N
N

N

HAL

open science

Propagation of scalar waves in dense disordered media
exhibiting short- and long-range correlations

Adrien Rohfritsch, Jean-Marc Conoir, Tony Valier-Brasier, Romain Pierrat,

Régis Marchiano

» To cite this version:

Adrien Rohfritsch, Jean-Marc Conoir, Tony Valier-Brasier, Romain Pierrat, Régis Marchiano. Propa-
gation of scalar waves in dense disordered media exhibiting short- and long-range correlations. Physical

Review E , 2021, 104 (6), pp.064138. 10.1103/physreve.104.064138 . hal-03813660

HAL Id: hal-03813660
https://hal.science/hal-03813660

Submitted on 13 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03813660
https://hal.archives-ouvertes.fr

PHYSICAL REVIEW E 104, 064138 (2021)
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Correlated disorder is at the heart of numerous challenging problematics in physics. In this work we focus
on the propagation of acoustic coherent waves in two-dimensional dense disordered media exhibiting long- and
short-range structural correlations. The media are obtained by inserting elastic cylinders randomly in a stealth
hyperuniform medium itself made up of cylinders. The properties of the coherent wave is studied using an
original numerical software. In order to understand and discuss the complex physical phenomena occurring in the
different media, we also make use of effective media models derived from the quasicrystalline approximation and
the theory of Fikioris and Waterman that provides an explicit expression of the effective wave numbers. Our study
shows a very good agreement between numerical and homogenization models up to very high concentrations of
scatterers. This study shows that media with both short- and long-range correlations are of strong interest to

design materials with original properties.

DOI: 10.1103/PhysRevE.104.064138

I. INTRODUCTION

Wave propagation in heterogeneous media made of parti-
cles randomly distributed into a host medium has been subject
to intense research for more than half a century. Different
transport regimes exist, which depend on the size and degree
of disorder of the medium [1,2]. For weak disorder, the mean
field takes the form of a coherent wave that can be described
thanks to multiple scattering theories. In particular, it can be
shown that this coherent wave propagates in an effective ho-
mogeneous medium with a complex wave number ke [3,4]. It
is well known that the correlations between scatterers strongly
impact coherent waves [5—7]. These correlations come into
play for understanding, for example, the properties of many
various living systems [8,9] or liquid metal [10], and many
theoretical studies have been developed with a view to design
new materials [11,12].

Existing studies focus on either short-range correlations
(SRCs), such as for hard disk systems for instance, or long-
range correlations as those that essentially characterize stealth
hyperuniform (SHU) materials [13,14]. Nevertheless, no stud-
ies address the question of the propagation of scalar waves in
media composed of both short- and long-range correlations.
In this paper, we focus on the impact of the increase of
scatterers size on the coherent waves and we propose two
statistical models to capture the complex effects associated
with materials exhibiting short- and long-range correlations.

To ensure that the short- and long-range correlations co-
exist, the idea is to build a new medium by inserting random
particles into a SHU medium. The important point is that the
considered particles are not pointlike scatterers, they have a
finite size and then cannot overlap. It follows that increas-
ing concentration leads to a strengthening of the coupling
between the two populations: the SHU particles constrain
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more and more the random ones, which have less space to fit
between the SHU particles. Thus, random particles organize
themselves to give a SRC medium. Finally, one gets a nested
medium, composed of the SHU and SRC media, exhibiting
both short- and long-range correlations.

In the following, our analysis will be based on the prop-
erties of the pair-correlation function /;,(r) and the structure
factor S(q) [7]. These two quantities are important to describe
the correlation effects, first from the point of view of the
microstructure of the media [13], but also they enter into
the analytical expressions of k. that lead to a clear physical
interpretation of the propagation [15]. Then, the domain of
validity of different statistical propagation models providing
kegr is studied by comparisons with numerical simulations
made with an in-house software, called MuScat [16]. It is
based on the exact equations of the multiple scattering theory.

The paper is organized as follows. In Sec. II, the mi-
crostructure of the media of interest is exposed that enlightens
the specificities of each pattern. In Sec. III the comparison
between a first-order statistical model, which does not take
correlation effects into account, and numerical results are
exposed in order to analyze the propagation of the coherent
waves. Section IV is dedicated to the derivation of effective
wave numbers and scattering mean-free paths taking into
account correlation effects. In Sec. V physical results are
discussed.

II. ANALYSIS OF THE MICROSTRUCTURES

In this section, we are interested in the microstructure
of the nested medium (SHU + SRC) and the correlations
are examined throughout the behavior of the pair-correlation
function h,(r) and the structure factor S(q), where q is the
scattering vector. The structure factor plays an important role

©2021 American Physical Society
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in the definition and the study of the transparency of SHU
media, which are known, as it will be discussed later, to induce
almost no loss on propagation of waves at low frequency
[17-21]. Let us start by presenting these media in the case
where scatterers are of finite size, which induces constraints
on the radius of the particles a and the appearance of a cutoff
frequency for transparency.

