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A B S T R A C T

Cast aluminium alloys, and more widely cast materials, are frequently used in industry. The casting process
allows for complex geometries of parts, but, on the downside, often causes materials voids. It is well known
these material defects are harmful for material fatigue performances, but the nature of these defects, in
a statistical manner, are more seldom studied. This paper aims at proposing a methodology for finding
the underlying characteristics of the defect population (size and spatial distribution) and determine their
implication on fatigue behaviour in the presence of stress/strain gradients (notched specimens). To do so,
various statistical tools are brought from different fields, such as point processes, and applied to experimentally
observed defect distributions (by μCT tomography on virgin test specimens). The population of defects is
clearly identified, and it is shown these defects are not randomly distributed, but rather in cluster. It is also
shown there is no strong link between the defect size an it’s location. Knowing the statistics of the defect
population, it is then possible to confront the result of fatigue tests (and the observed initiating defects) with
the simulated defect population: the fatigue crack initiation mechanisms, which favour (sub-) surface rather
than core initiating defects, reduce the size of the active zone and therefore artificially shift the defect size
distribution (by reducing their number).

1. Introduction

Cast aluminium alloys are widely used in the automotive indus-
try [1]. Due to their good specific mechanical properties, their good
machinability, their high thermal conductivity, combined with a rea-
sonable pricing, they are often chosen for highly mechanical and ther-
mal loaded parts [2]. Amongst these aluminium alloy, Al–Si based
alloy, combined with smaller fraction of Cu and Mg, are often favoured
for engine components. While the balance of the alloying elements
plays a key role in the material behaviour, the casting defects also
are of paramount importance, especially for fatigue behaviour (see for
example [3]). In the past ten years a great effort has been made by
the fatigue community in order to propose microstructure sensitive
numerical methods [4–6] that allow to consider more precisely the role
of key microstructural features. In the literature, many works related
to the defect sensitivity of the fatigue behaviour of aluminium alloys
focus on the role of the size and the shape of defects [7,8], but very
little work are dedicated to the precise description and modelling of
the spatial distribution of defects, especially in 3D [9,10].
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1 Except for sample 202F, which is as cast.

Particle distribution description has been a subjects of interest for
many years in a very wild range of scientific fields [11–13], such as in
the study of forests seeds dissemination or astronomy [14]. In recent
years, it has gained much interest when applied to microstructural
elements: for reinforcement of composites, metallic grains or, as studied
in this paper, voids. This paper is a proposal to better address the
description of 3D spatial distribution of defects for cast aluminium
alloys and to linking this distribution to the high temperature low cycle
fatigue behaviour of the considered alloys.

2. Experimental conditions

2.1. Material and specimen

The material used for this study is an Aluminium–Silicon–Copper
based cast aluminium alloy. Its measured chemical composition is
shown in Table 1 and the secondary dendritic arm spacing (SDAS) has
a value of 24 μm, close to what is observed for similar casting processes
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Fig. 1. Specimen used for fatigue testing (The 12mm zone being the fatigue tested zone) and tomography analysed volume.

Table 1
Cast alloy measured composition.

Si Cu Mg Ti Fe Mn Zn Ni Al

Measured(w%) 7.86 3.18 0.33 0.14 0.34 0.23 0.35 0.04 Balance

in literature (see [15]). Castings were made in cylindrical bars of
approximately 20mm diameter and 200mm long. They underwent a T5
heat treatment.1 From the bars were machined fatigue test specimens
following description on Fig. 1.

2.2. Tomography

X-ray Tomographic studies for material science have been increas-
ingly used in the past years ([3,16] for similar studies, see [17,18] for
more broad reviews of X-ray tomography possibilities. In our case, the
analysis was used to observe the voids in the material. These voids can
be of 2 types: gas pores, which are the result of entrapped gas during
the casting process, and shrinkage pores, which are caused by hetero-
geneous cooling rates during the cooling process. While it is possible
to separate the pore type based on its sphericity, the spatial resolution
used here was unsufficient to clearly separate the two populations.
Therefore, in our study, the type of pore will not be considered. In order
to have the specimen representativeness, 3 of them were analysed by
X-ray tomography (see Table 3).

2.3. Fatigue tests

A more detailed description of the fatigue tests and the defect size anal-
ysis used in this study can be found in [19]. Only the main characteristics
of the tests and the results needed are presented hereafter.

Fatigue tests are performed on cylindrical low-cycle fatigue spec-
imens shown in Fig. 1(a)). The active zone is a 7mm diameter and
14mm height cylinder. A 12mm gauge extensometer is used to perform
strain-controlled tests. Fatigue tests are performed on an Instron® 8500
servo-hydraulic machine equipped with a high-temperature MTS® fur-
nace. The strain imposed signal waveform is triangular as to maintain a
constant strain-rate (𝜀̇) of 1.10−3 s−1 at strain amplitudes (𝛥𝜀∕2) ranging
from ±0.2% to 0.4%, and strain ratio 𝑅𝜀 = −1. Surface roughness of
all the specimens (arithmetic average of absolute values) is lower than
𝑅𝑎 = 0.8 μm. Fatigue tests are conducted under 4 different controlled
temperatures: 20 (ambient), 150, 200 and 250 °C. The number of cycles
to failure was defined by a 10% drop from the trend line of the
maximum stress per cycle. In order to measure the critical defect size,
the fracture surface was systemically observed by Secondary Electron
Microscopy and the 2D Feret Diameter was measured. An example of
defect measurement is shown in Fig. 2. For each fatigue test, the critical
defect was identified and two parameters were measured (see Table 2):

Table 2
Defect measurement.

Specimen no. Feret diameter Distance to surface
(–) (μm) (μm)

88T5 236 0
68T5 351 0
87T5 356 0
56T5 178 0
14T5 241 159
72T5 320 0
130T5 144 90
28T5 223 30
70T5 189 0
170T5 325 0
49T5 152 0
59T5 371 263
67T5 128 0
25T5 273 35
71T5 195 195
62T5 130 180
105T5 164 0

the defect size (2D Feret diameter) and the distance to surface (which
is the smallest distance between the defect frontier and the specimen
outside surface).

3. Statistical description of defect size

3.1. Segmentation of tomographic data for porosity identification

In order to ensure comparison between specimens, the first aim of
this work was to propose a reproducible method for porosity detection
of laboratory X-ray tomographic data. Indeed, the highly non-linear
aspect of the measurement and reconstruction method makes data
thresholding highly dependent on the raw data itself (in the present
case the Avizo software was used). It is often observed that only data
measured consecutively on the same machine and the same operator
can be compared. Even in this case, automatic range scaling param-
eters could render the comparison difficult. To overcome this and to
compare specimens from different set of measurements, two specimens
are used (specimens 12T5 and 125T5, see Table 3) to set up a proper
methodology. These two specimens are made of the same material and
the same batch, but specimen 12T5 was analysed using a Versa 500
Zeiss, while specimen 125T5 was analysed by a General Electrics X-ray
nanotom.

Being obtained from two different X-ray systems, the raw grey
histograms of the specimens shown Fig. 3 appear different. A first step
using linear scaling of the data intensity is therefore performed on
specimen 125T5 in order to have the same general aspect as the 12T5
specimen:



Fig. 2. Measurement of defect size (Specimen 87T5, 𝛥𝜀∕2 = 0.30%, 20 °C, 𝑅𝜀 = −1, 𝑁𝑓 = 2904 cycles).

Table 3
Specimens analysed by tomography.

Specimen Volume Size Resolution

12T5 7 × 7 × 6.5 mm 1920 × 1920 × 1750 pixels 3.7 μm
202F 7 × 7 × 6.5 mm 1920 × 1920 × 1750 pixels 3.7 μm
125T5 7 × 7 × 4 mm 1450 × 1450 × 800 pixels 4.8 μm

• the first peak around 12 000 corresponds to the void value: after
reconstruction, the voxel intensity of void space is not strictly
zero. This peak is slightly higher for specimen 125T5.

• the second peak is the mean material intensity. Both specimens
(12T5 and 125T5) have the same peak value, around 28 000.

Applying this method requires the two tomographic analysis to be
similar, i.e. they must contain the same proportion of material and void,
otherwise the peaks could be artificially shifted. After linear shifting of
the data, both histograms have the same trend.

After this image correction, phase separation can be made by data
thresholding. An example is given on a slice of specimen 12T5 shown
Figs. 4(a), 4(b), 4(c) and 4(d), showing the effect of different thresh-
olding levels of (15 000, 22 000 and 20 000), respectively. Based on the
histogram shown Fig. 3, three remarkable values of thresholding could
be chosen:

• the mean void intensity value (x-value labelled (1) in Fig. 3,
around 12 000): correspond to the maximum of the first peak.
However, visual comparison shows this value underestimates the
void size. Even for a higher thresholding of 15 000 (used in
Fig. 4(b)), visual identification of voids does not match the binary
thresholding.

• the local minima between the two peaks (x-value labelled (3) in
Fig. 3, around 22 000): given the minimum curvature, this value
is highly imprecise and cannot be used as a robust indicator. The
visual comparison (see Fig. 4(c)) shows that void size might be
slightly overestimated.

• the middle distance between the two peaks (x-value labelled (2) in
Fig. 3, here 20 000), can be used to provide a robust thresholding
value. Fig. 4(d) shows that large porosities edges are correctly

Fig. 3. Histogram equalization: specimen 125T5 is from a different source than
specimen 12T5, the intensity is manually corrected (linear correction) for the two local
maximums to fit. Voxel intensity is between 0 and 216 = 65 536 (16 bits).

detected, while smaller voids (of only a few voxels) might go
undetected.

The threshold value of 20 000 was finally considered as the reference
by visual comparison. The threshold problematic arises not only to
detect the edges (an error of measurement of 1 or 2 voxels on total
defect size has little impact), but first and foremost for void separation:
because of the highly tortuous shape of shrinkage defects, numerical
thresholding can separate or coalesce two or more close voids.

