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MAGNETISATION MOMENT OF A BOUNDED 3D SAMPLE: ASYMPTOTIC RECOVERY
FROM PLANAR MEASUREMENTS ON A LARGE DISK USING FOURIER ANALYSIS

DMITRY PONOMAREV 1,2,3

Abstract. We consider the problem of reconstruction of the overall magnetisation vector (net moment) of a sample
from partial data of the magnetic field. Namely, motivated by a concrete experimental set-up, we deal with a situation
when the magnetic field is measured on a portion of the plane in vicinity of the sample and only one (normal to the
plane) component of the field is available. We assume the measurement area to be a sufficiently large disk (lying in
a horizontal plane above the sample) and we obtain a set of estimates for the components of the net moment vector
with the accuracy asymptotically improving with the increase of the radius of the measurement disk. Compared to
our previous preliminary results, the asymptotic estimates are now rigorously justified and higher-order estimates
are given. The presented approach also elucidates the derivation of asymptotic estimates of an arbitrary order. The
obtained results are illustrated numerically and their robustness with respect to noise is discussed.

1. Introduction

Constant advances in magnetometry allow measurements of magnetic fields of very low intensities with high
spatial resolution. In particular, this opens new horizons in paleomagnetic contexts. Ancient rocks and meteorites
possess remanent magnetisation and thus might preserve valuable records of a past magnetic activity on Earth and
other planets, asteroids and satellites. Extraction of this relict magnetic information is a lucrative but challenging
task. Deducing magnetisation of a geosample hinges on effective processing of the measurements of the magnetic
field available in a nearest neighbourhood of the sample since the informative part of the field further away is very
weak and significantly deteriorated by noise. In particular set-ups of scanning SQUID (Superconducting Quantum
Interference Device) magnetometer or QDM (Quantum Diamond Microscope), measurements are available in a
planar area above the sample, in a close vicinity of it, and such measurements typically feature only one component
of the magnetic field. This is in contrast with more common settings that deal with magnetic fields of higher
intensity and hence could, on a methodological level, rely on the classical dipole approximation of a sample valid
in a far-away region.

In the present work, we are concerned with recovery of the overall magnetisation (the so-called net moment) of a
sample rather than dealing with reconstruction of the entire magnetisation distribution. The latter is known to be
an ill-posed problem, in particular, due to the presence of “silent” sources, i.e. magnetisations that do not produce
magnetic field, see [3]. However, as it was shown in [1] for planar (thin-plate) magnetisation distributions, compactly
supported silent sources do not contribute to the net moment. This statement fixes the non-uniqueness issue and
makes the problem of net moment recovery a feasible task. In theory, this problem is even solvable in a closed form
when measurements are available on the entire plane above the sample. In reality, however, the measurements are
very limited and corrupted by the presence of noise which dominates the signal in distant regions. Therefore, we
arrive at the problem of estimating the net moment of a sample from a magnetic field component available on some
portion of the plane in proximity of the sample. Assuming circular geometry, we establish a set of estimates of the
net moment components in terms of the size of the measurement area (disk) under condition that the radius of the
disk is sufficiently large.

We do not intend here to provide neither physical nor mathematical description of the problem in any detailed
fashion. Instead, we refer the reader to the set of previous publications [3, 8, 1, 5, 10, 7, 15, 9] and briefly introduce
basic concepts that allow us to be more specific in formulating our main result and comparing it with relevant
works.

We assume that the magnetic sample is described by a compactly supported vector distribution

~M (~x) ≡ (M1 (x1, x2, x3) ,M2 (x1, x2, x3) ,M3 (x1, x2, x3))
T
, supp ~M =: Q,
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Figure 1.1. Schematic illustration of geometry of the problem

with some compact set Q ⊂ R3. The magnetic field produced by the sample can be expressed as ~B (~x) = −∇Φ (~x) ,
where the scalar potential Φ (~x) satisfies, in a distributional sense, the Poisson equation [3]

∆Φ (~x) = ∇ · ~M (~x) , ~x ∈ R3.

Consequently, we can write [6, Sect. 2.4 Thm 1]

Φ (~x) = − 1

4π

∫∫∫
Q

1∣∣~x− ~t∣∣∇ · ~M (
~t
)
d3t, ~x ∈ R3\Q,

and (upon integration by parts) obtain

Φ (x, x3) =

∫∫∫
Q

M1 (t, t3) (x1 − t1) +M2 (t, t3) (x2 − t2) +M3 (t, t3) (x3 − t3)

4π
(
|x− t|2 + (x3 − t3)

2
)3/2 d3t, ~x ∈ R3\Q.

A physically measurable quantity is not the potential, but the magnetic field. In particular, the measurements are
available for the vertical component (normal) of the magnetic field on the horizontal plane x3 = h

(1.1) B3 (x, h) = −∂x3
Φ (x, h) ,

where h > 0 is some fixed constant. Explicitly, we have

B3 (x, h) =

∫∫∫
Q

3 (h− t3) [M1 (t, t3) (x1 − t1) +M2 (t, t3) (x2 − t2)] +M3 (t, t3)
(
2 (h− t3)2 − |x− t|2

)
4π
(
|x− t|2 + (h− t3)2

)5/2 d3t.(1.2)

Here, we employed bold symbols to denote R2 vectors, e.g. x ≡ (x1, x2)
T . Also, the choice of the origin ~x = ~0 was

assumed such that x = 0 corresponds to the horizontal center of a minimal rectangular parallelipiped embedding
Q, and x3 = 0 corresponds to the (vertically) lowest point of Q.

The geometry of this setting is schematically shown in Figure 1.1.
A quantity of basic physical interest is the net magnetisation moment (which, as discussed above, is a constant

vector equal to the overall magnetisation of the sample):

(1.3) ~m ≡ (m1,m2,m2)
T

:=

∫∫∫
Q

~M (~x) d3x.

In what follows, we may use slightly different names for this quantity interchangeably: net moment, net magneti-
sation, zeroth-order algebraic moment of a magnetisation distribution.

Denote DA :=
{
x ∈ R2 : |x| < A

}
, the (horizontal) disk of radius A centered at the origin.

The main result of this work is summarised in the following theorem.
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Theorem 1.1. Assume that ~M is a distribution with a compact support Q ⊂ R3 producing a magnetic field whose
vertical component B3 is given by (1.2) for x3 = h. Suppose that the measurement area disk DA is sufficiently large
so that the following condition holds

(1.4) sup
~t∈Q, x∈R2\DA

∣∣∣∣∣ t21 + t22 + (h− t3)
2

x21 + x22
− 2

x1t1 + x2t2
x21 + x22

∣∣∣∣∣ < 1.

Then, the components of the net moment (1.3) can be asymptotically estimated, with different orders of accuracy,
using the formulas below.
First-order estimates:

mj = 2

∫∫
DA

xjB3 (x, h) d2x+O
(

1

A

)
, j ∈ {1, 2} .(1.5)

Second-order estimates:

mj = 2

∫∫
DA

(
1 +

4x2j
3A2

)
xjB3 (x, h) d2x+O

(
1

A2

)
, j ∈ {1, 2} ,(1.6)

(1.7) m3 = 2A

∫∫
DA

B3 (x, h) d2x+O
(

1

A2

)
.

Third-order estimates:

(1.8) mj =
2

5

∫∫
DA

[
5 + 24

(xj
A

)4]
xjB3 (x, h) d2x+O

(
1

A3

)
, j ∈ {1, 2} ,

(1.9) m3 =
A

4

∫∫
DA

[
5 + 40

(xj
A

)4
− 128

(xj
A

)6]
B3 (x, h) d2x+O

(
1

A3

)
, j ∈ {1, 2} .

Fourth-order estimates:
(1.10)

mj =
2

105

∫∫
DA

[
105− 2016

(xj
A

)4
+ 19200

(xj
A

)6
− 22400

(xj
A

)8]
xjB3 (x, h) d2x+O

(
1

A4

)
, j ∈ {1, 2} ,

(1.11) m3 =
A

24

∫∫
DA

[
35 + 1792

(xj
A

)6
− 3200

(xj
A

)8]
B3 (x, h) d2x+O

(
1

A4

)
, j ∈ {1, 2} .

Fifth-order estimates:
(1.12)

mj =
2

693

∫∫
DA

[
693− 158400

(xj
A

)6
+ 35200

(xj
A

)8
− 677376

(xj
A

)10]
xjB3 (x, h) d2x+O

(
1

A5

)
, j ∈ {1, 2} .

Remark 1.2. Here and onwards (except numerics in Section 3), for the sake of simplicity, we have assumed the
system of physical units such that the constant of magnetic permeability of a vacuum µ0 is 1. In general, the
right-hand sides of expressions (1.1)–(1.2) should have the factor µ0, and, in Si units, µ0 = 4π · 10−7 N / A2.
Consequently, the right-hand sides of all the formulas (1.5)–(1.12) should, in principle, have the factor 1/µ0.

The most relevant papers to the result of Theorem 1.1 are [1, 2] as well as preliminary works [12, Part 3], [4].
Namely, the current work stems from one of the methods introduced in [12, Part 3] and briefly summarised in
[4]. There, the second-order asymptotic estimates given by (1.6)–(1.7) have already appeared, but have not been
rigorously justified. The case of the leading-order asymptotic estimates (in particular, analogs of (1.5) and (1.7))
and their justification were considered for the case of a rectangular measurement area. The roots of the Fourier
analysis of the magnetic field aimed to recover the net moment of a planar magnetisation (i.e. when support set
Q is two-dimensional and parallel to the measurement plane) can already be found in [9, 3, 8]. In [1], the authors
considered a more general problem of finding linear net moment estimators (analogs of polynomials appearing in the
integrals of (1.5)–(1.12)), without resorting to the asymptotic analysis (hence with no assumption on the largeness
of the measurement area), but under restriction that the magnetisation distribution is planar and regular (square-
integrable). Ill-posedness of the problem (due to sensitivity of the result to the magnetic field data) was recognised
and its regularised version was proposed and solved numerically.

It should be mentioned that even though recovery of the net moment of a sample, our primary concern, is an
important practical problem on its own right, it can also serve, under appropriate assumptions, as a preliminary
step for finding a magnetisation distribution. Indeed, while it is unrealistic to retrieve 3 magnetisation components
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(functions or, more generally, distributions): M1,M2,M3 from the knowledge of only one function B3 (·, h) (see
(1.2)), the problem simplifies significantly for a class of samples which are unidirectionally magnetised. Since the
knowledge of the net moment of a sample implies a definite magnetisation direction, it is thus essential in this
complete reconstruction procedure, see [8] .

The structure of the paper is as follows. Section 2 has a twofold goal. First, it is meant to show how one idea
based on elementary Fourier analysis can yield the simplest version of asymptotic net moment estimates for both
tangential and normal components. Second, this section illustrates that, by means of a careful asymptotic analysis,
the explicit estimates can be not only proved rigorously but also extended to higher orders. Hence, this material
exactly constitutes the proof of Theorem 1.1. Then, in Section 3, we illustrate the results numerically on the case
where the magnetisation has a singular support (i.e. the magnetisation distribution is a collection of dipoles) and
deal with some practical aspects of the obtained estimates. Finally, we conclude with Section 4 summarising the
work, discussing the results and outlining further research directions.

2. Proof of Theorem 1.1

2.1. Some notation and preparatory transformations. Before we proceed with deriving rigorously formulas
(1.5)–(1.12) and thus proving Theorem 1.1, let us introduce some useful notations. We shall use the following
shortcut for the integral of the magnetisation distribution against monomials

(2.1)
〈
xj11 x

j2
2 x

j3
3 Mn

〉
:=

∫∫∫
Q

xj11 x
j2
2 x

j3
3 Mn (~x) d3x, n ∈ {1, 2, 3} , j1, j2, j3 ∈ N0,

where we denoted N0 := {0, 1, 2, . . .}, the set of natural numbers including zero. Following this convention, for the
sake of brevity, we may also write, for example,

〈(h− x3)Mn〉 := hmn − 〈x3Mn〉 =

∫∫∫
Q

(h− x3)Mn (~x) d3x, n ∈ {1, 2, 3} .

Note that, when magnetisation is not a function but merely a distribution, the integrals above should be understood
as distributional pairing between a compactly supported distribution ~M and smooth monomials xj11 x

j2
2 x

j3
3 , j1, j2,

j3 ∈ N0.
Let us ·̂ denote the two-dimensional Fourier transform which, by our convention, is defined as

f̂ (k) ≡ F [f ] (k) :=

∫∫
R2

e2πik·xf (x) d2x,

where i =
√
−1 stands for the imaginary unit, and k · x = k1x1 + k2x2 is the Euclidean inner product. With this

definition, the differentiation and convolution properties of Fourier transform have the form

(2.2) F
[
∂xj

f
]

(k) = −2πikj f̂ (k) , F [xjf ] (k) =
1

2πi
∂kj f̂ (k) , j ∈ {1, 2} ,

(2.3) F [f ? g] (k) :=

∫∫
R2

e2πik·x
∫∫

R2

f (x− t) g (t) dt1dt2dx1dx2 = f̂ (k) ĝ (k) .

We also note that the Fourier transform of the two-dimensional Poisson kernel is well-known (see e.g. [14, Sect.
4.2]), that is, for any H > 0, we have

(2.4) F

 H

2π
(
|x|2 +H2

)3/2
 (k) = e−2πH|k|, k ∈ R2.

