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Abstract

1. Challenging calibration of complex models can be approached by using prior knowledge
on the parameters. However, the natural choice of Bayesian inference can be computationally
heavy when relying on Markov Chain Monte Carlo (MCMC) sampling. When the likelihood
of the data is intractable, alternative Bayesian methods have been proposed. Approximate
Bayesian Computation (ABC) only requires sampling from the data generative model, but may
be problematic when the dimension of the data is high.

2. We studied alternative strategies to handle high dimensional data in ABC applied to the
calibration of a spatially explicit foraging model for Bombus terrestris. The first step consisted
in building a set of summary statistics carrying enough biological meaning, i.e. as much as the
original data, and then applying ABC on this set. Two ABC strategies, the use of regression
adjustment leading to the production of ABC posterior samples, and the use of machine learning
approaches to approximate ABC posterior quantiles, were compared with respect to coverage of
model estimates and true parameter values. The comparison was made on simulated data as
well as on data from two field studies.

3. Results from simulated data showed that some model parameters were easier to calibrate
than others. Approaches based on random forests in general performed better on simulated
data. They also performed well on field data, even though the posterior predictive distribution
exhibited a higher variance. Nonlinear regression adjustment performed better than linear ones,
and the classical ABC rejection algorithm performed badly.

4. ABC is an interesting and appealing approach for the calibration of complex models in
biology, such as spatially explicit foraging models. However, while ABC methods are easy to
implement, they often require considerable tuning.

Keywords: Approximate Bayesian Computation, foraging model, calibration, pollination
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1 Introduction

Evidence of declines of pollinator populations (IBPES, 2016) calls for accurate estimations of their
status, spatial distribution and responses to future environmental change. Insect pollination is
crucial for maintaining wild plant diversity as well as the production of many entomophilous crops
(Ollerton et al., 2011; Garibaldi et al., 2013), and bees play a major role in crops pollination (Rader
et al., 2016). In this context, spatially explicit foraging models accounting for bee mobility may serve
the purpose of accounting for bee distribution in landscapes when estimating their population status,
but also be used to generate predictions to support management and land-use decisions. Bee foraging
in landscapes can be modelled based on diffusion from nests to floral resources (Lonsdorf et al., 2009;
Haussler et al., 2017), central place foraging theory (Olsson and Bolin, 2014; Olsson et al., 2015)
or using agent-based modelling (Becher et al., 2014, 2016). Calibrating these often complex and
nonlinear models that produce high dimensional outputs is not straightforward. Parameters can be
estimated based on literature or expert judgment, but confronting a model to field data is crucial
to ensure its validity and ability to produce realistic predictions. To this end, model calibration
can be set up as an inverse modelling procedure to estimate model parameters by comparing model
outputs with observations. In pattern-oriented modelling, summaries of generated model output are
compared with corresponding summaries in observations. This method have previously been used
to calibrate agent-based models of bees foraging (Topping et al., 2012; Becher et al., 2014). Inverse
modelling have also been done to calibrate bee floral attractiveness and nesting densities in different
land use classes (Baey et al., 2017; Gardner et al., 2020). Such statistical model calibration requires a
probabilistic model for data given parameters, from which one can calculate the likelihood (Kennedy
and O’Hagan, 2001). This generative model can be derived from a combination of observation and
system processes (Royle et al., 2007), where the system processes can be expressed by the spatially
explicit foraging model.

Parameter estimation using Bayesian inference allows incorporation of prior knowledge about the
parameters and quantification of parameter uncertainty. Starting from a set of prior distributions,
the aim is to compute the posterior distribution, i.e. the joint distribution of the parameters
conditionally on the data (Gelman et al., 1995). Adopting a Bayesian point of view with informative
priors can also guide the estimation process by providing regions of higher interest in the parameter
space. In most cases, the posterior distribution is not available in a closed form and should be
generated using sampling schemes such as Markov Chain Monte Carlo (MCMC) (Tierney, 1994;
Robert et al., 2004).

However, an additional issue may arise when dealing with complex ecological models. Indeed,
these models are often defined as a set of hierarchical relationships involving latent variables which
can be high dimensional. In this case, the likelihood of the model is obtained by integrating out the
complete likelihood (i.e. the joint distribution of the data and the latent variables) over all possible
values of the latent variables. This integration step is in most of the cases intractable. Therefore,
classical MCMC approaches such as Metropolis-Hastings algorithm are unfeasible since they require
evaluations of the likelihood function at each iteration. In this context, several alternatives have
been proposed. When the complete likelihood is easy to compute, approaches which generate
samples from the joint posterior distribution of the parameters and the latent variables can be
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used (Wilson and Balding, 1998). However, they can prove to be very inefficient, for example if
the dimension of the latent variables is too large. Another possibility is the Monte-Carlo within
Metropolis (MCWM) algorithm, where the likelihood values required at each iteration are replaced
by approximations based for example on importance sampling (IS) (O’Neill et al., 2000; Beaumont,
2003). This approach can be computationally heavy and the high dimension of the latent variables
space can hinder the efficiency of the algorithm. One can also resort to Variational Inference which
has been recently extended in the context of intractable likelihoods by Tran et al. (2017), where exact
evaluations of the likelihood are replaced by unbiased estimates. As with the MCWM approach,
the computation of these estimates using Monte Carlo algorithms can be time consuming. From a
frequentist point of view, intractable likelihoods issues can be handled using EM-type algorithms,
even though they can be very difficult to set up in a high dimensional context, or using surrogate
models for example, which are simpler versions of the original model carrying enough information
about the parameters.

In this paper, we instead rely on approximate Bayesian computation (ABC). Stemming from
population genetics in the late 1990s (Tavaré et al., 1997; Beaumont et al., 2002), ABC has become a
method of reference for highly complex models in a broad range of disciplines including biology (Toni
et al., 2009), ecology (Beaumont, 2010), epidemiology (Minter and Retkute, 2019) or economics
(Forneron and Ng, 2018). It has been successfully applied in the context of individual-based model
in van der Vaart et al. (2015), where it was also used as a tool to enhance model development.
One of the many advantages of ABC is its flexibility, since the only requirement is to be able to
simulate from the model. Moreover, these simulations can easily be performed in parallel, which is
particularly relevant when dealing with complex models which can take a few seconds to run. The
basic idea of the algorithm is to generate several parameter values from given prior distributions,
and to compute simulated values using the sampled parameters and the data generative model
(Csilléry et al., 2010). Then, only those parameter values leading to simulated data which are close
enough to the observed data are retained. Several generalizations and extensions of the algorithm
have been proposed to handle issues that may arise in practice, such as the high dimension of the
data and the choice of a criterion to measure the distance between simulated and observed data.

