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Multidisciplinary Adjoint-based Optimizations in the MADELEINE Project: Overview and Main Results

This paper provides an overview of the European MADELEINE (Multidisciplinary ADjoint-based Enablers for LargE-scale Industrial desigN in aEronautics) project dedicated to multi-disciplinary adjoint-based optimization in an industrial framework. MADELEINE aims at increasing the technology readiness level (TRL) and demonstrating the benefits of high-fidelity (HiFi), adjoint-based multidisciplinary optimization (MDO) to address the objectives of industry in terms of competitiveness and climate impact. The project is decomposed into two main subparts. The first one focuses on improvements of capability, efficiency and usability of adjoint-based MDO processes used in the European aeronautical industry. The second one aims at applying these methods and tools on representative test cases defined by the industrial partners. In this context, aero-structure, aero-acoustics and aerothermal problems are considered in order to optimize aircraft and engine components (wing, propeller, fan or turbine). The paper presents the overall structure of the project and the main results obtained after 3 years of collaboration.

 For airframe, the focus is on wing/fuselage aero-structure interactions which represents a key driver for aircraft design;

 For modern aircraft, airframe/engine interactions become more and more pronounced (integration of UHBR -Ultra-High By-pass Ratio -engine or propeller), the focus here is on aero-acoustics interactions;

 For engine, the focus is on fan and high-pressure turbine which are very challenging components to design due to very stringent aero-structure and aero-thermal requirements.

Figure 1 -Multi-physics interactions considered in MADELEINE.

The integration of HiFi simulations in Multi-Disciplinary Optimization (MDO) is a necessary evolution of the design process in order to meet short, medium and long-terms industrial objectives in terms of:

Competitiveness: by reducing development time and cost but also the cost of manufacture;

disciplinary experts and a new insight for design space exploration and the definition of better multi-disciplinary compromises.

To reach this ambitious objective, the concept applied in MADELEINE focuses on synergies between enablers and demonstrators. Enablers are methods and tools that are requested to apply adjoint-based MDO approach; demonstrators are the applications of the final MDO processes on test cases representative of multi-physics industrial design problems.

A. Demonstrators

In MADELEINE, 5 relevant industrial Test Cases (TC) have been identified. TC1 and TC5 are of interest for aircraft manufacturers, TC2 to TC5 for engine manufacturers. These TCs are conducted using tools and disciplinary solvers used daily within the companies involved in the project. They are carried out by industrial partners themselves or by partners that have access to tools developed within the industrial framework. The rationale behind the TC selection is described hereafter.

TC1 -Aero-structure aircraft wing optimization

I. Introduction

Today in industry, during aircraft or engine design phases, most optimization studies (both gradient-free and gradientbased) performed using High-Fidelity (HiFi) tools are focused on a single discipline (aerodynamics, acoustics, heat transfer, structural analysis). This current industrial practice is partly a legacy of the organization structure of most companies (different departments focusing on different disciplines). The effect of single-discipline optimization is that the design process proceeds iteratively from one-discipline to the other, with significant time-delays to the overall process, making it hard to exploit multi-disciplinary trade-offs.

A typical design optimization with state-of-the-art gradient-based algorithms can involve dozens or hundreds of design iterations. If these designs require adaptive methods or unsteady CFD, like in acoustic problems, simulation run time can become prohibitive for industrial use. Simulation time increases further when moving from single-discipline to large-scale MDO problems.

In this context, the EU MADELEINE project [39] has been launched in 2018 for a duration of 3.5 years and a funding of 5.8 million Euros. MADELEINE gathers 15 partners from 6 European countries: [START_REF] Hughes | A New Finite Element Formulation for Computational Fluid Dynamics: I. Symmetric Forms of the Compressible Euler and Navier Stokes Equations and the Second Law of Thermodynamics[END_REF] 

universities (National Technical University of Athens -NTUA, The University of Sheffield -USFD, Universita degli Studi di Cagliari -UniCA, Technical University of Munich -TUM, University of Southampton -SOTON) , 4 research centres (ONERA -Coordinator, DLR, NLR and Institut de Recherche et Technologie Antoine de Saint Exupéry -IRT), 3 large industries (ROLLS-ROYCE -RR, Airbus

Operations SAS -Airbus, Dassault Aviation -DAv), 2 software companies (ESI group -ESI and OPTIMAD -OPT) and 1 consultancy SME (L-Up). MADELEINE aims at strengthening the capabilities and use of multi-physics adjoint solvers [START_REF] Jameson | Aerodynamic design via control theory[END_REF] to maximize the benefit obtained from the computationally intensive simulations that are key enablers for future airframe and engine design (see Figure 1). This includes the design of the complete systems but also of sub-systems which can be performed either by aircraft and engine manufacturers or by subcontractors of the supply chain for specific components (including SMEs). The multi-physics interactions that will be considered in MADELEINE are:

Introduction of composite materials in modern aircraft structures stresses the structural flexibility of high aspect-ratio wings; fluid-structure interaction must therefore be considered in the flexible wing design process. The benefit of using gradient based MDO techniques in a real context (powered & trimmed configuration, comprehensive load cases), is demonstrated for different levels of wing flexibility representative of large passenger aircraft (Airbus) and business jet (DAv).

TC2 -Aero-structure-manufacturing fan blade optimization

Fan blades are very challenging engine components to design. They are required to have extremely high aerodynamic efficiency but also to withstand considerable static and dynamic structural loads. Including the manufacturing process in the MDO loop can avoid accumulation of deviations that can cause the blades to deviate from the design intent.

TC3 -Aero-thermal-manufacturing high-pressure turbine blade optimization

The challenge in designing high-pressure turbine blades is to combine aerodynamic performance with very stringent requirements with respect to thermal and structural loads. There are also significant uncertainties caused by the large variations in boundary conditions. Manufacturing tolerances add to the compromise due to the presence of complex cooling passages and large thermal loads and deformations [START_REF] Shahrokh | Adjoint Optimization of a High Pressure Turbine Stage for a Lean-Burn Combustion System[END_REF]. The benefits of coupling aero-thermal codes with manufacturing are demonstrated using a high-pressure turbine provided.

Finally, two aero-acoustic test cases (TC4 and TC5) have been defined because they address two different design problems where acoustic waves propagate differently. Contrary to the air inlet test case, the acoustic waves of propeller do not reflect on surfaces which have a strong impact on the aero-acoustic compromises.

TC4 -Aero-acoustic isolated propeller blade optimization

Before dealing with very complex installed configurations, the interest of using the adjoint approach for aero-acoustic application needs to be demonstrated as only very few examples have been performed so far in the literature. In this context, the isolated propeller appears as the first relevant test case for steady and unsteady adjoint applications.

TC5 -Aero-acoustic air inlet and fan blade optimization

This second aero-acoustic test case addresses the challenge of turbofan engine integration, in which air inlet and fan blade shape is optimized considering aerodynamic and acoustic objective functions (such as drag and fan noise).

B. Enablers

For each demonstrator (previous 5 TCs), enablers are developed or improved in order to:  Model properly the physical phenomena impacting the performance and the sensitivities of the designed configurations (direct and adjoint solvers);

 Explore a large design space and be able to define the best multi-physics compromises (parameterisation, mesh deformation and topology optimization);

 Quickly find efficient solutions of the design problems exploiting the gradient information provided by the adjoint solvers (MDO formulations and high-performance computing -HPC -capabilities).

For the business jet configuration (TC1) and both low-pressure fan (TC2) and high-pressure turbine (TC3) engine components cases, the focus is also be on the ability of the MDO processes to produce robust configurations in terms of manufacturing defects, as these aircraft or engine components are particularly sensitive to these defects. They are considered in two different ways:

 Through uncertainty quantification (TC1, TC2 and TC3);

 Through direct modelling of the manufacturing process (TC3).

Figure 2 summarizes this overall approach deployed in MADELEINE and highlights the synergies between enablers and demonstrators. All technology bricks (enablers) described in Figure 2 are implemented and used in the final MDO processes for the 5 TCs. 

III. Adjoint-based Methods and tools C. Multiphysics adjoint solvers

These adjoint solvers represent the core of the adjoint-based MDO processes applied on the different test-cases in MADELEINE. The main purpose of the work presented in this section was to extend the capability to treat MDO problems via the development of core primal and adjoint solvers (in particular solution algorithms and coupling of existing codes) in aero-structure, aero-acoustics and aero-thermal applications. Strong emphasis was put on the validation of two success criteria:

 the accuracy of multi-disciplinary adjoint sensitivities (maximum relative error: 5% of the norm of the gradient);

 the impact of manufacturing criteria in the MDO process on performance.

Concerning the static aeroelastic aspects, the partners collaborated on three different strategies for the computation of adjoint sensitivities:

 On the one hand, DAv and NTUA coupled their respective CFD software to the structural modelling software of ESI using a Radial Basis Function interpolation method to transfer fields between the CFD and structure meshes (application on TC1).  DLR and Airbus worked on coupling the CFD solver TAU [START_REF] Schwamborn | The DLR TAU-Code: Recent Applications in Research and Industry[END_REF] with several structural solvers (including Nastran) within an industrial environment (application on TC1).