A. Stealth-hyperuniform medium: A correlated disorder that
cancels normalized density fluctuations at large wavelength

Stealth hyperuniform media are characterized by the
cancellation of normalized density fluctuations at large wave-
lengths [22,23]. In the Fourier space, this can be described by
the structure factor. For N pointlike scatterers, it is given by

1< ’
ﬁ § :eiq.r,-
j=1

The SHU property implies that the structure factor Sspy(q)
verifies [13,24]

S(q) = (1

Ssuu(q € ) =0, 2

where 2 is a domain surrounding (but excluding) the origin.
Property (2) implies the transparency of SHU media in the
low-frequency limit and for the single scattering regime.

For an infinite medium, €2 is continuous. In the case of a
more realistic domain of size L, it is convenient to consider it
as an unit cell of a periodic media [25]. Doing so, the domain
Q is discretized.

It is convenient for © to choose a square domain of size
2K around the origin. Doing so, the discrete wave numbers
q are given by (ny, ny)27 /L, with —P < (n,, n,) < P, and
P = KL/(2rm). The degree of stealthiness is defined as the
ratio between M (£2), the number of constraint wave numbers
q € 2 and the number of degrees of freedom [2N in the case
of a two-dimensional (2D) point pattern] [24,25]:

M@
2N
leading to the following expression for K [17,18]

%,/4XN+ 1. (4)

The parameter y takes values between 0 and 1. A pattern built
with xy — 0 is fully disordered, whereas the choice y — 1
leads to a perfect crystal. For details on the numerical proce-
dure to design SHU point patterns, refer to Refs. [24,26].

Let us precisely describe the medium. A SHU point pat-
tern is created at first, with parameter x = 0.6. We chose
this high value in order to increase the minimum distance
between two points, allowing us to increase the radius a of
the monodisperse set of particles without overlapping and
hence to increase the concentration. The ratio N/L> = 3600
is also kept constant, which induces that the parameter K is
constant as well in every plot of the paper. To reach a given
concentration ¢ = Nma?/L?, the radius a of the particles is
modified.

From a propagation point of view, it is well known for years
[27] that the intensity scattered by N scatterers is proportional
to the structure factor S(q), where q is the scattering vector

X 3)

K =

q = ko(u; — uy), with (u; is the incident wave vector, u, is the
scattered wave vector, and kg is the wave number of the inci-
dent field). This relation is only valid in the single scattering
regime. From there, in this regime and considering Eq. (2),
transparency of SHU media is deduced [17].

For a square domain 2 of size 2K, transparency window
is such that |q| < K or equivalently ky < K/2, which can also
be written in the form [18]

koa < /7. ©)

For the sake of legibility, we introduce the reduced wave
number k = 2ky/K, such that 0 < k < 1 is the transparency
window of the SHU medium in the single scattering regime.
Here, multiple scattering effects are taken into account and are
in competition with transparency effects, which are induced
by the spatial organization of scatterers.

B. Short-range correlated media: A correlated media
with local constraints

In heterogeneous media made of finite-size cylinders, a
minimal exclusion distance b = 2a between their centers is
naturally imposed by their nonpenetrability. This distance can
also be larger but has to be lower than a maximum value im-
posed by the concentration. For random monodisperse media,
the maximum concentration being ¢, & 83%, the upper limit

for b is [6]
| ¢r
bmdx =2 6
a . (6)

This type of constraints is called SRC because the presence
of a cylinder only constraint its neighbourhood, that is to
say the position of cylinders located in a circle of radius b
around it. For all systems considered in this paper, the minimal
exclusion distance 2a has to be taken into account in order to
avoid overlapping.

The SRC medium is made of cylinders of radius « that can-
not overlap. It is understood as an intermediate case between
perfectly disordered and SHU media (see Fig. 1 of Ref. [18]
and Ref. [6]).

C. Mixing of long- and short-range correlations:
Description of the nested medium

In the following, SHU and SRC media are both composed
of N particles. The structure factor of the nested medium
Snested(q) can then be written with respect to the ones of the
SRC and SHU media as

1
SNested(q) = _(SSHU(q) + Ssre(q))

S OD L

mlnl

+ L Z Z e’q l.SHU —1' .rﬁRC' (7)
m=1 n=1
From Eq. (7), we notice that, without coupling between both

patterns, the resulting structure factor is directly the average
between the two separate structure factors (SRC and SHU).
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FIG. 1. (a) SHU medium made of cylinders of radius a such that the concentration is ¢ = 5.5%; (b) SRC medium with cylinders of same
size as (a); (c) nested medium composed of the superposition of media SHU (a) and SRC (b); (d) nested medium made of larger cylinders such
that ¢ = 25% and ¢, = 2¢p = 50%. (e)—(h) Average structure factors (S(q)) respectively of the media (a)—(d). The black square on each plots
(e)—(h) corresponds to the domain €2 on which the structure factor Sspy(q) = 0 (see text). (i) Pair-correlation function of the three media SRC,
SHU, and nested for concentration ¢ = 5.5% and (j) same quantities as (i) for ¢ = 25%.

