional to N l=1 Ω l ξ k l are identically zero. Thus, we conclude that GALI k (t) ∝ t -(k-1) for 2 ≤ k ≤ 2N -1. For k = 2N , W k is a square 2N ×2N matrix which has a constant determinant, since time appears only through multiplications with the N first columns of W k , and so GALI k (t) ∝ t -2N . Summarizing, the time evolution of GALI k for stable periodic orbits of N dof Hamiltonian systems is given by

GALI k ∝ 1 t k-1 if 2 ≤ k ≤ 2N -1 1 t 2N if k = 2N . ( 22 
)
It is worth mentioning that Eq. ( 22) can be retrieved from Eq. ( 6) by assuming motion on an s = 1dimensional torus, i.e. on an 1-dimensional curve, which is the stable periodic orbit. Note that for s = 1, only the last two branches of Eq. ( 6) are meaningful.

Stable periodic orbits of symplectic maps correspond to stable fixed points of the map, which are located inside islands of stability. Any deviation vector from the stable periodic orbit performs a rotation around the fixed point. This, for example, can be easily seen in the case of 2D maps where the islands in the vicinity of a stable fixed point can be represented through linearization, by ellipses (see for instance [START_REF] Lichtenberg | Regular and Chaotic Dynamics[END_REF], Sect. 3.3.b][Lega & Froeschlé, 2001]). Thus, any set of 2 ≤ k ≤ 2N initially linearly independent, unit deviation vectors will rotate around the fixed point, keeping on the average the angles between them constant. This means that the volume of the k-parallelogram having as edges these vectors will remain practically constant, exhibiting some fluctuations, since the rotation angles are constant only on average. So, in the case of stable periodic orbits of 2N D maps we have

GALI k ∝ constant, 2 ≤ k ≤ 2N.
(23)

Numerical results -Hamiltonian flows

To verify the validity of the theoretical predictions of Eqs. ( 14) and ( 22) we now compute the GALIs for some representative Hamiltonian systems of different number of degrees of freedom.

2dof Hénon-Heiles system

First we consider the well-known 2dof Hénon-Heiles model [START_REF] Hénon | The Applicability of the third integral of motion: some numerical experiments[END_REF]]

H 2 = 1 2 (p 2 x + p 2 y ) + 1 2 (x 2 + y 2 ) + x 2 y - 1 3 y 3 . ( 24 
)
In our study we keep the value of the Hamiltonian fixed at H 2 = 0.125. Fig. 1(a) shows the PSS of the system defined by x = 0, p x ≥ 0. We consider two stable periodic orbits (whose stability type is S 1 according to Eq. ( 12)): An orbit of period 5 (i.e. an orbit intersecting the PSS at the 5 points denoted by blue crosses in Fig. 1(a)) with initial condition (x, y, p x , p y ) ≈ (0.0, 0.35207, 0.36427, 0.14979), and an orbit of period 7 (red squares in Fig. 1(a)) with initial condition (x, y, p x , p y ) ≈ (0.0, 0.45882, 0.32229, 0.0). The time evolution of GALI k , k = 2, 3, 4 for these two orbits, for a random choice of initial orthonormal deviation vectors, is shown in Figs. 1(b) and (c) respectively. For both orbits the indices show a power law decay to zero, in accordance with the theoretical prediction of Eq. ( 22) for N = 2. In order to check the validity of Eq. ( 14), we consider an unstable periodic orbit (of U 1 type) of period 5 (green circles in Fig. 1(a)) with initial condition (x, y, p x , p y ) ≈ (0.0, 0.2083772012, 0.4453146996, 0.1196065752). The theoretically expected value of this orbit's mLCE σ 1 is estimated from Eq. ( 13) to be σ 1 ≈ 0.084, while σ 2 = 0 because the Hamiltonian function is an integral of motion.

In Fig. 1(d) the time evolution of the corresponding GALI k , k = 2, 3, 4 is plotted. From these results we conclude that the computed values of GALIs are well approximated by Eq. ( 14) for σ 1 = 0.084 and σ 2 = 0, at least up to t ≈ 350. After that time we observe a change in the exponential decay of GALI 2 . This happens because the numerically computed orbit deviates from the unstable periodic orbit, due to computational inaccuracies, and enters the surrounding chaotic domain, which is characterized by different LCEs. This behavior is also evident from the evolution of the finite time mLCE L 1 (t) (Fig. 1(e)) having as limit for t → ∞ the mLCE σ 1 of the computed orbit (for more details on the computation of the mLCE the reader is referred to [Skokos, 2010, Sect. 5]). For an initial time interval, L 1 (t) well approximates the mLCE of the unstable periodic orbit, but later on, due to the divergence of the computed orbit from the periodic trajectory, L 1 (t) tends to a different value, which is the mLCE of the chaotic domain around the unstable periodic orbit.

