
HAL Id: hal-03813552
https://hal.science/hal-03813552

Submitted on 13 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Charging management of shared taxis: Neighbourhood
search for the E-ADARP

Toussaint Hoché, Dominique Barth, Thierry Mautor, Wilco Burghout

To cite this version:
Toussaint Hoché, Dominique Barth, Thierry Mautor, Wilco Burghout. Charging management
of shared taxis: Neighbourhood search for the E-ADARP. 2020 IEEE 23rd International Con-
ference on Intelligent Transportation Systems (ITSC), Sep 2020, Rhodes, Greece. pp.1-7,
�10.1109/ITSC45102.2020.9294446�. �hal-03813552�

https://hal.science/hal-03813552
https://hal.archives-ouvertes.fr

Charging management of shared taxis: Neighbourhood search for the
E-ADARP

Toussaint Hoché†,‡, Dominique Barth†, Thierry Mautor† and Wilco Burghout‡,∗

Abstract— The electric vehicle market is booming. How-
ever, these vehicles need to be refilled more often and do
so much more slowly than internal combustion engine (ICE)
vehicles. The arrival of autonomous vehicles will enable both
fully centralised systems for taxi fleet management and a
24/7 use of each taxi. Finally, the ride-sharing market is
also booming. Thus, efficient future taxi fleets will have
to provide efficient, integrated solutions for ride-sharing,
charging and automation. In this paper, the problem focused
on is a variation of the Dial-A-Ride-Problem (DARP) where
charging as well as the availability of charging stations
are taken into account: Given a fleet of autonomous and
electric taxis, a charging infrastructure, and a set of trip
requests, the objective is to assign trips and charges to taxis
such that the total profit of the fleet is maximised. Our
contribution consists in the development of a greedy method,
and of a simulated annealing. Our methods are evaluated on
large instances (10000 requests) based on taxi trip datasets
in Porto. Our conclusions show that while high-capacity
batteries are largely unneeded in normal circumstances, they
are capital in case of disruption, and useful when the charging
infrastructure is shared, with queueing time to access to a
charger. Parking searches also represent a significant energy
expense for autonomous taxis.

I. Introduction
Internal combustion engine (ICE) vehicles are being

phased-out in multiple countries. Electric vehicles are
considered as an alternative, however, their range is
more limited and refilling them is currently much slower:
A gasoline pump provides around 500km of range per
minute, while a fast charger gives around 10km per
minute1. A charger as fast as a gas pump would be
a 5MW charger. A nuclear reactor could only handle
around 200 of these “electric gas pumps”. Therefore,
the number of charging stations and their speed may
be limited. Moreover, their usage may be restricted:
Electric taxis may be prohibited from using at peak
hours of electric consumption (e.g. often around 18:00).
Such limitations may affect negatively the income of
electric taxi fleet owners, since their vehicles have little
downtime. Also, autonomous taxis will likely have lower
operating costs than conventional ones[1], particularly

†Toussaint Hoché, Dominique Barth & Thierry Mautor are with
the University of Versailles Saint-Quentin-en-Yvelines, Versailles,
France.

‡Toussaint Hoché & Wilco Burghout are with the VEDECOM
Institut, Versailles, France.

∗Wilco Burghout is with the KTH Royal Institute of Technology,
Stockholm, Sweden.

1Assuming a speed of 36L/min at the gasoline pump, a con-
sumption of 7.2L/100km for the ICE car, a speed of 108kW for the
charger, and a consumption of 18kWh/100km for the electric car.

at night. This opens up new markets for taxis, which
could be used, for instance, for food delivery or night-
time deliveries, which would mean, in turn, a massive
reduction of their downtime. Finally, the ride-sharing
market is booming. Fleets of shared vehicles can be much
more efficient at time when the number of customers is
very high, allowing the same number of customers to
be treated by a smaller fleet. This can lead to a further
reduction of the average downtime.