In this paper, we give an overview of different ABC methods usable for the calibration of complex
models with highly dimensional and often noisy observations, and compare their performances on
a spatially explicit bumble bee foraging model. This is a deterministic model based on central
place foraging theory (Olsson and Bolin, 2014) combined with a probabilistic model for the field
observations, and described in Section 2.1. Comparison of the ABC methods is first made on a set
of simulated data, and then applied to field data from two field studies on pollinator abundance in
southern Sweden. Parameter estimation is described in Section 2.4 and calibration performances of
the different algorithms are evaluated on their abilities to accurately estimate the model parameters,
based on simulated data generated under the model and on field data (Section 3).
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2 Material and methods

2.1 The Central Place Foraging model

Here, we briefly describe the central place foraging (CPF) model used (for details see Olsson and
Bolin (2014) and Olsson et al. (2015)). It is built on the assumption that fitness-maximizing
animals (i.e. bumble bees) nest in a central place to which they collect food in the surrounding
landscape. Since commuting between the nest and foraging patches requires time and energy, bees
are willing to fly to a distant patch if and only if it provides enough food of suitable quality,
while at shorter distances also lower quality patches are visited. The model requires two types
of inputs: a rasterised map M giving the land-use category of each pixel (e.g. grassland, urban
area, woodland, ...), and a set of parameters which we denote by #. The model used is a modified
version of the original CPF model. It is based on the CPF foraging algorithm Olsson et al. (2015),
but we replaced the equation for the maximum distance a forager from a given nest is prepared
to fly (equation (4)). Following Lonsdorf et al. (2009), we did not explicitly include population
growth across the season, but ran the model using season-dependent inputs across three sequential
seasonal periods. For each seasonal period, we assigned floral and nesting values to each land-use
category, that reflects the attractiveness and quantity of floral resources it provides, as well as
the attractiveness in terms of nesting. Both floral and nesting values are recorded on a 0-1 scale,
with 0 representing no attractiveness and 1 maximum attractiveness of the given land-use category.
Floral maps were generated from land use maps (see below) by sampling random floral values from
parameters calibrated on expert judgment or in some cases data (Baey et al., 2017).

General behaviour. We define the minimum floral value resulting in any visit by bees as fp, and
the maximum distance travelled by a bee as 1. Now, for a patch of floral quality f, with f > fq,
the maximum distance an individual bee is prepared to fly to reach it is given by:

=19 <1_J;S>. (1)

Le., 79 is the maximum distance a bee is willing to fly for a patch of infinite floral quality.

A bee nesting in patch ¢ will visit patch j, if its floral quality f; is high enough with respect
to the distance between the two patches. We define by A;; the difference between the maximum
distance the bee is willing to fly for a patch of floral quality f; and the actual distance d;; between

Aij =19 (1 - 2)) —djj, (2)

This quantity will be largest for a patch of “infinite” floral quality located adjacent to the nest. In

patches ¢ and j:

other words, A;; is a measure of the distance bees nesting in patch ¢ will spare by flying to patch j
compared to how long they were willing to fly for a patch of that quality. Then, the suitability of
a nest in patch ¢ is defined by:

si=» Aylagso, (3)
J
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Suitability Square-root of suitability Nest-specific maximum distance

1200 -
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1e+06 - 900
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Suitability Square-root of suitability Nest-specific maximum distance

Figure 1: Example of the range of variation of nest suitability values, of its squared root and of the resulting
nest-specific T; for o = 750m, a=500 and b = 200.

where the sum is over all the patches in the landscape. This quantity can be viewed as measuring
the distance a bee will spare flying when its nest is surrounded by enough patches of good quality.
The more patches with high floral quality that are located around the nest, the higher the suitability
of the nest.

Optimization of foraging. An individual bee nesting in patch i seeks to optimize where to
forage by exploiting surrounding patches according to preferences determined by a trade-off between
distance and floral quality. This means that a bee with a nest surrounded by patches of flowers of
high suitability will exploit fewer patches further away compared to a bee who’s nest surrounded
by patches of low suitability. This lead to the definition of a new “nest-specific” maximum distance
the bee is prepared to travel from its nest in patch i:

70

" T ep((ysi - a)/b)

The definition of this “nest-specific” maximum distance allows bees to adapt their behavior to ac-

(4)

count for differences in landscape structure. We chose a logistic curve to enhance the interpretation
of the parameters: a is the inflexion point i.e. the suitability value for which the nest-specific maxi-
mum distance is equal to half the maximum 7y and b is the slope of the logistic curve. Parameter b
is positive, so that 7; is a decreasing function of s;: the higher the suitability of their nest, the closer
to the nest the bees will fly. Since suitability values are computed as sums over all the patches in
the landscape of quantities varying from 0 to 79, they can be very high, we used a squared root
scale in the logistic function (4) (see Figure 1 for an example of the ranges of variation of s;, \/s;
and 7;).
Similarly to A;;, we define a new quantity Aj; using the nest-specific maximum distance 7;:

A;j =T; <1 — jij) — dija (5)

A;‘j can be seen as the contribution from patch j to fitness of the bees nesting in patch 1.
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Then, the rate of foraging bees from a nest in patch ¢ to floral resources in patch j is set to:

S =7 . (6)
23:1 Aij

Ti—j =
where g; is the nesting value.
Finally, the intensity of (instantaneous) overall rate of bees visiting patch ¢ is then defined as

the sum of foraging rates by:
J

vi(0, M) = 7 (7)
j=1
where 6 = (79, fo,a,b) is the vector of parameters from the CPF model (see also Table 1), and M
is the (fixed) map used as an input to the CPF model, containing informing about the landscape
structure and land-use of each cell in the rasterized landscape.

2.2 Data

Observations of bees abundances are extracted from two studies monitoring pollinator abundances
in southern Scania, thereafter called respectively STEP and COST. In this study, we focus on bees
from the Bombus terrestris species. A total of 790 measurements of bumble bees abundances are
available from these two studies, covering four different years and up to three periods along the

SeasSo1l.

Figure 2: Sampling locations from the STEP (16 locations) and COST (19 farms) studies.

STEP data. We use a Swedish dataset from the European project Status and Trend of European
Pollinators (STEP), which took place in different European countries including Sweden in 2011 and
2012 (Holzschuh et al., 2016). This study surveyed several pollinators among which honey bees,
bumble bees, hoverflies and wild bees. In this paper, we focus only on bumble bees from the Bombus
terrestris species. Data were collected in 16 different locations in Scania in southernmost Sweden
(Figure 2). Each location consisted of three sites within a circle of 2 km radius, each corresponding
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to a specific land use category: oilseed rape field, semi-natural grassland and field edge. In 2012,
a wildflower strip was also surveyed in 8 locations. In each site and year, the number of bumble
bees was recorded at two occasions for each floral period considered (early and late in the season).
Bumble bee numbers were recorded along 150m2 transects (150mx1m) during 15 minutes. Foraging
and flying bees were counted separately. A total of 513 bumble bees abundances are available.

COST data. In the COST project, data was collected around 19 farms in Scania, with three
habitat types surveyed at each farm: cereal field, ley field, and semi-natural grassland (Carrié et al.,
2018). This study surveyed bumble bees and butterflies, but we focus on bumble bees from Bombus
terrestris species in this paper.

Bumble bees were surveyed in 2016 and 2017, at different occasions covering the two periods
represented in the STEP study plus an additional period later in the season. The number of bumble
bees was recorded along a 200m2 transect (100mx2m) for a period of 10 min. No distinction was
made between foraging and flying bees. A total of 278 bumble bees abundances are available.