A 3dof Hamiltonian system

Let us now investigate the behavior of the GALIs for a 3dof Hamiltonian system, where different types of unstable periodic orbits can appear. In particular, we consider a system of three harmonic oscillators with nonlinear coupling, described by the Hamiltonian

H 3 = 1 2 (p 2 x + p 2 y + p 2 z ) + 1 2 (Ax 2 + By 2 + Cy 2 ) -εxz 2 -ηyz 2 . ( 25 
)
The harmonic frequencies of the oscillators are determined by parameters A, B, C, and the strengths of the nonlinear couplings by ε and η. This system was introduced as a crude description of the inner parts of distorted 3-dimensional elliptic galaxies. Detailed studies of its basic families of periodic orbits were performed in [START_REF] Contopoulos | Resonant systems with three degrees of freedom[END_REF][START_REF] Contopoulos | Simple three-dimensional periodic orbits in a galactic-type potential[END_REF]Contopoulos, 1986a,b]. Following these works, we fix A = 0.9, B = 0.4, C = 0.225 and H 3 = 0.00765 and vary ε and η in order to study periodic orbits of different stability types. In Fig. 2(a) we plot the time evolution of GALIs for a stable (S 2 ) periodic orbit with initial condition (x, y, z, p x , p y , p z ) ≈ (-0.06686, 0.01230, 0, 0, 0, 0.10590) for ε = 0.2 and η = 0.1. The 3dof system has a 6-dimensional phase space and so, 5 different GALI k , with 2 ≤ k ≤ 6, are defined. All GALIs decay to zero following the power law predictions given by Eq. ( 22) for N = 3.

Let us now study representative cases of all the different types of unstable periodic orbits that can appear in a general 3dof system. In particular, we consider an S 1 U 1 periodic orbit with initial condition (x, y, z, p x , p y , p z ) ≈ (-0.0238841214, 0744533850, 0, 0, 0, 0.1121127613) for ε = 0.848, η = 0.1 (Fig. 2(b)), an U 2 periodic orbit with initial condition (x, y, z, p x , p y , p z ) ≈ (-0.0392937629, 0.0648373644, 0, -0.0564496390, 0.0021636015, 0.0950663122) for ε = 0.35, η = 0.51 (Fig. 2(c)), and a ∆ 1 periodic orbit with initial condition (x, y, z, p x , p y , p z ) ≈ (-0.0456720106, 0.0658047594, 0, 0, 0, 0.1081228661) for ε = 0.6 and η = 0.3 (Figs. 2(d) and(e)).

Using Eq. ( 13) we estimated the LCEs to be σ 1 ≈ 0.046, σ 2 = 0 and σ 1 ≈ 0.014, σ 2 ≈ 0.0019 for the S 1 U 1 and the U 2 unstable periodic orbits respectively. Using these values as good approximations of the actual LCEs, we see in Figs. 2(b) and (c) that the evolution of GALIs is well reproduced by Eq. ( 14).

An eigenvalue of the monodromy matrix of the ∆ 1 unstable periodic orbit is numerically found to be λ 1 ≈ 1.410 + 0.164i, while the remaining three of them (apart from the two unit ones) are 1/λ 1 , λ * 1 and 1/λ * 1 . Then, from Eq. ( 13) we estimated the three largest LCEs of the periodic orbit to be σ 1 = σ 2 ≈ 0.023, σ 3 = 0. The evolution of the GALIs for this orbit is shown in Fig. 2(d). Although the periodic orbit is unstable, GALI 2 does not decay to zero but remains constant until t ≈ 10 3 . This happens because, according to Eq. ( 14) GALI 2 ∝ e -(σ 1 -σ 2 )t , but in this case σ 1 = σ 2 . However, due to unavoidable inaccuracies in the numerical integration, the computed orbit eventually diverges from the unstable periodic one and enters a chaotic domain characterized by different LCEs with σ 1 = σ 2 . This divergence is also evident from the evolution of quantities L 1 (t), L 2 (t) in Fig. 2(e), whose limits at t → ∞ are σ 1 and σ 2 respectively (see [START_REF] Skokos | The Lyapunov characteristic exponents and their computation[END_REF] for more details on the computation of σ 1 and σ 2 ). In particular, we get L 1 (t) ≈ L 2 (t) for c). (e) The time evolution of quantities L 1 (t), L 2 (t) having respectively, as limit the two largest LCEs σ 1 , σ 2 of the ∆ 1 unstable periodic orbit. The theoretically estimated value σ 1 = σ 2 = 0.023 is denoted by a horizontal line.