Let us now rewrite (1.2) as

B3 (x, h) =− 1

4π

∫∫∫
Q

(M1 (t, t3)
∂

∂x1
+M2 (t, t3)

∂

∂x2

)
h− t3(

|x− t|2 + (h− t3)
2
)3/2(2.5)

+M3 (t, t3)
∂

∂x3

∣∣∣∣∣
x3=h

x3 − t3(
|x− t|2 + (x3 − t3)

2
)3/2

 d3t.
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Taking Fourier transform of (2.5) in x1, x2 variables, we use (2.2), (2.3) and employ (2.4) twice: with H := h− t3
in the first line of (2.5), and with H := x3 − t3 in the second one. We thus arrive at

(2.6) B̂3 (k, h) = π

∫
Q3

e−2π(h−t3)|k|
(
ik1M̂1 (k, t3) + ik2M̂2 (k, t3) + |k| M̂3 (k, t3)

)
dt3,

where Q3 denotes the vertical projection of the set Q.
We note that even though (1.5)–(1.6), (1.8), (1.10), (1.12) give estimates for tangential net moment components

m1, m2, we shall restrict ourselves to dealing only with m1. The situation with m2 is completely analogous.
First, we are going to illustrate our strategy of the derivation of asymptotic estimates of the net magnetisation

moment. Here, we shall be only concerned with the low-order formulas of Theorem 1.1 and we shall omit a rigorous
justification step. Then, we shall proceed with formal justification and extension of the result to higher orders.

2.2. Illustration of the basic idea of the derivation of the net moment estimates. We are going to focus
on deriving (1.5).

We take k2 = 0 in expression (2.6) to obtain

(2.7) B̂3 (k1, 0, h) = π

∫
Q3

e−2π(h−t3)|k1|
(
ik1M̂1 (k1, 0, t3) + |k1| M̂3 (k1, 0, t3)

)
dt3.

Since the magnetisation distribution ~M is compactly supported, the Fourier transforms M̂j (k, t3), j ∈ {1, 2, 3},
are entire functions in k1, k2 ∈ C for each t3 ∈ Q3, according to the Paley-Wiener theory (see e.g. [13, Thm 4.1]).
In particular, power-series expansion of M̂j (k1, 0, t3), j ∈ {1, 2, 3}, about the origin k1 = 0 of the complex plane
(Re k1, Im k1) gives

M̂j (k1, 0, t3) =M̂j (0, t3) + ∂k1M̂j (0, t3) k1 +
1

2
∂2k1M̂j (0, t3) k21 +O

(
|k1|3

)
, j ∈ {1, 2, 3} .

Combining this expansion with the straightforward identities

mj =

∫
Q3

M̂j (0, t3) dt3, j ∈ {1, 2, 3} ,

2πi 〈Mjx1〉 =

∫
Q3

∂k1M̂j (0, t3) dt3, j ∈ {1, 2, 3} ,

and the Taylor expansion in |k1| of the exponential factor in (2.7)

e−2π(h−t3)|k1| = 1− 2π (h− t3) |k1|+ 2π2 (h− t3)
2 |k1|2 +O

(
|k1|3

)
,

we obtain
B̂3 (k1, 0, h) = Re B̂3 (k1, 0, h) + i Im B̂3 (k1, 0, h) , k1 ∈ R,

Re B̂3 (k1, 0, h) =πm3 |k1| − 2π2 (〈x1M1〉+ 〈(h− x3)M3〉) |k1|2

+ 2π3
(

2 〈(h− x3)x1M1〉+
〈

(h− x3)
2
M3

〉
−
〈
x21M3

〉)
|k1|3 +O

(
|k1|4

)
,(2.8)

Im B̂3 (k1, 0, h) =πm1k1 − 2π2 (〈(h− x3)M1〉 − 〈x1M3〉) k1 |k1|

− 2π3
(〈
x21M1

〉
−
〈

(h− x3)
2
M1

〉
+ 2 〈(h− x3)x1M3〉

)
k31 +O

(
|k1|4

)
.(2.9)

Here, the remainder term is uniformly small for all t3 ∈ Q3 due to the boundedness of the set Q3.
On the other hand, we can write

B̂3 (k1, 0, h) =

∫∫
DA

e2πik1x1B3 (x, h) d2x+

∫∫
R2\DA

e2πik1x1B3 (x, h) d2x.(2.10)

We note that in the first term on the right-hand side of (2.10), the integration range is finite and hence an
expansion in powers of k1 simply follows from that of the exponential factor:∫∫

DA

e2πik1x1B3 (x, h) d2x =1 + 2πik1

∫∫
DA

x1B3 (x, h) d2x− 2π2k21

∫∫
DA

x21B3 (x, h) d2x(2.11)

− 4π3

3
ik31

∫∫
DA

x31B3 (x, h) d2x+O
(
|k1|4

)
,

and hence

(2.12)
∫∫

DA

cos (2πk1x1)B3 (x, h) d2x =

∫∫
DA

B3 (x, h) d2x− 2π2k21

∫∫
DA

x21B3 (x, h) d2x+O
(
|k1|4

)
,
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(2.13)
∫∫

DA

sin (2πk1x1)B3 (x, h) d2x = 2πk1

∫∫
DA

x1B3 (x, h) d2x− 4π3

3
k31

∫∫
DA

x31B3 (x, h) d2x+O
(
|k1|5

)
.

Producing an expansion in powers of k1 of the second term in (2.10) is much less straightforward and requires
a preliminary simplification. More precisely, we expand the field B3 (x, h) for large |x| and, assuming largeness of
the region DA, retain only first few terms of this expansion. Namely, from (1.2), we have

(2.14) B3 (x, h) = − m3

4π |x|3
+

3

4π

(〈(h− x3)M1〉 − 〈x1M3〉)x1 + (〈(h− x3)M2〉 − 〈x2M3〉)x2
|x|5

+O

(
1

|x|5

)
.

Consequently, passing to the polar coordinates using x1 = r cos θ, x2 = r sin θ, d2x = rdrdθ, we can write∫∫
R2\DA

e2πik1x1B3 (x, h) d2x =− m3

4π

∫ ∞
A

∫ 2π

0

e2πik1r cos θdθ
dr

r2

+
3

4π
(〈(h− x3)M1〉 − 〈x1M3〉)

∫ ∞
A

∫ 2π

0

e2πik1r cos θ cos θdθ
dr

r3

+
3

4π
(〈(h− x3)M2〉 − 〈x2M3〉)

∫ ∞
A

∫ 2π

0

e2πik1r cos θ sin θdθ
dr

r3

+RA,k1 ,

where the residue term RA,k1 is expected to be O
(
1/A3

)
for sufficiently small values of |k1|.

Furthermore, taking real and imaginary parts of both sides, we obtain, respectively,

(2.15)
∫∫

R2\DA

cos (2πk1x1)B3 (x, h) d2x = −m3

4π

∫ ∞
A

∫ 2π

0

cos (2πk1r cos θ) dθ
dr

r2
+ Re RA,k1 ,

(2.16)∫∫
R2\DA

sin (2πk1x1)B3 (x, h) d2x =
3

4π
(〈(h− x3)M1〉 − 〈x1M3〉)

∫ ∞
A

∫ 2π

0

sin (2πk1r cos θ) cos θdθ
dr

r3
+ Im RA,k1 ,

where we took into account that∫ 2π

0

cos (2πk1r cos θ) sin θdθ =

∫ 2π

0

cos (2πk1r cos θ) cos θdθ = 0,∫ 2π

0

sin (2πk1r cos θ) dθ =

∫ 2π

0

sin (2πk1r cos θ) sin θdθ = 0,

according to the results of Lemma A.4.
Next, as it turns out (see Subsection 2.3 for more details), the integrals on the right-hand sides of (2.15)–(2.16)

can be evaluated explicitly in terms of some cylindrical functions. Known representations of these special functions
lead to the desired asymptotic expansions in powers of k1. In particular, for small |k1|, we can deduce that∫ ∞

A

∫ 2π

0

cos (2πk1r cos θ) dθ
dr

r2
= 2π |k1|

∫ ∞
2π|k1|A

∫ 2π

0

cos (r cos θ) dθ
dr

r2
(2.17)

=
2π

A
− 4π2 |k1|+ 2π3A |k1|2 +O

(
A2 |k1|3

)
,

∫ ∞
A

∫ 2π

0

sin (2πk1r cos θ) cos θdθ
dr

r3
= 4π2k1 |k1|

∫ ∞
2π|k1|A

∫ 2π

0

sin (r cos θ) cos θdθ
dr

r3
(2.18)

=
2π2

A
k1 −

8π3

3
k1 |k1|+ π4Ak31 +O

(
A3 |k1|5

)
,

where the notation O
(
A2 |k1|3

)
also hides the terms of powers of |k1| higher than 3 regardless of the presence of

the A factors such as O
(
A3 |k1|4

)
.

Therefore, by taking the real part of (2.10) and using (2.12), (2.15) and (2.17), we obtain

Re B̂3 (k1, 0, h) =

∫∫
DA

B3 (x, h) d2x− 2π2k21

∫∫
DA

x21B3 (x, h) d2x

− m3

4π

(
2π

A
− 4π2 |k1|+ 2π3A |k1|2

)
+ Re RA,k1 +O

(
A2 |k1|3

)
.
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Comparing this with (2.8) and, in particular, evaluating both expressions at k1 = 0, we arrive at the following
identity:

(2.19)
∫∫

DA

B3 (x, h) d2x− m3

2A
+O

(
1

A3

)
= 0,

where we took into account that Re RA,k1 |k1=0 = O
(
1/A3

)
.

Similarly, taking the imaginary part of (2.10), we combine (2.13), (2.16) and (2.18) to deduce that

Im B̂3 (k1, 0, h) =2πk1

∫∫
DA

x1B3 (x, h) d2x− 4π3

3
k31

∫∫
DA

x31B3 (x, h) d2x

+
3

4π
(〈(h− x3)M1〉 − 〈x1M3〉)

(
2π2

A
k1 −

8π3

3
k1 |k1|+ π4Ak31

)
+ Im RA,k1 +O

(
A3 |k1|5

)
.

Comparison of this expression with (2.9) and matching the coefficients of the k1 terms yields

(2.20) 2π

∫∫
DA

x1B3 (x, h) d2x+
3π

2A
(〈(h− x3)M1〉 − 〈x1M3〉) +O

(
1

A3

)
= πm1,

where we assumed that, for sufficiently small |k1|, we have Im RA,k1 = O
(
1/A3

)
.

While (2.19), (2.20) imply estimates (1.7), (1.5), respectively, the derivation given above was not rigorous and
required additional assumptions on the residue term RA,k1 which was reasonably deemed to be sufficiently small
for large A but was not estimated uniformly in k1. We shall now proceed with rigorous analysis which will also
make it possible to derive higher-order analogs of estimates (1.5), (1.7).

2.3. Rigorous analysis and higher-order asymptotic estimates. Let us start by improving estimate (2.14).
To this effect, we use the following elementary Taylor expansions, convergent for |z| < 1,

1

(1 + z)
3/2

= 1− 3

2
z +

15

8
z2 − 35

16
z3 +O

(
z4
)
,

1

(1 + z)
5/2

= 1− 5

2
z +

35

8
z2 +O

(
z3
)
,

to obtain, for fixed t1, t2, t3, h ∈ R,

1[
(x1 − t1)

2
+ (x2 − t2)

2
+ (h− t3)

2
]3/2 =

1

(x21 + x22)
3/2

[
1− 2

x1t1 + x2t2
x21 + x22

+
t21 + t22 + (h− t3)

2

x21 + x22

]−3/2(2.21)

=
1

(x21 + x22)
3/2

[
1 + 3

x1t1 + x2t2
x21 + x22

− 3

2

t21 + t22 + (h− t3)
2

x21 + x22
+

15

2

(x1t1 + x2t2)
2

(x21 + x22)
2

−15

2

(x1t1 + x2t2)
(
t21 + t22 + (h− t3)

2
)

(x21 + x22)
2 +

35

2

(x1t1 + x2t2)
3

(x21 + x22)
3

+O

(
1

|x|7

)
,

1[
(x1 − t1)

2
+ (x2 − t2)

2
+ (h− t3)

2
]5/2 =

1

(x21 + x22)
5/2

[
1 + 5

x1t1 + x2t2
x21 + x22

− 5

2

t21 + t22 + (h− t3)
2

x21 + x22
(2.22)

+
35

2

(x1t1 + x2t2)
2

(x21 + x22)
2

]
+O

(
1

|x|8

)
,

where x1, x2 are sufficiently large so that

(2.23)

∣∣∣∣∣ t21 + t22 + (h− t3)
2

x21 + x22
− 2

x1t1 + x2t2
x21 + x22

∣∣∣∣∣ < 1.