This coupling is expected to increase with the size of the
particles. Figures 1(a) and 1(e) show a SHU points pattern
and its structure factor. Figures 1(b) and 1(f) are the same
quantities for an uncorrelated medium, Figures 1(c) and 1(g)
for a nested medium whose concentration is ¢y = 2¢ = 11%
and the corresponding structure factor averaged over disorder
(S(q)). In Figs, 1(d) and 1(h) the same quantites are presented
for larger particles that lead to ¢yt = 2¢p = 50%. In this case,
the spectral domain 2 is clearly visible, endorsing the fact
that the SRC particle pattern is organizing itself, being more
constrained by the SHU medium. It must be mentioned that
the parameter K is kept constant here, defined with N, the
number of cylinders in the SHU medium. Doing so, we keep
constant the incident wave number & in every plot of the paper.
In Fig. 1(h), the domain where S(q) decreases is larger than
2K, which endorses the fact that correlations strongly impact
the nested medium made of 2N particles.

Figures 1(i)-1(j) show the three pair-correlation functions
hy(r) of each medium (SRC, SHU, and nested), for, respec-
tively, ¢ =5.5% (¢ior = 11%) and ¢ = 25% (por = 50%).
These quantities, computed numerically, allow us to broaden
the previous remarks. In Fig. 1(i), no signs of correlation
appear for the nested medium except the ones that are already
visible on both separated media. This means that, in this case,
the coupling between both media is weak. In this case, SRC
medium appears to be properly described by the hole correc-
tion [hy(r) &~ 0 Vr > 2a]. As the concentration increases [see
Fig. 1(j)], a strong peak appears around r = 2a in the nested
case, which is not visible on SRC and SHU media, showing
that this medium is both short- and long-range correlated and
that all particles are strongly connected. This strong peak
can typically be predicted by analytical methods, such as the
one of Percus-Yevick [28,29]. The analysis of the microstruc-
ture is more straightforward from S(q) than with h,(r), in
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particular when it comes to analyzing the behavior of SHU.
In the following, we will analyze which of these parameters is
more accurate to study wave propagation.

III. ANALYSIS OF THE PROPAGATION:
LIMITATION OF CLASSICAL APPROACHES

The important point of this paper is to understand the cou-
pling between SRC and SHU media from the point of view of
propagation of coherent waves characterized by the effective
wave number ker = @/ cefr + i0efr, With cegr the effective phase
velocity and a. the effective attenuation. This last quantity is
linked to the elastic mean-free path by [30]

oty = 1/2€, ®)

since no absorption effects are considered here. In this section,
we start by comparing results obtained with the software
MusScat [16] and the most common statistical approach for
multiple scattering problems, the independent scattering ap-
proximation (ISA). The great interest of ISA is to clearly
described the propagation of coherent waves in random media
provided that the concentration of scatterers is not too large.
This model predicts the effective wave number to be

kisn = kg — 4ing £ (0), 9)

where ko = w/c is the wave number inside the host medium,
w the pulsation and ng = ¢/na2. Here, f(0) is the far field
form function of a single cylinder, given by

+00
@)=Y Te™, (10)

n=-—00

where the scattering coefficients 7, contain all the elastic
properties of the cylindrical elastic particles, that are made
of steel (longitudinal wave speed, c;, = 5700 ms !, transverse
wave speed cr = 3000 ms~!, density p. = 7850 kgm’3) [31].
One important point is that the scattering coefficients 7p and
T of an elastic particle are of the same order of magnitude
at low frequency. So, these two modes have always to be
considered, but in the extreme case ¢y = 2¢p = 50%, for the
highest frequencies, the mode n = 2 is also needed to reach
convergence. In the following, the scattering cross section of a
scatterer, required to calculate effective attenuations or elastic
mean-free paths, is given by

2 2
o =/ |£(0)%d0 =/ 04(0)d. (11)
0 0

The procedure to compute the effective parameters with MuS-
cat is based on the phase difference method and can be found
in Refs. [6,16]. Simulations on SRC, SHU, and nested media
are performed, averaging over 50 similar disorder realizations
for each.