3.2. Feret diameter analysis

Once the thresholding and segmentation are done, a measurand
must be chosen to quantify porosity size. In this study, the Feret



Fig. 4. Effect of thresholding value on void detection: (a) raw data, (b) threshold value of 15 000, (c) threshold value of 22 000, (d) threshold value of 20 000.

Fig. 5. Two dimensional measurement of Feret diameter.

diameter is chosen. This measure corresponds to the largest distance
between two parallel tangents (line in 2D and plane in 3D) on opposite
sides. An illustration of a 2D measure of the Feret diameter is given
Fig. 5.

The histogram of the Feret diameter for the different specimens, and
thresholding values, are shown Fig. 6. A few remarks can be made:

• for specimen 12T5, the effect of thresholding is also observed.
Concurrently with the visual observation made previously, thresh-
olding values of 20 000 and 22 000 yield similar results, especially
for the larger defects. For example, the largest defect detected is
the same and only increases by 34 μm (from 498 μm to 532 μm for
a thresholding value of 20 000 to 22 000). For the thresholding
value of 15 000 however, the larger defects are clearly less numer-
ous. The thresholds of 15 000 and 22 000 are no further discussed
and only the 20 000 is used for all specimens.

• Specimen 125T5, which was analysed by a different tomograph,
has a slightly higher defect number than specimen 12T5 but tail
values show similar quantities of larger defects.

• Specimen 202F has a lesser number of defects and the largest
defect measures 251 μm. This could be the result of the different
heat treatment and/or the material variability.

In order to analyse the defect distribution by statistical means, a
censoring of smaller defects was applied: assuming only the larger
defects are critical for fatigue behaviour, only defects larger than the
threshold 𝜇𝑒 = 40 μm are considered. By applying this censoring, a
more important weight is given to the larger defects in the statistical



Fig. 6. Histogram of Feret diameter for 3 specimens. The legend corresponds to ‘‘specimen name - thresholding value’’.

inference of the defect distribution, which are consequently better de-
picted. The numerical value chosen here reflects the compromise which
arises between the number of defects of the statistical specimen (which
becomes lower with the increase of 𝜇𝑒) and the weight of the larger
defects in the statistical inference (which increases as 𝜇𝑒 approaches the
largest defect). Further analysis would however be necessary to clearly
define this numerical censoring value.

3.3. Statistical inference of Feret diameter size

The defects being identified, the following step establishes the best
statistical distribution fitting the experimental data. The specimen 12T5
is used as the identification specimen, while specimen 125T5 and 202F
are used to validate the distribution inferred.

Many distributions were tested (exponential, extreme value, gamma
distribution, Rayleigh, Weibull) but only the three best fits are pre-
sented: the log-normal distribution (LOGN), the generalized extreme
value distribution (GEV) and the generalized Pareto distribution (GPD).

The probability density function (PDF) of the LOGN distribution
𝑓𝑙𝑜𝑔𝑛 is:

𝑓𝑙𝑜𝑔𝑛(𝑥) =
1

𝜎𝑙𝑜𝑔𝑛
√

2𝜋
exp

[

−
(ln 𝑥 − 𝜇𝑙𝑜𝑔𝑛)2

2𝜎2𝑙𝑜𝑔𝑛

]

, 𝑥 > 0 (1)

where 𝜇𝑙𝑜𝑔𝑛 is the location parameter and 𝜎𝑙𝑜𝑔𝑛 the scale parameter. The
LOGN distribution is defined only for positive values.

The PDF of the GEV distribution, 𝑓𝑔𝑒𝑣 is given by:

𝑓𝑔𝑒𝑣(𝑥) =
1

𝜎𝑔𝑒𝑣

[

1 + 𝜉𝑔𝑒𝑣

(𝑥 − 𝜇𝑔𝑒𝑣
𝜎𝑔𝑒𝑣

)](−1∕𝜉𝑔𝑒𝑣)−1

× exp{−
[

1 + 𝜉𝑔𝑒𝑣

(𝑥 − 𝜇𝑔𝑒𝑣
𝜎𝑔𝑒𝑣

)]−1∕𝜉𝑔𝑒𝑣
}

(2)

where 𝜇𝑔𝑒𝑣 is the location parameter, 𝜎𝑔𝑒𝑣 > 0 the scale parameter and
𝜉𝑔𝑒𝑣 the shape parameter. For the data sample analysed, 𝜉𝑔𝑒𝑣 is always
positive, meaning the PDF is defined for 𝑥𝑔𝑒𝑣 > 𝜇𝑔𝑒𝑣 − 𝜎𝑔𝑒𝑣∕𝜉𝑔𝑒𝑣.

Finally, the GPD probability density function 𝑓𝑔𝑝𝑑 is defined by:

𝑓𝑔𝑝𝑑 (𝑥) =
1

𝜎𝑔𝑝𝑑

(

1 +
𝜉𝑔𝑝𝑑 (𝑥 − 𝜇𝑔𝑝𝑑 )

𝜎𝑔𝑝𝑑

)− 1
𝜉𝑔𝑝𝑑

−1

(3)

Table 4
Log-likelihood of the different distributions used for inference of experimental data.

Distribution log-likelihood

Log-normal −6939
Generalized extreme value −6480
Generalized pareto −6400

where 𝜉𝑔𝑝𝑑 is the shape parameter, 𝜇𝑔𝑝𝑑 the location parameter and
𝜎𝑔𝑝𝑑 the scale parameter. The GPD was introduced by Pickands [20]
to approximate conditional excess distributions. Given a random vari-
able 𝑋 of cumulative distribution function 𝐹𝑋 , the conditional excess
distribution 𝐹𝜇𝑒 for a threshold 𝜇𝑒 is defined by:

𝐹𝜇𝑒 (𝑦) = 𝑃 (𝑥 − 𝜇𝑒 ≤ 𝑦|𝑋 > 𝜇𝑒) (4)

and 𝑦 = 𝑥 − 𝜇𝑒 are the excesses. For numerous underlying cumulative
distributions 𝐹𝑋 , and for large threshold 𝜇𝑒, the GPD approximates well
𝐹𝜇𝑒 .

The three distributions are fitted using maximum likelihood estima-
tion. Table 4 shows the log-likelihood corresponding to the inference
of the different distributions: the higher the value the better. The
graphical results of the identification of the three best distributions
are shown Fig. 7 and confirm the ranking obtained by comparing the
log-likelihood values: the GPD is slightly better than the GEV, while
the LOGN-normal does not seem appropriate for the data. Indeed, the
ranking of the log-normal distribution was to be expected since it is
not meant for censored data. This is of prior importance since all
tomographic experimental data are censored.

In order to ascertain the representativeness of the inferred distri-
bution, the results are compared with two other samples. While Fig. 8
shows the graphical comparison of the kernel density estimates, Table 5
shows the parameters of the fitting of the GPD on the three samples
separately. Statistically, the three samples appear very close and it is
reasonable to use the single distribution identified on the reference
specimen (12T5).

The statistical analysis conducted here shows it is therefore possible
to ‘‘prepare’’ the sample to fit particular needs: by removing the smaller
defects, which are of less importance for fatigue behaviour, and by



Fig. 7. Identification of the best distribution fit on specimen 12T5. LOGN is the
log-normal distribution, GEV the generalized extreme value distribution and GPD the
generalized Pareto distribution, while kernel is the kernel estimate.

Table 5
Parameter inference of the different specimens. The inference made on specimen 12T5
is considered as the reference. The resolution indicates the voxel size of the tomography
analysis.

Specimen Resolution GPD parameters

(μm) 𝜎𝑔𝑝𝑑 𝜉𝑔𝑝𝑑 𝜇𝑔𝑝𝑑

12T5 (ref.) 3.7 15.5 0.216 40.0
202F 3.7 15.7 0.168 40.0
125T5 5.6 16.3 0.243 40.0

choosing an appropriate distribution, which takes the censoring into
account, it is possible to correctly represent the size of the larger
defects.

4. Statistical description of the defect location and correlation
with the defect size

To completely define a defect population, it is not only necessary
to identify the size of the defects, as seen in Section 3, but also
their position. In this section, the theory of point processes is first
described, as well as the point processes used herein. Then, the Ripley
K-function is introduced. This function helps describing and identifying
a population of points. Using this theoretic background, the defect
population identified by tomography is analysed with this framework.
Finally, marked point processes are introduced: these processes can
help better understand if there is a link, in a statistical manner, between
the size and position of the defects.

4.1. Theory of point process: mathematical background and basic processes

Given a set of 𝑛 points X = {𝑥𝑖 ∈ 𝑊 ⊂ R𝑑𝑅 , 𝑖 = 1,… , 𝑛}, point
process theory is used to characterize the spatial distribution of the
points (usually 𝑑𝑅 = 2, 3). In many cases, the process occurs in a large
subset 𝑆𝑠𝑢𝑏 ⊂ R𝑑𝑅 , but can only be observed in a smaller window
𝑊 ⊂ 𝑆𝑠𝑢𝑏. Specific tools were developed to infer properties of the
underlying process given a limited observation window 𝑊 .

A point process X is a given set of 𝑛X points, 𝑛X also being a random
variable, defined on a subset 𝑆𝑠𝑢𝑏 ⊂ R𝑑𝑅 :

X = {𝑥𝑖, 𝑖 = 1,… , 𝑛X} (5)

Fig. 8. Comparison of the generalized pareto probability density function (GPD PDF),
identified on specimen 12T5, with the kernel density estimates of specimen 12T5, 202F
and 125T5.

where the 𝑥𝑖 are also random vectors. For ease of calculations, the
considered observation windows are all rectangles (2D) or rectangular
cuboids (3D):

𝑊 = [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] × [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥] (for 2D case) (6)

𝑊 = [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] × [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥] × [𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥] (for 3D case) (7)

Hypotheses are made concerning the studied point processes:

• Simple point process: there are not repeated points, i.e. 𝑥𝑖 ≠ 𝑥𝑗 if
𝑖 ≠ 𝑗;

• Homogeneous (stationary) point process: all properties of the
point process are not modified by a translation.