Expansions (2.21)–(2.22) imply that, for |x| � 1, (1.2) can be written as

(2.24) B3 (x, h) = Basympt
3 (x, h) +O

(
1

|x|7

)
,
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with

Basympt
3 (x, h) :=

a0

|x|3
+
a
(1)
1 x1 + a

(2)
1 x2

|x|5
+

a2

|x|5
+
a
(1)
3 x21 + a

(2)
3 x22 + a

(3)
3 x1x2

|x|7
(2.25)

+
a
(1)
4 x1 + a

(2)
4 x2

|x|7
+
a
(1)
5 x31 + a

(2)
5 x32 + a

(3)
5 x21x2 + a

(4)
5 x1x

2
2

|x|9
,

(2.26) a0 := −m3

4π
,

(2.27) a
(1)
1 :=

3

4π
[〈(h− x3)M1〉 − 〈x1M3〉] , a

(2)
1 :=

3

4π
[〈(h− x3)M2〉 − 〈x2M3〉] ,

(2.28) a2 := − 3

8π

[
2 〈(h− x3)x1M1〉+ 2 〈(h− x3)x2M2〉 − 3

〈
(h− x3)

2
M3

〉
−
〈
x21M3

〉
−
〈
x22M3

〉]
,

(2.29) a
(1)
3 :=

15

8π

[
2 〈(h− x3)x1M1〉 −

〈
x21M3

〉]
, a

(2)
3 :=

15

8π

[
2 〈(h− x3)x2M2〉 −

〈
x22M3

〉]
,

(2.30) a
(3)
3 :=

15

4π
[〈(h− x3)x2M1〉+ 〈(h− x3)x1M2〉 − 〈x1x2M3〉] ,

a
(1)
4 :=− 15

8π

[
3
〈
(h− x3)x21M1

〉
+
〈
(h− x3)x22M1

〉
+
〈

(h− x3)
3
M1

〉
+ 2 〈(h− x3)x1x2M2〉(2.31)

−
〈
x31M3

〉
−
〈
x1x

2
2M3

〉
− 3

〈
(h− x3)

2
x1M3

〉]
,

a
(2)
4 :=− 15

8π

[
3
〈
(h− x3)x22M2

〉
+
〈
(h− x3)x21M2

〉
+
〈

(h− x3)
3
M2

〉
+ 2 〈(h− x3)x1x2M1〉(2.32)

−
〈
x32M3

〉
−
〈
x21x2M3

〉
− 3

〈
(h− x3)

2
x2M3

〉]
,

(2.33) a
(1)
5 :=

35

8π

[
3
〈
(h− x3)x21M1

〉
−
〈
x31M3

〉]
, a

(2)
5 :=

35

8π

[
3
〈
(h− x3)x22M2

〉
−
〈
x32M3

〉]
,

(2.34) a
(3)
5 :=

105

8π

[〈
(h− x3)x21M2

〉
+ 2 〈(h− x3)x1x2M1〉 −

〈
x21x2M3

〉]
,

(2.35) a
(4)
5 :=

105

8π

[〈
(h− x3)x22M1

〉
+ 2 〈(h− x3)x1x2M2〉 −

〈
x1x

2
2M3

〉]
,

and condition (2.23), for our particular context, rewrites as (1.4).
We are going to pursue the idea outlined in the previous subsection. Namely, comparing a series expansion of

(2.7) about k1 = 0 with that of (2.10), we shall deduce a set of identities which relate magnetisation moments
to the integrals of the measured data B3 (x, h) on DA. More precisely, using compactness of the support of
the magnetisation M, it follows from (2.7) that Re B̂3 (k1, 0, h) is a convergent series in powers of |k1| whereas
Im B̂3 (k1, 0, h) is a power series in |k1| multiplied by k1. To facilitate the situation of matching the coefficients of
different representations, we shall focus on the region k1 > 0. Consequently, in what follows, evaluation at k1 = 0+

will mean the limiting value at k1 = 0 taken from the positive semiaxis (k1 > 0).

2.3.1. Tangential components of the net moment. Expanding the integrand in (2.7) in power series in a positive
neighborhood of k1 = 0 and taking the imaginary part, we deduce:

∂k1

[
Im B̂3 (k1, 0, h)

]∣∣∣
k1=0+

= πm1 =: d1,(2.36)

1

6
∂3k1

[
Im B̂3 (k1, 0, h)

]∣∣∣
k1=0+

= 2π3
[〈

(h− x3)
2
M1

〉
−
〈
x21M1

〉
− 2 〈(h− x3)x1M3〉

]
(2.37)

=: d3,
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1

5!
∂5k1

[
Im B̂3 (k1, 0, h)

]∣∣∣
k1=0+

=
2π5

3

[〈
(h− x3)

4
M1

〉
− 6

〈
(h− x3)

2
x21M1

〉
+
〈
x41M1

〉
(2.38)

−4
〈

(h− x3)
3
x1M3

〉
+ 4

〈
(h− x3)x31M3

〉]
=: d5,

1

7!
∂7k1

[
Im B̂3 (k1, 0, h)

]∣∣∣
k1=0+

=
4π7

45

[〈
(h− x3)

6
M1

〉
− 15

〈
(h− x3)

4
x21M1

〉
+ 15

〈
(h− x3)

2
x41M1

〉
−
〈
x61M1

〉(2.39)

−6
〈

(h− x3)
5
x1M3

〉
+ 20

〈
(h− x3)

3
x31M3

〉
− 6

〈
(h− x3)x51M3

〉]
=: d7,

1

9!
∂9k1

[
Im B̂3 (k1, 0, h)

]∣∣∣
k1=0+

=
2π9

315

[〈
(h− x3)

8
M1

〉
− 28

〈
(h− x3)

6
x21M1

〉
+ 70

〈
(h− x3)

4
x41M1

〉
(2.40)

− 28
〈

(h− x3)
2
x61M1

〉
+
〈
x81M1

〉
− 8

〈
(h− x3)

7
x1M3

〉
+56

〈
(h− x3)

5
x31M3

〉
− 56

〈
(h− x3)

3
x51M3

〉
+ 8

〈
(h− x3)x71M3

〉]
=: d9,

1

11!
∂11k1

[
Im B̂3 (k1, 0, h)

]∣∣∣
k1=0+

=
4π11

14175

[〈
(h− x3)

10
M1

〉
− 45

〈
(h− x3)

8
x21M1

〉
+ 210

〈
(h− x3)

6
x41M1

〉(2.41)

− 210
〈

(h− x3)
4
x61M1

〉
+ 45

〈
(h− x3)

2
x81M1

〉
−
〈
x101 M1

〉
− 10

〈
(h− x3)

9
x1M3

〉
+ 120

〈
(h− x3)

7
x31M3

〉
− 252

〈
(h− x3)

5
x51M3

〉
+ 120

〈
(h− x3)

3
x71M3

〉
−10

〈
(h− x3)x91M3

〉]
=: d11.

On the other hand, from (2.10), we have, for n ∈ N0,

∂2n+1
k1

[
Im B̂3 (k1, 0, h)

]∣∣∣
k1=0+

= (−1)
n

(2π)
2n+1

∫∫
DA

x2n+1
1 B3 (x, h) d2x(2.42)

+ ∂2n+1
k1

(∫∫
R2\DA

sin (2πk1x1)Basympt
3 (x, h) d2x

)∣∣∣∣∣
k1=0+

+ ∂2n+1
k1

(∫∫
R2\DA

sin (2πk1x1)
[
B3 (x, h)−Basympt

3 (x, h)
]
d2x

)∣∣∣∣∣
k1=0+

.

We shall proceed in 3 steps. First, we evaluate the integral

(2.43) Isin ≡ Isin (k1, A) :=

∫∫
R2\DA

sin (2πk1x1)Basympt
3 (x, h) d2x,

and compute its derivatives appearing on the second line of (2.42), hence obtaining a set of valuable identities.
Second, we estimate the derivatives of the remainder

(2.44) Rsin
2n+1 ≡ Rsin

2n+1 (A) := ∂2n+1
k1

(∫∫
R2\DA

sin (2πk1x1)
[
B3 (x, h)−Basympt

3 (x, h)
]
d2x

)∣∣∣∣∣
k1=0+

, n ∈ N0,

in order to show that the contribution of the term in the third line of (2.42) is not significant for large A (for the
chosen order of the asymptotic expansion). Finally, at the last step, we combine the obtained identities and derive
asymptotic formulas (1.5)–(1.6), (1.8), (1.10), (1.12) in a rigorously justified fashion.



ASYMPTOTIC RECOVERY OF THE NET MAGNETISATION OF A BOUNDED SAMPLE 10

Step 1: Derivation of the set of identities. Using (2.25) and passing to the polar coordinates using x = r cos θ,
y = r sin θ, d2x = rdrdθ, we obtain from (2.43)

(2.45) Isin = a
(1)
1 Isin1 + a

(1)
4 Isin2 + a

(1)
5 Isin3 + a

(4)
5 Isin4 ,

where

(2.46) Isin1 :=

∫ ∞
A

∫ 2π

0

sin (2πk1r cos θ) cos θdθ
dr

r3
,

(2.47) Isin2 :=

∫ ∞
A

∫ 2π

0

sin (2πk1r cos θ) cos θdθ
dr

r5
,

(2.48) Isin3 :=

∫ ∞
A

∫ 2π

0

sin (2πk1r cos θ) cos3 θdθ
dr

r5
,

(2.49) Isin4 :=

∫ ∞
A

∫ 2π

0

sin (2πk1r cos θ) cos θ sin2 θdθ
dr

r5
.

Here, we used results (A.42)–(A.43) of Lemma A.4 multiple times to deduce vanishing of the integrals associated
with the terms which involve a0, a

(2)
1 , a2, a

(j)
3 , j ∈ {1, 2, 3}, a(2)4 , a(2)5 , a(3)5 .

We now employ the integral representation of Bessel functions, given in (A.5), to rewrite, for k1 > 0,

(2.50) Isin1 = 2π

∫ ∞
A

J1 (2πk1r)
dr

r3
= (2π)

3
k21

∫ ∞
2πk1A

J1 (x)

x3
dx,

(2.51) Isin2 = 2π

∫ ∞
A

J1 (2πk1r)
dr

r5
= (2π)

5
k41

∫ ∞
2πk1A

J1 (x)

x5
dx,

Isin3 = −2π

∫ ∞
A

J ′′1 (2πk1r)
dr

r5
= − (2π)

5
k41

∫ ∞
2πk1A

J ′′1 (x)

x5
dx(2.52)

= (2π)
5
k41

(
5J1 (ρ)

ρ6
+
J ′1 (ρ)

ρ5
− 30

∫ ∞
ρ

J1 (x)

x7
dx

)∣∣∣∣
ρ=2πk1A

,

Isin4 = 2π

∫ ∞
A

[J1 (2πk1r) + J ′′1 (2πk1r)]
dr

r5
= (2π)

5
k41

∫ ∞
2πk1A

J1 (x) + J ′′1 (x)

x5
dx,(2.53)

= − (2π)
5
k41

(
5J1 (ρ)

ρ6
+
J ′1 (ρ)

ρ5
−
∫ ∞
ρ

J1 (x)

x5
dx− 30

∫ ∞
ρ

J1 (x)

x7
dx

)∣∣∣∣
ρ=2πk1A

.

Note that, in (2.52)–(2.53), we employed integration by parts twice using the asymptotic behavior of J1 given in
(A.6).

Using the results of Lemmas A.2–A.3, we have

Isin1 =
(2π)

2
k1

A

(
ρ

∫ ∞
ρ

J1 (x)

x3
dx

)∣∣∣∣
ρ=2πk1A

(2.54)

=
(2π)

2
k1

3A

[
J0 (ρ) +

J1 (ρ)

ρ
− ρ− ρJ1 (ρ) + ρ2J0 (ρ)− π

2
ρ2J0 (ρ)H1 (ρ) +

π

2
ρ2J1 (ρ)H0 (ρ)

]∣∣∣∣
ρ=2πk1A

,

Isin2 =
(2π)

2
k1

A3

(
ρ3
∫ ∞
ρ

J1 (x)

x5
dx

)∣∣∣∣
ρ=2πk1A

(2.55)

=
7 (2π)

2
k1

105A3

[
4J1 (ρ)

ρ
+ J ′1 (ρ)− ρ2J0 (ρ)

3
− ρJ1 (ρ)

3
+
ρ3

3
+
ρ3J1 (ρ)

3

−ρ
4J0 (ρ)

3
+
π

6
ρ4J0 (ρ)H1 (ρ)− π

6
ρ4J1 (ρ)H0 (ρ)

]∣∣∣∣
ρ=2πk1A

,
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Isin3 =
(2π)

2
k1

A3

(
5J1 (ρ)

ρ3
+
J ′1 (ρ)

ρ2
− 30ρ3

∫ ∞
ρ

J1 (x)

x7
dx

)∣∣∣∣
ρ=2πk1A

(2.56)

=
(2π)

2
k1

105A3

[
−15J1 (ρ)

ρ3
+

15J ′1 (ρ)

ρ2
+

24J1 (ρ)

ρ
+ 6J ′1 (ρ)− 2ρ2J0 (ρ)− 2ρJ1 (ρ)

+2ρ3 + 2ρ3J1 (ρ)− 2ρ4J0 (ρ) + πρ4J0 (ρ)H1 (ρ)− πρ4J1 (ρ)H0 (ρ)

]∣∣∣∣
ρ=2πk1A

,

Isin4 = − (2π)
2
k1

A3

(
5J1 (ρ)

ρ3
+
J ′1 (ρ)

ρ2
− ρ3

∫ ∞
ρ

J1 (x)

x5
dx− 30ρ3

∫ ∞
ρ

J1 (x)

x7
dx

)∣∣∣∣
ρ=2πk1A

(2.57)

=
(2π)

2
k1

105A3

[
15J1 (ρ)

ρ3
− 15J ′1 (ρ)

ρ2
+

4J1 (ρ)

ρ
+ J ′1 (ρ)− ρ2J0 (ρ)

3
− ρJ1 (ρ)

3

+
ρ3

3
+
ρ3J1 (ρ)

3
− ρ4J0 (ρ)

3
+
πρ4

6
J0 (ρ)H1 (ρ)− πρ4

6
J1 (ρ)H0 (ρ)

]∣∣∣∣
ρ=2πk1A

.

Therefore, (2.45) together with (2.54)–(2.57) furnishes an explicit form of (2.43). In particular, using (A.2), (A.11),
we can compute

(2.58) ∂k1Isin
∣∣
k1=0+

=
1

2
(2π)

2

(
a
(1)
1

A
+

4a
(1)
4 + 3a

(1)
5 + a

(4)
5

12A3

)
,

(2.59) ∂3k1I
sin
∣∣
k1=0+

=
3

8
(2π)

4
A2

(
a
(1)
1

A
− 6a

(1)
4 + 5a

(1)
5 + a

(4)
5

6A3

)
,

(2.60) ∂5k1I
sin
∣∣
k1=0+

= − 5

16
(2π)

6
A4

(
a
(1)
1

3A
+

8a
(1)
4 + 7a

(1)
5 + a

(4)
5

8A3

)
,

(2.61) ∂7k1I
sin
∣∣
k1=0+

=
7

128
(2π)

8
A6

(
a
(1)
1

A
+

10a
(1)
4 + 9a

(1)
5 + a

(4)
5

6A3

)
,

(2.62) ∂9k1I
sin
∣∣
k1=0+

= − 21

256
(2π)

10
A8

(
3a

(1)
1

7A
+

12a
(1)
4 + 11a

(1)
5 + a

(4)
5

20A3

)
,

(2.63) ∂11k1I
sin
∣∣
k1=0+

=
33

14336
(2π)

12
A10

(
98a

(1)
1

9A
+

14a
(1)
4 + 13a

(1)
5 + a

(4)
5

A3

)
.