The effective attenuation plotted in Fig. 2 shows that the
SHU medium allows the coherent wave to propagate without
any loss. This transparency behavior is in perfect agreement
with previous results from the literature [17,18]. In this figure,
correlation effects are put in light. First, at low concentration,
Fig. 2(a) shows that MuScat-SRC (i.e., the MuScat simu-
lations on SRC media) is in agreement with ISA for ¢ =
5.5%. This was expected because the SRC medium is almost

k()a
(a) 0.06 0.13 0.19 0.26 0.32
0.6 ¢ MuScat, SHU
< MuScat, SRC
s 0.5 MuSecat, Nested 1
TH 0.4 ISA, ¢ =5.5% P 4
RS —— ISA, ¢ = 11.0%
g5 0.3 gL
<] // «
S 02 ::»4 .
0.1
o T
0.0 TV E 0 000000040000 00a0,0,
0.2 0.4 0.6 0.8 1.0
k
k()a
(b) 0.14 0.27 0.41 0.54 0.68
¢ MuScat, SHU
6 < MuScat, SRC
. MuScat, Nested 4
Tg ------- ISA, ¢ = 25.0% A
E 4 —— ISA, ¢ = 50.0% e
=] &
o5
3 P <t
2
<
Rl
< <
,,,,, «a” ¢
0 g [ NS NEX]
0.2 0.4 0.6 0.8 1.0

FIG. 2. Effective attenuation calculated with MuScat and with
the ISA, for each pattern (SHU, SRC, and nested), for (a) ¢ =
2¢ = 11% and (b) ¢ = 36%, with respect to the wave number
k = 2ko/K (see text).

perfectly random for this concentration, and we know that
ISA perfectly models the propagation in this case where the
correlation does not play any role. Recall that the correlation
is a second-order effect. The correlation effects are clearly
demonstrated by the MuScat-SHU curve. This one shows
the cancellation of the attenuation, which is the signature of
acoustic transparency. More interesting, MuScat-nested and
ISA curves are very close to each other even if there are
correlations in the medium. Here, the nested medium, which is
twice as dense as SRC and SHU media, impacts the coherent
wave in a very similar way as the SRC medium alone. We
can say that the SHU medium is hidden in the SRC medium.
Furthermore, this illustrates the weak coupling between the
two sets of cylinders when the concentration and the cylinders
size are small. However, when considering results in Fig. 2(b),
for which the whole concentration is ¢y = 2¢p = 36%, the
situation is completely different. The MuScat-nested curve
no longer matches the MuScat-SRC curve, a strong cou-
pling between SRC and SHU media appears inside the nested
medium.

It should also be notice that in Fig. 2(b), the MuScat-
SRC curve appears as a transition between the ISA-25%
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curve and the MuScat-SHU curve, which enlightens the link
between short- and long-range correlations. Increasing dis-
tance b inside SRC microstructure makes the wave propagates
with less loss, making the medium more transparent than
the uncorrelated equivalent medium. The difference between
MusScat-nested and MuScat-SRC curves proves that the cou-
pling is here very strong, the result being that the nested
medium causes half less loss than the same medium without
correlation (ISA-50% curve).

IV. MODEL FOR AVERAGE QUANTITIES

Numerical results extracted with the software MuScat help
us understanding the global behavior of the coherent waves
that propagate in the different media. However, it does not al-
low us to distinguish the preponderant effects and the weaker
ones, all of them being naturally integrated in the numeri-
cal procedure [16]. For this reason, it appears also crucial
to make use of statistical models that are built on different
restrictive assumptions. These models depend directly on the
two quantities %, (r) and S(q) used to describe the microstruc-
ture in Sec. II. We thus have a clear relation between the
microstructure and the propagation of the waves. The better
agreement of a given approach with MuScat therefore en-
lighten the relevance of its assumptions, pointing out at the
same time the predominance of one physical effect compared
to the others. It is noteworthy that the pair-correlation function
only involves the relation between two scatterers. The wave
propagation models chosen in the following are also of order
two in interactions. As the interaction of waves with a scatterer
is characterized by the scattering coefficients 7, (eigenvalues
of the transition matrix 7'), the models introduced only use
second-order 7,7, products to characterize the correlation. In
this spirit, different models that are essential for the physical
analysis are presented briefly in the following.