The Poisson point process. A stationary point process is a Poisson point
process if:

• the number of points in a subset 𝐵 ⊂ 𝑊 follows a Poisson
distribution of parameter 𝜆|𝐵|, |𝐵| being the volume of 𝐵:

P(𝑁(𝐵) = 𝑘) =
[𝜆|𝐵|]𝑘

𝑘!
𝑒−𝜆|𝐵| (8)

• 𝜆 is the point process intensity, which corresponds to the average
number of points per volume unit (E being the statistical expected
value):

𝜆 =
E[N(B)]

|𝐵|
(9)

• For 𝑚 disjoints sets 𝐵1,… , 𝐵𝑚, the random variables 𝑁(𝐵)1,… ,
𝑁(𝐵)𝑚 are independent.

The Poisson point process is used to represent Complete Spatial
Randomness (CSR): each point is stochastically independent, and there
is absolutely no interaction between them (see Fig. 9(a)). Therefore, the
Poisson point process serves as reference to evaluate if a point process
is clustered (the points are attracted to each other, see Fig. 9(b)) or
regular (the points repulse each other, see Fig. 9(c)).

Cluster process. Cluster point processes occur when groups of points, or
‘‘clusters’’, form: in each cluster, the distance between points is smaller
than the overall average smallest distance between points. In nature,
these appear when parents (for example a tree), produces children (for
example seeds), that stay in close proximity of their parent.



Fig. 9. Different examples of point processes.

Mathematically, a cluster point process is defined by:

• A parent point process X𝑝;
• For each parent 𝑐 ∈ X𝑝, a child point process Z𝑐 .

The cluster point process X is therefore:

X =
⋃

𝑐∈X𝑝

Z𝑐 (10)

The parent process X𝑝 is used solely in the construction process and is
not included in the final process, and parent points are not considered
in the final sample.

Neyman–scott processes: Matérn-cluster and modified Thomas processes. A
Neyman–Scott process [21] is defined by 3 steps (see [22], p. 384):

1. The parent process X𝑝 is a homogeneous Poisson point process
of intensity 𝜆𝑝;

2. Each parent 𝑐 ∈ X𝑝, produces 𝑁𝑐ℎ children points given by a
discrete probability distribution. For the considered cases, the
distribution is a Poisson distribution with parameter 𝑐:

P(𝑁𝑐ℎ = 𝑘) = 𝑒−𝑐 𝑐
𝑘

𝑘!
(11)

3. The 𝑁𝑐ℎ children are independently drawn around the clus-
ter centre 𝑐 (rigorously, the children probability distribution is
defined conditionally by the cluster centre).

A particular Neyman–Scott process is the Matérn cluster. The chil-
dren are randomly distributed in a 𝑅0 radius ball centred on the parent
point 𝑐:

𝑧 ∈ Z𝑐 ∼  (𝑏(𝑐, 𝑅0)) (12)

where  is the uniform distribution, and 𝑏(𝑐, 𝑅0) the ball of radius 𝑅0
centred on c. Fig. 10 illustrates such a point process.

A second specific Neyman–Scott process considered here is the Mod-
ified Thomas process. The children are distributed around the parent
point with a multivariate (𝑑𝑅 = 2, 3 following the space dimension)
Gaussian distribution centred on the parent point 𝑐, and of covariant
matrix 𝜎2𝑇 𝐈𝑑𝑅 (the 𝑑𝑅-dimension identity matrix 𝐈𝑑𝑅 implies there is no
correlation between the different dimensions):

𝑧 ∈ Z𝑐 ∼  (𝑐, 𝜎2𝑇 𝐈𝑑𝑅 ) (13)

where  is the multivariate Gaussian distribution. An example of such
a point process is given in Fig. 11.

Fig. 10. Example of Matérn cluster point process: 𝜆𝑝 = 35, 𝑐 = 25, 𝑅0 = 0.1. The unity
observation window shows children points can be observed, despite the parent point
being outside the window.

4.2. The Ripley K-function

After the presentation of the point process of interest, it is necessary
to find means to choose between them, as well as to identify the
different parameters. The K Ripley function is often chosen to do so.
Given a point process X, the Ripley’s K function is defined by:

𝐾(𝑟) = 1
𝜆
E𝒙

[

𝑁
(

𝑏(𝒙, 𝑟)∖{𝒙}
)]

, 𝑟 > 0 (14)

where 𝜆 is the intensity of the point process. The function is the average
number of points in a 𝑟-radius sphere, where each sphere center is a
point of the process itself but is not counted.

For example, given a stationary Poisson point process (PPP) in a 𝑑𝑅
dimension, the Ripley’s K function is exactly the volume of the sphere
𝑉𝑑𝑅 (𝑟) (since the K function is normalized by 1/𝜆):

𝐾𝑃𝑃𝑃 (𝑟) = 𝜋𝑟2 (for 2D case) (15)

𝐾𝑃𝑃𝑃 (𝑟) = 4
3
𝜋𝑟3 (for 3D case) (16)

For a clustered process, and a small radius 𝑟1, there is a locally
higher number of points (given the center of the counting sphere is also



Fig. 11. Example of modified Thomas cluster point process: 𝜆𝑝 = 35, 𝑐 = 25, 𝜎𝑇 = 0.05.
the infinite support of the Gaussian distribution can create children who appear
isolated.

part of the daughter point process), than for a Poisson point process
which represents Complete Spatial Randomness. Therefore, locally, the
clustered 𝐾𝑐𝑙𝑢𝑠𝑡𝑒𝑟 Ripley function follows:

𝐾𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑟1) > 𝐾𝑃𝑃𝑃 (𝑟) = 𝑉𝑑𝑅 (𝑟) (17)

Conversely, for a regular point process, the 𝐾𝑟𝑒𝑔𝑢𝑙𝑎𝑟 Ripley function
follows:

𝐾𝑟𝑒𝑔𝑢𝑙𝑎𝑟(𝑟) < 𝐾𝑃𝑃𝑃 (𝑟) = 𝑉𝑑𝑅 (𝑟) (18)

In order to provide robust parameter inference, analytical formulas
of the different Ripley 𝐾 functions considered are preferred. Of concern
here are the Matérn and modified Thomas (see [22], p. 376–377). The
modified Thomas point process could not be found in 3 dimensions in
the scientific literature and had to be derived.

For the Neyman–Scott process, the 𝐾𝑁𝑆 Ripley function can be
written as:

𝐾𝑁𝑆 (𝑟) = 𝐾𝑃𝑃𝑃 (𝑟) +
E[𝑁(𝑁 − 1)]

𝜆𝑝𝑐2
𝐹𝑑 (𝑟) (19)

where 𝜆𝑝 and 𝑐 are the parent point process intensity and the average
number of children, respectively. 𝐹𝑑 is the cumulative distribution
function of the distance between two children points of a same cluster.

For Matérn and modified Thomas point process, the expected value
E[𝑁(𝑁−1)] can be simplified: both processes parent points generate 𝑁
children following a Poisson of expected value 𝑐 (which is also equal to
the variance). Therefore, E[𝑁(𝑁 − 1)] = 𝑐2 and specifically for Matérn
and modified Thomas point processes:

𝐾𝑁𝑆 (𝑟) = 𝐾𝑃𝑃𝑃 (𝑟) + 1
𝜆𝑝

𝐹𝑁𝑆
𝑑 (𝑟) (20)

while some cumulative distribution functions can be found in [22],
others had to be derived for some cases. The results can be found in
Table 6.

4.3. Estimation of point process parameters on a dataset: application on
observed tomographic data

The sample used for the estimation of spatial characteristics is the
same as the one used for the defect size distribution: the specimen 12T5
is studied with a grey level thresholding of 20 000 and censoring of

Table 6
Analytical probability density function (PDF) and cumulative distribution function
(CDF) of the distance between two children points of a same cluster (see [22]).

Matérn 3D PDF 𝑓𝑑 (𝑟) =
3𝑟2

2𝑅6
0

(

𝑅0 −
𝑟
2

)2 (
2𝑅0 +

𝑟
2

)

CDF 𝐹𝑑 (𝑟) =
3

16𝑅6
0

(

𝑟6

6
− 3𝑅2

0𝑟
4 + 16

3
𝑅3

0𝑟
3
)

Modified Thomas 3D PDF 𝑓𝑑 (𝑟) =
𝑟2

√

4𝜋𝜎3
𝑇

exp

(

− 𝑟2

4𝜎2
𝑇

)

CDF 𝐹𝑑 (𝑟) = 2𝛷

(

𝑟
√

2𝜎𝑇

)

−

√

2𝑟
𝜎𝑇

𝜑

(

𝑟
√

2𝜎𝑇

)

− 1

With 𝜑(𝑥) = 1∕
√

2𝜋 exp(−𝑥2∕2) and 𝛷(𝑥) = ∫ 𝑥
−∞ 𝜑(𝑡)𝑑𝑡.

defects smaller than 40 μm. Each defect is represented by a point. The
point coordinates being the barycentre of the voxels which belong to
the defect.