Land use maps. Information about land use was extracted from the Swedish National Land Cover
Database from the Swedish Environmental Protection Agency (based on satellite data with 10m
resolution in combination with other layers) and the Swedish Integrated Administration and Control
System which is a geographical database on farmland use in Sweden organized by the Swedish Board
of Agriculture and maintained to administrate agricultural subsidies and agri-environment schemes.
The latter was used to provide more detailed information on land use within agricultural land. The
choice of the spatial resolution was made as a compromise between the computation time (which
rises as the resolution increases) and the accuracy of the landscape description. At a larger resolution
scale, difficulties could appear when merging different landuse types, for example on the definition
of the resulting landuse type for the merged cell. For this resolution scale, running the model on all
the landscapes took approximately 1 hour and 45 minutes on a 4 cores Intel(R) Core(TM) i3-6100T
CPU @ 3.20GHz processor.

2.3 Bayesian formulation of the model

Parameter estimation is conducted in a Bayesian framework. In this section we describe the likeli-
hood of the data and the priors for the parameters. Let y;;1,i=1,...,n,5=1,...,JJk=1,..., K
denote the observations of the number of bees on site i, year j and period k. Each sampling site is
associated with a specific study. Each study, in turn, is associated with a given set of landscapes
and was conducted during different years, with no overlap between studies. To reduce computation
time, the model is not run on the whole map of Scania, but on a set of smaller landscapes. For
each study, a 10x10 km? landscape centered on each surveyed oilseed rape or cereal field was used.
These covered the sampling sites mentioned in section 2.2, corresponding to oilseed rape fields, field
borders and semi-natural grassland for the STEP study, and to cereal field, ley field and semi-
natural grassland for the COST study. We assume that conditionally on the landscape structure
and on the model, the observation made at different locations are independent.
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Table 1: Summary of model parameters and observation parameters

Parameter Interpretation

T0 maximum distance a bee is prepared to fly for a patch of infinite
Model floral quality, i.e. asymptotic value for the nest-specific maximum
parameters flying distance
fo lowest floral quality a bee will ever be visiting
a nest suitability value (in a square root scale) resulting in a nest-

specific maximum distance equals to half the maximum distance

70
b slope of the nest-specific maximum distance curve
Observation Bk period-specific scaling parameter for the population size
parameters o2 observation noise

Likelihood. We denote by A;;;. the real intensity of the visitation rates process on sampling site
i, year j and period k. The data generative model is specified as the following hierarchical model:

e part 1: observed bee abundance varies according to a Poisson distribution with an intensity
depending on site, year and period:

Yijk | Aijk, 0 ~ Poi(c; - Aiji), (8)

where ¢; is a known scaling parameter accounting for the time window of the observation
process and the area of the sampling site. More specifically, ¢; = d; - a;, with d; and a;
respectively the duration of observation process and the area of the sampling site i.

o part 2: the realised (log) intensity of the Poisson distribution on a site at a given time can
be characterised as normally distributed with a mean given by the CPF model and a time
period-specific parameter:

K
log \iji. = logv; (0, Myji) + B1 + Z Bili—k + €, €ijk ~ N(0,0%). 9)
1=

Since there are differences in population sizes at landscape scale between periods within a year,
not considered in the CPF model, period-specific parameters are introduced: S; is the baseline
effect on period 1, and 3, for [ = 2,..., K correspond to the development of population size
compared to period 1 (i.e. the effect of period k on the log intensity is 51 + Sk)

The complete vector of parameters is given by ¥ = (6,w), where 6 is the aforementioned vector
of parameters from the CPF model which are needed to compute the visitation rate v; in equation
(9), and w = (B4, ..., Bk, c?) is the set of parameters corresponding to the observation process, i.e.
the parameters linking the visitation rate given by the CPF model and the mean intensity of the
Poisson distribution in equation (8). A summary of all the parameters is given in Table 1. Our
main objective is to estimate 6, and w can therefore be seen as nuisance parameters. We denote by
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Yobs the vector of observations, and by p the total number of parameters to be calibrated (i.e. the
dimension of ). Combining equations (8) and (9) we can define the likelihood of the data as:

L(yobs ‘ ¢) = H L(yijk | ¢)

ik
= H/p(yijkaAijlmd)) dX

ik
= H/p(yijk | Xijks ) P(Nigi | ¥) dXij

+oo o ) Y 2
ijk J

(10)

This Poisson-lognormal distribution (Izsédk, 2008) is commonly used to model count data (see
Bulmer (1974) in the context of ecological data, or Winkelmann (2008) in the context of econometric
data). Indeed, simple Poisson distributions are often not appropriate to model over-dispersed data
especially when there is an excess of 0s. A classical alternative in this case is to use the negative
binomial distribution, which can also be written as a hierarchical model where, in the first stage,
observations are modeled as in equation (8) and, in the second stage, the intensity of the Poisson
distribution is assumed to be Gamma distributed. In the Poisson-lognormal model, the use of a
Gaussian distribution in the second stage allows for more flexibility and an easier interpretation of
the mean intensity. However, the integral appearing in equation (10) is intractable and cannot be
computed analytically. This prevents the use of classical methods such as MCMC algorithms which
require the evaluation of the likelihood function. More details are given in section 2.4.

Prior distributions. The prior for parameters 7y and fj is specified with some degree of precision
using informal expert judgment (Haussler et al., 2017). For example, the upper bound for 7y was
set to be 1000 m based on previous results showing that the majority of foraging occurs within that
range (Osborne et al., 2008). Log-normal priors are chosen for 79 and fj as these are non-negative
numbers. Flat priors, but within realistic ranges, are used for the other parameters.

7o ~ LN 01000 (10g(1000), 1)
fo ~ LA (log(0.1), 1)

a ~ U([100, 1000])

b ~ U([100, 1000])
B ~ N(0,100), k=1,....K
o? ~TG(1,1)

(11)

Assuming independence between the prior distributions, the joint prior distribution for parameter
Y is given by:

K
m(1h) = m(r0)m(fo)m(a)m(b) (H ﬂ(&)) m(0?)
k=1
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Posterior distribution. The posterior distribution of the parameters is then defined as:

7T(1/J | yobs) X L(yobs | 7/]) ﬂ-(¢) = H L(yijk ’ ?/)) W(i/ﬁ) (12)

i3,k
2.4 Calibration using Approximate Bayesian Computation (ABC)

Due to the aforementioned issue of likelihood intractability, calibration of the model is made using
an ABC approach, where the computation of the likelihood is replaced by the generation of samples
from the model. Starting with a threshold € and a distance d on the set of observations, the first
and simplest version of the ABC algorithm is the ABC rejection sampling:

1. draw samples 1™ = (0™ (™) m =1,..., M, from the prior distribution
2. generate the associated sets of observations 3™, m = 1,..., M using equations (9) and (8)
3. form=1,..., M, keep sample ¢(™ if d(yobs,y(m)) <e

As a result of this algorithm we get a sample of size M., with all the accepted sets of param-
eters, each of them following the ABC posterior distribution. The approximation of the posterior
distribution is better when ¢ is small, and it can be shown that the ABC posterior converges to the
true posterior when ¢ tends to 0, and to the prior when e tends to infinity. However, due to the
curse of dimensionality, the distance between any simulated y(™) and yops tends to be arbitrarily
large when the dimension of the data increases. Therefore, one has to either increase dramatically
the number of ABC iterations M or the threshold £ to maintain a reasonable value for the final
number of accepted values M.. In the former case, computation time can be burdensome, and in
the latter case the quality of the results is degraded.