A. Average field

In this section we briefly present the models we used to
describe the propagation of coherent waves. Basically, dia-
grammatic expansions were introduced in particle physics by
Feynmann [32], Dyson [33], and others in order to provide
deep physical insight into nature of multiple interactions and
correlations between scatterers. The coherent waves result
from a statistical averaging over realizations of disorder. Here,
let us start directly with the expression of the ensemble aver-
age of the Green’s function (G) verifying the Dyson equation
[15,34]

(G) = G+ GX(G), (12)

where S is the self-energy operator and G is the Green’s func-
tion that corresponds to the medium either without scatterers
or without any correlations between scatterers. Let us define
the wave number k inside this medium. Because the medium
is assumed to be statistically homogeneous and isotropic, this
function is given in Fourier space by G(k) = (k2 — k?)~! and
(G) is consequently of the form

1

k -_—=< = -
(G(k)) TSI

13)

The effective wave number ks is defined in our case as an
eigenvalue of the system, and is solution of

=% - S(k). (14)

The first (and the simplest) approach is to choose the host
medium as the reference medium. In that case G = Gy and
k = ky are associated to the homogeneous space without scat-
terers, we have

$-T-0+ &0+ &—0—0 + . (15)

whereas, according to Frisch [15], if G=0G and k =k are
associated to the space with uncorrelated scattering events. We
get

S-T=OAD + ANOAO + .. (16)

The impact of the two options (15) and (16) on the dispersive
equation will be explained in the following. In these expres-
sions, each circle corresponds to a first-order interaction in
the multiple scattering medium associated with the action of
the scattering operator T of a single scatterer. The scattering
coefficients 7, in Eq. (10) are the eigenvalues of 7. The lines
between two circles represent the propagation in the reference
medium, while the dotted lines represent the correlation be-
tween two scattering events. In the following, the formulation
(16) is adopted because it allows us to separate concentration
effects (adjusting k) without dealing with correlation effects.
The wave number k is either replaced by kisa within the
framework of the ISA (first order of interactions), or by kpm
within the framework of the QCA (second order of interac-
tions). It is worth noting that effective wave number k1) only
models double interactions without correlations between the
cylinders positions [35] and is of the form:

K=k, = K2 +i ncot o i[f(e)]%ze (17)
— LM — ™MSA ﬂk(% o 2 d@ .

Now that the modeling of k has been exposed, the main
challenge is to calculate the diagrams of the self-energy op-
erator including pair-correlated scattering events. To do that,
we rely on the approach of Fikioris and Waterman (FW),
which is based on the QCA (we thus speak about QCA-FW).
This approach models the correlation with the pair-correlation
function &, (r). This leads us to the following approximation:

Sqea = ()—(ﬂ\\) + (>—</‘\ >—</A\ )+ (18)

with the result (cf. Appendix A)

5 +00
ki =k —8imng Y T,T,
o

+00
x/ I ke H (koo (Pyrdr. (19)
0

Two approximations are made to deduce Eq. (18) from
Eq. (16). First, diagrams of the same type as the second di-
agram of Eq. (16) can be neglected under the assumption that
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correlations effects are stronger for close pairs of particles.
The particle in the middle of the diagram being therefore far
from the two others, one can assume diagrammatically

O,—O—\O: ijz(). (20)

Second, we assume Tn(E) = T,(ko) so that the wavy lines
of Eq. (16) become straight lines in Eq. (18). Note that
T, (k) coefficients are involved only in the framework of self-
consistent theories as the QCA-CP [36]. Imposing k = kisa
will be denoted FW (ISA), whereas the choice k= kv will
be designated by FW (LM). In the case of monopolar scat-
terers, it is worth noting that kyy; reduces to kisa. Therefore,
Eq. (19) reduces in this case to the well-known expression of
Keller’s wave number [5,37-39]

ki = kiga — 8im f(0)°ng

+00
x/ Jo(ketr)H (korYha (r)rdr. (1)
0

B. Average intensity

To calculate the scattering mean-free path £, = 1/2a.y,
another way consists in analyzing the average intensity, driven
by the Bethe-Salpeter equation. In this framework, it is effi-
cient to introduce the average structure factor (S(q)), which
is calculated by ensemble averaging Eq. (1). The structure
factor is intrinsically linked to h,(r) and provides another
point of view to analyze the behavior of the microstructure
of multiscattering media.

This quantity, for cylinders located on a surface ., can be
written as

(S(q) =1+NTQl f / 7[1+hg(rjk)]ejq'(rf*”)drjdrk.
(22)
Then, by definition of the Fourier transform and noting
1©(Q)1* = [[ . e/ dr;dr; the spatial Fourier trans-
form of the surface ., we get [17]

N—l;l«( )+N—1
R 2(q yz

where ﬁ2(|q|) is the Fourier transform of 4, (r), used in Dyson
approaches described just before. If the finite-size effects
caused by ®(q) are eliminated, a corrected structure factor
(Seorr(Q)) = (S(q)) — %K@(qﬂ2 can be introduced leading
to the expression of the effective attenuation [26,27,40,41]

(S(@) =1+ 0@, (23)

1 _ _ nyo
20, = 0 HF =

(Scorr[kr(u —u)])d <, 24
4 Q

with o given by Eq. (11) and k, = Re( kesz) [17]. Relation
(24) is derived in the context of punctual scatterers. It is
consistent with earlier works. Among them, Ref. [41] appears
to be one of the first to prove its validity through comparison
with experiments. However, Hart and Farrell already used it
in their work on the cornea [27]. This is the reason why we
denote “HF” the predictions based on Eq. (24). Furthermore,
one common way to take anisotropic effects into account is