Multi-physics adjoint solver MDO formulations

Parameterisation

Regarding aero-acoustics, different approaches were developed, tested and validated during the project. NLR and NTUA collaborated on the formulation of the Ffowcs Williams-Hawkings analogy and ONERA improved their Hanson-Lewy formulation to include additional functions of interest in the aero-acoustic optimization problems (TC4 and TC5).

Coupling strategies were also investigated for conjugate heat transfer problems (application in TC3). Beyond coupling, these activities were also the opportunity to implement additional numerical techniques to increase the efficiency and robustness of their adjoint solvers. For instance, ONERA performed an intensive study to fine tune the parameters of their newly developed Krylov based solution algorithm and NTUA implemented Krylov-based linear solvers for the residual smoothing within the Runge-Kutta solution scheme, along with the Recursive Projection Method (RPM) for the stabilization of the discretized adjoint equations.

D. MDO formulations

MDO formulations orchestrate the overall optimization process, which requires a complete compliance with the design requirements to efficiently capture interactions between disciplines. In the frame of MADELEINE, the main objective was to propose mathematical formulations of the aero-structure MDO problem making its numerical resolution as efficient as possible. This gain in efficiency is in particular expected in the treatment of the aero-structure coupling phase in the MDO process. The main objective of this work was to benchmark MDO formulations based on the scalable methodology and to recommend formulations for large-scale aero-structure MDO problems [START_REF] De Lozzo | A data-driven scalable MDO problem to compare MDO formulations[END_REF].

The heuristic scalable methodology proposed by IRT [START_REF] Vanaret | On the Consequences of the "No Free Lunch" Theorem for Optimization on the Choice of an Appropriate MDO Architecture[END_REF] replaces costly disciplines with cheap data-driven scalable models used to compare the efficiency of MDO formulations for different problem dimensions (higher number of thicknesses or material properties for example). In MADELEINE, IRT applied this methodology for the very first time to large-scale aero-structure MDO use cases (TC1):

 the Generic Business Jet from DAv: IDF and MDF state-of-the-art formulations are compared in terms of performance for different numbers of design material parameters and numbers of aero-structure coupling modes,  the XRF-1 long range research aircraft configuration from Airbus: the sequential and all-at-once (AAO) adhoc formulations are compared in terms of performance with respect to the number of design planform parameters and number of thicknesses.

Based on the current scalability results, the following advice can be given:

 the IDF formulation over the MDF one for the GBJ use case: it seems to be more efficient to control the modal coupling variables jointly with the other design parameters than using an inner optimization loop (see .

 the AAO formulation over the sequential one for the XRF-1 use case: it seems to be more efficient to control thicknesses jointly with the other design parameters than using an inner sizing loop (see Figure 4 -right). Furthermore, this scalable model methodology was made more robust and easier to use, and its capabilities were extended in the GEMSEO [START_REF] Gallard | GEMS: A Python Library for Automation of Multidisciplinary Design Optimization Process Generation[END_REF][40] software for more industrial use. For example, the approaches used to generate the Design of Experiments and enrich the scalable model definition were improved.

E. Parameterization (including topology optimizations)

Parameterization for shape design in MDO aims at developing methods to efficiently explore the aerodynamic design space, considering numerous geometrical constraints and enabling the application in multidisciplinary problem setups. Depending on the design space to be explored and the physical problems, different approaches were developed or improved by the partners of the project.

ESI worked on a physics-based parameterization using loads as design variables, and the resulting deformation field as shape update. The industrial FEM software VPS was extended, making use of the already existing modeling environment for coupling aerodynamic and structural design tasks, as well as contact conditions for consideration of geometric constraints in the aerodynamic shape design (application on TC1).

The node-based shape parameterization Vertex Morphing developed by TUM [START_REF] Bletzinger | Shape Optimization[END_REF] is another approach to explore the large design space opened by the adjoint methods developed in this project. As the surface discretization of the physical solvers is directly used for parametrizing the geometry, it is of prime importance that the obtained shape update does not depend on the discretization. TUM has extended the Vertex Morphing method to become independent of the surface discretization. This also allows for direct use in multidisciplinary optimization setups where each involved solver might use individual surface discretizations for the same geometry (Figure 5). Additionally, two different concepts for geometric constraints have been developed to be applied on TC4: an aggregation function for geometric packaging [START_REF] Geiser | Aggregated formulation of geometric constraints for node-based shape optimization with Vertex Morphing[END_REF] and a modification of the free-form parameterization for explicit consideration of e.g. sliding constraints. OPT, in collaboration with partner USFD, presented a topological parameterization approach, based on a mixed usage of Radial Basis Functions and Level-Set techniques (Figure 6). Inspired by the new possibilities offered by Additive Manufacturing technologies, the main objective was to create a parameterization capable to explore the parameter space and capture more unconventional shapes, maintaining affordable costs in terms of degrees of freedom needed. The application test case was in the area of turbine blade design (TC3). Integration of manufacturing constraints was done a posteriori, based on a geodesic Level-Set calculation. DLR implemented a reduced order model of a parametric CAD model and evaluated it on a geometrically complex aircraft configuration (TC1 -Figure 7). The method allows to set-up CAD-based parametrization with arbitrary CAD software and to use it with a consistent analytical differentiation for a gradient-based shape optimization directly on an HPC system. The reduced order parametrization, here named CAD-ROM, strongly depends on the number of training samples, sampling methods and model order reduction and interpolation methods and parameters. A first best practice has been established for successful optimizations, further ideas to improve the accuracy are currently investigated. USFD has investigated the optimum FFD parameterization set for blade design and has benchmarked FFD versus engineering parameters on transonic fan and compressor blades using various resolutions and layouts of Free Form Deformation grid [START_REF] Qin | The Influence of Parameterisation Set up on the Constrained Adjoint Optimization of transonic Fan Blades[END_REF]. A method to constrain thickness throughout the blade span (to maintain mechanical integrity) during the optimization was also implemented. For thickness constrained optimizations of Rotor 37 (R37), for various FFD grid densities and layouts, a maximum has been reached and the optimizations 'converge' on an efficiency benefit of just over 2.5% for different grid sizes. It was shown that increasing the number of parameters generally leads to improved optimized designs, but that increasing the number of free-form parameters in the axial and circumferential directions is more beneficial than increasing the number of radial control parameters. 

F. Mesh deformation

Mesh deformation methods are an important component of optimization processes to be able to evaluate the performance of the new shapes. In the frame of MADELEINE, the main objectives of the consortium were to develop and test robust and efficient mesh deformation techniques on large amplitude shape deformations and extend them to be integrated in gradient computations using the adjoint approach. This is derived from the need of preserving the mesh elements quality criteria during the MDO process. The task contributes to the efficient exploration of large design space, one of the success criteria of the project.

The following mesh deformation techniques were investigated and developed:

 DLR Radial Basis Functions approach, allowing for deformation of both block-structured and hybrid unstructured meshes;

 DLR Linear Elasticity Analogy, which considers the fluid domain as a solid body and computes its elastic response to prescribed deformations or stresses at the boundary;

 NTUA Radial Basis Function-based mesh deformation, which is a two-step RBF method that splits the mesh deformation process into two successive sub-problems (steps);

 USFD Inverse Distance Weighting, an explicit interpolation technique, which computes the interpolation function as a weighted average of the known boundary node displacements;

 ESI Finite Transformation Rigid Motion Mesh Morpher (FT-R3M), propagates the movement of the surface mesh to the internal nodes by keeping the motion of its parts as-rigid-as-possible;

 ONERA in house mesh deformation method (Quantum), where deformations at each point are defined as the sum of a classical translation and a second one due the local rotation of the mesh.

A common test case was used for testing and comparing them, the NASA CRM wing [42]. Two structured mesh sizes, 3 (3M) and 28 Millions (28M) nodes, were used to allow an assessment of the mesh deformation computational cost increase with mesh size. Three basic deformations were produced. These are upwards bending, downwards bending and downwards rotation (twisting). An additional set of deformations were produced using a blended flap at various angles as a more challenging case to assess the robustness of the methods. The mesh quality metric to compare the method was cell skewness (Figure 9). All techniques coped well with all cases and it can be concluded that the robustness was generally good. The computational efficiency of the methods was assessed by comparing the computational cost of running on the 3 millions (3M) and 28 millions (28M) point meshes per core for each method (Figure 10). NTUA RBF is clearly the most efficient in terms of core-minutes, while DLR LEA is the least (though the LEA settings have not been optimized). The computational cost ratio for going from the 3M to 28M is approximately linear for NTUA RBF, while the DLR RBF flap case has a lower ratio. IDW performs the worst in this assessment. 

G. Uncertainty Quantification and Robust Optimization

The performance of all engineering systems is affected by some degree of uncertainty. For instance, manufacturing tolerances as well as deterioration of the components over time naturally make the parameters describing its geometry uncertain variables; operational conditions are not going to exactly match the assumption made during the design process; and in general any system, be it a turbomachinery stage, a wing or the avionics of an aircraft, will be affected by a wide range of uncertainties.