Optimizing the actions performed by a fleet of shared
vehicles is generally modelised as a DARP (Dial A
Ride Problem). The DARP is a generalisation of the
VRP (Vehicle Routing Problem): a fleet of vehicles is
dispatched to transport customers. Each customer has
a request, characterised by an origin, a destination, a
pick-up time, a tolerance for lateness and a number
of seats. Customers accept that some detours occur
during their trip, as long as the total duration of
the detours remains below a threshold. The goal is
to generate routes for the vehicles to maximise some
objective function, generally, the number of satisfied
customers. The literature on the DARP is prolific [2], [3].
However, battery management is a new research question
[4]. Among the papers considering a variation of the VRP
with recharging, some do not consider ride-sharing [5],
[6], [7], [8], [9], [10], partial charges [8], [9], time windows
[5], [10]. To the best of our knowledge, no paper mention
any constraints on the availability of the chargers. Also,
none of these papers seems to consider the impact of
parking place searches, even though their impact on
consumption may be significant. Our problem is a variant
of the E-ADARP (Electric-Autonomous DARP) of [11].
In the E-ADARP, the vehicles have a limited battery and
may use charging stations. In our problem, we introduce
a new constraint: at some hours, chargers are unavailable,
and a given charger can only be used by one taxi at a
time. We also modelise on-street parking place searches.
One motivation is that autonomous taxis may have a
harder time finding a place to stop without blocking
traffic completely. Data on on-street parking is scarce:
For instance, [12] estimates that there are between 105
millions and 2 billions on-street parking places in the
United States.

Since our problem generalises the VRP, it follows that
it is NP-complete. In the literature, most evaluations
of heuristics have been performed on small instances
(generally, variants of Solomon’s benchmark [13]). Fairly
little attention is given to highly scalable methods: [11]

consider at most 5 vehicles and 50 requests, and [6] at
most 4 vehicles and 100 requests.

The DARP and its variants are generally solved
exactly with a MILP (Mixed Integer Linear Program)
and some optimizations, like a branch-and-price [9], [14],
[10], which is not scalable. When heuristics are used,
they generally are neighbourhood searches [8], [9], [10]
inspired by the one used on similar problems. For very
large instances, heuristics used for the dynamic version
of the problem, in which requests arrive in real-time,
may perform well while having a very good computation
speed.

To solve our specific problem on very large instances
(dozens of vehicles, thousands of requests), we propose
a two steps heuristic. First, a greedy heuristic generates
a solution. Starting from a solution in which taxis stay
parked, requests are inserted one-by-one using a low-
complexity algorithm, suitable for a dynamic algorithm.
Then, the solution is improved with a local search. This
local search performs moves such as charge insertion or
the transfer of a request from a taxi to another.

II. Model
This section presents a MILP formulation of the

problem.
T is defined as the set of taxis. Each taxi t ∈ T

has a passengers capacity qt ∈ N+, a consumption per
second spent driving δ time

t ∈R+, a consumption per metre
δ metre

t ∈ R+. The consumption per second is caused by
the A/C, the sensors, and the inboard computer.

Let G = {V,A} an oriented graph. Each vertex repre-
sents an action (pick/drop a customer, use a charger,
leave the starting position, permanently return to the
depot). Thus, a schedule of a taxi can be defined as a
path in G respecting some constraints.

Let V = {B∪{depot}∪S∪C}, such that:
• B is the set representing the beginning of the

schedule of each taxi. |B|= |T |.
• depot is a vertex representing the end of the schedule

of all taxis. It is a sink.
• S is the set of all stops. It is divided in two parts. S+

represents the set of pick-ups, while S− represents
the set of drop-offs.

• C is the set of charges.
Each vertex v ∈ V has a time window [αv,ωv]. The

beginning of the schedule of the taxi t ∈ T is noted bt ∈B.
It is such that ∄t, t ′ ∈ T | t ̸= t ′ such that bt = bt ′ .

Let R the set of all requests. Each request r ∈ R has a
seat demand qr ∈ N+, a pick-up pr ∈ S+ and a drop-off
dr ∈ S−. The unique request associated to the stop s ∈ S
is noted rs. The time windows of pr and dr indicates the
ideal pick-up and drop-off time of the customer and his
tolerated lateness.