Taking into account (2.43), (2.44), we use (2.36)–(2.41) and (2.58)–(2.63) in (2.42) with n = 0, . . . , 5, respectively,
and thus arrive at the following set of identities:

(2.64) 2π

∫∫
DA

x1B3 (x, h) d2x+ 2π2

(
a
(1)
1

A
+

4a
(1)
4 + 3a

(1)
5 + a

(4)
5

12A3

)
+Rsin

1 = d1,

(2.65) −4π3

3

∫∫
DA

x31B3 (x, h) d2x+ π4A2

(
a
(1)
1

A
− 6a

(1)
4 + 5a

(1)
5 + a

(4)
5

6A3

)
+

1

6
Rsin

3 = d3,

(2.66)
4π5

15

∫∫
DA

x51B3 (x, h) d2x− π6A4

6

(
a
(1)
1

3A
+

8a
(1)
4 + 7a

(1)
5 + a

(4)
5

8A3

)
+

1

5!
Rsin

5 = d5,

(2.67) − (2π)
7

5040

∫∫
DA

x71B3 (x, h) d2x+
(2π)

8
A6

92160

(
a
(1)
1

A
+

10a
(1)
4 + 9a

(1)
5 + a

(4)
5

6A3

)
+

1

7!
Rsin

7 = d7,

(2.68)
(2π)

9

362880

∫∫
DA

x91B3 (x, h) d2x− 7 (2π)
10
A8

10321920

(
a
(1)
1

7A
+

12a
(1)
4 + 11a

(1)
5 + a

(4)
5

60A3

)
+

1

9!
Rsin

9 = d9,
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(2.69) − (2π)
11

39916800

∫∫
DA

x111 B3 (x, h) d2x+
(2π)

12
A10

17340825600

(
98a

(1)
1

9A
+

14a
(1)
4 + 13a

(1)
5 + a

(4)
5

A3

)
+

1

11!
Rsin

11 = d11.

Step 2: Analysis of the remainder terms Rsin
2n+1 for 0 ≤ n ≤ 5. We shall now show that the remainder terms Rsin

2n+1

with n = 0, . . . , 5 given by (2.44) (with k1 > 0, as assumed before), can be estimated, for A� 1, as follows

(2.70) Rsin
2n+1 = O

(
1

A5−2n

)
, 0 ≤ n ≤ 5.

Proceeding with higher-order terms in the expansions in (2.21)–(2.22), and hence also in (2.24), we notice that
we can write, for N ≥ 4,

(2.71) B3 (x, h)−Basympt
3 (x, h) =

N∑
q=4

∑∑
l1, l2≥0,
l1+l2=q

cl1,l2
xl11 x

l2
2

|x|2q+3 +O

(
1

|x|N+4

)
=: LN (x) +O

(
1

|x|N+4

)
,

with some constants cl1,l2 ∈ R for l1, l2 ∈ N0. Consequently, we consider, for n = 0, . . . , 5,

Rsin
2n+1 = ∂2n+1

k1

(∫∫
R2\DA

sin (2πk1x1)LN (x) d2x

)∣∣∣∣∣
k1=0+

(2.72)

+ ∂2n+1
k1

(∫∫
R2\DA

sin (2πk1x1)
[
B3 (x, h)−Basympt

3 (x, h)− LN (x)
]
d2x

)∣∣∣∣∣
k1=0+

.

First of all, we deal with the term on the second line. The integrand is regular and, for N > 9, it decays at
infinity sufficiently fast so that the differential operator ∂2n+1

k1
with 0 ≤ n ≤ 5 can be passed under the integral sign.

We can thus estimate∣∣∣∣∣∂2n+1
k1

(∫∫
R2\DA

sin (2πk1x1)
[
B3 (x, h)−Basympt

3 (x, h)− LN (x)
]
d2x

)∣∣∣
k1=0+

∣∣∣∣∣
=

∣∣∣∣∣
(∫∫

R2\DA

(2πx1)
2n+1

|x|N+4
|x|N+4 [

B3 (x, h)−Basympt
3 (x, h)− LN (x)

]
d2x

)∣∣∣∣∣
≤ (2π)

2(n+1)
CN

∫ ∞
A

dr

rN−2n+1
=

(2π)
2(n+1)

CN
(N − 2n)

1

AN−2n

for some constant CN > 0 such that

|x|N+4 ∣∣B3 (x, h)−Basympt
3 (x, h)− LN (x)

∣∣ ≤ CN , |x| ≥ A,

and such a bound is possible due to the remainder estimate O
(

1/ |x|N+4
)
in (2.71). Here, in the third line of the

estimates, we used the fact that the integral in r converges for N > 2n− 1, 0 ≤ n ≤ 5, which is true for N > 9. For
such N , the obtained estimate of order O

(
1/AN−2n

)
is clearly even better than was aimed for (recall (2.70)).

We now fix N = 10 and proceed with estimating the term in the first line of (2.72). Upon substitution of
(2.71) in (2.44) and use of polar coordinates (with x1 = r cos θ, x2 = r sin θ, as before), let us observe that, due to
Lemma A.4 (namely, identities (A.42)–(A.43)), the only non-vanishing terms stemming from the LN part are those
proportional to

(2.73)
∫ ∞
A

∫ 2π

0

sin (2πk1r cos θ) cos2(p−l)+1 θ sin2l θdθ
dr

r2p+3
, 0 ≤ l ≤ p, p ≥ 2.

Since we can write

sin2l θ =
(
1− cos2 θ

)l
=

l∑
j=0

(
l
j

)
(−1)

l−j
cos2(l−j) θ,

with
(

l
j

)
denoting a binomial coefficient, we deduce that, to estimate Rsin

2n+1, it suffices only to consider the

quantities

Sp,j :=

∫ ∞
A

∫ 2π

0

sin (2πk1r cos θ) cos2j+1 θ dθ
dr

r2p+3
, 0 ≤ j ≤ p, p ≥ 2,(2.74)

and, in particular, their derivatives evaluated at k1 = 0 from the right: ∂2n+1
k1

Sp,j
∣∣
k1=0+

, 0 ≤ n ≤ 5.
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Note that the relation between p (2.73)–(2.74) and q in (2.71) is q = 2p + 1, p ≥ 2. In other words, in the
asymptotic expansion of the field B3 at infinity, not every term contributes to Rsin

2n+1, but only the terms of every
second order in 1/A, i.e. O

(
1/A8

)
, O

(
1/A10

)
and so on.

Therefore, we can consider Sp,j only for p ≤
⌊
N−1
2

⌋
= 8, where bxc designates the integer part of x.

To sum up, we need to show that, for all 0 ≤ j ≤ p, 2 ≤ p ≤ 8 and 0 ≤ n ≤ 5, we are able to produce an estimate

(2.75) ∂2n+1
k1

Sp,j
∣∣
k1=0+

= O
(

1

A5−2n

)
.

For 0 ≤ n ≤ p, we have

∂2n+1
k1

Sp,j
∣∣
k1=0+

= (−1)
n

(2π)
2n+1

∫ ∞
A

∫ 2π

0

cos2j+1 θ dθ
dr

r2(p−n)+2
,

and hence ∣∣∣∂2n+1
k1

Sp,j
∣∣
k1=0+

∣∣∣ ≤ (2π)
2(n+1)

∫ ∞
A

dr

r2(p−n)+2
= O

(
1

A2(p−n)+1

)
,

where the convergence of the last integral is due to p ≥ n. The obtained estimate is in agreement with (2.75) since
p ≥ 2.

To treat the case n ≥ p+ 1, a more careful estimate is needed. To this end, it is convenient to make use of the
integral representation of the Bessel function J1 given by (A.5) and rewrite (2.74) as

Sp,j = (−1)
j

2π

∫ ∞
A

J
(2j)
1 (2πk1r)

dr

r2p+3
, 0 ≤ j ≤ p, p ≥ 2.

We then evaluate

∂2n+1
k1

Sp,j = (−1)
j

(2π)
2p+3

∂
2(n−p)−1
k1

∫ ∞
A

J
(2j+2p+2)
1 (2πk1r)

dr

r
(2.76)

= (−1)
j+1

(2π)
2p+4

A∂
2(n−p)−2
k1

J
(2j+2p+2)
1 (ρ)

ρ

∣∣∣∣∣
ρ=2πk1A

= (−1)
j+1

(2π)
2(n+1)

A2(n−p)−1 d2(n−p)−2

dρ2(n−p)−2

(
J
(2j+2p+2)
1 (ρ)

ρ

)∣∣∣∣∣
ρ=2πk1A

,

where, in passing the differential operator ∂2p+2
k1

under the integral sign, we took into account the asymptotic
behavior at infinity of J1 given by (A.6) and, on the second line, employed the following identity valid for k1 > 0:

∂k1

∫ ∞
A

J
(2j+2p+2)
1 (2πk1r)

dr

r
= ∂k1

∫ ∞
2πk1A

J
(2j+2p+2)
1 (ρ)

dρ

ρ

= −2πA
J
(2j+2p+2)
1 (ρ)

ρ

∣∣∣∣∣
ρ=2πk1A

.

Now, recalling the analytic character of the function J1 (see beginning of Appendix) and, more precisely, its series
representation given by (A.2), it is clear that every derivative of J1 of even order is also analytic and vanishes at
zero. This implies analyticity of the function J (2j+2p+2)

1 (ρ) /ρ and, consequently, a bound on its every derivative
at the origin. Therefore, from (2.76), we deduce that∣∣∣∂2n+1

k1
Sp,j

∣∣
k1=0+

∣∣∣ ≤ CA2(n−p)−1,

for some constant C > 0, and hence (2.75) follows due to the fact that p ≥ 2.

Step 3: Asymptotic estimates for the net moment components. Recalling that d1 = πm1 (according to (2.36)) and
using (2.70), we obtain from (2.64)

(2.77) m1 = 2

∫∫
DA

x1B3 (x, h) d2x+ 2π

(
a
(1)
1

A
+

4a
(1)
4 + 3a

(1)
5 + a

(4)
5

12A3

)
+O

(
1

A5

)
.
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Similarly, using (2.70), we rewrite (2.65)–(2.69), respectively, as

− 1

6A2

∫∫
DA

x31B3 (x, h) d2x+
π

8

(
a
(1)
1

A
− 6a

(1)
4 + 5a

(1)
5 + a

(4)
5

6A3

)
=

d3

(2π)
3
A2

+O
(

1

A5

)
(2.78)

= O
(

1

A2

)
,

1

120A4

∫∫
DA

x51B3 (x, h) d2x− π

192

(
a
(1)
1

3A
+

8a
(1)
4 + 7a

(1)
5 + a

(4)
5

8A3

)
=

d5

(2π)
5
A4

+O
(

1

A5

)
(2.79)

= O
(

1

A4

)
,

− 1

5040A6

∫∫
DA

x71B3 (x, h) d2x+
π

46080

(
a
(1)
1

A
+

10a
(1)
4 + 9a

(1)
5 + a

(4)
5

6A3

)
=

d7

(2π)
7
A6

+O
(

1

A5

)
(2.80)

= O
(

1

A5

)
,

1

362880A8

∫∫
DA

x91B3 (x, h) d2x− π

737280

(
a
(1)
1

7A
+

12a
(1)
4 + 11a

(1)
5 + a

(4)
5

60A3

)
=

d9

(2π)
9
A8

+O
(

1

A5

)
(2.81)

= O
(

1

A5

)
,

− 1

39916800A10

∫∫
DA

x111 B3 (x, h) d2x+
π

8670412800

(
98a

(1)
1

9A
+

14a
(1)
4 + 13a

(1)
5 + a

(4)
5

A3

)
=

d11

(2π)
11
A10

+O
(

1

A5

)(2.82)

= O
(

1

A5

)
.

While the first-order estimate for m1 given in (1.5) follows immediately from rigorously justified (2.77), the
higher-order estimates require more work. Namely, we wish to combine (2.78)–(2.82) in order to eliminate in (2.77)
the terms with

(2.83) ã
(1)
1 :=

a
(1)
1

A
, ã

(1)
4 :=

a
(1)
4

A3
, ã

(1)
5 :=

a
(1)
5

A3
, ã

(4)
5 :=

a
(4)
5

A3
,

and, at the same time, would not commit a larger error (in order of A) than that of the eliminated term.
Expressing a(1)1 /A in terms of O

(
1/A2

)
quantities from (2.78) and inserting it into (2.77), we deduce the second-

order estimate for m1 given by (1.6). We note, however, that, for third or higher order estimates, identity (2.78) is
not useful due to the fact that its right-hand side has an unknown quantity d3 appearing of order O

(
1/A2

)
which

will block any further effort to increase the accuracy of estimates.
Derivation of the third-order estimate given by (1.8) is analogous to the previous one with the only difference

that a(1)1 /A is expressed (now in terms of O
(
1/A3

)
quantities) from (2.79) rather than from (2.78).

To proceed with derivation of estimates (1.10) and (1.12), it is convenient first to rewrite (2.79)–(2.82), respec-
tively, as

(2.84) 8ã
(1)
4 + 7ã

(1)
5 + ã

(4)
5 =

64

5πA4

∫∫
DA

x51B3 (x, h) d2x− 8

3
ã
(1)
1 +O

(
1

A4

)
=: T5,

(2.85) 10ã
(1)
4 + 9ã

(1)
5 + ã

(4)
5 =

384

7πA6

∫∫
DA

x71B3 (x, h) d2x− 6ã
(1)
1 +O

(
1

A5

)
=: T7,

(2.86) 12ã
(1)
4 + 11ã

(1)
5 + ã

(4)
5 =

2560

21πA8

∫∫
DA

x91B3 (x, h) d2x− 60

7
ã
(1)
1 +O

(
1

A5

)
=: T9,

(2.87) 14ã
(1)
4 + 13ã

(1)
5 + ã

(4)
5 =

64512

297πA10

∫∫
DA

x111 B3 (x, h) d2x− 98

9
ã
(1)
1 +O

(
1

A5

)
=: T11.
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It is easy to recognise a linear dependence of the left-hand sides of (2.84)–(2.87). Namely, we can write

(2.88)
1

2
(T5 + T9) = T7,

1

2
(T7 + T11) = T9.

