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Over the past two decades, species distribution models (SDMs) 
have become one of the most popular modelling tools in biogeo-
graphical studies. SDMs try to quantify the relationship between 
a taxon and its environment, for example, to predict its geograph-
ical distribution, to assess potential impacts of climate or land use 
change, or to explore biogeographical hypotheses. In practice, 
SDMs generally correlate species distribution data in the form of 
spatially explicit presences and absences, to environmental pre-
dictors, such as climatic variables. In cases where presences and 
absences are difficult to obtain in quantity and quality— that is, for 
the majority of biodiversity— it is possible to use SDMs with pres-
ence data alone. These are dedicated approaches requiring the 
generation of additional data points (called ‘background points’ 
or ‘pseudoabsences’). Overall, the concept of SDMs is simple; 
however, their implementation is complex because a large num-
ber of decisions are required throughout the multiple steps of 
the process (Figure 1). Each of these decisions must be weighed 
carefully by the users because they have a strong influence on 
the outcomes of SDMs and their interpretation. Guidance on how 
to make these decisions can be found in methodological or ped-
agogical papers and books (e.g. Elith et al., 2006; Guillera- Arroita 
et al., 2015; Guisan et al., 2017; Guisan & Thuiller, 2005; Phillips 
et al., 2006; Thuiller et al., 2009). However, for the majority of 
these decisions, there is still a high degree of uncertainty, because 
of shortfalls in our knowledge (see my perception of this degree 
of uncertainty in Figure 1). This uncertainty often leads to either 
making arbitrary decisions or costly sensitivity analyses when pre-
paring SDMs. Furthermore, the profusion of methodological stud-
ies makes it easy for users (especially new users) to either miss 

guidance or caveats relevant to their study, or to lack the ability to 
understand them.

Two main issues in SDM implementation require further guid-
ance: uncertainty in decision- making and inaccessibility of guide-
lines. Uncertainty can be addressed by studies comprehensively 
investigating a specific methodological issue, providing established 
guidelines for decision- making. Inaccessibility can be addressed by 
studies synthesising the methodological progress with sufficient 
pedagogy to propagate good practices in the field. Here, I appraise 
a recent study which has combined these two characteristics in 
such an outstanding way that it should be extremely helpful to 
both new and experienced users (Valavi et al., 2021). First, Valavi 
and colleagues comprehensively addressed the choice of modelling 
techniques in presence- only situations, which has been a prominent 
issue so far. Second, they detailed all their methodological choices 
pedagogically, explaining the underlying reasons, and thus providing 
accessible guidelines throughout the multiple steps of the modelling 
process. In the following text, I first explain the context of model 
choice and pinpoint the major progress provided by Valavi and col-
leagues, and then I explain why, beyond this progress, their study 
will improve practices in the field. Finally, I conclude with an outlook 
on the uncertain decisions in SDMs.

1  |  ADDRESSING THE GAP OF MODEL 
CHOICE IN PRESENCE-  ONLY STUDIES

SDMs can be calibrated with many modelling techniques (e.g. Valavi 
and colleagues compared 21 techniques), which can be classified 
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2  |    LEROY

into two broad categories: (1) regression approaches such as gener-
alised linear models and (2) classification- based algorithms and their 
machine- learning extensions, such as random forests (see Guisan 
et al., 2017 for a detailed overview). New techniques are continu-
ously being introduced into the field, such as new classification- based 
algorithms (e.g. XGBoost Chen & Guestrin, 2016), improving classi-
cal algorithms such as boosted regression trees (Elith et al., 2008). 
Conversely, some classical approaches are still subject to progress 
in their understanding, such as the maximum entropy algorithm 
(MaxEnt, Elith et al., 2011) which has been recently associated with 

a range of statistical methods called point process models (Renner 
et al., 2015). The diversity of possible algorithms for SDMs makes 
the selection of candidate algorithms a difficult decision, especially 
in presence- only situations where it is notoriously difficult to esti-
mate model performance reliably. The field of biogeography was 
sorely lacking a comprehensive and reproducible evaluation of the 
performance of the currently available algorithms.

To fill this gap, Valavi and colleagues used a massive benchmark 
dataset composed of 225 species with presence- only records from 
six different regions of the world. This dataset has several features 

F I G U R E  1  Schematic representation of the major steps of the process of building a species distribution model (SDM) and the multiple 
decisions that users have to make at all steps. Each decision will impact the outcome of models, and must be carefully chosen by users by 
applying guidelines from the literature to their study. However, there is still a large degree of uncertainty in our knowledge for best decision- 
making, as illustrated with the different confidence icons. This figure was designed to illustrate a comprehensive view of the general 
complexity of building a model, but it is not exhaustive and its content should be expected to vary among studies because of the many 
idiosyncrasies in SDM studies. Italicised text indicates a decision which was discussed in Valavi et al. (2021). Note that the order of decisions 
inside each step does not represent a sequential order in which steps should be undertaken
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    |  3LEROY

which explain why it is suitable to provide recommendations on 
model performance which can also be generalised to areas be-
yond this study. First and foremost, it has independent presence- 
absence data to evaluate the presence- only models for each species. 
Independent presence– absence data for model evaluation are the 
most appropriate and arguably the rarest type of evaluation data in 
presence- only studies. This first feature itself sets this comparative 
study as a reference in the field for the choice of presence- only mod-
elling techniques, since no other study has been published on this 
topic with a similar or better evaluation dataset. Second, the environ-
mental conditions and taxonomic groups in this dataset are diverse. 
This diversity probably covers a large breadth of relationships be-
tween species and their environment, and thus the results could be 
transferred to a wide range of taxa with similar species– environment 
relationships. Third, the dataset covers a gradient of data in quantity 
(from five to thousands of records) and quality (biased and unbiased). 
Hence, the results of Valavi and colleagues help modellers to decide 
on which techniques are adequate for their study, by pinpointing the 
techniques which perform best under data- poor or data- rich condi-
tions, and those that perform well in all conditions.