Several extensions have been proposed to circumvent these issues. A first suggestion is to
consider a smoothing kernel K instead of a crude rejection, i.e. each sample y(™ is associated to
a weight proportional to K (d(yobs, ¥™)). In this case, all the samples are used, which reduces the
waste of computation time. These weights can then be used in an importance sampling scheme to
compute the ABC posterior distribution. To deal with the high dimension of the observed data, a
common practice is to work with a set of summary statistics, i.e. a function s(-) of lower dimension
than the observed data. The choice of the summary statistics is crucial: they should be informative
enough about the underlying biological processes, i.e. carry as much information as the original
data, while being less noisy than the vector of original data, and possibly reducing the dimension
of the data. A simple example in the case of a normally distributed sample of size n is to define s(-)
as a 2-dimensional vector containing the sample mean and the sample variance. A bad choice of
the summary statistics can lead to a large loss of information. For example, the summary statistics
computed on two different datasets can turn out to be identical, complicating the task of the ABC
algorithm based on these summary statistics. Most of the time, the main difficulty is not to find
summary statistics per se, but to find those that are relevant from a biological point of view. An
interesting strategy could be to first identify a set of statistics which can be large and then deal
with this high dimensionality with appropriate methods. To this end, several methods have been

10
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Table 2: Summary of the different methods used in the paper

Name Description Reference R package

Rej ABC with rejection sampling Tavaré et al. (1997) abc

LocLH Adjusted ABC samples from local linear het- Beaumont et al. (2002) abc
eroscedastic model

LocNLH  Adjusted ABC samples from nonlinear heteroscedas- Blum and Frangois (2010) abc
tic model

ANLH Adjusted ABC samples from adaptive nonlinear het- Blum and Frangois (2010) abc, €1071
eroscedastic model

RFA Adjusted ABC samples from nonlinear regression via  Bi et al. (2022) ranger
random forests

wqRF Quantile regression via random forests (weighted Raynal et al. (2018) abcrf
samples)

uwqRF Quantile regression via random forests (unweighted Raynal et al. (2018) abcrf
samples)

gGBM L1 Quantile regression via gradient boosting (L; loss) gbm

gGBM L2 Quantile regression via gradient boosting (Lo loss) gbm

suggested that either select subsets of relevant statistics or are able to deal with high dimensional
statistics.

Finally, two main approximations are made in an ABC algorithm (Blum et al., 2013). First, the
posterior distribution 7(¢ | yobs) is replaced by 7(¥ | Sobs) X p(Sobs | ¥)7(¥), where Sobs = $(Yobs)
and where p(sops | 1) can be seen as an approximation of the likelihood function. Since this quantity
is also in general untractable, a second approximation is made, so that the posterior distribution
7(¢ | yobs) is replaced by what we call the ABC posterior distribution Tapc (¢ | Sobs) := [ p(t, s |
Sobs)ds'

Our analysis is divided into the following steps (see also figure 3): i) we define a first set of
summary statistics in collaboration with experts from the ecological field, ii) we sample parameter
values from the priors and compute the associated summary statistics and kernel weights, iii) we
compare different approaches building upon these summary statistics to either approximate the
ABC posterior distribution or estimate key quantities from this posterior distribution.

Weights were assigned to each simulated parameter values using an Epanechnikov kernel and
the summary statistics were scaled so that only the e M points which are the closest to the observed
summary statistics have a positive weight, and we compared two different threshold values ¢ = 2.5%
or ¢ = 5%. Table 2 summarizes the different methods that were compared in this paper. The code
and the data are available in the git repository https://github.com/baeyc/bloomcpf.

2.4.1 Initial choice of summary statistics.

In this section, we describe the first set of summary statistics that was defined in association with
ecological experts. This initial set of summary statistics need not be too informative since specific
methods will be used in the sequel to deal with summary statistics which do not carry enough
information.
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Figure 3: Summary of the different types of methods considered in the paper.
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Here, summary statistics were defined as the interquartile range and the number of 0’s observed
per sampling site, per period and per year, but combining all types of habitat (which resulted in 210
summary statistics) and the interquartile range and number of 0’s observed per habitat type, per
period and per year, but combining all sampling sites (which resulted in 194 summary statistics).
It allowed for a first reduction of the dimension, from 790 observations to 404 summary statistics.

The division per site, period, year and habitat was made to capture characteristics attributed
to these groups: aggregation across habitats allows to account for the differences in population
sizes between landscapes, whereas habitat-specific summaries allow to capture the joint effect of
population size and relative attractiveness of the habitats. These summary statistics were chosen to
characterize the variability of the observations within the different groups, and to consider the high
frequency of 0’s. The high number of zeros in the original data lead us to consider measures that
are robust to outliers and to the presence of these zeros. For this reason, we chose the interquartile
range to measure the variability of the data, instead of the standard deviation.

2.4.2 First point of view: approximation of the ABC posterior distribution

In this section, we consider the first point of view of producing samples from the ABC posterior
distribution and discuss different approaches based on regression adjustment. The main idea behind
these approaches is to build a relationship between the parameter values and the summary statistics
values, usually through regression techniques, and to use this regression layer to produce adjusted
samples from the ABC posterior distribution conditionnally on the summary statistics. The general
model is given by (Blum and Francois, 2010) :

o™ = i (s<m>) ¥ o (S<m>) Cims i=1,....p (13)

with €;,, a set of iid zero-mean random variables, and where function o; allows to account for
heteroscedasticity.

We compared different approaches. First, we considered the linear homoscedastic case (i.e.
oi(sm) = 1), where estimation of m; is performed using minimum weighted least squares. Then,
we considered the nonlinear and heteroscedastic case, where m; is estimated using feed-forward
neural network, while estimation of o; is performed using a second regression model for the log
of the squared residuals. Blum and Frangois (2010) proposed an adaptive two-stage version of
this method: after a first step where adjusted sampled values are obtained via equation (14), in
a second step the support of the ABC posterior distribution is estimated from this first set, e.g.
using support vector machines. Then, a new nonlinear heteroscedastic regression model is built on
the adjusted samples falling inside the estimated ABC posterior density support. Finally, based on
a recent paper from Bi et al. (2022), we considered the homoscedastic nonlinear case where m; is
estimated using random forests (RF), partly because of their robustness and their ability to select
the most relevant variables from a set of potentially large explanatory variables. In their paper, they
proved in particular that the mean computed on the adjusted ABC posterior sample is an unbiased
estimator of the ABC posterior mean. RF is a method introduced by Breiman (2001) based on
the aggregation of several regression trees, each of them being built on a bootstrap sample of the
data, and using only a random subset of all the available explanatory variables. The RF results in
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a partition of the space of explanatory variables, and in a piece-wise constant prediction on each
set of this partition. After estimation of m; and o;, adjusted samples from the ABC posterior
distribution can be obtained via:

07 = i (sobs) + (97— 1ia(s)) m i=1,...p (14)

Considering nonlinearity and heteroscedasticity allows for more flexibility than the linear case,
albeit at a heavier computational cost. Moreover, the use of feed-forward neural networks can be
seen as a dimension reduction stage, since the model can be expressed as a function of the different
hidden units whose dimension is in generally much smaller than that of the summary statistics. On
the other hand, since random forests are more robust to the presence of irrelevant predictors, they
can naturally handle high dimensional statistics.