Uncertainty quantification (UQ), which is the evaluation of the impact of uncertain variables and parameters on a quantity of interest (QoI), is of fundamental importance if a design solution is to perform reliably in real operating conditions, but does not drive the design itself towards more robust solutions. A Robust Optimization (RO) strategy can be applied to produce design solutions that are intrinsically more robust to known causes of uncertainty.

Both UQ and RO lead to a significant increase in computational costs (due to the need to sample the uncertainty space). Efficient UQ methodologies such as Polynomial Chaos (PC) can decrease this cost, especially when coupled with efficient adjoint solvers. In MADELEINE, adjoint-enhanced PC methodologies have been developed, employing both sparse grid (SGNI) and least square approximation (LSA) techniques to calculate the coefficients of the PC expansion.

The methodologies have been validated on several test cases of industrial relevance. As an example, the sparse-grid adjoint-enhanced PC method was used to quantify the uncertainty in the Generic Business Jet (TC1) performance, both for rigid and flexible wing simulations. The flow is turbulent with an angle of attack equal to 2.5 o and Mach number 0.82; the Spalart-Allmaras turbulence model is used. The QoIs are the lift and drag coefficients. Four uncertain variables associated with the twist angles at four sections of the main wing are considered (Figure 11). All of them follow a normal distribution𝑁 (0, 0.1). The statistical moments of the lift and drag coefficient resulting from the rigid analysis are summarized in Table 1. This case is studied for chaos orders 𝐶 = 1 and 𝐶 = 2. In the case of 𝐶 = 1, results from the full grid are compared to those of the Smolyak sparse grid. From the computational cost viewpoint, the use of a sparse grid requires almost half of the time, corresponding to 9 aerodynamic analyses instead of 16 in the case of full grid. The accuracy of the results for 𝐶 = 1 is acceptable compared to those for 𝐶 = 2. SGNI and LSA, both with and without gradient information have been tested in the UQ of NASA Rotor 37 (R37 -TC2). It is a low aspect ratio rotor designed in the 1970s as the inlet stage of an 8 stage core compressor with an overall pressure ratio of 20: 1. 5 uncertain parameters were considered, representing a tangential movement of the blade section at different spanwise locations. The uncertainties have all been assumed to be normally distributed 𝑁 (0, 1), while the rotor adiabatic efficiency has been considered as the QoI.

Table 2 compares the results of different approaches for the uncertainty quantification of R37: SGNI (2 nd order, without gradient information) is taken as a reference, and is compared with SGNI-G (1 st order, with adjoint) and LSA-G (1 st order, with adjoint). It is evident how the additional information provided by the adjoint is essential to reduce the cost of the UQ. Figure 12 and Figure 13 report the gradients of the first 2 moments, obtained with the different methods. The noise in the gradient information is an important factor to consider when calculating the gradients of the moments, and can in some cases mislead the robust optimization. The LSA approach developed in this work is less sensitive to the noise in the gradient information, leading to a more efficient robust optimization process. An example of a robust optimization is shown in Figure 14, for a transonic airfoil in the presence of shape uncertainty.

The objective is the aerodynamic efficiency (CL/CD). While a traditional optimization (Figure 14a) leads to solutions that are more sensitive to shape uncertainties (i.e. larger standard deviation) robust optimization approaches allow an increase in the mean performance of the system, while maintaining an acceptable standard deviation. The computational costs of different approaches are summarized in Table 3, which highlights the significant speed up possible with the adjoint-enhanced approaches. 

H. Efficient MDO capabilities

Today the costs of setting-up and running multi-disciplinary optimization remain very important in an industrial framework especially when high-fidelity simulations are involved. In order to reduce these costs, several activities in the frame of MADELEINE focused first on solutions to facilitate the implementation of adjoint-based MDO process in an industrial context (e.g. with possibly a large number of disciplines, a large amount of data to transfer between the disciplines, and with infrastructure constraints and costs) and secondly, on solutions to reduce the run time and computational time of MDO optimizations.

Regarding the time needed for the implementation of an adjoint-based MDO process, two approaches were investigated:

1. By developing generic wrappers to software: the capability to transfer data in a MPI context from software or libraries to GEMSEO using in-memory transfers and avoiding using the hard-disk drive.

2. By using container technologies to enable machine and Operating System (OS) independency, thus lowering the cost of infrastructure creation and maintenance.

Generic Message Passing Interface (MPI) wrappers to GEMSEO have been developed in order wrap software implemented in various programming languages. C/C++, FORTRAN and Python software have been considered in this project, yet other programming languages could be considered. These wrappers enable to communicate to the underlying software a MPI communicator, and to perform in-memory data exchanges. It enables to perform data exchanges between disciplines located into different MPI ranks at least ten times faster than using the hard-disk drive, depending on the network and hard-disk drives available. An industrial-like demonstrator (see Figure 15) has been developed by OPT and IRT, performing computations and interpolations between two disciplines located on two separate MPI communicators and exchanging data through the generic MPI wrappers developed in GEMSEO.

Also, GEMSEO has been extended by IRT to work as a HPC library. This extension has been implemented with MPI and PETSc. The performance has been assessed, and it is shown that the developments enable to address problems that would not fit in one single compute node. In addition, it has been observed that the multi-disciplinary analyses executions and linearizations have been reduced by 20 by using 32 more cores for the whole process. In MADELEINE important efforts were also devoted to the reduction of the computational costs of MDO. Today, two approaches exist for the implementation of adjoint solvers:

 Adjoint systems of equations deeply integrated with the simulation software. This intrusive approach results in good computational performance but requires high development and maintenance costs.

 Adjoint systems of equations solved by external linear equation libraries. This approach results in minor interferences with the simulation software, since the library may be exchanged depending on the availability of better libraries on the market. Nevertheless, performances are generally lower than the ones of the first approach.

These advantages and disadvantages of either approach are accentuated when considering heterogeneous HPC infrastructure which are exploited today by most software currently in operation in industry. In this context, MADELEINE developed a framework, which combines the efficiency of the intrusive approach but implemented as an external library. This library includes optimized approaches (using preconditioners), which are aware of the physical problem that is being solved, of the discretization scheme that is used and of stiffness due to the computational grid. These enhancements are necessary in order to solve efficiently the direct and adjoint equations, crucial for MDO with fluid-structure, mesh morphing, conjugate heat-transfer or aero-acoustic simulations.

To this scope, several activities in order to optimize the computational performance and to accelerate the convergence of linear solvers have been performed. NLR exploited the particular space-time structure of the primal and adjoint solutions in turbomachinery problems with distorted inflow conditions. By exploiting this structure, massive file IO can be avoided, which in turn increases the fault-tolerance of the simulation pipeline and removes a computational bottle-neck of the computation. On the other hand, ONERA worked on identifying patterns within the adjoint operator that are responsible for the illconditioning of the matrix. These patterns are extracted directly on the matrix and correspond to the directional stiffness measure. OPT, in collaboration with the PETSc core developers, augmented the PETSc interface in order to exploit this information within the AMG (Algebraic MultiGrid) preconditioner. On top of that, ONERA investigated robustness and efficiency of the flexible GMRES algorithm with deflated restarting (FGMRES-DR [START_REF] Pinel | Block Krylov Methods to Solve Adjoint Problems in Aerodynamic Design Optimization[END_REF]) to solve adjoint RANS equations for turbulent compressible flows. Parameters for the deflation mechanism (choice and number of eigenvectors to be recycled at each restart) and for the embedded solvers (Krylov subspace sizes, tolerances) affect performance and contribute to enhance such a promising approach.

In this section, the different methods and tools developed or improved were briefly described; they have been then implemented in MDO framework to perform optimizations on the 5 test cases described in §A. The main results obtained after 3 years of project on these test cases are detailed in the following section.

IV. Industrial test cases

A. Aero-structure wing optimization applied to a large passenger aircraft configuration (TC1)

The main objective of this work is to apply and demonstrate the maturity of the multi-disciplinary aero-structural adjoint formulations, developed during the project, on complex relevant industrial test cases and conclude regarding the main bottlenecks in order to guide future developments. More specifically, the industrial test case of interest here has been defined by Airbus around the XRF-1 model, a representative large passenger aircraft (Figure 19). Airbus sets-up representative wing test cases of increasing complexity in terms of geometry, operational points and constraints, in order to be able to draw reliable conclusions that can guide the industry for future applications of MDO using the adjoint approach. At first, the implementation of multi-disciplinary adjoint formulations is validated on a simplified XRF-1 wing-body configuration. Rigid gradients (ie. aerodynamic sensitivities not considering the aerostructural deformation of the wing) are first validated between partners before assessing and validating the flexible gradients.

In a second step, flexible optimizations on fixed wing planform are performed to assess the benefits of considering the aeroelastic deformation of the wing in the optimization process compared to a standard rigid approach, when multiple flight conditions are involved to seek a robust shape. In the last step, aero-structural optimizations are performed to improve a representative multi-disciplinary objective like the Cash Operating Costs of the aircraft for a set of missions, while matching a set of top level aircraft requirements. The design parameters include the wing planform and sectional shapes, as well as structural parameters. A set of wing load cases has been defined to size the structural model of the wing, considering stress and buckling constraints. Although simplified, this set will allow a rather suited preliminary design. Different combinations of mass and center of gravity have been considered.