t 10 3 , while later on the two quantities attain different values. Consequently, for t 10 3 GALI 2 starts to decay exponentially to zero. On the other hand, all other GALIs in Fig. 2(d) show an exponential decay, even when GALI 2 remains constant, since the corresponding exponents in Eq. ( 14) do not vanish.

A multi-dimensional Hamiltonian system

Finally, we turn to a multi-dimensional Hamiltonian system representing a 1-dimensional chain of 5 identical particles with nearest neighbor interactions given by the FPU-β Hamiltonian [START_REF] Fermi | Studies of nonlinear problems[END_REF]]

H 5 = 1 2 5 j=1 p 2 j + 5 j=0 1 2 (x j+1 -x j ) 2 + 1 4 β(x j+1 -x j ) 4 , ( 26 
)
where x j is the displacement of the jth particle from its equilibrium position and p j is the corresponding conjugate momentum. In our study, we set β = 1.04 and impose fixed boundary conditions to the system, so that we always have x 0 = x 6 = 0. Let us consider two particular members of a family of periodic orbits studied in [START_REF] Ooyama | Computer studies on the approach to thermal equilibrium in coupled anharmonic oscillators. II. One dimensional Case[END_REF]Antonopoulos et al., 2006] which have initial conditions of the form x 1 (0) = -x 3 (0) = x 5 (0) = x(0), x 2 (0) = x 4 (0) = 0, p j (0) = 0, 1 ≤ j ≤ 5. We compute the GALIs of an S 5 stable periodic orbit (Figs. 3(a) and (b)) with initial condition x(0) ≈ 1.035 for H 5 = 5 and an S 4 U 1 unstable periodic orbit (Fig. 3(c)) with initial condition x(0) ≈ 1.168 for H 5 = 7. From Fig. 3 we see again that the behavior of the GALIs is well reproduced by Eq. ( 22) for N = 5 in the case of the stable orbit, and by Eq. ( 14) for σ 1 = 0.088, σ i = 0, 2 ≤ i ≤ 5, which are the values obtained by Eq. ( 13) for the unstable orbit. 26). (c) The time evolution of GALI 2 , GALI 3 , GALI 5 for an S 4 U 1 unstable periodic orbit of the same model. Plotted lines correspond to appropriate power laws ( 22) in (a) and (b), and exponential laws ( 14) in (c).

Numerical results -Symplectic maps

According to the theoretical arguments of Sect. 4.1, the GALIs of unstable periodic orbits of maps should exhibit the same behavior as in the case of Hamiltonian flows, i.e. they should tend exponentially to zero following Eq. ( 14). On the other hand, we have argued that the GALIs of stable periodic orbits should remain constant, according to Eq. ( 23), having a different behavior with respect to Hamiltonian systems. To verify these predictions, we now proceed to study some periodic orbits in a 2D and a 4D symplectic map.

2D Hénon map

First we consider the 2D Hénon map [START_REF] Hénon | Numerical study of quadratic area-preserving mappings[END_REF] x ′ = x cos(2πω) + (y + x 2 ) sin(2πω)

y ′ = -x sin(2πω) + (y + x 2 ) cos(2πω), ( 27 
)
where ω is a real positive constant. The phase space of this map for ω = 0.201 is plotted in Fig. 4(a). We consider two periodic orbits of period 5 (i.e. after 5 iterations of the map the orbit returns to its initial point): an S 1 stable orbit (blue stars in Fig. 4(a)) with initial condition (x, y) ≈ (0.14175, -0.10366), and an U 1 unstable one (red crosses in Fig. 4(a)) with initial condition (x, y) ≈ (0.0622148475, 0.1477550294). Fig. 4(b) shows that the GALI 2 of the stable periodic orbit oscillates around a constant positive value, in accordance to Eq. ( 23). We have also verified that the GALI 2 of the unstable periodic orbit decays exponentially to zero following Eq. ( 14) with σ 1 = 0.0039. 