Other approaches have been suggested, for example best subset selection methods, projection
techniques (Fearnhead and Prangle, 2012) or partial least squares approaches, but they were difficult
to implement if not unfeasible in our context due to the high dimensionality of our summary
statistics.

Linear and nonlinear regression adjustments are available in the R package abc, and the adaptive
two-stage nonlinear approach can be implemented using the abc package and the svm function from
the e1071 package. Package ranger can be used for random forests regression.

2.4.3 Second point of view: approximation of unidimensional quantities from the ABC
posterior

Approaches listed in the previous section make use of regression techniques to produce ABC poste-
rior samples. In this section, we adopt another point of view and explore a set of methods focusing
on the approximation of one-dimensional quantities of interest from the ABC posterior. It can
include for example posterior mean or posterior quantiles. The main idea is to build a nonlinear
regression model using techniques which can handle a large number of explanatory variables. In
Raynal et al. (2018), the authors suggested the use of quantile regression via of random forests, for
their ability to handle high dimensional data as mentioned previously.

We propose here a second approach based on gradient boosting. The objective of boosting
methods is to build a strong learner from a set of weaker learners, in a sequential fashion. A first
regression model is built between the posterior quantity of interest (e.g. the mean or median) and
the summary statistics. A second regression model is then built, which focus on the points which
were incorrectly predicted by the first regression model. More precisely, weights are assigned to
each point, proportionally to the associated quality of prediction: the smaller the prediction error
for a given point, the smaller its weight. The process is iterated several times. The prediction error
is defined through a loss function measuring the discrepancy between observations and predictions.
Boosting has already been applied in the context of ABC in Aeschbacher et al. (2012), where the
authors used different boosting algorithms to learn the nonlinear regression function relying each
model parameter and the set of summary statistics. Their approach is similar to those mentioned
in section 2.4.2. In this paper, we use gradient boosting in order to directly infer the median, mean
and selected quantiles of the posterior distribution. Here, we combined gradient boosting with
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quantile regression to estimate the posterior median as well as the posterior quantiles of order 2.5%
and 97.5%. We also estimated the posterior mean using L; and Lg loss functions, i.e. minimizing
respectively the absolute error and the squared error between predictions and observations in the
regression model. The L1 loss is known to be less sensitive to outliers (Hastie et al., 2001).

ABC via RF is available in the R package abcrf, and ABC via gradient boosting can be imple-
mented using the R package gbm.

2.5 Simulation study

The different calibration methods were first compared on simulated data according to the following
scheme: (i) M = 100 000 parameter values were sampled from the prior distributions, and M
simulated datasets were generated from these parameter values, (ii) 100 of these datasets were
randomly chosen to act as reference datasets, and (iii) ABC posterior samples and quantiles were
estimated for each of these 100 reference datasets using the remaining 999 900 datasets, using each
method listed in Table 2. We compared two different values for the threshold ¢., using ¢ = 2.5%
(resp. 5%) of the samples, i.e. a final sample size of N = 2500 (resp. 5000).

To compare performances, we computed the relative absolute error (RAE) between the true
parameter value and the posterior median respectively. We also computed the empirical coverage
of the 95% CI computed using each approach, defined as the proportion of time the true parameter
value felt inside the 95% CI derived from the ABC posterior distribution computed on the associated
simulated dataset. To account for numerical and computational issues encountered with some
approaches, we computed the proportion of cases for which each approach failed (due for example
to non-convergence or ill-defined estimates).

2.6 Application to real data

In order to assess the performance of each method on real data, we computed the 95% CI for all
parameters, to identify parameters for which the posterior distribution (and hence the 95% CI)
is significantly different from the prior distribution. Then, we also conducted posterior predictive
checks, but only on the best method(s) to reduce the computation time. In the Bayesian frame-
work, the posterior predictive distribution is the conditional distribution of an observation point,
conditionally on the observed data. In our case, it can be approximated by sampling parameter
values from the ABC posterior distribution, and then by generating predictions using the generative
model in equations (8) and (9). It is also possible to approximate the posterior predictive distri-
bution of the summary statistics by computing the summary statistics associated to the predicted
observations.

There are two cases for the posterior predictive check: either the selected method produces
samples from the ABC posterior distribution (for example for rejection methods, or methods based
on local regression), or it produces estimates of key quantities from the ABC posterior distribution
(for example for quantile regression via random forests or gradient boosting). In the former case,
those samples can be used directly to produce predictions from the generative model that will be
compared to the observed data. In the latter case, an approximation of the ABC posterior can
be computed based on the three quantiles of order 2.5%, 50% and 97.5% using for example the
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generalized lognormal distribution (Myerson and Zambrano, 2019). A random variable is said to
be distributed as a GLN if it can be written as ¢X + d, where X has a normal or lognormal
distribution. It thus encompasses normal and lognormal distributions, with a high flexibility to
handle skewness. It can be defined using the three aforementioned quantiles (Perepolkin, 2021;
Perepolkin et al., 2021). Samples from the approximate ABC posterior were generated, and used
to build predictions.

3 Results

3.1 Results of the simulation study

Figure 4 provides RAE of the ABC posterior median obtained with each method (the corresponding
figure for ABC posterior mean is Figure 1 in the Supplementary material). Overall, we obtained
RAE ranging from 0 to 2 (excluding too extreme values on the graphs), with most of the values
lying between 0.25 and 0.75. Random forests approaches (either producing adjusted samples or
approximating univariate posterior quantities) were associated with the smallest RAE values, for
all the parameters considered. The adaptive nonlinear heteroscedastic models performed generally
better than non adaptive ones, but no clear difference can be found between the two thresholds 2.5%
and 5%. This is consistent with previous results on the effect of the threshold in regression-based
approaches (Beaumont et al., 2002). Local linear approaches lead to ABC posterior distributions
with very large ranges of variations, rarely respecting the support constraints given by the prior
distributions. For example, large negative values were obtained for parameters which are positive
by definition. For a large proportion of datasets (depending on the method and parameter, between
15% and 25%), these approaches actually failed numerically and outputed infinite values (see Table
3 and Table 1 in the Supplementary material). As a result of these erratic estimations, the RAE
associated to these two approaches was also highly variable. For the sake of clarity, these results
were thus excluded from graphical representations.

Empirical coverages are given in Table 3. Generally, the empirical coverages are closer to the
nominal level when the threshold ¢ is smaller. Overall, random forest approaches performed best in
terms of both empirical coverage and numerical stability, while local regression methods performed
worst, with too low empirical coverages and a high failure rate. For each parameter, we computed
the rank of each method, assigning rank 1 to the one having the closest empirical coverage to the
theoretical value of 0.95. The average rank across parameters is given in the last column of Table
3. Using this criterion, the best approaches are random forests and gradient boosting. Their better
performances might be partly explained by the fact that quantile regression approaches naturally
focus on the estimation of bounds for the credible interval and therefore might perform better for
that task. In contrast, approaches relying on the extraction of ABC posterior quantiles from a set
of ABC posterior samples might be less accurate. However, it is worth noting that RFA, which
also produces adjusted samples from the ABC posterior performs better than other regression-
based methods, with performances similar to those obtained with quantile regression approaches.
The simple ABC rejection algorithm performs better than local regression approaches in terms of
empirical coverage. It is noteworthy however that due to the sampling scheme of the simulation
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Figure 4: Relative absolute error (RAE) of the posterior median on simulated data. The y-azes were truncated
of simulated parameters which are kept for the analysis.
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study, since the “true” parameter values behind each dataset were randomly sampled from the prior,
a method producing ABC posterior distributions that resemble the prior distribution might have
advantages. Indeed, they would naturally lead to 95% CI containing the true value.