The target of the industrial partner (Airbus) here is to employ the coupled aero-elastic adjoint approach to test its effect on the improvement of flexible aerodynamic optimizations. The research partners (ONERA and DLR), on the other hand, aimed additionally to understand the gain obtained by engaging the coupled adjoint on aero-structural optimizations. In the flexible aerodynamic optimizations, the optimizer controls only the shape design parameters and the structure of the wing remains frozen. In the aero-structural optimization, the optimizer controls the shape as well as the structural material thicknesses. IRT supports the partners in the proper definition of the MDO formulation of the problem (see §D).

Figure 19 -XRF-1 full aircraft configuration

Before performing complex optimizations, all partners agree to first validate the implementation of multi-disciplinary adjoint formulations, on a simplified XRF-1 wing-body configuration. In order to ease the validation of sensitivities between partners, some data and disciplinary bricks have been shared between partners when possible. All partners used for instance the same CSM finite element model, and put effort in using the same wing shape parameterization with 13 parameters, selected to be representative in wing optimization exercise: span, sweep, chord lengths, camber, thickness and twist of airfoil. This number of parameters is for sure too low for wing optimization, but is used for demonstration and validation purpose only.

At first, partners compared rigid and flexible gradients computed with their own in-house tools. Also to make the comparison relevant, all sensitivities were first validated internally by comparison with central finite differences. As a representative result, Figure 20 presents a comparison of the coupled sensitivities for pressure drag computed in transonic flow: the agreement is particularly good, considering variability in mesh strategy, mesh deformation, CFD settings, etc. Some discrepancies are observed for the lift and pitching moment coefficients (not presented here) but still remain limited. Partners are thus confident in the maturity of their implemented aero-structural adjoint, and started to perform optimizations on more complex configurations, and with more shape parameters. An example of flexible optimizations carried out by ONERA is shown in the following. These demonstrations employ the same refined wing shape parameterization previously introduced and two different structure models, CSM1 and CSM2, with increased flexibility, respectively, which have been provided by DLR. The two corresponding baseline flight shapes are compared in Figure 21. The optimization problem is simply defined as the minimization of the farfield drag [START_REF] Van Der Vooren | Drag / Thrust Analysis of Jet-Propelled Transonic Transport Aircraft: Definition of Physical Drag Components[END_REF] at cruise conditions. The convergence history is summarized in Figure 22 showing the percentage gain on the drag coefficient along with the prescribed constraint on the lift coefficient for both cases. On the considered flight point, the flexible optimization process successfully achieves a gain of ~3.5% for the CSM1 case, which increases up to ~4.7% for the CSM2 case. On Airbus side, two multipoint adjoint-based optimizations are conducted on the complete XRF-1 configuration in order to understand the effect of including wing flexibility on design improvement. For this, the results of a pure aerodynamic optimization, using rigid CFD and adjoint computations on the flight shapes, is compared with a flexible aerodynamic optimization, including structural deformation computed with a frozen structural model. A standard weighted drag coefficient approach is selected to compute the multipoint objective function on a 5-point pattern. The weights are derived such that the multipoint objective minimizes the quadrature of a performance metric, inversely proportional to the Breguet-Leduc range formula under standard assumptions. Aircraft longitudinal trimming is accounted for implicitly using a HTP (Horizontal Tail Plane) trimming process combined with a target-lift approach.

The optimization problem involves a total of 110 twist and camber design variables and 10 aircraft trimming parameters. The aerodynamic solutions are solved using RANS equations with the CFD solver TAU on a 20M points mesh. The structural deformation is computed with NASTRAN and a high-fidelity FEM model of the aircraft. The CFD mesh and FEM model used for flexible optimization are presented on Figure 23. The CFD/CSM coupling and mesh deformation strategies use Airbus standard internal processes [21][22]. The overall FlowSimulator simulation process is interfaced to GEMSEO [START_REF] Schwamborn | The DLR TAU-Code: Recent Applications in Research and Industry[END_REF] in order to manage the entire optimization on a HPC cluster. More detailed information regarding the methodology can be found in [START_REF] Olivanti | On the Benefits of Engaging Coupled-Adjoint to Perform High-Fidelity Multipoint Aircraft Shape Optimization[END_REF]. The rigid and flexible adjoint optimizations are carried out with the same inputs and the same settings for comparison purposes. They both converge with a similar number of iterations, around 15, but the cost ratio between the two approaches leads to a speed-up factor of 2.8 for the rigid adjoint approach as shown in Figure 24. In order to make a fair comparison of aerodynamic performances, trimmed flexible computations are additionally performed on the optimal jig-shape resulting from the rigid optimization, for each point included in the optimization. The differences of far-field aircraft drag improvements between the rigid and the flexible optimum are then presented on the right hand side of Figure 24. It results that the flexible optimum perform slightly better for the lowest Mach and CL range while the rigid optimum is only better at the highest Mach number. More details regarding the comparison of results between the two approaches can be found in [START_REF] Olivanti | On the Benefits of Engaging Coupled-Adjoint to Perform High-Fidelity Multipoint Aircraft Shape Optimization[END_REF]. The proximity of results indicates that the rigid adjoint approach can still be an efficient alternative to the fullyconsistent coupled adjoint one when solving a flexible aerodynamic shape optimization problem, even if multiple flight conditions are included. Nonetheless, it must be noted that the aircraft configuration considered for the study did not feature highly flexible wings and that the optimization started from a good baseline configuration. This motivates additional studies to identify if the rigid adjoint approach can still be a computationally-attractive option for more flexible cases or when starting from a less refined baseline configuration.

B. Wing aero-structure optimization applied to a bizjet configuration (TC1)

In this case, the objective is to demonstrate the benefits of multi-disciplinary adjoint, in the presence of aero-structural coupling, in a configuration which is representative of a Generic Business Jet (GBJ). In this case, DAv, NTUA and ESI are collaborating.

Figure 25 -Generic Business Jet configuration.

Before running aero-elastic and aero-structural optimizations, some validation steps have been defined; these start with the comparison of the results of the rigid wing CFD simulations that DAv and NTUA performed using their own in-house RANS solvers (codes AETHER [START_REF] Hughes | A New Finite Element Formulation for Computational Fluid Dynamics: I. Symmetric Forms of the Compressible Euler and Navier Stokes Equations and the Second Law of Thermodynamics[END_REF][6] and PUMA [START_REF] Kampolis | CFD-based analysis and two-level aerodynamic optimization on Graphics Processing Units[END_REF], respectively). The computed polar curves (Figure 26) in two different cruise conditions are in good agreement given that the two solvers rely upon different methods and meshes. AETHER is based on the Streamline Upwind Petrov-Galerkin (SUPG) Finite Element approach, uses unstructured meshes with tetrahedral elements and runs on CPU clusters. PUMA, which is a GPU-enabled RANS solver based on the vertex-centered finite volume approach, uses hybrid unstructured meshes consisting of tetrahedra, pyramids, prisms and/or hexahedra.

The airframe shape is parameterized using the geometry generation tool GANIMEDE (Ge-ometry ANd Inherent MEsh DEformation), by DAv. GANIMEDE handles both local and global design variables. The former stand for the control point coordinates, while the latter redefine several control points enabling to modify the thickness, twist and camber of wing sections. In this work, 4 design parameters are used to control the wing twist spanwise distribution, another 4 to control the wing trailing edge camber distribution along its span and the last one to control the horizontal tail plane (HTP) rotation angle. As the geometry changes during the optimization, GANIMEDE generates new surface meshes by involving the CAD modeler and creating connectivity by projecting the initial surface mesh onto the new geometry. Geometric constraints imposed in the optimization (related, for instance, with the wing span) are directly handled by GANIMEDE. This has a reduced cost compared to the alternative of delegating this task to the optimizer, since the gradient of these geometric quantities is no longer needed. Since GANIMEDE is not available for use outside DAv, NTUA was obliged to build a surrogate shape parameterization model, working directly on the aircraft's surface mesh, based on meshes corresponding to perturbed shapes generated by GANIMEDE. By doing so, the dependence on GANIMEDE is restricted only to the pre-processing phase, while shape modifications during the optimization are undertaken by the surrogate model. The surrogate model is also analytically differentiated and incorporated into the adjoint method. For the aero-elastic and aero-structure analyses and adjoint-based optimization runs, AETHER and PUMA are coupled with a finite element linear elasticity solver which is part of the VPS (Virtual Performance Solution) structural solver of ESI. Figure 28 presents a schematic view of the coupling of the two CFD solvers with the elastic one. A Finite Element model, consisting of shell elements (for the wing's skin and webs of spars and ribs) and beam elements (for the caps of spars and ribs) was generated by ESI, as shown on Figure 27. The wing's unloaded (jig) shape was computed iteratively by ESI starting from the wing's flight shape (defined by the designer and/or the optimizer). The tool for transferring deformation and load fields along the non-matching CSM/CFD interfacing meshes is based on Radial Basis Functions (RBFs). In this phase, the wing structure is assumed to remain unaffected by changes in the design parameters. The aeroelastic equilibrium states obtained by both teams (ESI-DAv and ESI-NTUA) are compared in Figure 29 and satisfactory agreement is observed. Adjoint-based results are in very good agreement with FD-based ones. There is also a good agreement between NTUA and DAv sensitivity derivatives, despite the different characteristics of the AETHER and PUMA flow solvers and the fact that they employ different adjoint approaches, namely the discrete and continuous approaches, respectively. In Figure 30, it is shown that the frozen turbulence assumption significantly reduces the accuracy of the computed sensitivity derivatives (more than 50% error compared to FD results) for most of the design parameters. For instance, DAv frozen turbulence sensitivity derivatives for the 2 nd and 3 rd design parameters have even wrong signs. Though, flexible and rigid-wing sensitivity derivatives have the same trend, at some design parameters, they differ in magnitude by about 50%. So, using rigid-wing sensitivity derivatives in a flexible-wing optimization would decelerate or, even, mislead a gradient-based optimization.