To obtain the fourth-order estimate for m1 given in (1.10), we shall use (2.84)–(2.86).
We start by using the first equation of (2.88) (together with definitions (2.84)–(2.86)) to express ã(1)1 = a

(1)
1 /A up

to order O
(
1/A4

)
, namely,

(2.89)
a
(1)
1

A
= ã

(1)
1 = − 4

π

∫∫
DA

[
21

5

(x1
A

)4
− 36

(x1
A

)6
+ 40

(x1
A

)8]
x1B3 (x, h) d2x+O

(
1

A4

)
.

Second, we observe that the quantity 4a
(1)
4 + 3a

(1)
5 + a

(4)
5 appearing in (2.77) is related to (2.84)–(2.86) as follows:

4a
(1)
4 + 3a

(1)
5 + a

(4)
5

A3
=4ã

(1)
4 + 3ã

(1)
5 + ã

(4)
5 = 4 (T5 − T7) + T9(2.90)

=
256

π

∫∫
DA

[
1

5

(x1
A

)4
− 6

7

(x1
A

)6
+

10

21

(x1
A

)8]
x1B3 (x, h) d2x

+
100

21
ã
(1)
1 +O

(
1

A4

)
.

Finally, substitution of (2.90) in (2.77) followed by the use of (2.89) furnishes (1.10).
To arrive at the fifth-order estimate given by (1.12), we shall use identities (2.85)–(2.87). The second equation

of (2.88) gives

(2.91)
a
(1)
1

A
= ã

(1)
1 =

24

π

∫∫
DA

[
−9
(x1
A

)6
+ 40

(x1
A

)8
− 392

11

(x1
A

)10]
x1B3 (x, h) d2x+O

(
1

A5

)
.

We also have an analog of (2.83), namely,

4a
(1)
4 + 3a

(1)
5 + a

(4)
5

A3
=4ã

(1)
4 + 3ã

(1)
5 + ã

(4)
5 = 5 (T7 − T9) + T11(2.92)

=
128

π

∫∫
DA

[
15

7

(x1
A

)6
− 100

21

(x1
A

)8
+

56

33

(x1
A

)10]
x1B3 (x, h) d2x

+
124

63
ã
(1)
1 +O

(
1

A5

)
.

Therefore, inserting of (2.92) in (2.77) followed by the use of (2.91) gives (1.12).

2.3.2. Normal component of the net moment. Similarly to the case of tangential net moment components, we
expand the integrand in (2.7) in power series in a positive neighborhood of k1 = 0, but, in contrast to that previous
situation, the attention will now be on the real part. This yields

(2.93)
[
Re B̂3 (k1, 0, h)

]∣∣∣
k1=0+

= 0,

1

2
∂2k1

[
Re B̂3 (k1, 0, h)

]∣∣∣
k1=0+

= −2π2 [〈x1M1〉+ 〈(h− x3)M3〉](2.94)

=: d2,

1

24
∂4k1

[
Re B̂3 (k1, 0, h)

]∣∣∣
k1=0+

= −4π4

3

[
3
〈

(h− x3)
2
x1M1

〉
−
〈
x31M1

〉
+
〈

(h− x3)
3
M3

〉
− 3

〈
(h− x3)x21M3

〉](2.95)

=: d4,

1

6!
∂6k1

[
Re B̂3 (k1, 0, h)

]∣∣∣
k1=0+

=− 4π6

15

[
5
〈

(h− x3)
4
x1M1

〉
− 10

〈
(h− x3)

2
x31M1

〉
+
〈
x51M1

〉
(2.96)

+
〈

(h− x3)
5
M3

〉
− 10

〈
(h− x3)

3
x21M3

〉
+ 5

〈
(h− x3)x41M3

〉]
=:d6,
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1

8!
∂8k1

[
Re B̂3 (k1, 0, h)

]∣∣∣
k1=0+

=− 8π8

315

[
7
〈

(h− x3)
6
x1M1

〉
− 35

〈
(h− x3)

4
x31M1

〉
+ 21

〈
(h− x3)

2
x51M1

〉(2.97)

−
〈
x71M1

〉
+
〈

(h− x3)
7
M3

〉
− 21

〈
(h− x3)

5
x21M3

〉
+ 35

〈
(h− x3)

3
x41M3

〉
−7
〈
(h− x3)x61M3

〉]
=:d8,

1

10!
∂10k1

[
Re B̂3 (k1, 0, h)

]∣∣∣
k1=0+

=− 4π10

2385

[
9
〈

(h− x3)
8
x1M1

〉
− 84

〈
(h− x3)

6
x31M1

〉
+ 126

〈
(h− x3)

4
x51M1

〉(2.98)

− 36
〈

(h− x3)
2
x71M1

〉
+
〈
x91M1

〉
+
〈

(h− x3)
9
M3

〉
− 36

〈
(h− x3)

7
x21M3

〉
+126

〈
(h− x3)

5
x41M3

〉
− 84

〈
(h− x3)

3
x61M3

〉
+ 9

〈
(h− x3)x81M3

〉]
=:d10,

On the other hand, (2.10) implies that, for n ∈ N0,

∂2nk1

[
Re B̂3 (k1, 0, h)

]∣∣∣
k1=0+

= (−1)
n

(2π)
2n
∫∫

DA

x2n1 B3 (x, h) d2x(2.99)

+ ∂2nk1

(∫∫
R2\DA

cos (2πk1x1)Basympt
3 (x, h) d2x

)∣∣∣∣∣
k1=0+

+ ∂2nk1

(∫∫
R2\DA

cos (2πk1x1)
[
B3 (x, h)−Basympt

3 (x, h)
]
d2x

)∣∣∣∣∣
k1=0+

.

As before, we continue in 3 steps. First, we evaluate explicitly

(2.100) Icos ≡ Icos (k1, A) :=

∫∫
R2\DA

cos (2πk1x1)Basympt
3 (x, h) d2x,

that allow us to obtain from (2.99), a set of useful identities involving remainder terms. Second, we estimate the
remainder terms, namely,

(2.101) Rcos
2n ≡ Rcos

2n (A) := ∂2nk1

(∫∫
R2\DA

cos (2πk1x1)
[
B3 (x, h)−Basympt

3 (x, h)
]
d2x

)∣∣∣∣∣
k1=0+

, n ∈ N0,

for large A. At last, we rigorously derive asymptotic formulas (1.7), (1.9), (1.11) from the obtained set of identities.

Step 1: Derivation of the set of identities. Using (2.25) and passing to the polar coordinates using x = r cos θ,
y = r sin θ, d2x = rdrdθ, we obtain from (2.100)

(2.102) Icos = a0Icos1 + a2Icos2 + a
(1)
3 Icos3 + a

(2)
3 Icos4 ,

where

(2.103) Icos1 :=

∫ ∞
A

∫ 2π

0

cos (2πk1r cos θ) dθ
dr

r2
,

(2.104) Icos2 :=

∫ ∞
A

∫ 2π

0

cos (2πk1r cos θ) θdθ
dr

r4
,

(2.105) Icos3 :=

∫ ∞
A

∫ 2π

0

cos (2πk1r cos θ) cos2 θdθ
dr

r4
,

(2.106) Icos4 :=

∫ ∞
A

∫ 2π

0

cos (2πk1r cos θ) sin2 θdθ
dr

r4
.

Here, we used results (A.40)–(A.41) of Lemma A.4 multiple times to deduce vanishing of the integrals associated
with the terms which involve a(1)1 , a(2)1 , a(3)3 , a(1)4 , a(2)4 , a(j)5 , j ∈ {1, 2, 3, 4}.
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Using the integral representation of Bessel functions (due to (A.4)), integration by parts, the asymptotics of J1
given by (A.6), and the relation J ′0 (x) = −J1 (x) (see (A.10)), we can write, for k1 > 0,

Icos1 = 2π

∫ ∞
A

J0 (2πk1r)
dr

r2
= (2π)

2
k1

∫ ∞
2πk1A

J0 (x)

x2
dx(2.107)

= (2π)
2
k1

(
J0 (ρ)

ρ
−
∫ ∞
ρ

J1 (x)

x
dx

)∣∣∣∣
ρ=2πk1A

,

Icos2 = 2π

∫ ∞
A

J0 (2πk1r)
dr

r4
= (2π)

4
k31

∫ ∞
2πk1A

J0 (x)

x4
dx(2.108)

=
(2π)

4

3
k31

(
J0 (ρ)

ρ3
−
∫ ∞
ρ

J1 (x)

x3
dx

)∣∣∣∣
ρ=2πk1A

,

Icos3 = −2π

∫ ∞
A

J ′′0 (2πk1r)
dr

r4
= (2π)

4
k31

∫ ∞
2πk1A

J ′1 (x)

x4
dx(2.109)

= (2π)
4
k31

(
J1 (ρ)

ρ4
+ 4

∫ ∞
ρ

J1 (x)

x5
dx

)∣∣∣∣
ρ=2πk1A

,

Icos4 = 2π

∫ ∞
A

[J0 (2πk1r) + J ′′0 (2πk1r)]
dr

r4
= (2π)

4
k31

∫ ∞
2πk1A

J0 (x) + J ′′0 (x)

x4
dx,(2.110)

= (2π)
4
k31

(
J0 (ρ)

3ρ3
− J1 (ρ)

ρ4
− 1

3

∫ ∞
ρ

J1 (x)

x3
dx− 4

∫ ∞
ρ

J1 (x)

x5
dx

)∣∣∣∣
ρ=2πk1A

.

Inserting here the results of Lemmas (A.2)–(A.3), namely, (A.22), (A.34)–(A.35), we arrive at

Icos1 =
2π

A

[
2J0 (ρ) +

J1 (ρ)

ρ
− J ′1 (ρ)− 2J1 (ρ)− ρ− ρJ1 (ρ)(2.111)

+ρ2J0 (ρ)− πρ2

2
J0 (ρ)H1 (ρ) +

πρ2

2
J1 (ρ)H0 (ρ)

]∣∣∣∣
ρ=2πk1A

,

Icos2 =
2π

3A3

[
J0 (ρ)− ρ2J0 (ρ)

3
− ρJ1 (ρ)

3
+
ρ3

3
+
ρ3

3
J1 (ρ)(2.112)

−ρ
4J0 (ρ)

3
+
πρ4

6
J0 (ρ)H1 (ρ)− πρ4

6
J1 (ρ)H0 (ρ)

]∣∣∣∣
ρ=2πk1A

,

Icos3 =
2π

15A3

[
−J0 (ρ)

3
+ 4J ′1 (ρ)− 4ρ2J0 (ρ)

3
− 4ρJ1 (ρ)

3
+

4ρ3

3
+

4ρ3J1 (ρ)

3
(2.113)

−4ρ4J0 (ρ)

3
+

2πρ4

3
J0 (ρ)H1 (ρ)− 2πρ4

3
J1 (ρ)H0 (ρ)

]∣∣∣∣
ρ=2πk1A

,

Icos4 =
2π

3A3

[
J0 (ρ) +

J1 (ρ)

15ρ
− 4J ′1 (ρ)

5
− ρ2J0 (ρ)

15
− ρJ1 (ρ)

15
+
ρ3

15
+
ρ3J1 (ρ)

15
(2.114)

−ρ
4J0 (ρ)

15
+
πρ4

30
J0 (ρ)H1 (ρ)− πρ4

30
J1 (ρ)H0 (ρ)

]∣∣∣∣
ρ=2πk1A

.

Substitution of (2.111)–(2.114) into (2.102), we employ (A.2) and (A.11) to compute

(2.115) Icos|k1=0+ = 2π

(
a0
A

+
30a2 + 11a

(1)
3 + 19a

(2)
3

90A3

)
,

(2.116) ∂2k1I
cos
∣∣
k1=0+

=
1

4
(2π)

3
A2

(
a0
A
− 180a2 + 131a

(1)
3 + 49a

(2)
3

180A3

)
,

(2.117) ∂4k1I
cos
∣∣
k1=0+

= −1

8
(2π)

5
A4

(
a0
A

+
270a2 + 229a

(1)
3 + 41a

(2)
3

90A3

)
,
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(2.118) ∂6k1I
cos
∣∣
k1=0+

=
1

16
(2π)

7
A6

(
a0
A

+
120a2 + 109a

(1)
3 + 11a

(2)
3

72A3

)
,

(2.119) ∂8k1I
cos
∣∣
k1=0+

= −3136 (2π)
9
A8

(
a0
7A

+
18a2 + 17a

(1)
3 + a

(2)
3

90A3

)
,

(2.120) ∂10k1I
cos
∣∣
k1=0+

=
7

256
(2π)

11
A10

(
a0
A

+
540a2 + 523a

(1)
3 + 17a

(2)
3

420A3

)
.

Taking into account (2.100), (2.101), we use (2.93)–(2.98) and (2.115)–(2.120) in (2.99) with n = 0, . . . , 5, respec-
tively, and thus arrive at the following set of identities:

(2.121)
∫∫

DA

B3 (x, h) d2x+ 2π

(
a0
A

+
30a2 + 11a

(1)
3 + 19a

(2)
3

90A3

)
+Rcos

0 = 0,

(2.122) − (2π)
2

2

∫∫
DA

x21B3 (x, h) d2x+
(2π)

3

4
A2

(
a0
A
− 180a2 + 131a

(1)
3 + 49a

(2)
3

180A3

)
+

1

2
Rcos

2 = d2,

(2.123)
(2π)

4

24

∫∫
DA

x41B3 (x, h) d2x− 1

192
(2π)

5
A4

(
a0
A

+
270a2 + 229a

(1)
3 + 41a

(2)
3

90A3

)
+

1

4!
Rcos

4 = d4,

(2.124) − (2π)
6

720

∫∫
DA

x61B3 (x, h) d2x+
1

11520
(2π)

7
A6

(
a0
A

+
120a2 + 109a

(1)
3 + 11a

(2)
3

72A3

)
+

1

6!
Rcos

6 = d6,

(2.125)
(2π)

8

40320

∫∫
DA

x81B3 (x, h) d2x− 7

90
(2π)

9
A8

(
a0
7A

+
18a2 + 17a

(1)
3 + a

(2)
3

90A3

)
+

1

8!
Rcos

8 = d8,

(2.126)

− (2π)
10

3628800

∫∫
DA

x101 B3 (x, h) d2x+
1

132710400
(2π)

11
A10

(
a0
A

+
540a2 + 523a

(1)
3 + 17a

(2)
3

420A3

)
+

1

10!
Rcos

10 = d10.