I ETX\\ particle
-— M()MIIN

FIG. 3. Differential scattering cross section o, calculated for an
elastic particle and a monopolar scatterer, for a frequency such that
k()a =0.25.

to use the interference approximation (ITA) that leads to write
the correction [5,7]:

5p =om = Z—; /Q oalarg(n — W) {(Seore ke (1 — W)
25)

V. PROPAGATION OF THE COHERENT WAVE IN SHORT-
AND LONG-RANGE CORRELATED MEDIA

A. Importance of the anisotropic scattering of elastic
particles on the coherent waves

The QCA-FW, dealing with the pair-correlation function,
allows to consider scatterers with angular radiation patterns
leading to scattering cross sections containing several modes
of vibration. Even at very low frequency, the two first vibra-
tion modes are necessary in order to describe scattering cross
sections, which leads to anisotropic scattering cross section,
as shown in Fig. 3. Two simulations are presented in Fig. 4
showing that this point is essential in the calculation of the
correlation. In the first case, purely monopolar (isotropic)
scattering is considered by numerically canceling the dipolar
mode. In this case, it is worth noting that Keller’s predictions
agree with HF’s predictions for k < 1, which means that the
SHU transparency nature of the medium is caught. In the sec-
ond case, where real elastic particles are considered, Keller’s
model fails to estimate the effective attenuation. As shown
by MusScat results, transparency remains but calculating keg
with Eq. (21) does not succeed in predicting it. This is the
reason why the QCA-FW is introduced and adopted in the
following.

An important contribution of this section is to show that the
models FW (ISA) and FW (LM) lead to a very good predic-
tion of the wave numbers for all the microstructures, SRC,
SHU, and nested. This is a result, which has already been
established for dense random media, where the Percus-Yevick
approximation is generally used [42], but which is original
for SHU and nested media. In the following, the FW (ISA)
model is shown to account for spatial correlations in the cases
where the cylinders radii are relatively small. This is the most
common situation encountered in the literature. At higher
concentrations, when multiple scattering effects increase, we
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FIG. 4. Effective attenuation in the SHU medium compari-
son between MuScat, Keller, and HF approaches. Concentration
¢ =5.5%.

show that the use of FW (LM) improves the predictions of FW
(ISA). This result can be easily understood because the k1
wave number is of the second order in concentration unlike
k 1sa, which is of the first order.

B. Modelling of the correlation in dilute media

In Fig. 5(a), we clearly see that FW (ISA) perfectly
captures the SHU transparency properties of the medium.
It validates the fact that the pair-correlation function h,(r)
properly describes the microstructure of a SHU medium,
as already observed in a recent study [43] that deals
with pointlike particles. Furthermore, the use of the func-
tion hy(r) is relevant to model the propagation inside
the media, endorsing the fact that pair interactions are
predominant.

Let us now analyze statistical predictions based on the av-
erage intensity. For the first particles size [Figs. 5(a)-5(c)] the
concentration i ¢y = 2¢p = 11%, allowing the assumption
k. ~ ko for the calculation of ¢, with Eq. (24). It is worth
noting that FW (ISA) and HF predictions give very close

results for each case (SHU, SRC, and nested). The physi-
cal interpretation is clear: even if diagrammatic expansions
are truncated to interactions of order two, the Ward identity,
which expresses the conservation of energy, is still verified in
a good approximation. Rigorously speaking, recurrent scat-
tering has also to be taken into account as well, which is
negligible for not too dense systems out of resonance. It is
worth noting in Fig. 5(c) that FW (ISA) and HF slightly under-
estimate the effective attenuation given by MuScat, proving
that the densification of the medium has a strong influence on
the coherent wave propagation.

A strong advantage of the model based on the mean
field (FW) is that it provides a full expression of the entire
wave number. This allows to examine the effective phase
velocity, much more difficult to extract through the inten-
sity. In Fig. 6, we plot this quantity, calculated for the
three sets of particles. This choice is motivated by the fact
that in this case the effect of correlations strongly appear
for the highest frequencies, even at low concentration (¢ =
5.5%). The agreement is quantitative between FW (ISA) and
MusScat, endorsing the fact that correlations also impact the
phase velocity, near the transition frequency k = 1. As op-
posed to the attenuation results [Fig. 2(a)], the presence of
the SHU particles modifies the phase velocity. This results
could appear useful for interesting applications such as wave
guiding [44].

C. Effective wave numbers in dense correlated media

Overall, all the models except that of Keller agree among
themselves for the diluted media. But what happens when the
concentration and multiple scattering effects increase?