Both a rigid-and a flexible wing optimizations of the GBJ geometry have been performed by NTUA. In both cases, SLSQP is the optimization algorithm and PUMA is the primal and adjoint CFD tool used. Each optimization targets in minimizing the drag coefficient, without decreasing the lift coefficient under trimmed conditions. The convergence histories of the two optimizations are shown in Figure 31. The flexible-wing optimization costs about 3 times more than the rigid-wing one and the latter ends up with a configuration with a lower drag coefficient. Note that the rigidwing optimized configuration is infeasible (not trimmed conditions) if the wing flexibility is taken into account. This fact actually highlights the importance of performing MDO instead of SDO. 

C. Aero-structure-manufacturing fan blade optimization (TC2)

This test case is the first dedicated to engine components. The main objective is to define an optimization process able to maximize the aerodynamic efficiency of the fan blade while respecting strong structural constraints. This function of interest is particularly relevant as increases of 1.4% in fan efficiency yielding reductions of 1% in the engine's specific fuel consumption [START_REF] Zamboni | Fan Root Aerodynamics for Large Bypass Gas Turbine Engines: Influence on the Engine Performance and 3D Design[END_REF]. The VITAL fan blade, provided by RR, is representative of a modern Low-Pressure fan is used for that purpose (Figure 32). It was designed for rig studies with a span about two-thirds smaller than conventional production blades, an adjusted rotational speed, designed to reproduce the flow physics at cruise condition and an increased thickness, intended to guarantee the mechanical integrity required of a large composite fan blade. RR, USFD and UniCA are working together on this industrial test case to perform deterministic and robust optimizations.

Figure 32 -Vital fan blade configuration [25].

First, the USFD contribution consists of a deterministic adjoint based aero-structural optimization method having efficiency as the objective function and maximum principal stress set as a constraint. The inclusion of a maximum yield stress constraint acts as a guide to achieve a feasible aero-mechanical blade design. An overview of the optimization process is given in the workflow diagram represented in Figure 33 (left) and detailed in the following.

The geometry parametrization was based on engineering parameters, having seven design parameters at five different radial locations, leading to a total number of 35 parameters. This design space was defined by USFD and SOTON, with the fan aeroacoustic optimization in WP5 being taken into account. The parameterization and also automatic meshing of all the geometries have been achieved using the RR in-house tool PADRAM [START_REF] Shahpar | PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimization[END_REF]. In all aerodynamic simulations, the RR Hydra Adjoint Code [START_REF] Lapworth | HYDRA-CFD: A Framework for Collaborative CFD Development[END_REF] is used to provide an estimate of the figures of merit of the quantity of interest (QoI), namely, the efficiency, and also its gradient with respect to the design parameters based on a discrete adjoint approach. The CFD simulations are run to an exit specified capacity (to control the mass flow rate through the engine).

For the computation of the maximum stress a response surface was created beforehand, as depicted in Figure 33 (right). The same design space used in the optimization process was used, and several response surfaces were generated and compared. A response surface based on Kriging method and a 900 points DoE was selected based on the coefficient of determination and the root mean square error values in the range of interest (between 300 MPa and 800 MPa, as the stress constraint value for this case is 500 MPa). Stress gradients are determined by finite differences.

Figure 33 -Optimization workflow diagram [28] -Stress Response Surface Generation Process.

For the optimization process, a Sequential Least SQuares Programming (SLSQP) [START_REF] Oliphant | Python for scientific computing[END_REF] algorithm is used in this work. A feasible direction is obtained by solving the quadratic programming problem and used in a line search to select the next design to be run. Several designs are run until a new optimal point is found. The process is then repeated until a convergence is achieved for the objective function. This process is described in detail in [START_REF] Cuciumita | Structurally Constrained Aerodynamic Adjoint Optimization of Highly Loaded Compressor Blades[END_REF]. The main difference between the work in [START_REF] Cuciumita | Structurally Constrained Aerodynamic Adjoint Optimization of Highly Loaded Compressor Blades[END_REF] and the work presented here consists in the way the response surface was generated and the test case, which was R37.

The results show that the stress increases drastically for the unconstrained optimization and is successfully kept close to the constraint value for the two constrained optimization cases: 400 MPa and 500 MPa (Figure 34, left). The 400 MPa constrained optimization was run to cover for the ±20% accuracy of the stress response surface.

Figure 34 -Stress and efficiency values evolution during different optimization processes.

The unconstrained optimization resulted in a 0.9 % increase in efficiency, while the 400 MPa constrained optimization resulted in a smaller increase (0.75%). The 500 MPa constrained optimization resulted in a higher efficiency benefit (1.25%). However, this efficiency benefit is at the cost of a drop in pressure ratio by 3.6% as compared to only 0.7% for the 400 MPa constrained optimization, as the pressure ratio was not constrained during the optimization process.

Further improvements were identified for the stress response surface accuracy by using artificial neural networks coupled with active design subspaces and for controlling the operating point by adding a pressure ratio constraint.

Work has also been going on in WP5 by SOTON to perform MDO for the VITAL fan to improve the aeroacoustic and aerodynamic performance simultaneously. To ensure that all three disciplines (aerodynamic, aeroacoustic and structural) can be simultaneously addressed, the same blade parametrization and ranges have been used and the stress response surface generated by USFD has been passed on to SOTON. Secondly, robust aerodynamic optimizations were conducted by UniCA on the VITAL configuration (Figure 32). The function and gradient evaluations for this test case were also performed with the Rolls-Royce proprietary CFD suite HYDRA [START_REF] Lapworth | HYDRA-CFD: A Framework for Collaborative CFD Development[END_REF], the domain is meshed using the RR proprietary code PADRAM [START_REF] Shahpar | PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimization[END_REF], which is also used to parameterize the geometry and the shape uncertainties. Identification of the geometrical deviations in manufactured blades can be achieved through reverse engineering processes, which usually decode 3D scans of the part into more meaningful data formats. Each parameter, shown in Figure 35 for an aerofoil section, controls a particular Degree Of Freedom (DOF) for the geometry. The DOFs applied are: Sweep (axial movement of the section), Lean (circumferential movement of the section), Skew (rotation about the section's centroid) and Leading Edge (LE) and Trailing Edge (TE) recambering. The parameters are applied on five airfoil control sections uniformly distributed through the blade span -at 0%, 25%, 50%, 75%, 100% -providing a total of 25 DOFs.

Figure 35 -Vital fan test-case and parameterization of its shape.

A robust optimization was performed, with the aim of maximizing the efficiency of the fan and minimizing its standard deviation, while also constraining mass-flow and pressure ratio. The problem was solved as a multi-objective optimization problem, and Genetic Algorithm coupled with Artificial Neural Network (ANNs) were used to search the design space. The ANNs were constructed for the figures of merit using information obtained from primal and adjoint solvers [START_REF] Giugno | Adjoint-Based Optimization of a Modern Jet-Engine Fan Blade[END_REF]. Figure 36 presents a trade-off between the 2 objectives, demonstrating the importance of a robust design approach [START_REF] Ghisu | Gradient-enhanced least-square Polynomial Chaos expansions in Aeronautics[END_REF], when compared to the traditional deterministic optimum (DGO) [START_REF] Lopez | Optimization of a Transonic Fan Blade Through Ai-Enabled Active Subspaces[END_REF]. 

D. Aero-thermal-manufacturing high-pressure turbine blade optimization (TC3)

The high-pressure turbine blade is also a very critical component of the design of modern engine. The challenge here is to maximize the aerodynamic efficiency considering hard thermal and structural constraints. The Aero-Thermal-Cooling of the MT1 Turbine [START_REF] Vincekovic | Exploring Topology Optimization of High Pressure Turbine Blade Tips[END_REF] (Figure 37) has been used in MADELEINE to show the benefits of using adjointbased MDO to design High-Pressure Turbine Blades. RR is working with USFD, UniCA, NTUA, ESI and OPT on this test case.