In order to correctly analyse the sample, the estimation methods re-
quire cuboid samples. Therefore, the largest possible cuboid is extracted
from the initially cylindrical sample: the remain cuboid is 159.25 μm3

and 1323 data points remain.
The first and most important parameter to estimate, is the process

intensity 𝜆. For an observation window W, the average number of
points in this window is:

E[𝑁(𝑊 )] = 𝜆|𝑊 | (21)

where |𝑊| is the window volume (or surface in the 2D case). For a
particular process realization of 𝑛 points, an unbiased intensity estimate
𝜆̂ is:

𝜆̂ = 𝑛
|𝑊|

(22)

The estimated intensity of the observed sample is therefore:

𝜆̂ = 1323
159.29

= 8.31 points∕mm3 (23)

Once the intensity has been estimated, it is necessary to estimate
the K Ripley function. For this, it is first necessary to calculate the
symmetric distance matrix (𝑑𝑖𝑗). For 𝑛 observed points (𝒙𝑖){𝑖=1...𝑛}, the
𝑛 × 𝑛 distance matrix is:

𝑑𝑖𝑗 = ‖𝒙𝑖 − 𝒙𝑗‖ (24)

where ‖ ∙ ‖ is the usual Euclidean distance. For a finite observation
window 𝑊 , a biased estimate of 𝜆𝐾 can then be derived:

𝜆𝐾̂𝑏𝑖𝑎𝑠(𝑟) =
1
𝑛

𝑛
∑

𝑖=1

∑

𝑖≠𝑗
#{𝑑𝑖𝑗 ≤ 𝑟} (25)

where #(∙) counts the number of data that verifies the condition. This
estimate places 𝑛 radius balls centred on all the 𝒙𝑖 (which belong to the
point process), and counts the average number or points in the balls.
In Fig. 12, the counting centred on 𝒙1 provides an accurate estimate of
the local intensity. For the ball centred on 𝒙2, the number of process
points is artificially lower due to the unobserved points outside the W
window, even if 𝑟1 = 𝑟2, thus causing a strong bias in the estimator.

Different methods can be used to avoid this strong edge effect and
provide an unbiased estimate (see [22], Section 4). For this study, the
translation correction is chosen. For a homogeneous point process, the
edge effect can be corrected by using a translated window 𝑊𝒙∗ :

𝑊𝒙∗ = {𝒖 + 𝒙∗, 𝒖 ∈ 𝑊 } (26)

which is used to calculate the correction factor 𝑤 𝑡𝑟𝑎𝑛𝑠:

𝑤 𝑡𝑟𝑎𝑛𝑠(𝒙𝑖,𝒙𝑗 ) =
|𝑊 ∩𝑊𝒙𝑗−𝒙𝑖 |

|𝑊 |

(27)

An example is shown in Fig. 13. The area for two points 𝒙1 and 𝒙2,
|𝑊 ∩𝑊𝒙2−𝒙1 |, corresponds to the shaded area. The K function estimate



Fig. 12. Ripley’s K function estimate: the ball centred on 𝒙1 correctly estimate the
local intensity (number of points divided by circumference), whereas it is clearly
underestimated by the ball centred on 𝒙2.

Fig. 13. Translation corrected estimation of the 𝐾 Ripley function, see [22] chapter
4.

is then:

𝜆𝐾̂𝑡𝑟𝑎𝑛𝑠(𝑟) =
1
𝑛

𝑛
∑

𝑖=1

∑

𝑖≠𝑗

1
𝑤 𝑡𝑟𝑎𝑛𝑠(𝒙𝑖,𝒙𝑗 )

#{𝑑𝑖𝑗 ≤ 𝑟} (28)

Underlying this correction is the probability of observing two points far
from each other. For very close points, the window bias is rather small
and only a small number of pair of points are unobserved. The further
apart the points are (i.e. for large 𝑟), the larger number of pair of points
are not counted.

Now the function estimate has been derived, it is necessary to esti-
mate the best set of parameters of the selected models (Poisson, Matérn
and modified Thomas). For an experimental set of points X = {𝒙𝑖, 𝑖 =
1,… , 𝑛X}, the experimental estimate 𝐾̂𝑒𝑥𝑝(𝑟) function is calculated (in
this study, 𝐾̂𝑒𝑥𝑝 = 𝐾̂𝑡𝑟𝑎𝑛𝑠) . For a set of parameters 𝜽, the experimental
function is compared with the analytical Ripley function 𝐾𝜽(𝑟) (see
Eqs. (16) and (19)) by using the contrast function 𝐷(𝜽):

𝐷(𝜽) = ∫

𝑟𝑚𝑎𝑥

𝑟𝑚𝑖𝑛

[

𝐾̂𝑒𝑥𝑝(𝑟)𝑞1 −𝐾𝜽(𝑟)𝑞1
]𝑞2 𝑑𝑟, (29)

where (𝑞1, 𝑞2) ∈ R2. This method consist in minimizing a certain 𝑞1-
norm of the Ripley functions (to the power of 𝑞2) between two radii
𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥.

For a clustered process, the different values suggested in [23] are
used:

• 𝑟𝑚𝑖𝑛 = 0 and 𝑟𝑚𝑎𝑥 is half the minimum observation window size;
• 𝑞2 = 2 as in the least square method;
• 𝑞1 =

1
4

Fig. 14. Spatial statistics inference: the experimental Ripley’s function 𝐾𝑡𝑟𝑎𝑛𝑠 is close
to the optimized Matérn and Thomas point process ones. The Poisson point process
distribution is unable to capture the spatial data.

Table 7
Inferred parameters for the T5 specimen with the data thresholded at 20 000, and the
length filtered 𝑥𝑓 > 40 μm. D parameter Eq. (29) given for information.

𝜆̂ (points∕mm3) 𝜆𝑝 (points∕mm3) 𝜎𝑇 (mm) 𝑅0 (mm) 𝑐 = 𝜆̂∕𝜆𝑝 D

Poisson 8.31 – – – – 0.38
Thomas – 0.0305 0.5973 – 272.8 0.017
Matérn – 0.0312 – 1.2534 266.6 0.019

The method is then used to find the best parameters 𝜽∗ in the
admissible space 𝜽:

𝜽∗ = arg min
𝜽∈𝜽

𝐷(𝜽) (30)

This optimal parameter set is achieved by minimizing the 𝐷(𝜽) func-
tion (using a hybrid genetic algorithm). This methodology is applied for
the selected models and the results shown in Table 7 and Fig. 14.

The Poisson point process is clearly unable to represent the observed
data, whereas both the modified Thomas and the Matérn point process
give a better and similar fit.

However, the clustered simulated processes slightly overestimates
the Ripley’s 𝐾 function for radii 𝑟 between 1 and 2mm, and under-
estimate for 𝑟 > 2mm. As seen in Fig. 15, the clustered process is
unable to capture the seemingly isolated data points outside the clusters
shown on real data (see Fig. 15(a)). To maintain the global intensity of
the process, the number of children 𝑐 has to be higher to compensate,
thereby increasing Ripley’s 𝐾 function for short distances (𝑟 < 2mm).
For the longer ranges (𝑟 > 2mm), there are no isolated data points and
the simulated Ripley’s 𝐾 function is lower than observed. The isolated
points could be linked to isolated gas porosities, and an added Poisson
point process could be superimposed in order to simulate these isolated
data points. However, the parameter inference robustness would suffer
from the added complexity.

4.4. Is there a link between defect size and their location? use of the marked
point process

In order to study the correlation between the defects position and
size (hereafter considered as points), marked point processes can be
used. For a point, the mark can be a qualitative or a quantitative one,
and represents a characteristic. For the scope of this study, the mark of
interest is therefore the defect size.

Several theoretical models can be applied to study marked point
processes:



Fig. 15. Comparison of experimental and simulated samples.

• Random marks: for this case, spatial and mark distribution are
considered independent. The spatial distribution is characterized
and for each point, the mark is considered as independent of its
position (and consequently, independent of its neighbours marks).

• Random superposition: for quantitative marks 𝑚 defined in
{𝑚1,… , 𝑚𝑄} with 𝑄 ∈ N, 𝑄 sub process are defined for each mark
class. The final process is defined by superposition of the 𝑄 sub
processes {X𝑖, 𝑖 = 1,… , 𝑄}:

X𝑖 = {𝒙(𝑖)𝑗 , 𝑗 = 1,… , 𝑛𝑖}, 𝑖 = 1,… , 𝑄 (31)

X =
𝑄
⋃

𝑖=1
(X𝑖 × {𝑚𝑖}) =

{

(𝒙(𝑖)𝑗 , 𝑚𝑖), 𝑗 = 1,… , 𝑛𝑖; 𝑖 = 1,… , 𝑄
}

(32)

• Geostatic marks: here, the marks are defined based on a random
continuous field 𝑍(𝒙, 𝜔). Once the point position 𝒙𝑗 is known, the
corresponding mark is 𝑍(𝒙𝑗 ). Hence the process W:

X =
{(

𝒙𝑗 , 𝑍(𝒙𝑗 )
)

, 𝑗 = 1,… , 𝑛
}

(33)

For this section, sample ‘‘12T5-20 000’’ is used (i.e. sample 12T5
with a 20 000 grey threshold,). However, since the largest defects are
no longer the main concern (i.e. the right-tail of the distribution), a
compromise is set to increase the number of defects while excluding the
smaller ones (which are mainly noise related). Therefore, only defects
smaller than 10 μm are excluded (rather than the 40 μm threshold used
for the defect size distribution study). The defect size measure remains
the 3D Feret diameter which is considered as the point mark.

First order characteristics. For qualitative marks 𝑚1,… , 𝑚𝑄, the proba-
bility distribution is defined by:

𝑝𝑖 = P(𝑀 = 𝑚𝑖) (34)

The probability 𝑝𝑖 is easily obtained with the sub process intensity 𝜆𝑖
containing solely the marks 𝑚𝑖:

𝑝𝑖 =
𝜆𝑖
𝜆

(35)

where 𝜆 is the intensity of the spatial point process (i.e. all point
considered, with no mark differentiation).