Let Available the chronologically ordered set of time
windows during which chargers are available. C j,k ⊂ C
denotes the set of all charges happening at the charger

j during the kth element of Available. Each charger j has
a charge speed speed j ∈ R+.

Each arc a ∈ A has a length la ∈R[0,+∞[and a duration
τa ∈ N[0,+∞[. The arc going from u ∈V to v ∈V is noted
a = (u,v) ∈ A.

The arc (u,v) is in A if and only if one of the following
statements is true:

• u ∈ B and v ∈ S+∪{depot}
• u ∈ S+ and v ∈ S\{u}
• u ∈ S− and v ∈V\{B} and, if v ∈ S, ru ̸= rv
• u ∈C and v ∈ {depot}∪S+

depot is virtual, it just indicates the end of the
schedules, i.e. Arcs going to depot have a null length
and duration.

A. Output
The output is a set X ∈ {0,1}|A|, which determines

for each arc if it is used or not. The used arcs form
|T | paths going from each vertex of B to depot. Each
path represents a taxi’s schedule. The decision variable
indicating if the arc a ∈ A is used is noted xa. The
objective function is :

max ∑
r∈R

qrt(pr ,dr) ∑
u∈V

x(u,pr) (1)

i.e. The total value of the requests treated is maximised,
with the value of a request being its number of passengers
× the duration of the arc from the origin to the
destination of the request. Also, note that for the sake
of brevity, we note

∑
u∈V

x(u,pr) instead of the correct ∑
u∈V |(u,pr)∈A

x(u,pr)

B. Constraints
Some constraints are not written in a way considered

valid for a MILP, however, some classical linearisation
techniques that are not detailed in this paper can make
them linear.

1) Flow: A vertex can only be visited once (except
depot).

∑
v∈V

x(u,v) ≤ 1 ∀ u ∈V\{depot} (2)

If an arc (u,v) is used, then there must be a used arc
(v,w).

∑
u∈V

x(u,v) = ∑
w∈V

x(v,w) ∀ v ∈V\{B,depot} (3)

There is a used outgoing arc for each schedule’s
beginning (4). Every taxi schedule finishes with depot
(5).

∑
v∈V

x(bt ,v) =1 ∀ t ∈ T (4)

∑
u∈V

x(u,depot) =|T | (5)

The variable indicating if the taxi t ∈ T goes through
the vertex v ∈V\{depot} is noted yt

v ∈ {0,1}.

We note Y = {yt
v | ∀ v ∈V\{depot},∀ t ∈ T}. Also, ∀ t ∈

T , ∀ b ∈ B,yt
b = 1 if and only if b = bt .

Taxis follow disjoints paths (except at the depot). i.e.
if an arc (u,v) is used and the taxi t reach the vertex u,
then it is necessarily the taxi t which reaches the vertex
v by going through the arc (u,v).

yt
v = ∑

v∈V
yt

ux(u,v) ∀ u ∈V\{depot},∀ t ∈ T (6)

2) Capacity: The variable indicating the number of
clients inside the taxi going through the vertex v ∈ V
is noted qv ∈ N+. We note Qv = {qv | ∀ v ∈ V}. Taxis
start empty and finish empty, and cannot charge while
containing a client.

qv = 0 ∀ v ∈ B∪C∪{depot} (7)

When a pick-up is reached, the number of passengers
inside the taxi increases (8). Conversely, it decreases
when a drop-off is reached (9). It does not change when a
charge or the end of the schedule is reached (10). ∀ u∈V :

qpr = qu +qr ∀ r ∈ R if x(u,pr) = 1 (8)
qdr = qu −qr ∀ r ∈ R if x(u,dr) = 1 (9)

qu = qv = 0 ∀ v ∈C∪depot if x(u,v) = 1 (10)

A taxi cannot contains more customers than it has
seats.

qv ≤ qt

∀ v ∈V,
∀ t ∈ T,
if yt

v = 1
(11)

3) Time: arrivev is the time at which a vertex v ∈ V
is reached. departv is the time at which a vertex v ∈V is
left. The taxis start moving at time 0.

arriveb = 0 ∀ b ∈ B (12)

A vertex must be reached before being left and its
time window must be respected.