4D standard map

Let us now consider the 4D symplectic map [START_REF] Kantz | Internal Arnold diffusion and chaos thresholds in coupled symplectic maps[END_REF] x

′ 1 = x 1 + x ′ 2 x ′ 2 = x 2 + K 1 2π sin(2πx 1 ) -β 2π sin[2π(x 3 -x 1 )] x ′ 3 = x 3 + x ′ 4 x ′ 4 = x 4 + K 2 2π sin(2πx 3 ) -β 2π sin[2π(x 1 -x 3 )] (mod 1), (28) 
which consists of two coupled standard maps, with real parameters K 1 , K 2 and β.

In Fig. 5 we plot the evolution of GALIs for an S 2 stable periodic orbit of period 7 with initial condition (x 1 , x 2 , x 3 , x 4 ) ≈ (0.23666, 0, 0.23666, 0) for K 1 = K 2 = 0.9 and β = 0.05. Like in the case of the 2D map (27), GALI 2 , GALI 3 and GALI 4 remain constant, oscillating around non-zero values, in accordance to Eq. ( 23). Fig. 5. The time evolution of GALI 2 (red curve), GALI 3 (green curve) and GALI 4 (blue curve) for a stable periodic orbit of period 7 of the 4D map (28).

Dynamics in the Neighborhood of Periodic Orbits

We now turn our attention to the dynamics in the vicinity of periodic orbits, studying initially the neighborhood of stable periodic orbits in Hamiltonian systems. As a first example we consider the 2dof Hénon-Heiles system (24), and in particular the stable periodic orbit of period 5 studied in Sect. 4.2.1. In Fig. 1(b) we have seen that GALI 2 ∝ t -1 , GALI 3 ∝ t -2 and GALI 4 ∝ t -4 in accordance to Eq. ( 22). We expect that small perturbations of this trajectory will lead to regular motion on 2-dimensional tori surrounding the periodic orbit. For this kind of motion, Eq. ( 7) predicts GALI 2 ∝ constant, GALI 3 ∝ t -2 and GALI 4 ∝ t -4 . Thus, only for GALI 2 a different evolution between the periodic orbit and its neighborhood is expected. This is actually true, as we see in Fig. 6(a) where the time evolution of GALI k , k = 2, 3, 4 is plotted for the stable periodic orbit (red curves) and two nearby orbits whose initial conditions result from a ∆y = 0.00793 (green curves) and ∆y = 0.02793 (blue curves) perturbation. The GALI 2 of neighboring orbits initially follows a GALI 2 ∝ t -1 evolution, similar to the periodic orbit, but later on stabilizes to a non-zero value as Eq. ( 7) predicts. From Fig. 6(a) we see that the closer the orbit is to the periodic trajectory the longer the initial phase of GALI 2 ∝ t -1 lasts, and the smaller is the final non-zero value to which the index tends.

Let us now perform a more global study of the dynamics of the Hénon-Heiles system. First, we consider orbits whose initial conditions lie on the p y = 0 line of the PSS of Fig. 1(a). In particular, we use 7000 equally spaced initial conditions on this line and compute their GALI 2 values, using for each of them the same set of initial (random and orthonormal) deviation vectors. In Fig. 6(b) we plot the GALI 2 values at t = 10 5 as a function of y. The regions where GALI 2 has large values ( 10 -1 ) correspond to regular motion on 2-dimensional tori. Regions where GALI 2 has very small values ( 10 -12 ) correspond to chaotic or unstable periodic orbits, while domains with intermediate values (10 -4 GALI 2 10 -12 ), correspond to sticky, chaotic orbits. We also distinguish narrow regions where GALI 2 decreases abruptly to values 10 -1 GALI 2 10 -4 . These correspond to domains of regular motion around the main stable periodic orbits of the system, as e.g. in the vicinity of y ≈ 0.3 which corresponds to the stable periodic orbit in the center of the main island of stability in the PSS of Fig. 1 (a). This behavior appears because GALI 2 at stable periodic orbits decays following a t -1 power law and reaches values smaller than the ones obtained for the neighboring regular orbits, where GALI 2 tends to constant non-zero values, as we have seen in Fig. 6(a).