The loss associated with a Turbine tip could be as much as 30% of the total loss of a flat tip turbine blade. In order to mitigate this loss and hence improve the engine SFC, a variety of tip designs have been proposed over the last two decades. Broadly speaking these could be divided into two categories of using fins and fences (with different numbers) and a squealer cavity to trap a tip leakage vortex and hence minimize the overall leakage. Although fins and fences are most attractive to improve the Turbine stage efficiency, up to a certain heat load the amount of cooling needed to protect increase to such an extent that the component life could be limiting. For this high heat load cases, a combination of the Winglet and squealer tip provides both a simpler and more efficient Turbine blade. Multidisciplinary winglet tip optimization was developed by USFD using combined objective for the efficiency and the heat load with turbine reaction and capacity constraints which were allowed to change up to +/-0.5% from the datum value. Efficiency was calculated as isentropic stage efficiency and heat load was defined as integrated heat transfer coefficient (HTC). Heat transfer coefficient was obtained by using 3-temperature method where along-side adiabatic case, two isothermal blade cases were run. This allowed to obtain locally corrected heat transfer coefficient information on the tip. Efficiency and integrated heat transfer coefficient were defined as showed in Equations ( 1) and (2).

𝑓 1 (𝑥) = 1-𝜂(𝑥) 1-𝜂(𝑥 𝑟𝑒𝑓 ) (1) 𝑓 2 (𝑥) = 𝐻𝑇𝐶 𝑏𝑙𝑎𝑑𝑒 (𝑥) 𝐻𝑇𝐶 𝑏𝑙𝑎𝑑𝑒 (𝑥 𝑟𝑒𝑓 ) (2)
After that efficiency and heat transfer objectives were combined into single objective as showed in Equation (3). Different optimizations were performed by varying the weights of objectives, α, to explore the Pareto front.

𝑓(𝑥) = 𝛼𝑓 1 (𝑥) + (1 -𝛼)𝑓 1 (𝑥)

(3)

The winglet tip was parameterized as shown in Figure 38 using PADRAM [START_REF] Shahpar | PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimization[END_REF], Rolls-Royce in-house tool for meshing and parameterization. Starting from the datum tip outline (Figure 38a), the winglet outline is controlled at five control points where the desired overhangs are specified and interpolated between to create a winglet outline. With the winglet outline the tip is extruded downwards for a straight length (Figure 38b) after which is merged with the blade under the desired blending angle. Overall, the winglet tip was parameterized using 17 design parameters. To account for reaction and capacity constraints, rotor blade skew was parameterized as shown in Figure 38c. This allowed to bring the capacity and reaction to the datum values.

Multipoint Approximation Method (MAM) was used as the optimizer. MAM is an iterative gradient based method that solves a sequence of constrained optimization sub-problems by approximating the objective function and its constraints in a series of trust regions. CFD cases were solved using HYDRA, Rolls-Royce in-house CFD tool. The overall optimization process is shown in Figure 39. Optimization results are presented using a Pareto front in Figure 40 for all the successfully constrained designs. As shown, 3 different optimizations were performed, each with different weights of the objectives. Starting from the equal weighing (red), two additional optimizations were done using α of 0.25 and 0.75 respectively. This allowed to focus more on the heat load and the efficiency independently. As presented on the Pareto front, efficiency increase of up to 1% can be achieved when using winglet tip. However, in the case of efficiency dominated designs (grey), this assumes significant increase the in heat load, increasing integrated HTC value for up to 7% which brings a lot of difficulties in cooling. This is why the HTC dominated optimization was performed, shown in purple. That results show that considerable efficiency increase can be obtained by very small increase in the heat load. For around 0.3% of the efficiency increase, integrated HTC will rise for about the same value which is a good trade-off. The most efficient design in HTC dominated optimization has efficiency increase of around 0.55% while keeping the integrated HTC increase just below 1%. Linear relationship in these HTC dominated designs between efficiency and the heat load can be observed. PADRAM provides a rich design space for the Turbine Tip, as shown in Figure 38 the Winglet and squealer are parameterized with spline points, however, in MADELEINE the use of the topology Optimization via the OPT Mimic tool is also explored [39]. Parametric free tip design has produced designs that are 0.3% better than a parametric-based optimized squealer tip [START_REF] Vincekovic | Exploring Topology Optimization of High Pressure Turbine Blade Tips[END_REF]. A strong sealing effect has taken place due a counter rotating pair of vortices (Figure 41). The figures of for this mono-discipline optimization were turbine stage isentropic efficiency subject to a very tight tolerance on the turbine stage reaction and capacity. NTUA performed the adjoint-based aerodynamic shape optimization of the MT1 rotor blade targeting max. stage efficiency, subject to tight inlet capacity and stage reaction constraints. The rotor blade is parameterized using a 7x3x3 FFD volumetric NURBS control grid, Figure 42 (left). The control points on the first and last two layers in the streamwise direction remain constant through the optimization. The rest of the control points are free to move in the streamand pitch-wise directions. Changes in the control point coordinates affect directly the volume mesh generated around the rotor blades. The optimization algorithm relies on the method of moving asymptotes and the optimization history is shown in Figure 42 (middle). The optimization has converged after ~50 cycles. The inlet capacity remains practically fixed and the stage reaction is within the target limits. The efficiency of the optimized configuration is higher than the baseline one by ~0.50%. Figure 42 (right) presents the changes in the root, mid-span and tip rotor sections. The computed pressure fields on the blade suction side are illustrated in Figure 43 for the baseline and optimized configurations. Lastly for the MT1 test case, UniCA performed robust aerodynamic blade optimizations. To characterise shape uncertainties, 200 real high pressure turbine rotors were analyzed (Figure 44), all belonging to the same engine design. Each blade worked in its engine for a well-known number of hours and all of them were characterized by geometrical deviations. All the blades were laser scanned, and its geometrical variability quantified. The uncertainty quantification was performed by first aligning each scan with respect to a unique reference position given by the cold of the initial blade, and then by mapping the geometry to a combination of parameters from the PADRAM design space [START_REF] Shahpar | PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimization[END_REF], following an in-house optimization procedure coupling three software, i.e. P2S (a tool that calculates the distance field between 2 geometries), PADRAM (the geometry modeller) and SOFT (an optimization toolkit). An example of a scanned blade, together with typical variabilities of a geometrical parameter along different spanwise sections is shown in Figure 44. The variability ranges of all parameters have been used to perform an Uncertainty Quantification (UQ) of the performance of the given component. UQ can be made significantly cheaper with the availability of gradient information [START_REF] Mura | Least squares approximation-based polynomial chaos expansion for uncertainty quantification and robust optimization in aeronautics[END_REF]. Figure 45 UQ and optimization approaches will be coupled to obtain a robust optimization of the component, therefore aiming to produce a component with improved nominal performance and limited degradation in the presence of manufacturing or in service variability.

E. Aero-acoustic isolated propeller blade optimization (TC4)

Designing a blade shape of a propeller targeting aerodynamic performance improvement does not usually comply with reducing its noise as this requires parameters modifications which are antagonistic. For instance, reducing the diameter or the regime mitigates the emitted noise thanks to the tip Mach number reduction, but requires an adaptation of the blades pitch angle to maintain sufficient thrust. Thus, the acoustic mitigation is constrained by the aerodynamic performance. In addition, the acoustic and aerodynamic impacts of local blade shape modifications are difficult to foresee, and a trial-and-error approach based on Computational Fluid Dynamics (CFD) and Computational Aero-Acoustics (CAA) simulations is time consuming. Therefore, blade shape optimization based on aero-acoustic criteria appears as an alternative approach to this engineer-made design, since modern optimization techniques may quickly lead to non-contemplated solutions. This is why we focus here on a gradient multi-disciplinary optimization with the adjoint method applied to propeller noise reduction. The adjoint method is seldom applied to aeroacoustics problems: first due to the unsteady nature of noise, therefore requiring an unsteady adjoint method which is expensive in terms of computer memory [10][33], second due to the problem of computing noise in the far field, which is either very expensive if obtained directly through CFD [11][33], or requires the application of acoustic analogies leading then to complex CFD-CAA coupled adjoint strategies [START_REF] Economon | A coupled-adjoint method for aerodynamic and aeroacoustic optimization[END_REF]. However, in the case of an isolated single propeller without incidence of the incoming flow, a workaround to these problems is possible thanks to the steady behavior of the flow in the rotating blade frame of reference: it allows first to rely on a steady CFD approach and a steady adjoint strategy, and then to compute the radiated tonal noise with a frequency domain approach. The propeller test case of the MADELEINE project is used to demonstrate the added value of shape MDO workflow for an isolated propeller taking into account both aerodynamic and acoustic functions of interest.

The propeller, named HAD-1, complies with the requirements of an electrical or hybrid CTOL/VTOL (Conventional/Vertical Take-Off and Landing) concept using light propellers, at least for cruise flight. HAD-1 is a three blade propeller which geometry, pressure field for the cruise flight condition and a sample acoustic analysis of the steady loading noise as illustrated in Figure 46.