αv, arrivev ≤ departv ≤ ωv ∀ v ∈V (13)

A fixed amount of time is required to go through an arc.

departu + τ(u,v) = arrivev

∀ u ∈V,
∀ v ∈V\{depot}

if x(u,v) = 1
(14)

A taxi must reach a customer’s pick-up before his drop-
off.

departpr ≤ departdr ∀ r ∈ R (15)

The “parking phase” of v∈V is what happens between
its arrival and departure. A parking phase starts with a
search phase, whose duration is noted searchv ∈ N. The
search phase ends after a duration searchmax at most.

searchv = min(searchmax, departv −arrivev) (16)

4) Battery: wv ∈R[0,+∞[is the battery of a taxi when it
reaches a vertex v ∈V . A taxi starts with a battery level
w0

t . Reminder: bt ∈ B is the beginning of the schedule of
the taxi t ∈ T and wt is its maximum battery.

wbt = w0
t ∀ t ∈ T (17)

A battery cannot be overfull nor empty.

0 < wv ≤ wt

∀ v ∈V\{depot},
∀ t ∈ T,
if yt

v = 1
(18)

Reminder: la and τa are the length and duration of
the arc a ∈ A, respectively, and δ time

t and δ metre
t are the

consumptions per second and per metre of the taxi t ∈ T ,
respectively.

A taxi t ∈ T crossing an arc a ∈ A spends an amount
of energy δ t

a =−(laδ metre
t + taδ time

t).
When searching for a parking place, taxis go at a

constant speed cruise_speed ∈ R+. The energy con-
sumption at each vertex v is: δ t

v = −search(v)× (δ time
t +

cruise_speedδ metre
t).

The energy loss between the departure from a vertex
u ∈V and the departure from the vertex v is noted ∆(u,v)
such that:

∆t
(u,v) = δ t

v +δ t
(u,v) ∀ u,v ∈V,∀ t ∈ T

This energy loss is the variation of energy for non-
charge vertices:

wu +∆t
(u,v) = wv

∀ u ∈V\{C},
∀ v ∈V\{depot},

∀ t ∈ T,
if x(u,v) = 1

(19)

Reminder: c j
i is the vertex representing the i-th use of

the charger j and speed j is the speed of the charger j.
The amount of energy recovered through a charge is ∆ j

i
such that:

∆ j
i = speed j×(departc j

i
−searchc j

i
−arrivec j

i
) ∀ c j

i ∈C

The variation of energy after a charge is therefore:

wc j
i
+∆

(c j
i ,v)

+∆ j
i = wv

∀ c j
i ∈C,

∀ v ∈V\{depot},
if x

(c j
i ,v)

= 1
(20)

A charger cannot be used by two taxis at once, i.e. A
charge must finish before the next starts.

depart
c j,k

i
< arrive

c j,k
i+1

∀ i, j ∈ N (21)

III. Proposed Approach

Our approach consists in a greedy insertion of the
requests, starting from an empty solution, followed by a
simulated annealing.

A. Greedy
The greedy algorithm use 3 moves, called C+,R+ and

R+C+. A ride is defined as a maximum sequence of stops
(pick-up or drop-off) in a schedule, such that the taxi
always contains at least one customer.

R+ (Add request): A request q is inserted in a schedule
s, while ignoring battery constraints, or nothing happens.
Let (r1, . . . ,rn) the sequence of rides in s, ordered chrono-
logically. First, we try to insert q in each ride. Inserting
q in ri means replacing ri by a ride r′ such that: 1)
r′ contains all the stops of ri, in the same order. 2) r′

contains the pick-up and drop-off of q. 3) There is no time
constraint violation during the ride. 4) r′ minimises the
distance driven by the taxi during the ride. 5) The ride
ri+1 does not need to be delayed, and the ride ri−1 does
not need to be advanced. 6) In s, the vertices between
ri−1 and ri+1 not in ri can be removed. If it is possible,
q is inserted in the ride and the move ends. If no such
ride is found, then for any pair of rides (ri,ri+1), we try
to insert the pick-up and drop-off of q between the end
of ri and the start of ri+1 (thus creating a new unshared
ride). Neither ri nor ri+1 can be advanced/delayed, but
the vertices between them in s can be modified. q is
inserted if it is possible, and the move ends. The move
does nothing if no such pair of ride is found.