This information can be directly used to identify the location of stable periodic orbits. In Fig. 6(c) we show a color plot of the parametric space (H 2 , p y ) of the . Each point corresponds to an initial condition and is colored according to its log(GALI 2 ) value computed at t = 10 4 . Chaotic orbits are characterized by very small GALI 2 values and are located in the purple colored domains. The deep orange colored "strip" corresponds to the vicinity of a family of stable periodic orbits (this family is denoted by a white curve) for which GALI 2 attains smaller (but not too small) values with respect to the surrounding light orange colored region, where regular motion on 2-dimensional tori takes place. We note that, as H 2 increases, the periodic orbit changes its stability and becomes unstable for H 2 0.146. The point H 2 = 0.125, p y = 0.14979, denoted by a black filled circle in Fig. 6(c), corresponds to the stable periodic orbit of Fig. 1(b).

The GALIs of chaotic orbits in the vicinity of unstable periodic orbits can exhibit a remarkable oscillatory behavior. Such an example is shown in Fig. 7 for a chaotic orbit of the 2D map ( 27) with initial condition (x, y) = (0.06221484498946357, 0.14775502681732178) (point denoted by '0' in Fig. 7 (b)), which is located very close to the unstable periodic orbit of period 5 discussed in Sect. 4.3.1 (point A in Fig. 4(a) and Fig. 7 (b)). In Fig. 7(a) we see that the GALI 2 of this orbit decreases exponentially, reaching very small values (GALI 2 ≈ 10 -12 ), since the two initially orthonormal deviation vectors tend to align (Fig. 7(b)) due to the chaotic nature of the orbit.

The evolution of these vectors is strongly influenced by the stable and unstable manifolds of the nearby unstable periodic orbit. In particular, as the chaotic orbit moves away from point A along a direction parallel to the unstable manifold (green curve in Fig. 7(b)), both deviation vectors are stretched in this direction, and shrunk in the direction of the stable manifold (blue curve in Fig. 7(b)). So, after a few hundreds of iterations, while the orbit remains in the proximity of point A (note the tiny intervals in both axes of Fig. 7(b)), the evolved unit deviation vectors become almost identical, and consequently GALI 2 decreases significantly.

Nevertheless, the angle between the two vectors does not vanish, and starts to grow again when the orbit approaches point B of Fig. 7(c), which is the next consequent of the unstable periodic orbit (see also Fig. 4(a)). The chaotic orbit approaches point B moving parallel to the stable manifold of point B (blue curve in Fig. 7(c)). Now the deviation vectors start to shrink along this manifold, while they expand along the direction of the unstable manifold of point B (green curve in Fig. 7(c)). This leads to a significant increase of the angle between the two unit vectors, as we see in Fig. 7(c), and consequently to an increase of the GALI 2 values (Fig. 7(a)). This oscillatory behavior is repeated as the chaotic orbit visits all consequents of the unstable periodic orbit, and is clearly seen in Fig. 7(a) where the y coordinate of the chaotic orbit is plotted in arbitrary units (blue curve) together with the GALI 2 values. The horizontal segments of this curve correspond to the time intervals that the orbit spends close to the fixed points of the unstable periodic orbit. During the first part of these intervals the chaotic orbit approaches a fixed point, the two deviation vectors become different and GALI 2 increases, while afterwards, the chaotic orbit moves away from the fixed point, whence the two deviation vectors tend to align, and GALI 2 decreases. GALI 2 reaches its lowest values during the short transition intervals between the neighborhoods of two successive points of the unstable periodic orbit, which correspond to the short connecting segments between the plateaus of the blue curve in Fig. 7(a). These oscillations of GALI 2 can last for quite long time intervals, but eventually the chaotic orbit will escape from the strong influence of the homoclinic tangle of the unstable periodic orbit and GALI 2 will rapidly tend to zero. It is worth mentioning that abrupt changes in the values of SALI (which practically is GALI 2 ) by many orders of magnitude was also reported in [START_REF] Voyatzis | Chaos, Order, and Periodic Orbits in 3:1 Resonant Planetary Dynamics[END_REF] for chaotic orbits of planetary systems.