Step 2: Analysis of the remainder terms Rcos
2n for 0 ≤ n ≤ 5. We shall show that

(2.127) Rcos
2n = O

(
1

A5−2n

)
, 0 ≤ n ≤ 5.

The reasoning will we identical to that of Step 2 of Subsection 2.3.1, therefore, we omit repetition of some details.
Using previously introduced notation LN (see (2.71)), we can write

Rcos
2n = ∂2nk1

(∫∫
R2\DA

cos (2πk1x1)LN (x) d2x

)∣∣∣∣∣
k1=0+

(2.128)

+ ∂2nk1

(∫∫
R2\DA

cos (2πk1x1)
[
B3 (x, h)−Basympt

3 (x, h)− LN (x)
]
d2x

)∣∣∣∣∣
k1=0+

.

Assuming N > 9, we estimate∣∣∣∣∣∂2nk1
(∫∫

R2\DA

cos (2πk1x1)
[
B3 (x, h)−Basympt

3 (x, h)− LN (x)
]
d2x

)∣∣∣
k1=0+

∣∣∣∣∣
=

∣∣∣∣∣
(∫∫

R2\DA

(2πx1)
2n

|x|N+4
|x|N+4 [

B3 (x, h)−Basympt
3 (x, h)− LN (x)

]
d2x

)∣∣∣∣∣
≤ (2π)

2n+1
C̃N

∫ ∞
A

dr

rN−2n+2
=

(2π)
2(n+1)

C̃N
(N − 2n+ 1)

1

AN−2n+1
,

for some constant C̃N > 0, and note that this complies with (2.127).
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We now fix N = 10 and proceed with estimating the term on the first line of (2.127). Identities (A.40)–(A.41)
of Lemma A.4 entail that the only non-vanishing terms are those of the form

(2.129)
∫ ∞
A

∫ 2π

0

cos (2πk1r cos θ) cos2(p−l) θ cos2l θdθ
dr

r2(p+1)
, 0 ≤ l ≤ p, p ≥ 2,

and hence it is sufficient to only deal with the quantities

Cp,j :=

∫ ∞
A

∫ 2π

0

cos (2πk1r cos θ) cos2j θ dθ
dr

r2(p+1)
, 0 ≤ j ≤ p, p ≥ 2.(2.130)

As before, p in (2.129)–(2.130) is related to q from (2.71) as q = 2p+ 1, p ≥ 2: only the terms O
(
1/A7

)
, O

(
1/A9

)
,

..., in (2.71) contribute to Rcos
2n . Hence, we consider Cp,j only for p ≤

⌊
N−1
2

⌋
= 8.

We are intending to show that the following estimate holds for all 0 ≤ n ≤ 5, 0 ≤ j ≤ p, 2 ≤ p ≤ 8:

(2.131) ∂2nk1 Cp,j
∣∣
k1=0+

= O
(

1

A5−2n

)
.

For 0 ≤ n ≤ p, we have

∂2nk1 Cp,j
∣∣
k1=0+

= (−1)
n

(2π)
2n
∫ ∞
A

∫ 2π

0

cos2j θ dθ
dr

r2(p−n)+2
,

and hence ∣∣∣∂2n+1
k1

Cp,j
∣∣
k1=0+

∣∣∣ ≤ (2π)
2n+1

∫ ∞
A

dr

r2(p−n)+2
= O

(
1

A2(p−n)+1

)
,

where the convergence of the last integral is due to p ≥ n. The obtained estimate satisfies (2.131) due to p ≥ 2.
For n ≥ p+ 1, we use (A.4) to rewrite (2.130) as

Cp,j = (−1)
j

2π

∫ ∞
A

J
(2j)
0 (2πk1r)

dr

r2(p+1)
, 0 ≤ j ≤ p, p ≥ 2.

We then evaluate

∂2nk1 Cp,j = (−1)
j

(2π)
2(p+1)

∂
2(n−p)−1
k1

∫ ∞
A

J
(2j+2p+1)
0 (2πk1r)

dr

r
(2.132)

= (−1)
j+1

(2π)
2p+3

A∂
2(n−p)−2
k1

J
(2j+2p+1)
0 (ρ)

ρ

∣∣∣∣∣
ρ=2πk1A

= (−1)
j+1

(2π)
2n+1

A2(n−p)−1 d2(n−p)−2

dρ2(n−p)−2

(
J
(2j+2p+1)
0 (ρ)

ρ

)∣∣∣∣∣
ρ=2πk1A

,

where the following identity, for k1 > 0, was used:

∂k1

∫ ∞
A

J
(2j+2p+1)
0 (2πk1r)

dr

r
= ∂k1

∫ ∞
2πk1A

J
(2j+2p+1)
0 (ρ)

dρ

ρ

= −2πA
J
(2j+2p+1)
0 (ρ)

ρ

∣∣∣∣∣
ρ=2πk1A

.

Due to analyticity J0 (see beginning of Appendix), we see from (A.2) that its every derivative of odd order is
also analytic and vanishes at zero. Hence, J (2j+2p+1)

0 (ρ) /ρ is analytic as well, and, in particular, has bounded
derivatives at the origin. Therefore, (2.132) entails that∣∣∣∂2nk1 Cp,j∣∣k1=0+

∣∣∣ ≤ C̃A2(n−p)−1,

for some constant C̃ > 0, and hence (2.131) follows due to the fact that p ≥ 2.
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Step 3: Asymptotic estimates for the net moment component. Since, according to (2.26), we have a0 = −m3

4π , and
hence using (2.127), it follows from (2.121) that

(2.133) m3 = 2

∫∫
DA

B3 (x, h) d2x+
π

45A2

(
30a2 + 11a

(1)
3 + 19a

(2)
3

)
+O

(
1

A4

)
.

Employing (2.70), we rewrite (2.65)–(2.69), respectively, as

− 1

2A2

∫∫
DA

x21B3 (x, h) d2x− π

8

(
m3

πA
+

180a2 + 131a
(1)
3 + 49a

(2)
3

45A3

)
=

d2

(2πA)
2 +O

(
1

A5

)
(2.134)

= O
(

1

A2

)
,

1

24A4

∫∫
DA

x41B3 (x, h) d2x+
π

192

(
m3

2πA
− 270a2 + 229a

(1)
3 + 41a

(2)
3

45A3

)
=

d4

(2πA)
4 +O

(
1

A5

)
(2.135)

= O
(

1

A4

)
,

− 1

720A6

∫∫
DA

x61B3 (x, h) d2x− π

2

(
m3

πA
− 120a2 + 109a

(1)
3 + 11a

(2)
3

18A3

)
=

d6

(2πA)
6 +O

(
1

A5

)
(2.136)

= O
(

1

A5

)
,

1

40320A8

∫∫
DA

x81B3 (x, h) d2x+
π

147456

(
m3

14πA
− 18a2 + 17a

(1)
3 + a

(2)
3

45A3

)
=

d8

(2πA)
8 +O

(
1

A5

)
(2.137)

= O
(

1

A5

)
,

− 1

3628800A10

∫∫
DA

x101 B3 (x, h) d2x− π

66355200

(
m3

πA
− 540a2 + 523a

(1)
3 + 17a

(2)
3

105A3

)
=

d10

(2πA)
10 +O

(
1

A5

)(2.138)

= O
(

1

A5

)
.

We see that (2.133) already provides the second-order estimate of m3 given in (1.7). The higher-order estimates
given by (1.9) and (1.11) can be obtained by combining (2.135)–(2.137). Note that elimination of m3 using either
(2.134) would incur a rather large error O (1/A), reducing the final estimate to the first order. Similarly, any use
of (2.138) would result in an estimate of order O

(
1/A4

)
, but such an estimate could already be deduced using the

other listed above relations.
For the sake of simplification, let us set

(2.139) ã2 :=
a2
A3

, ã
(1)
3 :=

a
(1)
3

A3
, ã

(2)
3 :=

a
(2)
3

A3
,

and rewrite (2.133) and (2.135)–(2.137), respectively, as

(2.140) 30ã2 + 11ã
(1)
3 + 19ã

(2)
3 = −45

π

∫∫
DA

B3 (x, h) d2x+
45m3

2πA
+O

(
1

A5

)
=: T0,

(2.141) 180ã2 + 131ã
(1)
3 + 49ã

(2)
3 = − 180

πA2

∫∫
DA

x21B3 (x, h) d2x− 45m3

πA
+O

(
1

A2

)
=: T2,

(2.142) 270ã2 + 229ã
(1)
3 + 41ã

(2)
3 =

360

πA4

∫∫
DA

x41B3 (x, h) d2x+
45m3

2πA
+O

(
1

A4

)
=: T4,

(2.143) 120ã2 + 109ã
(1)
3 + 11ã

(2)
3 =

576

πA6

∫∫
DA

x61B3 (x, h) d2x+
18m3

πA
+O

(
1

A5

)
=: T6,
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(2.144) 18ã2 + 17ã
(1)
3 + ã

(2)
3 =

1152

7πA8

∫∫
DA

x81B3 (x, h) d2x+
45m3

14πA
+O

(
1

A5

)
=: T8.

Inspection of the left-hand sides of (2.140)–(2.144) reveals a number of linear dependencies (the rank of matrix
of coefficients in front of ã2, ã

(1)
3 , ã(2)3 is merely 2). In particular, we should use only the following two of these

relations which are straightforward to verify:

(2.145) T0 = T4 − 2T6, T0 = 4T6 − 25T8.
Substitution of (2.140), (2.142) and (2.143) in the first relation of (2.145) allows us to solve for m3/A. This leads

to the third-order estimate of m3 given by (1.9).
Similarly, plugging (2.140), (2.143) and (2.144) into the second relation of (2.145) gives (1.11), a fourth-order

estimate of m3.

3. Numerical validation and practical considerations

We demonstrate results by performing a numerical simulation on a synthetic example. In this example, we
choose magnetisation distribution to consist of few magnetic dipoles (i.e. point-supported magnetisation sources)
with positions ~x(1) = (3.5, 3.0, 1.0)

T
10−5 m, ~x(2) = (0.0, 0.0, 7.0)

T
10−5 m, ~x(3) = (4.0,−5.5, 11.5)

T
10−5 m, ~x(4) =

(−4.0, 5.5, 2.5)
T

10−5 m, and magnetic moments ~m(1) = (4.5, 3.5, 1.0)
T

10−12 A·m2, ~m(2) = (2.5, 4.5, 0.5)
T

10−12

A·m2, ~m(3) = (−3.0, 2.0, 2.5)
T

10−12 A·m2, ~m(4) = (−1.0, 2.0, 1.5)
T

10−12 A·m2. The net moment of this magneti-
sation distribution is thus simply equal to

(3.1) ~mtrue =

4∑
j=1

~m(j) = (3.0, 12.0, 5.5)
T

10−12 A ·m2.

The produced magnetic field B3 is given by

(3.2) B3 (x, h) =
µ0

4π

4∑
j=1

3
(
h− x(j)3

) [(
x1 − x(j)1

)
m

(j)
1 +

(
x2 − x(j)2

)
m

(j)
2

]
+

(
2
(
h− x(j)3

)2
−
∣∣x− x(j)

∣∣2)m(j)
3(∣∣x− x(j)

∣∣2 +
(
h− x(j)3

)2)5/2
,

and is measured on the disk DA =
{
x ∈ R2 : |x| < A

}
at the height x3 = h = 2.5 · 10−4 m. Since we now work in

Si units, we should recall Remark 1.2 and take into account the previously omitted factor µ0 = 4π · 10−7 N / A2.
In order to check robustness of the moment estimates obtained in Theorem 1.1, we also perform simulations

on data with a synthetic noise. Namely, we modify B3 using additive Gaussian white noise with the amplitude√
10−SNR/10 ·Var (B3), where SNR is the signal-to-noise ratio (in decibels) and Var (B3) is the variance of B3 on

DA. For our simulations, we choose SNR = 20 dB which corresponds to the 10% noise level.
In Figure 3.1, we illustrate the field (3.2) and its noise component on the disk DA of radius A = 7.5 · 10−4 m.
We shall now compute the integrals on the right-hand sides of (1.5)–(1.12) for different values of A. According to

our asymptotic result for large A, we expect to see that, as A grows, the values of each of these integrals converge,
with a different rate, to the value of a component of the net moment given by (3.1). Figures 3.2–3.3 show exactly
that for the tangential and normal net moment components, respectively. We note that in Figure 3.3 and further
figures involving the normal net moment component m3, a pair of the estimates are used: one with xj = x1 in (1.9),
(1.11) and the other with xj = x2.

To illustrate the different convergence rates better, in Figures 3.4–3.5, we plot the differences log
∣∣mtrue

j −mj

∣∣,
j ∈ {1, 2, 3}, against logA. This, in general, shows agreement with the estimates of the remainder term given in
(1.5)–(1.12).