C+ (Add charges): Charges are inserted in a schedule
at the earliest possible time. First, we identify the
intervals of time when the taxi is available (not in a ride).
Second, during each interval, in chronological order, and
for each charger, we check how much energy can be
refilled. If no charger is able to give at least 1% more
than the energy spent to reach the charger, then the taxi
remains parked. Else, we send the taxi to the charger
maximising the energy at the end of the interval. With
the charges now updated in this interval, we look at the
second interval of time, and perform the same process.

R+C+ (Add request, add charges): Uses the move R+

followed by C+.
The greedy works as follows: 1) Generate a solution

in which every taxi immediately goes to the depot. 2)
The set of requests R is ordered (by request’s value, or by
starting time, or randomly, ascendingly or descendingly).
3) For each request r in R, for each schedule s, we try
to insert r in s with R+C+. If this move fails for every
schedule, r is rejected. If this move succeeds for at least
one schedule, then one of the valid schedule is chosen
(the closest taxi is sent, or the one with the least/most
battery, or a random one, or the one who has been idle
the longest). When every request has been either inserted
or rejected, the greedy insertion algorithm terminate.

B. Annealing
Four additional moves are defined for the annealing.
R− (Remove request) Remove a request from a sched-

ule. Its pick-up and drop-off are removed, and the
departure and arrival time at the vertices of s are
adjusted.

Rswap (Swap request): Swap requests between sched-
ules. 1) Two requests q1 and q2 are removed from
schedules s1 and s2, respectively, with the move R−. 2)
R+C+ is used on s1 and q2. 3) R+C+ is used on s2 and
q1.

R+−C+ inserts a request q in a schedule s, and may
remove rides. It first execute R+C+, and ends if it
succeeds. Then, it tries to insert a new ride r treating
only q. This ride starts at the ideal pick-up time of q.
Ride of s incompatible with r because of time constraints
are removed. Then r is progressively delayed, making
some removed rides compatible again, and some other
incompatible. In the end, r is inserted in the position
which minimises the total value of the request removed.
Finally, C+ is used to makes the schedule valid.

R+
move inserts a request q in a schedule s, part of a

solution S using the greedy algorithm. First, q is inserted
with R+−, followed by C+. If s is invalid, the move ends
without changing anything. Else, the requests removed
from s are reinserted in S, using the greedy algorithm.

In the remainder of this paper, ”random” means ”fol-
lowing an uniform distribution”, unless stated otherwise.
In the simulated annealing, each iteration, a random
move is selected with a probability distribution chosen
by the user. Inputs for the move chosen are chosen
randomly: A schedule for C+ ; A schedule and an
untreated request for R+,R+−C+ and R+C+ ; A schedule
and a request it treats for R−. For Rswap, two schedules
and a request r treated by the first schedule are chosen
randomly. Then, a request r′ is chosen such that r′ is in
the second schedule, and r′ is the first request treated
after the start of r.

With the input parameters set, the move is executed.
If it succeeds, let δ the variation of the value of the
solution. If δ ≥ 0, the move is accepted. Else, it is
accepted with a probability equal to e

δ
temperature . The

temperature decreases linearly as time passes, and the
annealing finishes with a timer.

C. Complexity
In practice, R+ and R− have a complexity linear in

the length of the schedule they are used on. In theory,
in a case where n customers accept a very long lateness,
a complexity in O(n2) can be reached. Inserting charges
has a higher complexity: If a schedule contains n rides,
and there are k chargers used uc time each, then C+ has
a complexity of O((n+u)k). In practice, this complexity
can be reduced: Adding a charge before an instant t
where the battery is full is useless if the battery never
gets negative before t. Similarly, if the battery gets
negative at t and no charge can be added before t, then
the move fails, and there is no need to check anything
after t.