Up to now, we have described in detail these oscillations of GALI 2 in the case of the 2D map (27) because they can be easily explained, while the deviation vectors themselves can be visualized in the 2dimensional phase space of the map. Interestingly, this remarkable behavior occurs in higher dimensional systems as well. In Fig. 8 we show two such examples. In particular, we consider a chaotic orbit of the 2dof Hamiltonian system (24), whose initial condition is located close to an unstable periodic orbit of period 7 with initial condition (x, y, p x , p y ) ≈ (0, 0.1282112414, 0.4847338571, 0) (Fig. 8(a)), and an orbit of the 3dof system (25) whose initial condition is near the S 1 U 1 periodic orbit presented in Sect. 4.2.2 (Fig. 8(b)). In both panels of Fig. 8 we observe an oscillatory behavior of GALI 2 , similar to the one shown in Fig. 7(a). We also point out that in both cases all other GALIs show similar oscillatory behaviors.

Connection Between the Dynamics of Flows and Maps

In Sect. 3 we discussed the dynamical equivalence between N dof Hamiltonian systems and 2(N -1)D maps, as the latter can be interpreted as appropriate PSSs of the former. We have also seen that GALIs behave differently for flows and maps. In particular, as was shown in Sect. 4, they remain constant for stable periodic orbits of maps (see Eq. ( 23)) and decrease to zero for flows, according to Eq. ( 22). The fact that maps can be considered as PSS of flows, however, is the key to understanding this difference. So, computing the restriction of the GALIs on the PSS of a Hamiltonian system, or more generally on spaces perpendicular to the flow, should lead to behaviors of the indices similar to the ones obtained for maps. Actually this approach has already been successfully applied to other chaos indicators related to the evolution of deviation vectors [START_REF] Fouchard | On the relationship between the fast Lyapunov indicator and periodic orbits for continuous flows[END_REF][START_REF] Barrio | Sensitivity tools vs. Poincaré sections[END_REF], by only considering the components of these vectors which are orthogonal to the flow.

Using deviation vectors orthogonal to the flow, we indeed obtain the same GALI behavior for stable periodic orbits of flows and maps. Now, for stable periodic orbits of flows the GALIs of these vectors remain constant, as we see from Figs. 

Summary

In this paper, we have explored in more detail the properties of the GALI method by using it to study the local dynamics of periodic solutions of conservative dynamical systems. To this end, we have: a) theoretically predicted and numerically verified the behavior of the method for periodic orbits, b) summarized the expected behaviors of the indices and c) clarified the connection between the behavior of GALIs for dynamical systems of continuous (Hamiltonian flows) and discrete (symplectic maps) time.

More specifically, we showed that for stable periodic orbits, GALIs tend to zero following particular power laws for Hamiltonian flows (Eq. ( 22)), while they fluctuate around non-zero values for symplectic maps (Eq. ( 23)). In addition, the GALIs of unstable periodic orbits tend exponentially to zero, both for flows and maps (Eq. ( 8)).

Finally, we examined the usefulness of the indices in helping us better understand the dynamics in the vicinity of periodic solutions of such systems. We explained how, the fact that GALIs attain larger values near stable periodic orbits than on the periodic orbits themselves, can be used to identify the location of these orbits. We also observed a remarkable oscillatory behavior of the GALIs associated with the dynamics close to unstable periodic orbits and explained it in terms of the stable and unstable manifolds of the periodic orbit, showing how the influence of these manifolds can lead to large variations of the GALI values by many orders of magnitude.

Fig. 1 .

 1 Fig. 1. (a) The PSS of the 2dof Hénon-Heiles system (24) with H 2 = 0.125. The intersection points of stable periodic orbits of period 5 (blue crosses) and 7 (red squares), as well as an unstable orbit of period 5 (green circles) are also plotted. The line py = 0, denoting a set of initial conditions discussed in Sect. 5, is also plotted. The time evolution of GALI 2 (red curves), GALI 3 (green curves) and GALI 4 (blue curves) for these three orbits is shown in panels (b), (c) and (d) respectively. Both axes of (b) and (c), and the vertical axis of (d) are logarithmic. (e) The time evolution of the quantity L 1 (t), which has as limit for t → ∞ the mLCE σ 1 of the unstable periodic orbit (horizontal dotted line). Plotted lines correspond to functions proportional to t -1 , t -2 and t -4 in (b) and (c), and the exponential laws (14) for σ 1 = 0.084, σ 2 = 0 in (d).

Fig. 2 .