Valavi and colleagues reached conclusive results on the relative 
performance of the 21 tested modelling techniques. I do not intend 
to mention all their important results, but rather, I want to illustrate 
with some examples how the findings are likely to improve future 
practices. For example, they established how the choice of default 
settings over carefully tuned models can be extremely detrimental to 
model performance, which is the case of the machine- learning tech-
nique called Random Forests. They showed that Random Forests 
are the best individual technique with a few well- tuned parameters, 
and the worst technique under default parameters. Likewise, they 
showed that the combination of multiple modelling techniques to 
obtain a consensus prediction, a method called ‘ensemble model-
ling’ (Araújo & New, 2007), can be the best performing procedure if 
based on well- tuned models, whereas it will perform no better than 
average if based on models with default settings.

2  |  GUIDANCE FOR IMPLEMENTING 
SDMS

Yet, methodological progress is only the first of the two reasons why 
Valavi et al. (2021) are likely to improve SDM practices. The second 
reason lies in the pedagogy of the paper. They explain these complex 
methods in a text which is accessible to all researchers who have an 
ecological background, but not necessarily a strong modelling back-
ground. Specifically, one of the main barriers in choosing or tuning 
modelling techniques lies in user understanding, or the lack thereof. 
Descriptions of techniques are available in the literature, but are 
not necessarily formulated in a way which can be readily under-
stood by ecologists, and this can lead to misuse, misinterpretation 
or avoidance of techniques. Valavi and colleagues made biologically 
meaningful descriptions of the different techniques and parameteri-
sations used. Besides the description of techniques and the choice 

of parameters, Valavi and colleagues also thoroughly explained their 
methodological decisions pertaining to other steps of the process, 
such as the selection of background points or the evaluation pro-
cedure, synthesising existing knowledge in the literature (italicised 
text, Figure 1) in an accessible prose. Furthermore, Valavi and col-
leagues provided their code with sufficiently detailed comments to 
be understood and reproduced. Therefore, they show how easy it is 
to adopt these new best practices straight away, and they provide 
new users with the necessary tools to do so. For all these reasons, 
Valavi et al. (2021) become a reference in the list of guidance pa-
pers to use when conducting SDM studies (Araújo et al., 2019; Feng 
et al., 2019; Guillera- Arroita et al., 2015; Guisan & Thuiller, 2005; 
Zurell et al., 2020), especially for researchers beginning with SDMs.

3  |  OUTLOOK

Valavi et al. (2021) will become the long- awaited benchmark for 
model comparison in presence- only situations. However, in spite of 
the diversity of species and regions it covers, it still remains restricted 
to plants and vertebrates of continental environments which is a po-
tential limitation to its generalisability. Thus, an outstanding issue to 
explore is the limits of this dataset, and whether it can be general-
ised to a broader scope of organisms and environments, especially 
when species– environment relationships are likely to be different. 
For example, it is difficult to foresee whether functional responses 
for invertebrate taxa would result in similar model performance for 
plant and vertebrate taxa. Likewise, marine, freshwater or subter-
ranean environments have specific sets of predictor variables whose 
nature may differ from continental climatic variables, which, in turn, 
may result in a different ranking of model performance. Assessing 
the transferability of these results to other types of organisms and 
environments is, in my opinion, a crucial question to address in the 
future.

Regarding a related yet broader perspective, the methods of, or 
constraints on, variable selection and interpretation were not ad-
dressed by Valavi and colleagues, probably because they focused 
on the predictive performance of SDMs. However, the objective of 
SDMs can also be the understanding of the drivers of species distri-
butions, and the process of identifying and interpreting important 
variables remains an outstanding issue which needs to be compre-
hensively addressed. In fact, we can extend this observation to the 
many modelling decisions for which the literature offers insuffi-
cient guidance or currently unresolved knowledge (Figure 1), such 
as, to name a few that I find important: how to identify the optimal 
taxonomic resolution at which a niche should be modelled; how to 
choose between pseudoabsences and background points and what 
is the optimal sampling strategy in each case; how to best combine 
multiple model layers, for example, to combine a mechanistic with 
a correlative model or models calibrated at different spatial scales; 
how to properly evaluate models accounting for both performance 
and biological realism; and how to evaluate and communicate com-
prehensively the uncertainty of SDMs.
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4  |    LEROY

Insofar as many of the decisions required to implement SDMs 
lack established guidance, I urge ecologists to communicate the ra-
tionale for their choices more clearly. The reporting of decisions in 
SDM studies has recently been improved thanks to several papers 
aimed at standardising the documentation of protocols (Araújo 
et al., 2019; Feng et al., 2019; Zurell et al., 2020). However, there 
is still progress to be made in providing the reasons underlying un-
certain or debatable choices, and such progress will have multiple 
positive implications for the field. First, adopting such practices will 
improve the review process, since the reasons underlying meth-
odological choices are frequently asked for. Second, some of the 
decisions taken have consequences on the interpretation of model 
predictions, but this link may remain implicit to the reader unless 
the authors specify it explicitly. Last, airing rationales and hypoth-
eses supporting choices will generate transparent discussions and 
debates in the literature, which in turn, will enable collective prog-
ress towards reducing uncertainty in SDM implementation.
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