This leads to consider now ¢ = 18% for each sets of
particles (the nested medium has then a concentration of
Pt = 36%). This leads at the same time to an increase of
the coupling between the two populations: the SHU cylinders
constraint more the SRC ones, which have less place to fit be-
tween the SHU cylinders. Also, the product kpa is increasing
proportionally. To adjust the two different approaches (FW
and HF), FW (LM) is considered instead of FW (ISA), and
arra [Eq. (25)] is also computed.

In Figs. 5(d)-5(f), the effective attenuations of the three
media are presented. For the SHU medium, we see that all the
models are in good agreement with MuScat, even if FW (LM)
predicts an increase for the high-frequency range. For the SRC
medium, an important difference is visible between FW (LM)
and MuScat on one side and FW (ISA), HF and the ITA on the
other side. It should be pointed out that ITA only rectifies HF
significantly for the highest frequencies, and that the correc-
tion is the opposite of what is expected, making the medium
less opaque. This tendency was already pointed out by Derode
et al. on SRC media [5], demonstrating that ITA does not
improve HF to model the propagation in this case. On the
other hand, FW (LM) is very close to MuScat, which shows
the efficiency of the correction provided by adjusting k = k
in Eq. (19). This efficiency is even more visible in the results
for the nested medium in Fig. 5(c). Curiously, taking into ac-
count the angular radiation of the scatterers improves the FW
model but not the HS ones resulting from the average intensity
approach.
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FIG. 5. Effective attenuation calculated with different approaches for the different media (SHU, SRC, and nested) presented in Fig. 1. The
concentration ¢ of SRC and SHU media is controlled by the radius a of the particles (see text). The frequency window is kept constant such
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Here, we see that the FW (ISA) and FW (LM) models, What happens when the particles size increases, as much as
where the correlation is calculated from 4, (r), are more rel- Dot = 50%? It could appear justified to contest the previous
evant than the HF model, which is directly related to the  assumption k. & ko. A simple way to rectify this assumption
structure factor, cf. Egs. (24). is to set k, = kisa. This leads to consider the background

medium as a uncorrelated medium, already homogenized.
. _ kya 4 _ It is worth noting in Fig. 5(g)-5(i) that the corrections are
1480 0.6 013 019 0.26 032 too weak. Other numerical test have been performed with
Ly aas s TPV IOYN kpm instead of kg4 without improving our results. So, other
) SRC, SHU, ¢ = 5.5% ! '3;?? L higher dia'lgrarns appear to .be necessary to properly describe
e, 2510 SRC DR the effective attenuation with the HF approach. In our recent
L + study [18], it was demonstrated that adding higher-order di-
S 1460 . . SHU R agrams properly corrected the attenuation in the case of a
N ,\(‘.\U‘(l_ Ptot = 11% ] . . . .
AT A SHU medium. Indeed, these diagrams lead to a correction in
5; R‘*}- L;_O__L‘ Y . . 2 .
F \\% attenuation of approximately 2o, /ko (order of magnitude)
L ‘ N a v [17]. For our nonresonant system, these diagrams of third
ISA -—-= FW (ISA) ~. .. .
o order in interactions are to be taken account before recur-
¢ MuScat ¢ . . . .
1440 — 1 Y o 0 rent scattering. Here, the discussions about higher-order terms
- ’ ’ 2 ’ would have taken us to far, and therefore is out of the scope of

this paper. Together, results of Fig. 5 allow us to confirm that
FIG. 6. Effective phase velocity in a SHU medium for which the model FW(LM) is the most robust against correlation and
¢ =5.5%. concentration effects.
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VI. CONCLUSION

Our study deals with different types of microstructures:
SRC, SHU, and nested. The two first have been considered
in the recent past, the effective properties of nested media are
presented here.

The concentration in the different media is driven by
the radius of the cylinders. Increasing this quantity leads
at the same time to an increase of the concentration and to
the self-organization of the multiple scattering medium: the
SHU particles constraint more and more the SRC ones, which
have less place to fit between the SHU cylinders. If, for small
cylinders, SRC medium can be assimilated to an uncorrelated
one, the short-range correlations increase with the concentra-
tion. Finally, the nested medium, composed of the SHU and
SRC media, exhibits both short- and long-range correlations.

Interestingly, whatever the concentration and the degree
of interaction between the particles, the nested medium,
which is twice as dense as SRC and SHU media, im-
pacts the attenuation of coherent waves in the exact same
way as an uncorrelated medium with half of particles. In
other words, we can say that half of the particles of the
nested medium are invisible, even at very large concentra-
tion. However, the presence of the SHU particles in the
nested medium notably modifies the phase velocity. So in-
serting a SHU in a random medium can change the velocity
without changing the attenuation. These results could appear
useful for interesting applications such as wave guiding or
focusing.