IV. Experimentations
We implemented these algorithms in C++, and exe-

cuted simulations on a laptop with a i7 processor. R+C+

is executed in parallel during the greedy.

A. Initialisation
To generate bigger instances, we first use the software

SUMO (Simulation of Urban MObility) and the maps
available on OSM (Open Street Map) to generate a graph
G′ representing Porto. An arc represents a portion of a
roadway or a connection between roadways, and has an
estimated speed and a length. An open dataset of 17000
taxi trips (kaggle.com) is used to generate the requests.

Each time a simulation is started, a set of 10000
requests is generated from trips chosen randomly. The
origin/destination of the trips are presented as GPS
locations, and we associate them to the closest arc of
the graph. The requests are in July 2013, spread between
Wednesday, 3rd at 00:00, and Sunday, 7th, at 24:00. The
number of passengers is chosen randomly from 1 to 4.
Customers accept at most 5 minutes of lateness at pick-
up and drop-off, plus 20% of the expected ride duration.

There are 35 homogeneous taxis. They have 5 places, a
battery of 72kWh. half are placed on random streets, and
half are placed in the streets with the highest number
of requests’ pick-up. The taxis use 1.8kW for auxiliary
system while driving, and 15kWh/100km at 10km/h
(Each additional km/h increase the consumption by 1%).
Their cruise speed when searching for a parking place is
10km, and they need 15 minutes to find a place. Taxis
start the simulation with 60(±30)% of battery and must
have at least 60% at the end. The chargers are placed
with the method used for the taxis. Fast chargers have
a speed of 72kW. Slow chargers have a speed of 7.2kW.
2 minutes are required to plug and unplug the charger,
and wait that the previous user leaves.

Once chargers, taxis, and requests have been placed in
G′, we generate G. The distance and duration between
two vertices of G are equal to the distance and duration
of the path with the shortest duration in G′. Traffic is
assumed constant (the street speed given by OSM is
used).

B. Comparison between methods
The figure 1 presents the value of the solutions found

by the different methods implemented. This value is
indexed, such that 100 is the total value of the requests
to treat (and an upper bound on the value of a solution),
and for each method and each configuration, it is
averaged over 3 simulations. Five methods are presented.
The first letter indicates the criterion used to order the
requests in the greedy: V = by value, S = start time. The
second letter indicates the direction of this order: L =
lowest first, H = highest first. The third letter indicates
the criterion used to choose a taxi: C = closest, R =
random, I = most idle (last ride’s end before request’s
start is the lowest). If a method has + at the end, it
means that it got improved by a simulated annealing.
This annealing has an initial temperature of 500, and
has at each iteration 50% chance to pick R+

move (The

Fig. 1. Performances of the different algorithms in Porto on 5
different instances. The name of each instance, e.g. (0|24), indicates
the number of fast and slow chargers, respectively. The instance ∞
has taxis with an unlimited battery.

Fig. 2. Activities performed by the taxis in the instance (2|0).
Every 7.5 minutes, a snapshot is taken and the number of taxis in
each state is counted. The black vertical lines indicates midnight.

greedy used in this move is VHC), 10% chance to pick
R− and 40% chance to pick Rswap. The annealing lasts
15 minutes.

We tested every combination of the presented request
orders (including random) and strategy (including send-
ing the taxi with the least/most battery, or the least
idle). The conclusions were that sending the closest taxi
is consistently the best strategy, although it does not
have a very significant impact on the outcome. Regarding
the requests, ordering them by value from highest to low-
est proved consistently better than any other strategies.
The figure 2 show the activities performed by the taxi
in the instance (2|0).

The simulated annealing offers some improvement
to VHC: it multiply the value by around 1.03. Using
different neighbour moves did not improve its efficiency.
Replacing R+

move by R+C+ does not have a significant
impact: while neighbours are visited much faster, they
have a lower chance to be accepted. We also performed
experimentations in which charges should give at least
30% of battery to be considered. While preventing
very small (and therefore inefficient) charges could have
improved the solution, it actually worsened it.