 2 Fig. 2. The time evolution of GALI k , 2 ≤ k ≤ 6 for an (a) S 2 stable, (b) S 1 U 1 unstable, (c) U 2 unstable and (d) ∆ 1 unstable periodic orbit of the 3dof Hamiltonian system (25). Both axes of (a) and (d), and the vertical axis of (b) and (c) are logarithmic. Plotted lines correspond to appropriate power laws (22) in (a), and exponential laws (14) in (b) and (c). (e) The time evolution of quantities L 1 (t), L 2 (t) having respectively, as limit the two largest LCEs σ 1 , σ 2 of the ∆ 1 unstable periodic orbit. The theoretically estimated value σ 1 = σ 2 = 0.023 is denoted by a horizontal line.

Fig. 3 .

 3 Fig. 3. The time evolution of (a) GALI 2 , GALI 3 , GALI 5 and (b) GALI 6 , GALI 8 , GALI 10 for a stable periodic orbit of the 5dof Hamiltonian system (26). (c) The time evolution of GALI 2 , GALI 3 , GALI 5 for an S 4 U 1 unstable periodic orbit of the same model. Plotted lines correspond to appropriate power laws (22) in (a) and (b), and exponential laws (14) in (c).

Fig. 4 .

 4 Fig. 4. (a) The phase space of the 2D Hénon map (27) for ω = 0.201. The points of two periodic orbits of period 5, a stable (blue stars) and an unstable one (red crosses), are also plotted. The time evolution of GALI 2 of the stable orbit is plotted in (b). Two particular points of the unstable periodic orbit discussed in Sect. 5 are marked by letters A and B.

Fig. 6 .

 6 Fig. 6. (a) The time evolution of GALI 2 , GALI 3 and GALI 4 for three orbits of the Hénon-Heiles system (24): the stable periodic orbit of period 5 studied in Sect. 4.2.1 (red curves) and two nearby orbits whose initial conditions result from a ∆y = 0.00793 (green curves) and ∆y = 0.02793 (blue curves) perturbations of the periodic orbit. Note that curves of GALI 3 and GALI 4 overlap each other. (b) The GALI 2 values at t = 10 5 for orbits with initial conditions on the py = 0 line of the PSS of Fig. 1(a), as a function of the y coordinate of the initial condition. (c) Regions of different GALI 2 values on the (H 2 , py) plane of the Hénon-Heiles system (24). Each point corresponds to an orbit in the neighborhood of a family of periodic orbits (white curve) and is colored according to the log(GALI 2 ) value computed at t = 10 4 . The black filled circle denotes the stable periodic orbit of Fig. 1(b).

Fig. 7 .

 7 Fig. 7. (a) The time evolution of GALI 2 of a chaotic orbit of the 2D map (27), with initial condition close to the unstable periodic orbit discussed in Sect. 4.3.1. The blue curve shows the y coordinate of the orbit in arbitrary units. Consequents of this orbit and of two unit deviation vectors from it in the neighborhood of points A and B of the unstable periodic orbit of Fig. 4(a), are respectively plotted in (b) and (c). In (b) and (c) the stable and unstable manifolds of points A and B are respectively plotted, while the points of the chaotic orbit are labeled according to their iteration number.

Fig. 8 .

 8 Fig. 8. Plots similar to Fig. 7(a) for orbits of (a) the 2dof Hénon-Heiles system (24), and (b) the 3dof Hamiltonian system (25). Blue curves show in arbitrary units the y coordinate of the studied orbits on (a) the PSS x = 0, px ≥ 0 of system (24), and (b) the PSS z = 0, pz ≥ 0 of system (25).

  9(a) and (b) where these GALIs are plotted for the stable periodic orbits of Figs. 1(b) and 2(a), respectively. These behaviors differ, however, from the ones shown in Figs. 1(b) and 2(a) where the GALIs of the usual deviation vectors were computed. We note that when vectors orthogonal to the flow are used, GALI 2N of an N dof Hamiltonian system is by definition equal to zero, because the 2N projected vectors are linearly dependent on a (2N -1)-dimensional space. For this reason GALI 4 and GALI 6 are not displayed in Figs. 9(a) and (b) respectively.

Fig. 9 .

 9 Fig. 9. The time evolution of (a) GALI k , k = 2, 3 for the stable periodic orbit of the 2dof system (24) presented in Fig. 1(b), and (b) GALI k , k = 2, 3, 4, 5 for the stable periodic orbit of the 3dof system (25) presented in Fig. 2(a), when the orthogonal to the flow components of the deviation vectors are used.

Y(T ) satisfies the condition Y(T ) T • J

2N • Y(T ) = J 2N , with J 2N = 0 N I N -I N 0 N, where I N is the N × N identity matrix and 0 N is the N × N zero matrix.
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