Finally, in Figure 3.6, we directly test the estimates of the net moment components when the magnetic field is
contaminated by noise (with the noise model discussed above). We observe the persistence of the estimates for the
tangential net moment components m1, m2, even though higher-order estimates perform worse. The situation is
different for the estimates for the normal component m3 in that the estimates of any order clearly have a growing
trend with the increase of A, see Figure (3.7). This is deemed to be due to the presence of the factor A in all
estimates (1.7), (1.9), (1.11) resulting in the noise amplification for large A. The issue, however, can be dealt with.
One of possible remedies is demonstrated in Figure (3.8). There, a simple 11-point linear backward regression was
used: namely, for each fixed value A, 11 (nearest) points with smaller values of A (hence lying within the same
original measurement disk DA) were used to establish and substract a linear trend in A.

Let us now briefly comment on the fact that we chose to illustrate the results on a magnetisation distribution
with a singular support. Besides its simplicity, this choice is physically motivated as any magnetisation can be
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Figure 3.1. Magnetic field B3 (x, h) (left) and added noise (right) on DA for A = 7.5 · 10−4 m
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Figure 3.2. Estimates of the tangential net moment components m1 (left) and m2 (right) versus A
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Figure 3.3. Estimates of the normal net moment component m3 versus A: using x1 (left) and
x2 (right) formulas

thought of a combination of dipole sources. From mathematical (numerical) viewpoint, a magnetic field produced
by continuous magnetisation distribution is given by the integral whose numerical approximation (quadrature rule)
is nothing but a weighted sum of dipoles. Consequently, we do not expect results for continuous magnetisation
distributions to be of any drastical difference. On the other hand, this highlights the applicability of our methodology
to the magnetisations that could be much more singular than square-integrable functions.
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Figure 3.4. Logarithmic scale of the convergence for the estimates of m1 (left) and m2 (right)
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Figure 3.5. Logarithmic scale of the convergence for the m3 estimates: using x1 (left) and x2
(right) formulas
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Figure 3.6. Estimates of the tangential net moment components m1 (left) and m2 (right) versus
A. Noisy data.

4. Discussion and conclusion

Motivated by a concrete experimental setup, we considered a problem of estimating of net magnetisation of a
sample from one component of the magnetic field available in the limited measurement area in the plane above
the sample. We approached this problem asymptotically, assuming the size of the measurement area to be large.
We derived a set of explicit formulas for the asymptotic estimates of all three components of the net moment.
For simplicity, we considered only the case of the circular geometry, i.e. where the measurement area is a disk.
There is no doubt that results analogous to those in Theorem 1.1 could be deduced for the rectangular geometry
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Figure 3.7. Estimates of the normal net moment component m3 versus A: using x1 (left) and
x2 (right) formulas. Noisy data.
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Figure 3.8. Estimates of the normal net moment component m3 versus A: using x1 (left) and
x2 (right) formulas. Noisy data with the correction.

which technically is even closer to what is used in Paleomagnetism lab at EAPS (Earth, Atmospheric & Planetary
Sciences) department of MIT (Massachusetts Institute of Technology), USA. The main difference in obtaining such
results with the present approach would be only in a technique of the asymptotic estimation of the Fourier integrals.

In this paper, we have obtained and proved asymptotic estimates up to the order 5 for the tangential net
moment components m1, m2 and up to the order 4 for the normal component m3. The main purpose was, however,
to introduce a machinery that can generate asymptotic estimates of an arbitrary order. It is clear from the proof of
Theorem 1.1 and auxiliary computations in Appendix that the asymptotic order of the estimates can be upgraded
by proceeding in an established manner. This would require integration of the field against polynomials of a higher
order. Practical advantages of it, however, are not yet obvious. First, such estimates are expected to be sensitive
to any noise in B3: it was demonstrated in Section 3 that while lower- and middle-order estimates lead to expected
results, estimates of higher order are much more prone to the noise. Second, when pursuing an estimate of a higher
order, one should not forget that the obtained result is of only asymptotic nature: while a high-order estimate would
be advantageous for very large values of A, it may not be so for a smaller A due to a potentially large value of a
multiplicative constant (in A) in the remainder term. In particular, while Figure 3.2 shows a significant improvement
due to the use of the second-order estimates compared to those of the first-order, the same figure together with
Figure 3.3 demonstrate that, even without any noise, a higher-order estimate may be suboptimal for mid-range
values of A. A relevant issue to bear in mind is that, apart from the basic asymptoticness condition given by (1.4),
proceeding to higher-order estimates assumes implicitly (but it is evident due to the form of the remainder terms)
that the magnetisation is sufficiently localised so that its higher algebraic moments L(n)

j1,j2,j3
:=
〈
xj11 x

j2
2 x

j3
3 Mn

〉
,

n ∈ {1, 2, 3}, (see (2.1)) do not grow too fast with respect to their order j := j1 +j2 +j3, namely, that the quantities
L
(n)
j1,j2,j3

/Aj are not large for the value of A in question. A conclusion to draw from these observations is that the
middle-order estimates (e.g. those of orders 2-3) are perhaps the best: both from practical prospective of proximity
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to the true value of the net moment and from the viewpoint of the robustness to imperfect measurements. One
can also consider a possibility of choosing an estimate which is best possible for a given magnitude of A. This is
pertinent to the problem of finding an optimal truncation of asymptotic series.

In future works, we should study relation of our asymptotic results to the stable estimates of the net moment
using constrained optimisation approach, in particular those obtained in [1] for the planar and regular (square-
integrable) magnetisation. The strength of that approach is in its generality (potentially giving more than just
a net moment estimate) and, in particular, that the result does not require any largeness of the measurement
area size. However, it does not furnish explicit formulas for the net moment estimates: the obtained estimators
(i.e. functions that the field needs to be integrated against in order to estimate a net moment component; in our
case these are polynomials) could only be computed numerically by solving an integral-partial-differential equation.
Moreover, these estimators, despite being a solution of a regularised version of the problem, could be seen to have
rather irregular behavior with a rapid growth near the end of the measurement area and, as the authors noted,
this feature is not the most practical factor of their result. Studying of other ways of stabilisation of the estimates
and regularisation is also important. In this respect, it is natural to ask a question: what is the best way of using
redundancy of a set of the asymptotic formulas for the net moment components to arrive at an estimate with the
minimal effect of noise or to have the fastest (non-asymptotic) convergence to the true value of a net moment? For
example, in the present approach, we have a natural redundancy for all estimates of m3 of order 3 and higher due
to the freedom of choice xj = x1 and xj = x2 in formulas (1.9), (1.11) and so on. In Figure 3.3, these estimates
give almost indistinguishable results (it can be checked that the difference between the two is not zero but very
small), and hence may not look directly useful. However, since having more relations than quantities to determine
is always better when dealing with noise, this is still an advantage. Also, it is clear from Step 3 of the proof of
Theorem 1.1 that, upon involving higher order polynomials, a richer set of lower-order estimates could be obtained.

Finally, the results of this work naturally connect to the issue of the asymptotic field extension. Indeed, the
asymptotic field expansion at infinity (2.24) is seen to feature m3 at the leading order and quantities a(1)1 , a(2)1 at
the next order. While the estimates of m3 are given, to a different order, in (1.7), (1.9) and (1.11), it is evident
from the proof of Theorem 1.1, that the quantities a(1)1 , a(2)1 can also be asymptotically estimated, see e.g. (2.89)
and (2.91) (and their versions with x1 replaced by x2, as well as their lower-order analogs). Thus, this furnishes an
explicit 3-term expansion of B3 at infinity which, in general, when solving inverse magnetisation problems, should
serve as a better alternative to a simple prolongation of the field by zero outside of the measurement area. Such
a strategy can also potentially be used in setting up an iterative scheme. Of course, all of this is meaningful only
when the actual measurement area is already sufficiently large so that the asymptotic estimates for m3, a

(1)
1 , a(2)1

are sufficiently accurate.
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Appendix A

We collect here several useful results about cylindrical functions and some relevant integrals. In what follows we
will use the notation N+ to denote natural numbers, N0 := N+ ∪ {0}, and the notation Z for integer numbers.

Basic facts about Bessel, Neumann and Struve functions. The Bessel function Jn of order n ∈ Z is an
entire function satisfying the differential equation [11, (10.2.1)]

(A.1) z2J ′′n (z) + zJ ′n (z) +
(
z2 − n2

)
Jn (z) = 0, z ∈ C.

We have the following series expansion [11, (10.2.2)]

(A.2) Jn (z) =
(z

2

)n ∞∑
k=0

(−1)
k

k! Γ (n+ k + 1)

(z
2

)2k
,

which, due to the entire character of Jn, is absolutely convergent for every z ∈ C. Here, Γ denotes the Euler gamma
function, for which we have, in particular, Γ (k) = (k − 1)! for k ∈ N+. Moreover, it is worth noting that 1/Γ (k) = 0
for k ∈ Z\N+, which implies vanishing of negative powers of z in expansion (A.2) even for negative orders n.
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The following integral representation holds [11, (10.9.1)]

(A.3) Jn (x) =
1

π

∫ π

0

cos (nt− x sin t) dt, x ∈ R.

In particular,

(A.4) J0 (x) =
1

π

∫ π

0

cos (x sin t) dt =
1

π

∫ π

0

cos (x cos t) dt =
1

2π

∫ 2π

0

cos (x cos t) dt, x ∈ R,

(A.5) J1 (x) =
1

π

∫ π

0

cos (t− x sin t) dt =
1

2π

∫ 2π

0

sin (x cos t) cos tdt, x ∈ R.

For x� 1, n ∈ N0, the leading order asymptotics reads [11, (10.17.2)]

(A.6) Jn (x) =

(
2

πx

)1/2

cos
(
x− nπ

2
− π

4

)
+O

(
1

x3/2

)
,

where the estimate of the remainder term is due to the discussion in [11, Sect. 10.17(iii)].
The Bessel functions Jn, n ∈ Z, satisfy the connection formula [11, (10.4.1)]

(A.7) J−n (x) = (−1)
n
Jn (x) ,

as well as simple recurrence relations [11, (10.6.1)]

(A.8)
1

x
Jn (x) =

1

2n
(Jn−1 (x) + Jn+1 (x)) , n 6= 0,

(A.9) J ′n (x) =
1

2
(Jn−1 (x)− Jn+1 (x)) .

In particular, (A.7) and (A.9) entail that

(A.10) J ′0 (x) = −J1 (x) .

The Struve function Hn of order n ∈ N0 ∪{−1} is an entire function defined by the absolutely convergent power
series [11, (11.2.1)]

(A.11) Hn (z) =
(z

2

)n+1 ∞∑
k=0

(−1)
k

Γ

(
k +

3

2

)
Γ

(
k + n+

3

2

) (z
2

)2k
.

The companion Struve function Kn of order n ∈ Z is defined [11, (11.2.5)] as

(A.12) Kn (z) = Hn (z)− Yn (z) ,

where Yn is the Neumann function.
For x� 1, n ∈ N0, the following asymptotics hold true [11, (11.6.1)]

(A.13) Kn (x) =
1

π

2n+1n!

(2n)!
xn−1 +O

(
xn−3

)
,

(A.14) Yn (x) =

(
2

πx

)1/2

sin
(
x− nπ

2
− π

4

)
+O

(
1

x3/2

)
,

and the remainder terms are discussed in [11, Sect. 11.6(i)] and [11, Sect. 10.17(iii)], respectively. The asymptotic
behavior of Hn (x) for x� 1, n ∈ N0, hence follows from (A.12)–(A.14). In particular, for x� 1,

(A.15) H0 (x) =

(
2

πx

)1/2

sin
(
x− π

4

)
+O

(
1

x

)
,

(A.16) H1 (x) =
2

π
+

(
2

πx

)1/2

sin

(
x− 3π

4

)
+O

(
1

x3/2

)
.

Moreover, we have the following connection formula

(A.17) H−1 (x) =
2

π
−H1 (x) .
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Some useful integrals pertinent to the cylindrical functions. The following lemmas establish several integral
relations which are also crucial for the proof in Section 2.

Lemma A.1. For n ∈ N+, ρ > 0, the following identity holds

(A.18)
∫ ∞
ρ

J1 (x)

x2n+1
dx =

1

4n2 − 1

[
2n
J1 (ρ)

ρ2n
+
J ′1 (ρ)

ρ2n−1
−
∫ ∞
ρ

J1 (x)

x2n−1
dx

]
.

Proof. First, upon integration by parts (using the asymptotic behavior at infinity of J1 given by (A.6)), we have

(A.19)
∫ ∞
ρ

J1 (x)

x2n+1
dx =

1

2n

J1 (ρ)

ρ2n
+

1

2n

∫ ∞
ρ

J ′1 (x)

x2n
dx.

Then, if we employ (A.1) to express J ′1 in terms of J1 and J ′′1 , we obtain∫ ∞
ρ

J1 (x)

x2n+1
dx =

1

2n

J1 (ρ)

ρ2n
+

1

2n

∫ ∞
ρ

J1 (x)

x2n+1
dx− 1

2n

∫ ∞
ρ

J1 (x)

x2n−1
dx− 1

2n

∫ ∞
ρ

J ′′1 (x)

x2n−1
dx,

and hence

(A.20)
∫ ∞
ρ

J ′′1 (x)

x2n−1
dx =

J1 (ρ)

ρ2n
− (2n− 1)

∫ ∞
ρ

J1 (x)

x2n+1
dx−

∫ ∞
ρ

J1 (x)

x2n−1
dx.

On the other hand, returning to (A.19) and integrating it by parts again, we arrive at∫ ∞
ρ

J1 (x)

x2n+1
dx =

1

2n

J1 (ρ)

ρ2n
+

1

2n (2n− 1)

J ′1 (ρ)

ρ2n−1
+

1

2n (2n− 1)

∫ ∞
ρ

J ′′1 (x)

x2n−1
dx(A.21)

=
1

2n− 1

J1 (ρ)

ρ2n
+

1

2n (2n− 1)

J ′1 (ρ)

ρ2n−1
− 1

2n

∫ ∞
ρ

J1 (x)

x2n+1
dx− 1

2n (2n− 1)

∫ ∞
ρ

J1 (x)

x2n−1
dx.