C. Disruption and battery size

We evaluated the impact of battery size on the value
of the solution when the charging infrastructure becomes
unavailable (see figure 3). A very small battery size
suffices in normal circumstances: 90% of requests can be
treated with a 20kWh battery, and 80% with a 11kWh
battery. However, the value of the solution begins to de-
crease linearly past a certain disruption duration. Making
the disruption happens half a day sooner (finishes Friday
at midday) produces similar results.

Fig. 3. Impact of the battery size of the taxis on the solution,
during a disruption. There are 2 fast chargers, except for ’12kWh+’
where there are 3. The disruption finishes Friday at Midnight.

Fig. 4. Impact of the battery size of the taxis on the solution,
depending on the time needed to access to a charger (queue +
docking / undocking time). There are 2 fast chargers, except for
’48kWh+’ where there are 3.

D. Parking Search & Charging Queue
With 2 fast chargers and 72kWh batteries, taxis finding

a parking place immediately or having to search for
one hour does not have a significant impact on the
value of the solution. However, the energy spent changes
very significantly: 234kWh spent per taxis during the
simulation with no parking search, but 311kWh spent
with a one hour search needed. The usage rate of the
chargers goes from 58% to 77%. However, if there is only
one charger, then it is used constantly. In this situation,
the value of the solution is 78.6% if parking places are
found instantly, 73.2% with 15-minutes searches, and
72.1% with one-hour searches. Overall, the value of the
solution starts to drop sharply once the use rate of the
chargers goes above 80%.

We evaluated the impact of battery size on the value
of the solution depending on the amount of time taxis
have to wait at a charger before a charge can start (see
figure 4). The most interesting result is the comparison
between ”48kWh” and ”48kWh+”. A charging infrastruc-
ture shared with other users, such that 10 minutes of
queue are consistently needed to access to any charger is
better than a charging infrastructure only useable for the
fleet, but 33% smaller. The result remains the same for
any taxi battery size. This conclusion is reversed however
if either chargers are slower than 24kW, or if the number
of chargers is doubled.

E. Scalability
CPLEX without tuning was used on small instances

to test its limits. With 2 taxis and 2 chargers useable
twice each, CPLEX needed more than 2 hours to find a
solution when the number of requests was above 17. This

prevented us from comparing our method to instances
where the best solution is known and not trivial, where
multiple partial charges are needed, while remaining
somewhat comparable to realistic instances.

Our greedy needed less than one minute for every
instance. Reducing the size of the taxi battery increased
significantly the number of charges needed, and since the
charge insertion has a quadratic complexity, a significant
rise in computation time was observed.

Without surprises, the simulated annealing worked
better on smaller instances, with the same computation
time, allowing for improvement above +10% for instances
with less than 4000 requests. Increasing computation
time did not allow for much more improvement however.
An analysis of the schedules of the chargers showed
that the simulated annealing has a tendency to fragment
charges, which increases the number of deadhead trips.
Neighbour moves which modify charges directly could
solve this problem. Only moving requests in a way
which may remove/shorten charges does not seem to be
sufficient.

V. Conclusion
The transition from ICE vehicles to electric cars

cannot be done without consideration for the broad
difference in performance of these technologies, in terms
of vehicle range as well as refilling speed. These con-
siderations matter especially to autonomous taxi fleet
managers, whose vehicles are used heavily. To tackle
this problem, we developed scalable heuristics which
take into account the possible limitations of a charging
infrastructure.

In our greedy heuristic, inserting the most valuable
requests first seems to give good results. The best variant
of this greedy might consists in inserting requests with
the highest value while being the least constraining.
However, determining if a request is constraining or not is
not trivial, particularly when considering charging and
ride sharing. A simulated annealing can improve this
solution. In our annealing, charges are only inserted in
reaction to a need, after a request insertion. Having a
move in the simulated annealing specifically designed to
reorganise charges should be considered.