For quantitative marks 𝑀 ∈ 𝑀 , let us consider a subspace 𝐵𝑠𝑢𝑏 ∈
𝑊 and a subset ]−∞, 𝑚0]. For a given 𝑚0, a sub process can be defined
by considering all marks such as 𝑚 ≤ 𝑚0. The number of points in this
subspace is therefore:

E[𝑁(𝐵𝑠𝑢𝑏;𝑚(𝒙) ≤ 𝑚0)]
def
= 𝜆(𝑚0)|𝐵| (36)

where |𝐵𝑠𝑢𝑏| is the volume of 𝐵𝑠𝑢𝑏 (in 3 dimensions). When 𝑚0 tends to
infinity, all the marks are considered, and therefore:

lim
𝑚0→∞

𝜆(𝑚0) = 𝜆 (37)

Consequently, the cumulative distribution of marks 𝐹𝑀 is defined
by:

𝐹𝑀 (𝑚) =
𝜆(𝑚)
𝜆

(38)

from which the probability density function (pdf) can be obtained
𝑓𝑀 (𝑚) = 𝐹 ′

𝑀 (𝑚). The mean and variance are defined by:

𝜇𝑚 = ∫𝑀

𝑚𝑓𝑀 (𝑚)𝑑𝑚 (39)

𝜎2𝑚 = ∫𝑀

(𝑚 − 𝜇𝑚)2𝑚𝑓𝑀 (𝑚)𝑑𝑚 (40)

These different quantities can be easily estimated. For an observed
volume W, the mark mean estimate is:

𝜇𝑚 = 1
𝑛

∑

𝒙∈𝑊
𝑚(𝒙) (41)

and the mark variance:

𝜎𝑚
2 = 1

𝑛
∑

𝒙∈𝑊
(𝑚(𝒙) − 𝜇𝑚)2 (42)

Nearest neighbour correlation index. The nearest neighbour correlation
index aims at pointing out if there is a correlation between the mark
of a point, and the mark of the nearest point. For 𝒙 ∈ X, the nearest
neighbour is referred to as nei(𝒙):

nei(𝒙) = arg min
𝒚∈X∖{𝑥}

‖𝒚 − 𝒙‖ (43)

Using the nearest neighbour, three indexes can be defined [22]:

• The nearest neighbour mean:

𝒏1 = E𝒙[𝑚(nei(𝒙))]∕𝜇𝑚 (44)

• The mean mark product:

𝒏𝑚𝑚 = E𝒙[𝑚(𝒙)𝑚(nei(𝒙))]∕𝜇2
𝑚 (45)

• The variographic mark index:

𝒏𝛾 = E𝒙

[

(𝑚(𝒙) − 𝑚(nei(𝒙)))2
]

∕𝜎2𝑚 (46)



Table 8
Nearest neighbour correlation index for specimen 12T5.

Index 𝒏1 𝒏𝑚𝑚 𝒏𝛾
Value 0.9985 1.0001 0.9509

These indexes are to be distinguished from correlation indexes, for
they can be greater than 1. Due to the normalizations, they are to be
compared to one: a value close to one indicating a lack of correlation.
These index estimates are readily obtained, for edge effect introduces
only a small bias and no edge correction method are necessary [24].

These indexes are calculated for the tomographic observed data and
shown in Table 8. All the values are all close to one, which is a first
step indicating the lack of correlation between defect size and position.

𝐾-Ripley and 𝐿-Besag functions. Detailed study of marked point process
can be achieved by using the weighted Ripley 𝐾 function. For an
unmarked point process, the Ripley 𝐾 function (in Eq. (14)) can be
rewritten:

𝐾(𝑟) = 1
𝜆
E𝒙

[

∑

𝒚∈X∖𝒙
𝟏𝑏(𝒙,𝑟)(𝒚)

]

(47)

where 𝟏𝑏(𝒙,𝑟) is the indicator function centred on 𝒙 of radius 𝑟. The
weighted Ripley 𝐾-function 𝐾𝑚𝑚 is:

𝐾𝑚𝑚(𝑟) =
1

𝜆𝜇2
𝑚
E𝒙

[

∑

𝒚∈X∖𝒙
𝑚(𝒙)𝑚(𝒚)𝟏𝑏(𝒙,𝑟)(𝒚)

]

. (48)

As for unmarked point process, an 𝐿 Besag function can be defined
using the unit volume sphere in 𝑑 dimension 𝑉𝑑𝑅 :

𝐿𝑚𝑚(𝑟) =

(

𝐾𝑚𝑚(𝑟)
𝑉𝑑𝑅 (1)

)1∕𝑑

, (49)

which translates in 3 dimensions to:

𝐿𝑚𝑚(𝑟) =
(

3𝐾𝑚𝑚(𝑟)
4𝜋

)1∕3
. (50)

As for unmarked point process, the 𝐾𝑚𝑚 Ripley weighted function
estimation requires an edge correction method. The same method of
translation correction is applied (see Eq. (28)):

𝜆𝜇2
𝑚𝐾̂𝑚𝑚,𝑡𝑟𝑎𝑛𝑠(𝑟) =

1
𝑛

𝑛
∑

𝑖=1

∑

𝑖≠𝑗

𝑚(𝒙𝑖)𝑚(𝒙𝑗 )
𝑤 𝑡𝑟𝑎𝑛𝑠(𝒙𝑖,𝒙𝑗 )

#{(𝒙𝑖,𝒙𝑗 ) ∈ 𝑊 ∶ 𝑑𝑖𝑗 ≤ 𝑟} (51)

The weighted 𝐾𝑚𝑚 Ripley function is compared to the 𝐾 Ripley
function, which is calculated without the marks. If spatial and mark
distribution are uncorrelated, these two functions are equal.

The 𝐿 Besag function can also be estimated by:

𝐿̂𝑚𝑚,𝑡𝑟𝑎𝑛𝑠(𝑟) =

(

3
4𝜋𝜆̂𝜇𝑚

2
1
𝑛

𝑛
∑

𝑖=1

∑

𝑖≠𝑗

𝑚(𝒙𝑖)𝑚(𝒙𝑗 )
𝑤 𝑡𝑟𝑎𝑛𝑠(𝒙𝑖,𝒙𝑗 )

#{(𝒙𝑖,𝒙𝑗 )

∈ 𝑊 ∶ 𝑑𝑖𝑗 ≤ 𝑟}

)1∕3 (52)

For reading easiness, the estimate functions using translation cor-
rection are hereafter simply referred to as 𝐾̂𝑚𝑚 and 𝐿̂𝑚𝑚.

Lastly, a mark independence test can be used to test spatial and
mark distributions independence. Given a sample, marks of this sam-
ple are randomly permuted creating 𝐵𝑠𝑢𝑏 artificial samples. For each
artificially generated sample 𝑘, the 𝐿 Besag function 𝐿̂(𝑘)

𝑚𝑚 is calculated
creating a sheaf of curves. The extreme curves are then defined for each
abscissa 𝑟 by:

𝐿𝑚𝑚,𝑚𝑖𝑛(𝑟) = min
𝑘=1,…,𝐵

𝐿̂(𝑘)
𝑚𝑚(𝑟) (53)

𝐿𝑚𝑚,𝑚𝑎𝑥(𝑟) = max
𝑘=1,…,𝐵

𝐿̂(𝑘)
𝑚𝑚(𝑟) (54)

Independence between spatial and mark distribution is then checked
by plotting 𝐿𝑚𝑚,𝑚𝑖𝑛 − 𝐿̂𝑚𝑚 and 𝐿𝑚𝑚,𝑚𝑎𝑥 − 𝐿̂𝑚𝑚 and comparing with the
null hypothesis, represented by the abscissa axis.

The 𝐾𝑚𝑚 weighted Ripley function is shown in Fig. 16(a). Both
the weighted and the standard Ripley function appear perfectly equal,
confirming the independence of point mark and position indicated by
the different indexes (see Table 8). However, the mark independence
test shown in Fig. 16(b) shows there is in fact a small interaction of
marks for shorter distances.

In conclusion, the study of marked point process shows there is only
a small link between size and position of the defects. It is therefore
reasonable to simulate defect position (may it be clustered or com-
pletely random) and to subsequently affect a size, following a specific
probability distribution, to each defect independently of its position in
space.

5. Extreme value statistics and critical defects

Now that populations of defects can be simulated, this section aims
at comparing the critical defects observed in fatigue tests to the defect
distribution identified on virgin specimens by tomography.

5.1. Mathematical background and analytical study using extreme value
statistics

Let 𝑋1, 𝑋2,… , 𝑋𝑛 be 𝑛 independent and identically distributed ran-
dom variables of probability distribution function (pdf) 𝑓𝑋 and cumu-
lative distribution function (cdf) 𝐹𝑋 .

Let 𝑀𝑛 = max{𝑋1,… , 𝑋𝑛} be the maximum of the 𝑛 random
variables, the exact maximum distribution can be derived:

Pr(𝑀𝑛 ≤ 𝑦) = Pr(𝑋1 ≤ 𝑦,… , 𝑋𝑛 ≤ 𝑦) = 𝐹𝑋 (𝑦)𝑛 = 𝐺𝑋 (𝑦) (55)

For the study of defects, 𝑓𝑔𝑝𝑑 is the probability density function of
the defect size distribution (identified on specimen 12T5 and shown
in Table 5):

𝑓𝑔𝑝𝑑 (𝑥) =
1

𝜎𝑔𝑝𝑑

(

1 +
𝜉𝑔𝑝𝑑 (𝑥 − 𝜇𝑔𝑝𝑑 )

𝜎𝑔𝑝𝑑

)− 1
𝜉𝑔𝑝𝑑

−1

(56)

and 𝐹 the corresponding cdf:

𝐹𝑔𝑝𝑑 (𝑥) = 1 −
(

1 +
𝜉𝑔𝑝𝑑 (𝑥 − 𝜇𝑔𝑝𝑑 )

𝜎𝑔𝑝𝑑

)− 1
𝜉𝑔𝑝𝑑

(57)

Supposing there is an identical number 𝑛 of defects per specimen,
the cdf of maximum defect size 𝐺𝑔𝑝𝑑 is:

𝐺𝑔𝑝𝑑 (𝑦) = 𝐹𝑔𝑝𝑑 (𝑦)𝑛 =
⎛

⎜

⎜

⎝

1 −
(

1 +
𝜉𝑔𝑝𝑑 (𝑦 − 𝜇𝑔𝑝𝑑 )

𝜎𝑔𝑝𝑑

)− 1
𝜉𝑔𝑝𝑑

⎞

⎟

⎟

⎠

𝑛

(58)

Following Eq. (58), the number of defects per specimen 𝑛 appears
critical to derive the maximum size distribution 𝐺. This can be seen in
Fig. 17. For 𝑛 = 1000 defects to 𝑛 = 10000, the median goes from 315 μm
to 540 μm, and the 95% percentile (i.e. the 5% of larger defects) from
575 μm to 960 μm.