As a logical step towards applying the adjoint method for propeller optimization, a finite difference approach has also been applied to the gradients computed using the adjoint method [START_REF] Chelius | Adjoint Based Aeroacoustic Optimization for Propeller Noise Reduction[END_REF]. The functionals of interest involved in a typical aero-acoustic propeller optimization are thrust and torque, from the aerodynamic point of view, and noise, from the acoustic point of view. Torque is directly related to power that needs to be delivered by the engine, which must be reduced at a fixed thrust to lower fuel burnt. Figure 47 shows a comparison between the gradients obtained by the adjoint and finite difference methods, as computed using NLR's CFD system ENFLOW for a steady (axial) flow condition. The noise is computed by means of the Ffwocs Williams Hawkings analogy. Here, the HAD-1 propeller shape is represented by 7 control sections along the span, where the airfoil at each section is parameterized by 21 design variables. Another important on-going activity is the development of an unsteady adjoint method. Such a method becomes utterly relevant when the propeller to be optimized must operate in a strong unsteady flow field, such as a tip-mounted propeller as part of a distributed propulsion system. As a means of verification, two different procedures for the same flow condition are considered. The first is a steady procedure to solve the RANS equations formulated in a rotating frame of reference, which has given the gradients shown in Figure 47. In the second procedure, the unsteady RANS equations are directly solved using a time-accurate forward and adjoint simulations, involving a physical rotation of the blade. Figure 48 presents a comparison between the surface sensitivities obtained by the steady and unsteady adjoint procedures, as computed using ENFLOW (the red lines show the topological face distribution of the structured multi-block grid). The good agreements in terms of the gradients and sensitivities shown above provide a sound foundation for an aeroacoustic propeller optimization in the coming activities of the project.

F. Aero-acoustic air inlet and fan blade optimization (TC5)

The aim of this test case (TC5) is to develop a coupled MDO workflow for the aero-acoustic design optimization of air inlet and fan blade to address the buzz-saw noise issue of modern high bypass-ratio turbofan engines. The geometries used for this test case are the Rolls-Royce VITAL fan blade [START_REF] Giugno | Adjoint-Based Optimization of a Modern Jet-Engine Fan Blade[END_REF] and a generic air inlet altered to match the VITAL fan characteristics (Figure 32). The design point for this test case as well as the corresponding CFD boundary conditions is provided by RR. The flow information at the fan inlet is used as the noise source and outlet condition for the air inlet design optimization. Figure 49 is an illustration of the air inlet and fan test case.

Figure 49 -Air inlet and fan domains decomposition (TC5).

Regarding fan blade design, an aero-acoustic adjoint sensitivity analysis has been successfully developed for the first time to optimize the fan blade aiming to reduce the fan buzz-saw noise. The aero-acoustic cost function is defined as the total sound power level at the fan inlet boundary and is linearized to construct both the flow adjoint source term and the geometric adjoint source term for the steady adjoint solver in the Rolls-Royce HYDRA-CFD software [START_REF] Lapworth | HYDRA-CFD: A Framework for Collaborative CFD Development[END_REF].

Based on a design space of 35 engineering parameters consisting of axial sweep, circumferential lean, blade restaggering, leading-edge re-cambering, trailing-edge re-cambering, the chord position for leading-edge re-cambering blending, and the chord position for trailing-edge re-cambering blending applied at five radial positions, the adjoint sensitivity results have been compared with the finite difference approximations, and the agreements are satisfactory as shown in Figure 50. Then, an adjoint-based, MDO process to reduce the fan shock-associated noise and to increase the fan efficiency simultaneously while meeting the fan operating conditions has been developed, and it has been successfully applied to the design optimization of the Rolls-Royce VITAL fan blade. A trade-off between the noise reduction and the efficiency increase has been obtained, as shown in Figure 51, indicating good chances of significant performance improvements both acoustically and aerodynamically. Full-annulus fan CFD simulations for buzz-saw noise prediction have also been conducted showing a broad engine order spectra reduction. Besides, off-design performance analysis has indicated that the optimized fan blades outperform the datum VITAL fan in a wide operating range. More details of the adjoint-based MDO work of the VITAL fan can be found in [START_REF] Wu | Low-Noise Blade Design Optimization for a Transonic Fan Using Adjoint-Based MDO Approach[END_REF]. The outcome of the VITAL fan design optimization directly supports the air inlet design through an interface flow and noise data exchange workflow, and iteratively, a coupled air inlet and fan design can be achieved based on the presently developed adjoint capabilities for the axisymmetric case.

Τhe air intake MDO, is related to the redesign of its shape by considering both aerodynamic and aero-acoustic objectives. To this end, a customized axisymmetric parameterization for the intake was developed. A set of 15 NURBS control points was enough to obtain a good agreement between the generatrixes of the baseline and the reparameterized geometries.

The adjoint-based shape optimization runs aiming at minimizing noise (min. energy in the sound spectrum; herein at the blade passing frequency) and maximizing total pressure at the engine intake were carried out. In either case, 13 out of the 15 control points were allowed to vary in both the axial and radial direction, summing up to 26 design variables in total. Τhe optimization of the aerodynamic objective only, after 8 cycles, yielded the optimized geometry of Figure 52 (right) that increased the intake total pressure by 0.2% (Figure 52; left). For this study a hybrid aero-acoustic model, involving the solution of the URANS equations (the PUMA CFD s/w of NTUA) and the Ffowcs Williams-Hawkings (FW-H) acoustic analogy, along with its adjoint was used [START_REF] Wu | Low-Noise Blade Design Optimization for a Transonic Fan Using Adjoint-Based MDO Approach[END_REF]. The continuous adjoint method included the solution of the adjoint to the turbulence model PDE.

V. Conclusions

This paper gives an overview of the European MADELEINE project gathering 15 partners. The project is dedicated to adjoint-based multidisciplinary optimizations of industrial configurations (engine and aircraft components). The concept of the project is described with a detailed description of the methods and tools developed to tackle the different multi-disciplinary optimization problems addressed in the project (test cases).

In terms of method development, the main objective was to improve the capability, the usability and the efficiency of the coupled adjoint solvers (mainly aero-structure, aero-acoustic and aero-thermal) along with the complete MDO process including mesh deformation, parameterization or MDO formulations. In this respect, strong efforts were first devoted to the validation of the multi-physics coupled sensitivities through generic but also complex test cases, and the improvement of the robustness and efficiency of adjoint solvers using advanced linear solvers. To better understand the impact of the strategy or formulation used to handle MDO problems, the scalable model methodology have been developed and applied on representative aero-structure coupled problems. In terms of parameterization, different approaches have been tested (for instance engineering-or physics-based, Free-Form Deformation, topology optimization, Vertex Morphing) depending on the targeted test case. The results showed that opening the design space could provide additional performance improvements but it is also important to keep in mind additional constraints mainly related to manufacturing. The current mesh deformation techniques seem robust enough for the optimization problems addressed in the frame of MADELEINE as shown by the benchmark done on several test cases.

Another key aspect for MDO in an industrial context is the use of Uncertainty Quantification or manufacturing constraints in the optimization problem to perform robust design and optimization; but their computational cost remains a major issue. Efficient UQ techniques such as Polynomial Chaos (PC) can decrease this cost, especially when coupled with efficient adjoint solvers. In MADELEINE, adjoint-enhanced PC methodologies have been developed, and apply to two relevant engine test cases (fan and turbine blades), the uncertainties being defined from real measurements.

As the final objective of MADELEINE is to demonstrate the added value of using adjoint-based MDO on industrial applications, several optimization problems have been defined. First coupled aero-structure wing optimizations have been performed demonstrating the impact of the flexibility on the optimal aerodynamic efficiency and of the structural parameters on the trade-off between aerodynamics and structure. As far as engine integration is concerned, aeroacoustics compromises are of high interest. For this purpose, coupled aero-acoustic optimizations have been achieved using different modellings for the acoustics on propeller and turbofan configurations. The results show the importance of using High-Fidelity simulations (potentially unsteady) when dealing with complex acoustic sources (such as the Buzz Saw Noise) and the need to optimize simultaneously the fan blades and the air inlet in the case of the turbofan configuration.

Finally, MDO problems have been defined for two key engine components, low-pressure fan and high-pressure turbine blades. Regarding fan blade, aero-structure deterministic and robust optimizations have been conducted using different parameterizations and coupled optimization strategies. They demonstrate the importance of considering structural constraints in the aerodynamic design loop and uncertainties for such configurations subjected to considerable static and dynamic structural loads with complex manufacturing processes. Lastly, aero-thermal high-pressure turbine blade optimizations have been conducted in MADELEINE. In this context, different parameterization techniques have been tested, in particular topology optimization for turbine tip or cooling passage optimization. The results have shown the potential of these innovative parameterization techniques for such engine component but also the importance to properly capture the aerothermal compromises with the appropriate degrees of freedom to have a suitable exploration of the design space.

For all these industrial MDO problems, additional optimizations will be conducted by the end of the project to reinforce the conclusions and bring more expertise into the design process of the industrial partners contributing to the project.
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 2 Figure 2 -Synergies between enablers and demonstrators considered in MADELEINE.
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  USFD used Hydra as a flow solver, and the structural behavior came from a response surface created using Kriging of a Design of Experiment run with SimSolid (application on TC2).