Table 3: Empirical coverages based on the 95%CI estimated using each approaches (proportion of datasets for
which the true value used to generate the simulated data felt inside the estimated 95% CI), average rank and
average proportion of model failure (proportion of datasets for which each approach failed, averaged over the
parameters). Abbreviations (see also Table 2): ‘Rej‘: rejection ABC, ‘LocNHL‘: local linear regression with
heteroscedastic error, ‘“ANHL*: adaptive non linear local regression with heteroscedastic error, ‘wqRF* (resp.
‘wwqRF°): weighted (resp. unweighted) quantile regression via random forests, ‘RFA‘: nonlinear regression
using random forests, and ‘qGBM L1¢ (resp. ‘¢qGBM L2’): quantile regression using gradient boosting and
Ly (resp. L) loss.

Average  Average

Method 9 T0 fo a b ﬁl 52 ﬁg 0'2 rank failure
Rej 2.5% 0.918 0.969 0.938 0.928 0.938 0.959 0.979 0.928 3.125 0
Rej 5%  0.907 0.979 0.938 0.928 0.928 0.969 0.979 0.938 4.875 0
LocLH 2.5% 0.830 0.772 0.778 0.763 0.806 0.813 0.767 0.815 10.5 26
LocLH 5% 0.732 0.760 0.760 0.821 0.729 0.792 0.760 0.779 12.5 19
LocNLH 25% 0.897 0.948 0.825 0.814 0.918 0.897 0.969 0.907 9.75 0
LocNLH 5%  0.887 0.948 0.804 0.784 0.856 0.938 0.948 0.887 7.375 0
ANLH 2.5% 0.732 0.845 0.825 0.773 0.794 0.753 0.887 0.845 10.375 0
ANLH 5% 0.825 0.845 0.742 0.722 0.763 0.804 0.856 0.804 12.125 0
wqRF 5% 0940 0.960 0.920 0.920 0.920 0.980 0.980 0.900 5.5 0
uwqRF - 0.960 0.970 0.940 0.950 0.950 0.980 0.990 0.940 3.25 0
RFA 5%  0.970 0.950 0.960 0.940 0.990 0.970 0.930 0.970 4.375 0
gGBM L1 5% 0.907 0.979 0.938 0.928 0.959 0.969 0.979 0.938 4.125 2.37
gGBM L2 5% 0.907 0.979 0.938 0.928 0.959 0.969 0.979 0.938 4.125 5

For each method, we also compared the ABC posterior median with the true value of the
parameter. Overall, the performances of each approach vary across parameters, with random forests
providing the best results. Posterior medians computed with ABC rejection algorithms poorly
reflected the true underlying parameter values. This might be due to the fact that rejection methods
produced posterior medians which were mostly located around the prior median. Observation
parameters were better estimated than model parameters. As an example, Figure 5 gives the
estimated versus true parameter value for 51 for which the methods provided good results and for
a for which the methods performed poorly. A complete plot for all the parameters is given in the
Supplementary material (Figure 2). Methods based on simple rejection do not capture the full
range of variability of parameter a, and provide a posterior mean which is too close from the prior
mean. Local nonlinear heteroscedastic approaches are able to cover a larger range of variability, but
are still too focused on the prior mean. The two-stage adaptive approach allows for better results,
which are comparable to those obtained with random forests. Gradient boosting suffers from the
same flaws as rejection approaches for this parameter. In contrast, parameter 51 is better estimated,
independently of the method used. Random forests performs remarkably well for this parameter
and are more efficient to estimate parameters that are located far from the prior median.
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3.2 Results using field data

In this section, we detail the results obtained on field data. Figure 6 provides the median and 95%
CI for each method and parameter (see also Table 2 in the Supplementary material). Contrary to
what was observed in the simulation study, very similar results were obtained for both rejection
approaches, suggesting a small effect of the threshold . For local nonlinear approaches, there was
an effect of the choice of € on the results, especially for parameters 79, a, b and 32. Results were more
consistent between adaptive and non adaptive methods for the same threshold value, than within
the same method but for different threshold values. Results based on quantile regression via random
forests were consistent whether weighted or unweighted samples were used, and were consistent with
results obtained with nonlinear approaches for ¢ = 5%. Results obtained using gradient boosting
were similar, whatever the loss function that was used. Methods based on random forests exhibit
large variance in some the ABC posterior distributions.

Overall, results differed according to the type of parameters considered. On the one hand, for
model parameters i.e. § = (79, fo,a,b), rejection methods and gradient boosting approaches yielded
credible intervals which were very similar to those derived from the prior distributions, which was
not the case for local nonlinear approaches and RF methods. Parameter a was the most difficult
to estimate, and little additional information was conveyed by the ABC posterior distributions
or by credible intervals, compared to the information provided by the prior distribution. On the
other hand, for observation parameters i.e. w = (B1,[2,33,02), all methods produced 95% CI
which significantly differed from the 95% interval provided by the prior distributions. The 95% CIs
revealed that there is a high uncertainty for some parameters, especially for parameters a and b,
which were already identified as difficult to estimate in the simulation study. The residual variance
o2 was also estimated with a large credible interval. This was already the case in the simulation
study, where the ABC posterior distributions for this parameter were highly asymmetric with heavy
right tails (a shape also provided via the prior). For this parameter, the different approaches gave
similar ABC posterior medians, except random forests methods (see Table 2 in the Supplementary
material).

Table 4: Posterior median and 95% CI for each parameter using the quantile regression approach and the
nonlinear regression approach based on random forests, and the adaptive nonlinear local approach (with
e =2.5%), on the field data.

Adaptive nonlinear

Quantile regression using Nonlinear regression using . .
Parameter . heteroscedastic regression,
unweighted random forests random forest - — 259
To 660 [317 ; 982] 560 [352 ; 837] 583 [345 ; 832]
fo 0.17 [0.02 ; 1.47] 0.27 [0.14 ; 0.88] 0.097 [0.013 ; 0.39]
a 574 [39 ; 975] 512 [61 ; 1005] 496 [100 ; 955]
b 430 [12 ; 966] 491 [20 ; 970] 203 [100 ; 460)
o1 4.40 [-6.46 ; 9.55] 3.50 [-3.85 ; 8.38] 3.89 [-1.35 ; 7.33]
Ba 1.42 [-2.41 ; 8.28] 1.48 [-11.52 ; 10.85] 1.65 [-6.34 ; 5.68]
Bs 5.19 [2.12 ; 7.39] 4.90 [1.07 ; 11.63] 5.44 [2.68 ; 10.4]
o? 3.28 [0.31 ; 261] 56 [45 ; 85] 1.44 [0.29 ; 17]
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Based on the simulation study and previous remarks, and to lighten the presentation, we focus
on three approaches for generating predictions: the adaptive local nonlinear method and random
forests approaches. For these approaches, the posterior medians and the 95% CI are reported in
Table 4. The other approaches either provided ABC posterior distributions that were too close
from the prior distributions (e.g. for parameters 79, fo, a and b), or had too large credible intervals
(e.g. for parameters 31, B, B3 and o2). The latter is to some extent also true for random forests
methods (for parameters fy and o2 for example), but this is balanced by obtaining smaller credible
intervals for other parameters, and by the promising results in the simulation study. For the ANLH
approach, we chose the threshold ¢ = 2.5% due to the smaller RAE found on the simulated data,
and for the random forest approach we chose the approach producing adjusted samples and the
quantile regression via unweighted random forests.