5.2. Specimen choice and statistical representative volume

Cylindrical specimen. Given a specimen geometry of volume |𝑊 | (cor-
responding to the cylindrical fatigue tested zone, |𝑊 | = 461mm3), the
number of defects per specimen depends on the chosen spatial point
process:



Fig. 16. Study of spatial and mark distributions correlation by marked point processes.

Fig. 17. Cumulative distribution function of maximum defect size 𝐺𝑔𝑝𝑑 for different
number of defects per specimen 𝑛. 3837 is the number of defects of the fatigue tested
sample (a 7mm diameter and 12mm high cylinder with a 8.31mm−3 density of defects)
if the number of defects is considered deterministically proportional to the volume.

• Homogeneous distribution (see Fig. 18(a)): the deterministic
number of defects 𝑛 is proportional to the volume of the sample.
The defect concentration is the same as the intensity 𝜆 identified
in the point process statistics:

𝜆 = 8.31mm−3 (59)

and the number of defects per sample is therefore:

𝑛 = 𝜆|𝑊 | = 3837 (60)

• Poisson distribution (see Fig. 18(b)): the number of defects in a
sample is the realization of a Poisson distribution. The variable 𝑛
is therefore a random one:

𝑛 ∼ (𝜆|𝑊 |) (61)

where  is the Poison distribution, 𝜆 the process intensity (𝜆 =
8.31mm−3) and |𝑊 | the window volume

• Clustered point process (see Fig. 18(c)): the number of defects
per sample depends on the parameters of the point process and
the geometrical shape of the sample. Each sample has to be
numerically simulated, and the generated defects counted.

The different empirical cumulative distributions of number of de-
fects are shown in Fig. 19, and some characteristic statistical values

in Table 9. The homogeneous and the Poisson point process provide
analytical values, whereas for the clustered processes, the different
distributions and values were obtained by simulating 10 000 samples.

The deterministic homogeneous method and the Poisson process
provide similar results, with only a slight variance for the Poisson
process. Using the clustered point processes (Matérn or Thomas), the
variance increases drastically. This increase can be explained by the
variable number of parent points. For the Thomas point process, the
parent point process intensity 𝜆𝑝 is:

𝜆𝑝 = 0.0305mm−3 (62)

The Poisson distribution of the number of parents 𝑛𝑝 is therefore of
parameter 𝑝̄:

𝑝̄ = 𝜆𝑝|𝑊 | = 14.1 (63)

i.e. there are 14.1 parents per sample in average. The standard devia-
tion 𝜎𝑛𝑝 of the Poisson distribution can also be calculated:

𝜎𝑛𝑝 =
√

𝜆𝑝|𝑊 | = 3.75 (64)

The number of children per parent has a mean value 𝑐 = 272.8 and a
standard deviation 𝜎𝑐 :

𝜎𝑐 =
√

𝑐 = 16.52 (65)

The total number of points being the product of the number of
parent points by the number of children (both random variables being
independent), the standard deviation of the total number of points 𝜎𝑛
can be calculated by:

𝜎2𝑛 = 𝜎2𝑛𝑝𝜎
2
𝑐 + 𝑝̄2𝜎2𝑐 + 𝑐2𝜎2𝑛𝑝 (66)

Which numerically is:

𝜎𝑛 = 1048.1 (67)

The discrepancy with the observed value (950.3) can be explained
by two factors. Firstly, for the simulations, parent points outside the
sample could generate children points inside the sample (this is over-
come by simulating a larger sample from which the sample of interest is
taken). Secondly, some parent points generate children points outside
the sample of interest which are not counted.

Similarly, for the Matérn point process, the calculated approximate
variance 1020.8 is close to the descriptive statistic value of 894.3.



Fig. 18. Methods of simulation of defect population.

Fig. 19. Cylindrical sample: empirical cumulative distribution function (CDF) of
number of defects per sample for different simulation methods. The estimates are based
on 10 000 simulated samples.

Table 9
Cylindrical sample: descriptive statistics of the number of defects per sample.

Method Mean 𝑛̄ Standard deviation 𝜎𝑛
Homogeneous 3837 0
Poisson 3836.5 62.1
Clustered: Matérn 3695 894.3
Clustered: Thomas 3735.7 950.3

Ring sample. Going back to real life observations, Table 2 shows the
initiating defects are all located at a distance lower than 263 μm from
the specimen surface. To investigate this effect, ring numerical speci-
men are created (see Fig. 20). In this thought experiment, the defects
in the center cylinder (of radius 𝑅𝑚𝑖𝑛) are omitted, and only the defects
of the outside rim (𝑅𝑚𝑖𝑛 < 𝑟 < 𝑅, with 𝑅 = 3.5mm the specimen radius)
are considered.

For the numerical value of 𝑅−𝑅𝑚𝑖𝑛, a value of 300 μm is taken. The
difference between the ‘‘distance to surface’’ parameter and 𝑅 − 𝑅𝑚𝑖𝑛
is noteworthy: the distance to the surface is defined as the shortest
distance from the defect contour to the specimen surface, while the
distance 𝑅−𝑅𝑚𝑖𝑛 encompasses the maximal distance from the specimen
surface to the numerical defect center.

Table 10
Ring sample: descriptive statistics of the number of defects per sample.

Method Mean 𝑛̄ Standard deviation 𝜎𝑛
Homogeneous 629 0
Poisson 629.3 25.6
Clustered: Matérn 617.6 220.7
Clustered: Thomas 607.1 153.1

The sample volume |𝑊 | is therefore:

|𝑊 | = 𝜋(𝑅2 − 𝑅2
𝑚𝑖𝑛).ℎ = 75.8mm3 (68)

ℎ being the height of the sample. The ring sample is approximately six
times smaller than the cylindrical sample.

Four different models are used: homogeneous, Poisson, Matérn and
Thomas. For the clustered processes, 10 000 samples are simulated to
derive the empirical CDF (see Fig. 21), and the statistical values (see
Table 10).

Similar conclusions to the ones observed for the cylindrical samples
can be drawn: the clustered processes drastically increase the standard
deviation while the mean value is only slightly modified.

5.3. Comparison with experimental critical defects

Given the size distribution of defects per sample and the inde-
pendence of the spatial distribution, the numerical method enables
to simulate a maximum defect size for each sample. The goal being
the comparison with the observed data, a conversion of the Feret
diameter from 3D to 2D is done. Indeed, the simulated data is generated
according to the tomographic data, in 3 dimensions. However, on
the observed fractured specimens, only a 2D Feret diameter can be
measured, and 3D defects are approximated by 2D defects:

Fig. 22 shows an example of this conversion is done:

1. A 3D Feret diameter 𝑑3𝐷 is numerically generated following the
size distribution identified in Section 3 and corresponding to
what could be measured by tomography.

2. Given the randomness of the 3D Feret diameter angle 𝛼, for
each 3D Feret diameter, such a random angle is generated with
respect to the plane (𝑥, 𝑦), where 𝑧 is the loading direction.

3. For each 3D Feret diameter 𝑑3𝐷, a corresponding 2D Feret
diameter 𝑑2𝐷 is generated:

𝑑2𝐷 = 𝑑3𝐷. cos 𝛼 (69)



Fig. 20. Ring sample: numerical defects are created in the cylindrical sample, but only the ones on the outside ring (∙), and not in the centeral cylinder (o), are used.

Fig. 21. Ring sample: empirical cumulative distribution function (CDF) of number of
defects per sample for different simulation methods. The estimates are based on 10 000
simulated samples.

This method is applied to the cylindrical sample and the ring
sample.

Cylindrical sample. Using the cylindrical sample, the sample maxima
distribution is generated for the different point processes (homoge-
neous, Poisson, Thomas and Matérn). The results are shown in Fig. 23.
For the 4 different point processes used, the sample maxima distribu-
tion is almost identical. The higher standard deviation of the number of
defects per numerical sample of the clustered processes has very little
effect on the sample maxima distribution.

Ring sample. The sample maxima method is now applied to the ring
sample for the different point processes (homogeneous, Poisson, Thomas
and Matérn). As for the cylindrical sample, the different point processes
all provide the same results.

5.4. Results

Using the results of the previous Section, the results on the cylin-
drical and ring samples are compared to the experimental results of
the fatigue test results obtained in Section 2.3 (i.e. the critical defects
measured on the fracture surfaces). The comparison is shown in Fig. 25.
The differences between the simulation methods being very small, the

different simulation methods are not differentiated (the reader can refer
to the previous Figs. 23 and 24).

The cylindrical sample clearly overestimates the maximum defect size,
meaning the simulated volume is too large, while the ring sample
provides a good fit.