In normal circumstances, our heuristic does not benefit
much from large batteries. However, large batteries are
still useful to handle unusual situations. Taxis with
72kWh seem able to handle 1-day disruption. Large
batteries also fare better when taxis need to queue before
every charge. We compared private charging network to
a shared one, in regard to their efficiency. A private
network is more efficient when the network is far from
saturated, or when taxis have a very small battery. A
slightly bigger but shared network is better otherwise.
Many other aspects have to be considered, however, since
this choice entails many differences.

Whether parking search matters depends a lot on the
use of the charging infrastructure. Once it get saturated,

increased search time significantly decreases the solution,
but it does not have a sensible effect before. A limitation
of our objective function is that it does not take into
consideration the energy spent. In some instance, parking
search accounted for more than 50% of the energy spent.
More data on parking search would be useful to make
more realistic simulations.

References
[1] P. M. Bösch, F. Becker, H. Becker, and K. W. Axhausen,

“Cost-based analysis of autonomous mobility services,” Trans-
port Policy, vol. 64, pp. 76 – 91, 2018.

[2] G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, and G. Laporte,
“Static pickup and delivery problems: A classification scheme
and survey,” in TOP: An Official Journal of the Spanish
Society of Statistics and Operations Research, vol. 15, 02 2007,
pp. 1–31.

[3] J.-F. Cordeau and G. Laporte, “The dial-a-ride problem
(darp): Models and algorithms,” in Annals OR, vol. 153, 06
2007, pp. 29–46.

[4] S. C. Ho, W. Szeto, Y.-H. Kuo, J. M. Leung, M. Petering,
and T. W. Tou, “A survey of dial-a-ride problems: Literature
review and recent developments,” Transportation Research
Part B: Methodological, vol. 111, pp. 395 – 421, 2018.

[5] S. Erdoğan and E. Miller-Hooks, “A green vehicle routing
problem,” Transportation Research Part E: Logistics and
Transportation Review, vol. 109, p. 100–114, 01 2012.

[6] M. Schneider, A. Stenger, and D. Goeke, “The electric vehicle-
routing problem with time windows and recharging stations,”
Transportation Science, vol. 48, no. 4, pp. 500–520, 2014.

[7] Ángel Felipe, M. T. Ortuño, G. Righini, and G. Tirado, “A
heuristic approach for the green vehicle routing problem with
multiple technologies and partial recharges,” Transportation
Research Part E: Logistics and Transportation Review, vol. 71,
pp. 111 – 128, 2014.

[8] D. Goeke and M. Schneider, “Routing a mixed fleet of electric
and conventional vehicles,” European Journal of Operational
Research, vol. 245, no. 1, pp. 81 – 99, 2015.

[9] G. Hiermann, J. Puchinger, S. Ropke, and R. F. Hartl,
“The electric fleet size and mix vehicle routing problem with
time windows and recharging stations,” European Journal of
Operational Research, vol. 252, no. 3, pp. 995 – 1018, 2016.

[10] A. Montoya, C. Guéret, J. E. Mendoza, and J. G. Villegas,
“The electric vehicle routing problem with nonlinear charging
function,” Transportation Research Part B: Methodological,
vol. 103, pp. 87 – 110, 2017, green Urban Transportation.

[11] C. Bongiovanni, M. Kaspi, and N. Geroliminis, “The electric
autonomous dial-a-ride problem,” Transportation Research
Part B: Methodological, vol. 122, pp. 436–456, 04 2019.

[12] M. Chester, A. Horvath, and S. Madanat, “Parking infrastruc-
ture: energy, emissions, and automobile life-cycle environmen-
tal accounting,” Environmental Research Letters, vol. 5, no. 3,
p. 034001, 2010.

[13] M. M. Solomon, “Algorithms for the vehicle routing and
scheduling problems with time window constraints,” Oper.
Res., vol. 35, no. 2, pp. 254–265, Apr. 1987.

[14] B. Roberto, E. Bartolini, A. Mingozzi, and R. Roberti, “An
exact solution framework for a broad class of vehicle routing
problems,” Computational Management Science, vol. 7, pp.
229 – 268, 2010.