The 95% credible intervals obtained for $; and (3 included 0 (see Table 4), which means that
we could not reject the hypothesis that there is no effect of periods 1 and 2 on the visitation rate
intensity. On the other hand, results suggested that the intensity increases in the third period,
which might result from an increase in the abundance of workers at the end of the season, as well
as foraging by dispersing drones and new queens.

To compare predicted and observed values, we performed a principal component analysis (PCA)
on the summary statistics of the ABC table. Figure 7 represents the distribution of the summary
statistics from the ABC table and from the posterior predicted distributions obtained with uwqRF,
ANLH and RFA, in the first plane of the PCA. Contrary to the prior predicted distribution of the
summary statistics which does not cover the observed summary statistics, the posterior predicted
distributions are located around the observed summary statistics, but with very high tails. This
can also be seen in Figure 8 for the first axis (and in the Supplementary material for the second
and third axes). The fact that the observed summary statistics lie outside the prior predictive
distribution seems to suggest that the model is misspecified, either in the prior distribution choices,
or in the CPF model in itself. Overall, the different approaches produced over-dispersed predictions
compared to the observations. This is particularly the case along a direction corresponding to the
inter-quartile ranges during the first and second periods. Indeed, some of the predictions were
unrealistically high, leading to extreme values for the interquartile range. The range of variation
was greater with methods based on random forests, and in general the variance of the predictions
was higher than with ANLH.

We then for each data point computed the probability for the predicted data to be smaller than
the observed data. This probability can be seen as a Bayesian p-value and it is expected that in
the absence of systematic under- or over-estimation, its distribution should be uniform over [0, 1].
Better results were obtained with uwqRF (see Figure 9). In general, the predictions tended to
underestimate the observations, especially with ANLH. This is due to a high number of 0Os in the
predictions (this can also be seen in Figure 3 in the Supplementary material, where the predictions
are compared to observations for some randomly selected sites.)

Due to the computation time required to run the model on all the landscapes, it does not seem
reasonable to compute predictions of the number of bees based on multiple runs of the model using
different parameter values from the posterior distributions. However, posterior medians can be
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used in a first approach. Figure 10 gives an example of predictions from the model using calibrated
parameter values.

4 Discussion and conclusion

In this paper, we proposed a methodology to perform a Bayesian calibration of parameters from a
complex nonlinear ecological model where the likelihood is intractable. An Approximate Bayesian
Computation (ABC) approach was used, and several methods and algorithms were compared for
the estimation of the ABC posterior distribution. A set of summary statistics was used in place of
the original data to reduce the dimension of the problem as well as noise, while also introducing a
bias which decreases when the summary statistics convey enough information about the data. We
showed that ABC was able to provide valuable information about the posterior distribution of the
parameters, confirming previous promising results on the use of ABC in the context of ecological
models (van der Vaart et al., 2015).

Some parameters were easier to estimate than others. More specifically, we found that model
parameters, i.e. those used in the CPF model, were more difficult to estimate, especially with local
approaches. This might be due to the fact that the summary statistics do not convey enough infor-
mation for these parameters, or that the original dataset in itself is not informative enough leading
to practical unidentifiability. It might also be due to a small sensitivity of these parameters on the
model outputs. The principal components analysis also suggested that the model is misspecified in
some way, either due to an incorrect prior distribution or sampling, or to a misspecification of the
CPF model in itself. On the other hand, observation parameters were easier to identify, except for
local approaches and simple rejection with which the posterior median seems to be localized around
two modes, illustrating the limits of local approaches.

As far as the CPF model is concerned, results are encouraging, since the posterior distribution
of most parameters was narrower than the associated prior distribution, which means that the data
conveyed enough information about these parameters. Our aim was not to test or validate the CPF
model per se, but rather to propose a methodology to calibrate this type of ecological model. A
recent study (Nicholson et al., 2019) compared the performances of two pollination models, namely
the CPF model and Lonsdorf’s diffusion model, for fixed sets of parameter values, and showed that
the CPF model better reflects the spatial dynamic of foraging bees. If the variability of the floral
and nesting values needed as inputs for the model were taken into account in the aforementioned
study, they compared the models based on the predicted intensity, while we added an observation
process to move from intensity to visitation rates. Moreover, we considered the parameters as
unknown and not as fixed to reference values. Wide uncertainty in the calibrated parameters and
poor predictive performance of the calibrated model could result from shortcomings of the CPF
model, to a noisy observation process, or both. Our study can still be seen as a first step towards
the calibration of spatially-explicit pollination models. Moreover, this type of approach can be used
to identify misspecification issues, and model comparison can then be conducted in order to enhance
the model and its ability to predict and reproduce real data. For example, equation (4) is a simplified
version of the actual dynamic response of the nest-specific distance to the surrounding landscape
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that is used in the original CPF model, which is easier to parameterize, but the two versions have
not been compared and tested on actual data (which ideally would require calibration). The two
parameters involved in the nest-specific dynamic, a and b were also poorly estimated, suggesting
some kind of practical unidentifiability.

As far as the statistical methodology is concerned, three competing methods emerged from our
simulation study: quantile regression via random forests (uwqRF), and regression adjustment of
posterior samples via adaptive nonlinear local regression (ANLH) or random forests (RFA), even
though they tended to provide over-dispersed predictions. Regression-adjustment methods can
perform poorly when the set of observed summary statistics lies outside the range of the predicted
summary statistics, since there is no guarantee that the regression model is valid outside this range.
This might explain the bad performances of some approaches tested in this paper, especially for
the linear regression methods. We also observed several very large predicted values, which means
that the variability of the predictions was too high. This might be explained by an overestimation
of the observation noise variance o?. ABC posterior distributions differed with each approach, even
though posterior medians obtained with each method felt within the 95% CI obtained with the other
methods (i.e. results were still consistent). The fact that they produced underestimated predictions
might be due to the fact that they predicted 0 bees more often than what was actually observed.
This, in turn, could be explained by a too small intensity for the Poisson distribution, which also
influence the variance of the predictions.