Here, in the second line, we eliminated the intergral term involving J ′′1 using (A.20).
Rearranging the terms in (A.21) (solving for the quantity on the left-hand side), we deduce (A.18). �

Lemma A.2. For ρ > 0, we have

(A.22)
∫ ∞
ρ

J1 (x)

x3
dx =

J0 (ρ)

3ρ
+
J1 (ρ)

3ρ2
− 1

3
− J1 (ρ)

3
+
ρJ0 (ρ)

3
− πρ

6
[J0 (ρ)H1 (ρ)− J1 (ρ)H0 (ρ)] .

Proof. Note that using (A.8), we have

(A.23)
∫ ∞
ρ

J1 (x)

x3
dx =

1

2

∫ ∞
ρ

J0 (x)

x2
dx+

1

2

∫ ∞
ρ

J2 (x)

x2
dx.

Let us start by transforming the first term in (A.23), namely,∫ ∞
ρ

J0 (x)

x2
dx =

J0 (ρ)

ρ
+

∫ ∞
ρ

J ′0 (x)

x
dx(A.24)

=
J0 (ρ)

ρ
+ J ′0 (ρ)−

∫ ∞
ρ

J0 (x) dx.

Here, in the first line, we employed integration by parts (together with the asymptotic behavior at infinity of J0
given by (A.6)). To arrive at the second line, we used the identity

J ′0 (x)

x
= −J0 (x)− J ′′0 (x) , x 6= 0,

implied by (A.1).
Performing the same procedure with the second term in (A.23), we have∫ ∞

ρ

J2 (x)

x2
dx =

J2 (ρ)

ρ
+

∫ ∞
ρ

J ′2 (x)

x
dx

=
J2 (ρ)

ρ
+ J ′2 (ρ)−

∫ ∞
ρ

J2 (x) dx+ 4

∫ ∞
ρ

J2 (x)

x2
dx,

and, hence,

(A.25)
∫ ∞
ρ

J2 (x)

x2
dx = −1

3

[
J2 (ρ)

ρ
+ J ′2 (ρ)−

∫ ∞
ρ

J2 (x) dx

]
.
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Expressions (A.24) and (A.25) imply that the integral on the left-hand side of (A.23) is expressible in terms of
two integral quantities:

∫∞
ρ
J0 (x) dx and

∫∞
ρ
J2 (x) dx. Let us now show that these quantities are simply related:

(A.26)
∫ ∞
ρ

J2 (x) dx =

∫ ∞
ρ

J0 (x) dx+ 2J1 (ρ) ,

and, moreover,

(A.27)
∫ ∞
ρ

J0 (x) dx = 1− ρJ0 (ρ)− π

2
ρ [J1 (ρ)H0 (ρ)− J0 (ρ)H1 (ρ)] .

Recalling asymptotics (A.6), we note that the integrals on the left-hand sides of (A.26), (A.27) are not absolutely
convergent, and hence an additional care with technical manipulations is needed. Namely, we shall first replace the
integration range (ρ,∞) with (ρ,R) for arbitrary finite R > ρ, and then pass to the limit as R → +∞. We shall
proceed in several steps.

Step 1: Establishing of (A.26)

We start with (A.26) and use integral representation (A.3):

J2 (x) =
1

π

∫ π

0

cos (2t− x sin t) dt =
1

π

∫ π

0

cos (x sin t− 2t) dt.

Consequently, exchanging the order of integration (permissible due to the regularity of the integrand and finiteness
of the integration limits), we obtain∫ R

ρ

J2 (x) dx =
1

π

∫ π

0

sin (R sin t− 2t)− sin (ρ sin t− 2t)

sin t
dt(A.28)

=
1

π

∫ π

0

sin (R sin t)− sin (ρ sin t)

sin t
dt− 2

π

∫ π

0

[sin (R sin t) sin t+ cos (R sin t) cos t] dt

+
2

π

∫ π

0

[sin (ρ sin t) sin t+ cos (ρ sin t) cos t] dt

=

∫ R

ρ

J0 (x) dx− 2 (J1 (R)− J1 (ρ)) ,

where we used the identities

sin (R sin t− 2t) =
(
1− 2 sin2 t

)
sin (R sin t)− 2 sin t cos t cos (R sin t) ,

sin (R sin t) sin t+ cos (R sin t) cos t = cos (R sin t− t) ,

1

π

∫ π

0

cos (R sin t− t) dt = J1 (R) ,

1

π

∫ π

0

sin (R sin t)− sin (ρ sin t)

sin t
dt =

∫ R

ρ

J0 (x) dx.

and, except for the last one, also their analogs with ρ instead of R. The first two of these identities are purely
trigonometrical whereas the last two are due to (A.4)–(A.5).
Passing to the limit R→ +∞ in (A.28) using asymptotics (A.6), we thus conclude with (A.26).

Step 2: Establishing of (A.27)

To deduce relation (A.27), we use [11, (10.22.2)] to write

∫ R

ρ

J0 (x) dx =
π

2
R [J0 (R)H−1 (R)− J−1 (R)H0 (R)]− π

2
ρ [J0 (ρ)H−1 (ρ)− J−1 (ρ)H0 (ρ)]

(A.29)

= RJ0 (R)− ρJ0 (ρ) +
π

2
R [J1 (R)H0 (R)− J0 (R)H1 (R)]− π

2
ρ [J1 (ρ)H0 (ρ)− J0 (ρ)H1 (ρ)] ,
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where we used (A.7), (A.17) in passing to the second line.
Note that, employing asymptotics (A.6), (A.15)–(A.16), we have, for R� 1,

RJ0 (R) +
π

2
R [J1 (R)H0 (R)− J0 (R)H1 (R)] = cos

(
R− 3π

4

)
sin
(
R− π

4

)
− cos

(
R− π

4

)
sin

(
R− 3π

4

)
+O

(
1

R1/2

)
= 1 +O

(
1

R1/2

)
.

Therefore, by passing to the limit as R→ +∞ in (A.29), we obtain (A.27).

Step 3: Conclusion of the proof

Plugging (A.27) into (A.26) and (A.24), we obtain

(A.30)
∫ ∞
ρ

J2 (x) dx = 1 + 2J1 (ρ)− ρJ0 (ρ)− π

2
ρ [J1 (ρ)H0 (ρ)− J0 (ρ)H1 (ρ)] ,

(A.31)
∫ ∞
ρ

J0 (x)

x2
dx =

J0 (ρ)

ρ
+ J ′0 (ρ)− 1 + ρJ0 (ρ) +

π

2
ρ [J1 (ρ)H0 (ρ)− J0 (ρ)H1 (ρ)] ,

respectively.
Substitution of (A.30) into (A.25) gives

(A.32)
∫ ∞
ρ

J2 (x)

x2
dx = −J2 (ρ)

3ρ
− 1

3
J ′2 (ρ) +

1

3
+

2

3
J1 (ρ)− 1

3
ρJ0 (ρ)− π

6
ρ [J1 (ρ)H0 (ρ)− J0 (ρ)H1 (ρ)] .

Finally, using (A.31)–(A.32) in (A.23), we arrive at

(A.33)
∫ ∞
ρ

J1 (x)

x3
dx =

J0 (ρ)

2ρ
−J2 (ρ)

6ρ
+

1

2
J ′0 (ρ)−1

6
J ′2 (x)−1

3
+
ρ

3
J0 (ρ)+

1

3
J1 (ρ)+

π

6
ρ [J1 (ρ)H0 (ρ)− J0 (ρ)H1 (ρ)] .

Using (A.10) and the recursive identities (due to (A.8)–(A.9))

J2 (ρ) =
2

ρ
J1 (ρ)− J0 (ρ) , J3 (ρ) =

4

ρ
J2 (ρ)− J1 (ρ) =

8

ρ2
J1 (ρ)− 4

ρ
J0 (ρ)− J1 (ρ) ,

J ′2 (ρ) =
1

2
[J1 (ρ)− J3 (ρ)] = − 4

ρ2
J1 (ρ) +

2

ρ
J0 (ρ) + J1 (ρ) ,

we transform (A.33) into the desired relation (A.22). �

Lemma A.3. For ρ > 0, in addition to (A.22), we have the following identities∫ ∞
ρ

J1 (x)

x
dx =

J1 (ρ)

ρ2
+
J ′1 (ρ)

ρ
− 1

ρ
J0 (ρ) + 1 + J1 (ρ)− ρJ0 (ρ)(A.34)

+
πρ

2
[J0 (ρ)H1 (ρ)− J1 (ρ)H0 (ρ)] ,∫ ∞

ρ

J1 (x)

x5
dx =

4J1 (ρ)

15ρ4
+
J ′1 (ρ)

15ρ3
− J0 (ρ)

45ρ
− J1 (ρ)

45ρ2
+

1

45
+
J1 (ρ)

45
(A.35)

− ρJ0 (ρ)

45
+
πρ

90
[J0 (ρ)H1 (ρ)− J1 (ρ)H0 (ρ)] ,∫ ∞

ρ

J1 (x)

x7
dx =

6

35

J1 (ρ)

ρ6
+

1

35

J ′1 (ρ)

ρ5
− 4J1 (ρ)

525ρ4
− J ′1 (ρ)

525ρ3
+
J0 (ρ)

1575ρ
+

J1 (ρ)

1575ρ2
(A.36)

− 1

1575
− J1 (ρ)

1575
+
ρJ0 (ρ)

1575
− πρ

3150
[J0 (ρ)H1 (ρ)− J1 (ρ)H0 (ρ)] .

Proof. We shall prove identities (A.34)–(A.36) sequentially.
Applying Lemma A.1 with n = 1, we have∫ ∞

ρ

J1 (x)

x3
dx =

2

3

J1 (ρ)

ρ2
+

1

3

J ′1 (ρ)

ρ
− 1

3

∫ ∞
ρ

J1 (x)

x
dx,

and, hence,

(A.37)
∫ ∞
ρ

J1 (x)

x
dx = 2

J1 (ρ)

ρ2
+
J ′1 (ρ)

ρ
− 3

∫ ∞
ρ

J1 (x)

x3
dx.

Using Lemma A.2, (A.37) becomes (A.34).
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Application of Lemma A.1 with n = 2 yields

(A.38)
∫ ∞
ρ

J1 (x)

x5
dx =

4

15

J1 (ρ)

ρ4
+

1

15

J ′1 (ρ)

ρ3
− 1

15

∫ ∞
ρ

J1 (x)

x3
dx.

With the help of Lemma A.2, (A.38) transforms into (A.35).
Finally, we use Lemma A.1 with n = 3 to obtain

(A.39)
∫ ∞
ρ

J1 (x)

x7
dx =

6

35

J1 (ρ)

ρ6
+

1

35

J ′1 (ρ)

ρ5
− 1

35

∫ ∞
ρ

J1 (x)

x5
dx.

Substitution of the already proven identity (A.35) into (A.39) furnishes (A.36). �

Lemma A.4. For α ∈ R, m, n ∈ N0, we have the following identities

(A.40)
∫ 2π

0

cos (α cos θ) cos2m+1 θ sinn θdθ = 0,

(A.41)
∫ 2π

0

cos (α cos θ) cosm θ sin2n+1 θdθ = 0,

(A.42)
∫ 2π

0

sin (α cos θ) cosm θ sin2n+1 θdθ = 0,

(A.43)
∫ 2π

0

sin (α cos θ) cos2m θ sinn θdθ = 0.

Proof. We shall prove identities (A.40)–(A.43) one after another.
Using periodicity of the integrand, we can shift the interval from (0, 2π) to (−π/2, 3π/2) and further split it in

two: ∫ 2π

0

cos (α cos θ) cos2m+1 θ sinn θdθ =

∫ 3π/2

−π/2
cos (α cos θ) cos2m+1 θ sinn θdθ(A.44)

=

∫ π/2

−π/2
. . .+

∫ 3π/2

π/2

. . . .

Performing the change of variable y = sin θ, dy = cos θdθ in each of the integrals on the second line of (A.44), we
have ∫ π/2

−π/2
cos (α cos θ) cos2m+1 θ sinn θdθ =

∫ 1

−1
cos
(
α
√

1− y2
) (

1− y2
)m

dy,

∫ 3π/2

π/2

cos (α cos θ) cos2m+1 θ sinn θdθ =

∫ −1
1

cos
(
−α
√

1− y2
)(
−
√

1− y2
)2m

dy

= −
∫ 1

−1
cos
(
α
√

1− y2
) (

1− y2
)m

dy.

Here, we used the fact that cos θ =
√

1− sin2 θ ≥ 0 for θ ∈ [−π/2, π/2] and cos θ = −
√

1− sin2 θ ≤ 0 for
θ ∈ [π/2, 3π/2] which makes the integrands in each of both terms in the decomposition single-valued. Therefore,
both integral quantities on the second line of (A.44) are opposite to each other in sign, and this entails (A.40).

To show (A.41), a useful change of variable is y = cos θ, dy = − sin θdθ. The integrand is single-valued on the
whole interval, and hence∫ 2π

0

cos (α cos θ) cosm θ sin2n+1 θdθ = −
∫ 1

1

cos (αy) ym
(
1− y2

)n
dy.

Recognising that the lower and upper limits of the integration are the same, we deduce the desired vanishing of the
integral.

Similarly, we have∫ 2π

0

sin (α cos θ) cosm θ sin2n+1 θdθ = −
∫ 1

1

sin (αy) ym
(
1− y2

)n
dy = 0,

which proves (A.42).
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Finally, to show (A.43), we use the fact that identity (A.40) holds, in particular, for any α ∈ [0, β] with arbitrary
β ≥ 0. Integrating it in α over this interval and interchanging the order of integration (permissible by the regularity
of the integrand and the finite integration range), we obtain

0 =

∫ β

0

∫ 2π

0

cos (α cos θ) cos2m+1 θ sinn θdθdα =

∫ 2π

0

sin (β cos θ) cos2m θ sinn θdθ.

Since the same reasoning also works β ≤ 0 by working with an interval [β, 0], identity (A.43) is thus proved up to
a change of the notation β to α. �
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