Figure 3

 3 is an excerpt of NTUA's investigations in the internally cooled C3X linear turbine vane. The left panel shows the solution adjoint thermal fields and the right panel compares several strategies to solve the fixed point system arising from the coupling.
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 3 Figure 3 -Left: Fluid's adjoint energy and solid's adjoint temperature fields. Right: Performance of different schemes coupling the adjoint flow and heat conduction solvers.
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 4 Figure 4 -Comparison of MDO formulations for both GBJ (left) and XRF-1 (right) use cases.
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 5 Figure 5 -Discretization independent free form shape update obtained on two different discretizations of the HAD-1 propeller (TC4) assuming the same continuous sensitivity field on both discrete surface descriptions.
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 6 Figure 6 -Procedure for the topological generation of squealer walls/ridges from an F scalar field.
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 7 Figure 7 -CAD aircraft model with parametric surface point distribution.
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 8 Figure 8 -Compressor blade 3x3x3 vs 6x6x6 FFD grid.
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 9 Figure 9 -28M upwards bending results (left); 3M -45 o flap results.
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 10 Figure 10 -28M upwards bending results (left); 3M -45 o flap results.

Figure 11 -

 11 Figure 11 -The four wing sections where twist angle uncertainties are imposed.
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 12 Figure 12 -Gradient of the mean for the Rotor 37 case.

Figure 13 -

 13 Figure 13 -Gradient of the standard deviation for the Rotor 37 case.
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 14 Figure 14 -Comparison of traditional and robust optimizations for the transonic airfoil test case.

Figure 15 -

 15 Figure 15 -MDA and MDO between two disciplines using GEMSEO MPI wrappersIn order to enable machine and operating system independency in a MDO process, Singularity containers technology has been used. It enables to run Windows applications under a Linux host through the use of Wine (https://www.winehq.org/) inside the container. A Windows serial application encapsulated into a Singularity container has been successfully run under Linux. This capability enables to lower the cost of infrastructure creation and maintenance.

Figure 16 -

 16 Figure 16 -Windows On Cluster (WOC) using Singularity container technology.

Figure 17 -

 17 Figure 17 -Comparison of the flow (left) and adjoint (right) solutions obtained using the full-rotor (flood) and chorochronic (dashed lines) configuration developed by NLR.

Figure 18 -

 18 Figure 18 -Extraction of directional stiffness for Euler (left, NACA0012 profile) and Navier-Stokes (right, OAT15A profile) by ONERA. Table 4 -Speed-up for different preconditioners implemented by OPT using the line patterns extracted by ONERA (ILU: incomplete lower-upper).
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 20 Figure 20 -Comparison between ONERA, DLR and Airbus of coupled sensitivities for Pressure Drag (CDp).
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 21 Figure 21 -Comparison of baseline flight shapes based on CSM1 (blue shape) and CSM2 (gray shape) for the same flight point (CL=0.5 and Altitude of 10.39 km).
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 22 Figure 22 -Comparison of flexible optimization history for the CSM1 (blue line) and CSM2 (red line).

Figure 23 -

 23 Figure 23 -CFD mesh and FEM model used for the flexible optimization.

Figure 24 -

 24 Figure 24 -Comparison of convergence rates (left) and far-field aircraft drag coefficient improvements (right) for flexible (blue) and rigid (orange) optimizations In order to further investigate this tendency, the analysis is extended to the flight-condition domain defined by 𝑀 x CL=[0.81, 0.85] x [0.425, 0.575]. A DoE of 63 points is computed using trimmed flexible computations to generate the response surface shown in Figure 25. This response surface quantifies how the far-field aircraft 𝐶𝐷 differences vary close to the flight domain targeted by the optimization. The trend of the response surface is in line with results obtained for the optimization points. The flexible optimum is able to achieve slightly greater drag reductions in the vicinity of the domain targeted by the multipoint problem and also for points at lower Mach numbers. The rigid optimum slightly outperforms the flexible one for more off-design points at greater Mach numbers and at greater 𝐶𝐿.

Figure 25 -

 25 Figure 25 -Far-field aircraft 𝐶𝐷 differences between the flexible and the rigid optimum (flexible -rigid), normalized by the baseline total far-field 𝐶𝐷.

Figure 26 -

 26 Figure 26 -Computed polar curves for two different cruise conditions by DAv and NTUA.

Figure 27 -

 27 Figure 27 -Wingbox model generated by ESI. Each colour is a model "part" (either a shell or a beam), in which the structural parameters are homogeneous. The FSI (Fluid Structure Interactions) centres are located at the centres of mass of the 240 skin panels.

Figure 28 -

 28 Figure 28 -Fixed point aero-elastic solver used for the Generic Business Jet configuration.

Figure 29 -

 29 Figure 29 -Convergence of the aero-elastic simulation of the Generic Business Jet configuration.DAv and NTUA also performed aero-elastic adjoint simulations and the adjoint-based computed sensitivity derivatives of drag, lift and pitching moment coefficients are compared. The same sensitivity derivatives are also compared with finite differences (FD) by both partners. The effect of the frozen turbulence assumption (which is an assumption frequently met in the literature) on the accuracy of the computed sensitivity derivatives is also investigated. Flexible-wing sensitivity derivatives are also compared with rigid-wing ones. Figure30summarizes the outcome of this study by comparing adjoint-and FD-based sensitivity derivatives of the lift coefficient computed by both partners.

Figure 30 -

 30 Figure 30 -Computed sensitivity derivatives of lift coefficient by DAv and NTUA [24].

Figure 31 -

 31 Figure 31 -Optimization history for rigid (left) and flexible-wing (right) configurations, performed by NTUA.

Figure 36 -

 36 Figure 36 -Pareto front for the fan optimization. The aim is to maximize mean efficiency while minimizing its standard deviation (DGO: Deterministic Global Optimum).
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 37 Figure 37 -MT1 turbine blade configuration [31].
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 38 Figure 38 -(a) Winglet tip outline -(b) Winglet tip thickness -(c) Blade skew.

Figure 39 -

 39 Figure 39 -Optimization workflow.

Figure 40 -

 40 Figure 40 -Pareto front.

Figure 41 -

 41 Figure 41 -Topology Optimized Winglet-Squealer tip [31].

Figure 42 -

 42 Figure 42 -MT1 rotor shape optimization performed by NTUA: (Left) Control grid, (Middle) Optimization history, (Right) Span-wise rotor sections for the baseline (blue) and optimized (red) blades.

Figure 43 -

 43 Figure 43 -MT1 rotor shape optimization performed by NTUA: Pressure fields over the suction side of the baseline (left) and optimized (right) blades.

Figure 44 -

 44 Figure 44 -Scanned blade (left) and typical variation of a shape definition parameter along different radial sections (right).

  presents a quantification of the impact of the different shape uncertainties on the performance of the component, in term of Sobol indices.

Figure 45 -

 45 Figure 45 -Sobol indices for the engine component's adiabatic efficiency.

Figure 46 -

 46 Figure 46 -HAD-1 geometry (left); RANS calculation field (middle); sample steady loading noise CAA vs analytical (right).
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 47 Figure 47 -Comparison of the gradients obtained by the adjoint and finite-difference method.

Figure 48 -

 48 Figure 48 -Comparison of the surface sensitivities computed by the steady and unsteady adjoint procedures.

Figure 50 -

 50 Figure 50 -Aeroacoustic sensitivities and finite difference approximations.

Figure 51 -

 51 Figure 51 -The VITAL fan blade MDO results in criterion space.

Figure 52 -

 52 Figure 52 -Convergence history of the aerodynamic optimization (left); optimized vs. the baseline geometry (right).

Figure 53 -

 53 Figure 53 -Convergence history of the aero-acoustic optimization (left); optimized vs. the baseline geometry (right).On the other hand, after 12 cycles, the optimization of the aero-acoustic objective yielded a new shape with a 20% decrease in the noise objective function (Figure53; left). The latter corresponds to the sound at three circumferential rows of listeners at 90 o , 105 o and 120 o . Though the aerodynamic objective was not considered during this run, the optimized geometry (Figure53; right) has an increased aerodynamic performance by about 0.12%, compared to the baseline one.

  

Table 1 -Uncertainty quantification for the rigid wing. Statistical moments of

 1 

𝑪 𝑳 and 𝑪 𝑫 for 𝑪 = 𝟏, 𝟐.

Comparison of the sparse grid w.r.t. the full grid for the UQ. Quantities are non-dimensionalized as before.

  

			𝐶 = 1	𝐶 = 2
		FFNI	SGNI	SGNI
	𝜇 𝐶𝐿	0.9998655	0.999968	0.9998756
	𝜎 𝐶𝐿	0.0145799	0.0145597	0.0145821
	𝜇 𝐶𝐷	1.0005278	1.0012295	1.0005339
	𝜎 𝐶𝐷	0.0160260	0.0160135	0.0160287

Table 2 -Uncertainty quantification for the R37 efficiency with different approaches.

 2 

	𝜇 𝜂	84.310	84.313	84.313
	𝜎 𝜂	0.293	0.292	0.299
	Calls	66	11	11

SGNI (2 nd order)

SGNI-G (1 st order) LSA-G (1 st order, null-space)

Table 3 -Comparison of the results for traditional and robust optimizations for the transonic airfoil test case.

 3 

		LSA	LSA-G	SGNI	SGNI-G	DET
	𝜇 𝑓 1	56.250	56.434	56.551	56.179	55.732
	𝜎 𝑓 1	0.225	0.281	0.281	0.215	1.185
	𝑂𝐵𝐽	55.574	55.591	55.708	55.533	59.682
	calls	3864	309	9333	425	629

Michael.meheut@onera.fr, Civil Aircraft Unit team leader.
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