On the one hand, unweighted quantile regression via RF is easy to implement, and there is no
threshold parameter to tune, but on the other hand it provides only one-dimensional quantities
from the ABC posterior, and must be run once for each of these quantities. If one is interested in
making predictions from the model, it is also necessary to derive a probability distribution from
these quantiles, adding an extra level of uncertainty. Other works have been done in the direction
of posterior density estimation (see for example Izbicki et al. (2019) for an approach based on non-
parametric conditional distribution estimation in the context of costly simulations). However, if one
is only interested in parameter estimation, RF might be more accurate than ANLH, as indicated
by the simulation study. Moreover, this method can naturally handle high dimensional summary
statistics, so that it might be used when relevant statistics are difficult to identify. On the other
hand, the implementation of ANLH approaches is more involved since there is no specific R package,
and since they require an additional step for the estimation of the density support. In addition,
they rely on the choice of a threshold parameter €, which was not fully discussed here, but which
may have an influence on the results. The advantage of these approaches is that they provide
ABC posterior samples, so that predictive distributions are easy to compute. On the field data,
they also provided smaller credible intervals for parameters for which RF had some difficulties (e.g.
02). A possible alternative to these two approaches is RFA, which produces adjusted samples from
the ABC posterior. Similarly to uwqRF, it is easy to implement and it naturally handles high
dimensional summary statistics ; similarly to regression adjustment approaches, it provides ABC
posterior samples. It still relies on a threshold ¢ that should be tuned.

ABC approaches also rely on the definition of a set of summary statistics. In this paper, we
derived these summary statistics based on their biological meaning, as explained in Section 2.4.1.
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Since this choice can be crucial, it deserves some attention. More automated methods have been
developed in the literature (Joyce and Marjoram, 2008; Wegmann et al., 2009; Nunes and Balding,
2010; Fearnhead and Prangle, 2012), but they could not be implemented in our case due to their
high computational cost. In high-dimensional settings, Prangle et al. (2018) recently proposed an
approach based on rare events methodology and sequential Monte Carlo, which allow to decrease
the computation cost.

5 Future developments

Apart from the very nature of ABC which produces an approximation to the true posterior, hence
introducing an additional layer of uncertainty, many reasons can explain why the predictions do
not reflect the observations with perfect accuracy, and several extensions are possible to enhance
the results.

First, even though the summary statistics were chosen with the objective of extracting mean-
ingful information from the data, sufficiency in the statistical sense (i.e. the fact that the summary
statistics carry sufficient information to estimate the model’s parameters) is almost impossible to
reach. Therefore, part of the information originally contained in the data is missing, which may
impact the estimation and as a consequence the predictions. This effect could be partly controlled
by adding more summary statistics, but a compromise must be made between computational cost
and accuracy. Another issue that we did not discuss here is the fact that we used data from two field
studies, i.e. with different recording protocols. This might also have an influence on the results.

Then, the model in itself as well as its inputs, have a great impact on the estimation and
prediction processes. For example, we run the CPF model for each floral period and each year
separately, only adding a period-specific effect in the observation process. It would be interesting to
enrich the model and add a temporal dynamic to account for the growth of the population across
the season (see for example Haussler et al. (2017)). Recent approaches bridging together elements
from the CPF theory and ideal-free distribution models have proved to be efficient for modelling
honey bee foraging (Robinson et al., 2022). Period- and year- specific land use maps were also
used as inputs for the model, and floral and nesting values were generated once at the beginning
of the study and then considered as fixed during both the estimation and the prediction processes.
This allowed us to account for spatial and temporal variability at the landscape scale, but all our
results are then conditional on these realized maps. Due to computational constraints, it was not
possible to generalize the process and average the results over several realizations of the land use
maps. The importance of floral and nesting values for the calibration of complex pollination model
has been acknowledge in Gardner et al. (2020). A more accurate description of the nesting and
floral input maps would also reduce the uncertainty related to the landscape. For example, nesting
values are currently binary values indicating whether the habitat is suitable for nesting or not. The
number of bees per nest is thus the same accross the landscape. It would be interesting to add some
variability on this input, or to work in controlled environment where the number of bees nesting at
given locations is known. At a much higher computational cost, one might also consider floral and
nesting values as parameters, adding them in the ABC process.
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As for the CPF model, it would be interesting to test more sophisticated versions of equation
(4). Other formulations of the statistical model can also be compared: e.g. negative binomial
distribution instead of a Poisson, as well as other positive distributions in place of the lognormal
one in the definition of the likelihood. This would allow to distinguish the effect of the CPF model
and of this observation process. Model selection approaches can then be used to identify the best
model given the field data. This can be done in an ABC framework using similar approaches as
those used in this paper (Prangle et al., 2014; Pudlo et al., 2015), even though care must be taken
for this type of analysis (Robert et al., 2011).
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Figure 5: ABC posterior median as a function of the true parameter value for parameters a and 51. Abbrevi-
ations (see also Table 2): ‘Rej‘: rejection ABC, ‘LocNHL‘: local linear regression with heteroscedastic error,
‘ANHL*: adaptive non linear local regression with heteroscedastic error, ‘wqRF* (resp. ‘uwqRF‘): weighted
(resp. unweighted) quantile regression via random forests, ‘RFA‘: nonlinear regression using random forests,
and ‘qGBM L1° (resp. ‘qGBM L2’): quantile regression using gradient boosting and Ly (resp. Ls) loss.
The ‘2.5%* and ‘5% terms refer to the threshold used in the method and corresponds to the proportion of
simulated parameters which are kept for the analysis.
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Figure 6: 95% ABC credible interval of each method on the field data. Abbreviations (see also Table 2): ‘Rej:

rejection ABC, ‘LocNHL:

adaptive non linear

‘wwqRF*): weighted (resp. unweighted) quantile

local linear regression with heteroscedastic error, ‘ANHL‘:

local regression with heteroscedastic error, ‘wqRF‘ (resp.

nonlinear regression using random forests, and ‘qGBM L1° (resp.

‘¢GBM L2’): quantile regression using gradient boosting and Ly (resp. La) loss. The ‘2.5%¢ and ‘5% terms

regression via random forests, ‘RFA°‘:

refer to the threshold used in the method and corresponds to the proportion of simulated parameters which

are kept for the analysis.
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Figure 7: Principal Component Analysis on the summary statistics (first two axes). a) loading plot of the
summary statistics. The first axis is opposing the two types of statistics: the number of 0 and the interquartile
ranges. Most of the variability in the second axis is due to a larger interquartile range in the data during
the first and second periods. b) Distribution of the summary statistics from the ABC table (in black dots) in
the first two planes of a PCA. The red dot corresponds to the projection of the observed summary statistics
in the same planes, and the other colored dots correspond to the distribution, in the same planes, of the
predicted summary statistics obtained using quantile regression via unweighted random forests (vwqRF),

adaptive nonlinear local regression (ANLH) and nonlinear regression via random forest (RFA). Axes were
truncated to enhance readability.
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Figure 8: Histogram of the summary statistics along the first axzis of the PCA (left panel: adaptive nonlinear
local regression (ANLH), middle panel: nonlinear regression via random forests (RFA) and right panel:

quantile regression via unweighted random forests.

observed summary statistics on the first PCA axis.
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Figure 9: Probability that the predicted data (obtained using (left panel:) adaptive nonlinear regression,
(middle panel:) regression adjustment via random forest or (right panel:) nonlinear regression via random
forests) fall below the observed data, for each landuse type and period. Red horizontal lines correspond to the
2.5% and 97.5% levels.
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(a) Nesting (left panel) and floral maps (right panel). Nesting values are either 0
or 1 (absence/presence of a nest)
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Figure 10: Predicted visitation rate intensity on a landscape (a map of 10kmx 10km), for a given year and a
given period. Input nesting and floral maps are provided in the upper row, while predictions are given in the

lower row.

(b) Predictions from the
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model (left panel: uwwqRF, middle panel: ANLH, right panel: RFA)
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