Two models derived from the QCA, FW (ISA), and FW
(LM), have been developed within the framework of dia-
grammatic expansions and the Dyson equation in order to
calculate the effective wave numbers. These models depend
directly on the pair-correlation function /,(r) introduced to
describe the microstructures. With the idea of establishing a
link between the microstructure and the wave propagation,
we have also used a model derived from the Bethe-Salpeter
equation, which describes the imaginary part of the effective
wave number with regard to the structure factor. The two
quantities h,(r) and S(q) have the main interest to describe
both the microstructure and to represent the correlation in the
expression of the effective wave number. We thus have a clear
relation between the microstructure and the propagation of the
waves.

At low concentration, multiple scattering effects are mini-
mized, and all the models used lead to the same results, except
that of Keller [5,15,39], which is the most used for years. We
showed that the Keller’s model fails because it does not take
into account the anisotropic radiation of the particles in the
calculation of the correlation.

An important issue of the paper is to show that the models
FW (ISA) and FW (LM) lead to very good calculations of
the wave numbers for all the microstructures, SRC, SHU,
and nested. Hence, second-order interactions are enough to
properly describe the propagation in our systems, even if the
correlation is long range, the particles large and the multiple
scattering strong. If these kinds of results are known for dense
random media, where the Percus-Yevick approximation is
generally used [42], it is original for SHU, SRC, and nested
media when the microstructure is far more complex.
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APPENDIX: THEORY OF FIKIORIS AND WATERMAN

Here, we use the theory of Fikioris and Waterman [45]
as the basis of our developments to take into account the
correlation. We could thus speak of QCA-FW.

The basic idea developed by Fikioris and Waterman [45]
is to project the fields on the cylindrical harmonics. Let A,, be
the unknown coefficients resulting from the projection, one
finds that k¢ and the unknown coefficients A, are linked by
the Lorentz-Lorenz law

21 ng Ry
At oo D7 DAyl =0, (AD
0 eff p=—00

where

k2
%(keffb) = Np(keffb) + |:kL£f - 1i|Mp(keffa b) (AZ)
0

and
Ny(keith) = (kettb)J, (ketb)H, " (kob)

— kobJ, (kesib)H" (kob), (A3a)

+00
M, (ketr, b) = / HV (kor)Jp ket Yha (r)kgrdr.  (A3b)
b
The hole correction consists in setting b = 2a to avoid the

scatterers from overlapping. Eq. (A1) is a homogeneous linear
system of equations

2
{1+ il /VT} A=0, (A4)
kO - keff

where A contains the modal amplitudes A,, I is the identity
matrix, T the matrix with coefficient 7, = T,6,,,, and

k2
JV(keffb) = Np(keffb) + (kLéf - 1)

(A5)

Canceling the determinant of the matrix of this infinite system
of equations (A4) yields the desired dispersion relation for
ketr. Here we use cumulative development, which allows us
to write the determinant of any matrix X as a sum

+00
det (I +X) =) 0u(X),

(A6)
n=0
where operators Q, are defined by recurrence
Qo =1,
1 n
0uX) =~ 3 (=110, (XX, (AT)

p=1

The originality and the main interest of this method is
to offer a direct way to select how many orders of in-
teractions are taken into account, without any a priori
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consideration on concentration values. Q; describes the in-
teraction with one particle, O, with two particles and so
on. Hence, truncating Eq. (A6) to second order follows the

J

same idea that the one used in order to approximate the self-
energy operator in the Dyson equation. Doing so, we find
that

27m0 2ny \? S A 2T 5
1 N (kegtb) £ (O No(keitb)? f(0)? — = [ ——=— T To[ N (kettb)]* = A8
R 6 (ketsb) £(0) + = (k2 kgff) 0(kearb)” f(0)” = e Z; K Tn[ i (ketrb)] (A8)
QCA-FW effective wave number takes the following form [45,46]:
sz — leA 4 (dconc 4 dzcorr)né7 (A9)
where
—dix X
s = kg > LTu{[kab? — (m — n)* n(kob)H,,, (kob) — kob? T, (kob)H,\1), (kob)} (A10)
and
d5*" = —8im Z / JnnCkewrYHS, (kor)ho (r)rdr. (Al1)

n,m=—oo

For the low-frequency regime where only modes n = 0 and
n =1 are needed, no integral divergence appears in the in-
tegral equation the governs the effective mean fields, which
makes useless the introduction of the radius of exclusion b
in the model. Therefore, as in Ref. [35], we can assume that
b — 0 in the previous equations.

In this limit, the term d5°"° does not contain any
microstructure information and becomes equal to the second-

(

order term of the model derived by Linton and Martin [35],
namely

L ey i[f(e)]zare (A12)
2 7k Jo 2)do '

b—0

Finally, we find the expression (19) that we use to tackle the
physical problems of the paper.
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