In order to compare the different fittings, the different data sets
are fitted with an Generalized Extreme Value distribution (GEV). An
example of fitting for the homogeneous process is shown in Fig. 26. The
GEV provides an excellent fit for both numerically generated samples
(cylinder and ring). Given the small number of experimental critical
defects measured (17), it is difficult to discriminate and fit the best
distribution. For comparison purposes with the numerical samples, the
GEV has been chosen. This allows the comparison of the distribution
parameters (location, scale and shape).

The GEV obtained by fitting on the cylinder sample does not capture
the experimental results, while the one obtained by the ring sample
does.

For the higher values of maximum defect size (over 600 μm), further
studies should be conducted in order to ascertain the tails of these
extreme value distributions.

The same distribution fitting method is applied to the other point
processes. Table 11 shows the results of this distribution fitting. For
each identified distribution, a Kolmogorov–Smirnov test hypothesis
(KS-Test) is used with a 5% significance level.2

For the ring sample, and all the point process methods, the location
parameter 𝜇 is well captured, but the scale parameter 𝜎 is underesti-
mated and the shape parameter 𝜉 overestimated. However, given the
small number of data, these parameters are estimated with a high
uncertainty. For all the methods, the KS-Test fails to reject the null
hypothesis, confirming the goodness of fit of the distributions.

For the cylindrical sample, all the point processes methods are rejected by
the KS-Test. This demonstrates the cylindrical sample is not representative of
the defect size population with respect to the crack initiation defect. While
for some mechanisms, the larger the volume studied, the better the
representativeness, the description of the largest defect in a sample
requires an accurate estimate of the volume likely to contain a critical
defect. Here, all the critical defects are close to the specimen surface,
and the representative volume is the ring sample. This study also shows
that the clustered aspect of defects plays only a small role in the size of
the largest defect. This is due to the important size of the samples: even

2 The test result is 1 if the test rejects the null hypothesis at the 5%
significance level. The null hypothesis being that the Experimental Data comes
from the distribution identified by simulation.



Fig. 22. Feret diameter conversion from 3D to 2D on real defect.

Fig. 23. Cylindrical sample: empirical cumulative distribution function (CDF) of the largest defect per sample for different simulation methods. The estimates are based on 10 000
simulated samples.

for the smaller ring sample, it contains in average around 600 defects.
This high number of defects combined with the independence of the
defect location within the sample weakens the impact of the clustering
of defects compared to the random Poisson point process.

6. Application to notch specimens

A fatigue campaign on notched specimens was carried out to study
the impact of defect distribution on in the highly loaded volume.
Indeed, for these specimens, only a small portion of the total volume
is highly mechanically loaded, stressing out the importance of proper
spatial defect distribution description on the fatigue life. Finite element
simulations are used to asses the stress and strain field around the notch

and a previously developed fatigue model is used to estimate the LCF
life estimation and the impact of defect clustering.

6.1. Test conditions and setup

Notched specimen were designed so that the stress gradient in
the specimen match that of the studied industrial components. The
component and numerical results on the component are not shown
for confidentiality reasons. Circular specimens with U-shape groove
inducing a 𝐾𝑡 = 1.78 were designed. The dimensions are indicated in
Fig. 27.

For the fatigue tests, an extensometer with a gauge length 𝑙0 =
12mm was used to perform strain controlled LCF tests. The notch is



Fig. 24. Ring sample: empirical cumulative distribution function (CDF) of the largest defect per sample for different simulation methods. The estimates are based on 10 000
simulated samples.

Fig. 25. Comparison of the ring and cylindrical samples sample maxima distribution to the experimentally observed defects.

Fig. 26. GEV distribution fitting.



Table 11
Generalized extreme value distribution fitting of the numerical samples (cylindrical and ring specimen) and the experimentally
observed defects. In parenthesis are the confidence intervals.

Data Method 𝜇𝑔𝑒𝑣 𝜎𝑔𝑒𝑣 𝜉𝑔𝑒𝑣 KS-Test

Experimental 209 (±22.0) 74.5 (±17.5) −0.0937 (±0.319)

Ring sample
Homogeneous 201.2 49.9 0.216 0
Poisson 200.8 49.4 0.234 0
Matern 198.3 51.8 0.203 0
Thomas 198.0 53.8 0.156 0

Cylinder sample
Homogeneous 312.9 74.3 0.213 1
Poisson 312.3 74.6 0.224 1
Matern 306.5 76.2 0.188 1
Thomas 308.2 77.6 0.187 1

Fig. 27. Notch shape: 𝐷 = 7mm, 𝑑𝑛 = 5.6mm, 𝑟 = 1.2mm.

Table 12
Experimental matrix for notched specimens tests: number of tests per test condition.
The tests are run at 𝐿0 ± 𝑑 (i.e. a 𝑑 amplitude, or equivalently a 2𝑑 range), 𝑙0 being
the initial extensometer gauge length (12mm).
𝑇 (°C) 𝛥𝜀𝑚𝑎𝑐𝑟𝑜∕2 20 150 200 250

𝑑 = 0.016mm ±0.13% 1 1 1 1
𝑑 = 0.020mm ±0.17% 2 0 3 1
𝑑 = 0.025mm ±0.21% 1 0 0 0

placed in the center of the extensometer gauge length. The loading
is applied by an Instron 8500 servo-hydraulic fatigue testing machine
equipped with a furnace (see [19]). Unlike for smooth specimens, the
local strain cannot be directly imposed, and the controlled parameter
is solely the total extensometer gauge length 𝑙. The displacement 𝑑
is further used in the graphics (the displacement 𝑑 is the relative
displacement 𝑑 = 𝑙 − 𝐿0). In order to define the test frequency, a
macroscopic strain 𝜀𝑚𝑎𝑐𝑟𝑜 is defined:

𝜀𝑚𝑎𝑐𝑟𝑜 =
𝑙 − 𝐿0
𝐿0

(70)

and the frequency is chosen so that 𝜀̇𝑚𝑎𝑐𝑟𝑜 = 10−3 (which is the
same strain rate used for the smooth specimens). Fatigue tests were
performed for 3 imposed displacements at 20 °C and 2 for other inves-
tigated temperatures (see Table 12). The imposed signal waveform was
triangular and symmetrical (𝑅 = −1). Tests were conducted under 3
different controlled temperatures: 20 (ambient), 150, 200 and 250 °C.
For all tests, the specimen lifetime 𝑁𝑓 correspond to a 10% load drop.

6.2. Fatigue test results

Fatigue test results on notched specimens are presented in Table 13
and in Fig. 28. Seemingly to the fatigue tests results on smooth speci-
mens (see [19]), increasing temperature decreases the fatigue lifetime
for a given imposed displacement. For all the specimens, the fatigue
crack initiated at the notch root. As for crack mechanisms observed on
smooth specimens in (see [19]), the main crack initiates on a shrinkage
defect close to the specimen free surface.

Table 13
Fatigue test results on notched specimens (𝐾𝑡 = 1.78).

Specimen 𝑑 (mm) Temperature (°C) 𝑁𝑓 (cycles)

41T5 0.016 20 11 790
16T5 0.020 20 2376
75T5 0.020 20 1698
162T5 0.025 20 753
83T5 0.016 150 9924
17T5 0.016 200 6159
64T5 0.020 200 1880
10T5 0.020 200 1650
53T5 0.020 200 1456
38T5 0.016 250 3302
174T5 0.020 250 1358

Fig. 28. Fatigue life for notched specimens (𝐾𝑡 = 1.78).

6.3. Numerical simulation of notch specimens

Given the test set-up, only macroscopic values can be experimen-
tally measured (extensometer displacement and applied load). Numer-
ical simulation were used to assess the evolution of local mechanical
quantities.

6.3.1. Numerical and mesh generation
In order to simulate notched specimens, Abaqus© finite element

(FEM) code was used. Given the problem symmetry, a quarter of the
specimen was simulated using axi-symmetric 2D CAX8R elements (see
Fig. 29).

The boundary conditions used are:



Fig. 29. Mesh of the notched specimen.

• Middle nodes (on line m): the vertical displacement (z) is set to
0, as to impose the model symmetry.

• Top nodes (on line t): the vertical displacement 𝑑𝑠𝑖𝑚 (along z) is
imposed according to experimental conditions.

• node P: the z degree of freedom of all nodes on line t are linked
to the z degree of freedom of node P.

Using this method, twice the 𝑧 displacement of node P matches the
measured displacement of the experimental extensometer, and the
reaction force on node P corresponds to the experimental load. These
are the values used in the following numerical study.

A short convergence study allowed to optimize the mesh size for
proper strain and stress field description on the notch area (the op-
timized mesh was reduced to 40 μm close to the notch root). Given
the cyclic nature of the simulation model used, numerical cyclic sta-
bilization must also be ensured. A combined kinematic and isotropic
hardening model was identified on cyclic hardening tests performed on
smooth specimens at the different investigated temperatures. For confi-
dentiality reasons the model description and model parameters cannot
be provided but the identified model could describe the experimental
stabilized behaviour for all investigated temperatures (example is given
Fig. 30 for 200 °C).

Numerically, the stabilized behaviour at the notch root was reached
after 15 cycles. Fig. 31 compares the simulated and experimental
value of the macroscopic load for all the temperatures and imposed
displacement. The simulations and experimental results are all shown
for cycle 𝑁 = 15 and show good agreement between simulation and
experimental results.

6.4. SEM and tomography analyses of fracture surfaces

Notched specimen fatigue mechanisms are described in this Section.
For all the specimens, the fatigue crack initiated at the notch root.
Fig. 32 shows an example of a general fracture surface (at𝑇 = 250 ◦C
and defect distance to surface d = 0.016 mm). The main crack initiates
on a shrinkage defect close to the specimen free surface. The steady
crack propagation region, however, transforms in a complex shape

induced by the notch stress concentration and do not show the standard
semi elliptical shape observed on smooth samples. Fig. 32 also shows a
secondary crack with characteristic features, which has less propagated
and exhibits a crack shape similar to smooth specimen cracks.

To investigate the crack shape before failure, specimen 53T5 was
analysed using laboratory X-ray tomography. The fatigue test was
stopped after crack initiation was detected and the cracked sample
scanned. A 5.1 × 5.1 × 5.1 μm voxel was used. The general 3D shape
of the sample is shown in Fig. 33. The main crack appears at or very
close to the notch root along the direction: the crack is contained in
a ±400 μm interval from the notch middle showing successive and
numerous crack bifurcations. The segmentation of the crack shown in
Fig. 34 confirm the complex 3d shape of the crack and the limited crack
propagation towards the center of the notched specimen (400 μm) due
to the strong gradient effect. Finally Fig. 35 displays what is identified
as the main crack initiation. The initiating defect is highly spherical
(see Fig. 35(c)), suggesting a gas porosity defect of 80 μm. The initial
shape of the crack corresponds to a classical semi circular crack (see
Fig. 35(b)) centred on the identified defect. The steady crack appears
roughly 1200 μm wide before it changes aspect (see Fig. 35(a)).

6.5. Fatigue life assessment of notched specimen with numerical defect
generation

Numerical defects are generated according to specific spatial dis-
tribution (homogeneous or clustered process), as well as each defect
size. For each defect, a life prediction can be made using the crack
propagation model described hereafter. The number of cycles to failure
of a given configuration is then defined as the lowest simulated value
of all defects. This critical value depends on the defect size, considered
as the initial crack length, and the defect location, which modifies the
driving mechanical forces of the model (plastic dissipated and elastic
energies). The following describes these different steps.

6.5.1. Defect population generation
A defect population is generated according to the method described

in Section 4: defect location and the 2D equivalent Feret diameter are



Fig. 30. Numerical simulation of 3 strain controlled tests (𝛥𝜀∕2 = ± 0.25; 0.3; 0.4%) at 200 °C, 10th cycle.

Fig. 31. Comparison of experimental and simulated load amplitude for different
temperatures and imposed displacements 𝑑 (indicated in mm) for notched specimen
(𝐾𝑡 = 1.78).

generated in a large window defined on (𝑥, 𝑦, 𝑧) ∈ [−5; 5]3 englobing
the notch area. The defect location was generated using a Poisson
distribution, or a clustered one (as the one illustrated in Fig. 36(a)).
For this study, the clustered distribution is limited to the Thomas Point
process. Each defect 𝑖 is located by its cylindrical coordinates (𝜌𝑖, 𝜃𝑖, 𝑧𝑖).
For subsequent illustrations, all the defects are projected on the 𝜃 = 0
cross section (see Fig. 36(b)) and defects outside the virtual notched
specimen are omitted.

6.6. FEM mapping and calculation method

Using the results of the FEM calculation without considering any
defect, each defect can be associated with a local value of elastic energy
(see Fig. 37(a)) and plastic strain energy (see Fig. 37(b)). To obtain
the mapping, FEM results are firstly extracted at calculation nodes
and results linearly interpolated at defect location. Although the stress
values are only approximate values at nodes, the fine mesh used in our
FEM model allows neglecting the approximation.

After obtaining the energy values at each defect center, the crack
propagation model (defined in [19]) is used to simulate the predicted
life 𝑁 𝑖

𝑓 ,𝑠𝑖𝑚 of each defect:

𝑁 𝑖
𝑓 ,𝑠𝑖𝑚(𝑑𝑖) = ∫

𝑎𝑓

𝑑𝑖

𝑑𝑎
1
𝜆

𝑑𝑎
𝑑𝑁 (𝛥𝑊𝑒(𝜌𝑖, 𝑧𝑖), 𝛥𝑊𝑝(𝜌𝑖, 𝑧𝑖), 𝑎)

(71)

where 𝑑𝑖 is the 𝑖th defect 2D feret diameter of cylindrical coordinate
(𝜌𝑖, 𝑧𝑖). The angle coordinate 𝜃 is omitted given the revolution sym-
metry. The variable 𝛥𝑊𝑒(𝜌, 𝑧) (resp. 𝛥𝑊𝑝(𝜌, 𝑧)) is the elastic energy
field (resp. the plastic dissipation energy field). The final crack length
considered 𝑎𝑓 is equal to 3 mm. This method aims at quantifying the
influence of clustering on fatigue life considering the small volume
subjected to high loading induced by the notch, thereby creating a
smaller fatigue active volume.

For a rigorous calculation, the 𝛽𝑒 and 𝛽𝑝 parameters should account
for the notch geometry and the inhomogeneous mechanical field com-
pared to the uniform stress/strain field for smooth specimens. However,
in a first instance both parameters will be taken from results obtained
in [19] on smooth specimens, the results presented hereafter mostly
aiming at emphasizing the effect of defect clustering on fatigue life.

Fig. 38 shows the result of the fatigue life simulation for one
specimen. Given the theoretical stress concentration at the notch root,
all the shorter lives are found close to the root, even though some larger
defects slightly correspond to fatigue life in the same range.

6.7. Simulation of defect mapping and life estimation: results

Using this simulation method, it is possible to generate a high
number of specimens, all with a specific defect population, and cal-
culate for each specimen a number of cycles to failure. Combined with
kernel density estimation, the model provides an estimate probability
density function of the fatigue life. Confronting the simulation results
with experimental ones (see Fig. 39(a)) shows both homogeneous and
clustered process underestimate the fatigue life of notch specimens.
Compared with smooth specimens (see [19]), which presented much
better correlation results, the discrepancy could be caused by the
hypothesis taken. Indeed, the crack propagation model, used here in
a high stress gradient environment, does not account for the hetero-
geneous stress field. The SEM and tomography observation suggest
some complex sequences for crack initiation and propagation in the
millimetre range with a crack arrest at about 400 μm from the notch
root. A more local detection of the crack initiation may lead to better
predictions. Similarly, the interaction of the crack propagation with the
neighbouring defects in an heterogeneous stress field is quite different



Fig. 32. General view of the fractured surface of a notched fatigue specimen (specimen 38T5, d = 0.016 mm, 𝑇 = 250 , Nf = 3302 cycles.

Fig. 33. 3D isosurface view of fatigue notched specimen analysed by tomography.
The colour indicates surface curvature, allowing to reveal the fatigue crack. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

to the one acting in an homogeneous (uniaxial) stress/strain field. This
could cause higher experimental fatigue life and is not straightforward
to capture explicitly in a model. Finally, the tomography analyses
suggest some tortuous paths at the notch root that may be a sign of
multiple crack initiation and possible crack shielding effect. This should
be further investigated from both the experimental and numerical side.

All things considered, the model proposed provides interesting re-
sults for the study of clustering defects on highly loaded volumes. This
can be seen on Fig. 39(b): the mean number of cycles to failure is higher
when using clustered point process generated defects. While counter-
intuitive, these conclusions have a simple explanation: in some cases,
the clustered point process generates very few defects in the highly
stressed volume. An example of such a numerical specimen is given
Fig. 39(c): the parents points of the clustered point process are all far

Fig. 34. 3D crack reconstruction by tomography before total failure.

from the notch root, causing a local low density of defects (52 in the
restricted area 𝑟𝑐). Due to the low number of defects, the critical one is
comparatively smaller (23 μm, compared to the mean values over all the
specimens of 70 μm) and the estimated fatigue life higher (811 cycles,
as opposed to the mean value 423).

7. Conclusions and prospects

The thorough study of the statistics of defects can help better
understand the fatigue mechanisms and the representativeness, from
a statistical point of view, of a sample. In a more detailed way, these
other conclusions can be drawn:

• Properly thresholding a tomography sample can be a difficult
task. Working directly on the global histogram can help having



Fig. 35. Analysis of first stages of crack initiation and propagation on microstructural defect identified by the arrow (specimen 53T5, d = 0.020 mm, 𝑇 = 200 , Nf = 1456 cycle).

Fig. 36. Defect population generation in a notched specimen. The diameter of each symbol is proportional to the simulated 2D Feret diameter.

comparable image processing, especially for samples analysed by
different means.

• Since the larger defects are here of concern, censoring the smaller
defects can help better grasp the defect size distribution in a
selected area, here the right hand tail distribution. Combined
with an appropriate statistical distribution (the generalized pareto
distribution), the statistical inference shows good agreement.

• Studying the nature of the spatial distribution of defects by use
of the theory of point process ascertains what can be visually
observed : the defects aggregate in clusters. By combining with
the study of marked point processes, the correlation between the
location and the size of defects can also be better understood: for
this specific case, there is no link between location and size (or
very little).

• Using the proper size and location distribution, combined with
the observation of critical defects for low cycle fatigue, the sta-
tistical representative volume is reduced to only the subsurface
volume.

• Despite the higher scatter in number of defects, the extreme
defects (i.e. the largest defect per sample) is only slightly affected
by this clustering.

• However, when the size of clusters is comparable to the sample
size, the scatter in the number of defects per sample drastically
increases. For small diameter specimens with internal defects, the
consequences may be important.

• Similarly, when the characteristic length of the cluster point pro-
cess is similar to that of the highly stressed volume of a notched
specimen, critical defects size can be affected.

In future with the progress of X-ray tomography resolution or 3D
atom probe, the proposed methodology could be used to identify the
statistical distribution of non-metallic inclusion since their drastic effect
on LCF resistance is well-known [10]. This could be useful for high
fidelity microstructure modelling and simulation.

Data availability

The data that has been used is confidential.



Fig. 37. Defect population generation in a notched specimen and FEM calculation mapping (𝑑 = 0.025 mm and 𝑇 = 20 °C).

Fig. 38. Fatigue life simulation of number of cycles to failure (𝑁𝑓 ) of notched specimen (𝑑 = 0.025 mm and 𝑇 = 20 °C, 𝑁𝑓 = 753). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)



Fig. 39. Influence of point process on fatigue life prediction.
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