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Abstract

Deep neural networks often fail to generalize outside of
their training distribution, particularly when only a sin-
gle data domain is available during training. While test-
time adaptation has yielded encouraging results in this set-
ting, we argue that to reach further improvements, these ap-
proaches should be combined with training procedure mod-
ifications aiming to learn a more diverse set of patterns.
Indeed, test-time adaptation methods usually have to rely
on a limited representation because of the shortcut learn-
ing phenomenon: only a subset of the available predictive
patterns is learned with standard training. In this paper, we
first show that the combined use of existing training-time
strategies and test-time batch normalization, a simple adap-
tation method, does not always improve upon the test-time
adaptation alone on the PACS benchmark. Furthermore,
experiments on Office-Home show that very few training-
time methods improve upon standard training, with or with-
out test-time batch normalization. Therefore, we propose
a novel approach that mitigates the shortcut learning be-
havior by having an additional classification branch learn
less predictive and generalizable patterns. Our experiments
show that our method improves upon the state-of-the-art re-
sults on both benchmarks and benefits the most to test-time
batch normalization.

1. Introduction
Deep neural networks’ performance falls sharply when

confronted, at test-time, with data coming from a different
distribution (or domain) than the training one. A change in
lighting, sensor, weather conditions or geographical loca-
tion can result in a dramatic performance drop [15, 2, 5].
Such environmental changes are commonly encountered
when an embedded network is deployed in the wild and

exist in such diversity that it is impossible to gather enough
data to cover all possible domain shifts. This lack of cross-
domain robustness prevents the widespread deployment of
deep networks in safety-critical applications. Domain gen-
eralization algorithms have been investigated to mitigate
the test-time performance drop by modifying the training
procedure. Contrary to the domain adaptation research
field, no information about the target domain is assumed to
be known in domain generalization. Most of the existing
works assume to have access to data coming from several
identified different domains and try to create a domain
invariant representation by finding common predictive pat-
terns [25, 26, 4, 24, 21, 18]. However, such an assumption
is quite generous, and in many real-life applications, one
does not have access to several data domains but only a
single one. As a result, some works study single-source
domain generalization [38, 32, 45, 44, 28]. However, most
methods were found to perform only marginally better
than the standard training procedure when the evaluation is
done rigorously on several benchmarks [10, 43]. Another
recent paradigm, called test-time adaptation, proposes to
use a normally trained network and adapt it with a quick
procedure at test-time, using only a batch of unlabeled
target samples. This paradigm yielded promising results
in the domain generalization setting [41, 40] because they
alleviate the main challenges of domain generalization:
the lack of information about the target domain and the
requirement to be simultaneously robust in advance to
every possible shift.

However, test-time adaptation methods suffer from a
drawback that limits their adaptation capability, and which
can only be corrected at training-time. Indeed, using a
standard training procedure, only a subset of predictive
patterns is learned, corresponding to the most obvious
and efficient ones, while the less predictive patterns are



disregarded entirely [33, 14, 29, 13, 31, 2, 8]. This
apparent flaw, named shortcut learning, originates from
the gradient descent optimization [29] and prevents a
test-time method from using all the available patterns. The
combination of a training-time patterns diversity-seeking
approach with a test-time adaptation method may thus
lead to improved results. In this paper, we show that
the combined use of test-time batch normalization with
the state-of-the-art single-source domain generalization
methods does not systematically yield increased results
on the PACS benchmark [23] in the single-source setting,
despite them being designed to seek normally ignored
patterns. Similar experiments on Office-Home [35] yield a
similar result, with only a few methods performing better
than the standard training procedure.

We thus propose a new method, called L2GP, which
encourages a network to learn new predictive patterns
rather than exploiting and refining already learned ones.
To find such patterns, we propose to look for predictive
patterns that are less generalizable than the naturally
learned ones. These less generalizable patterns match
the ones normally ignored because of the simplicity bias
of deep networks that promotes the learning of a repre-
sentation with a high generalization capability [19, 7].
Our method requires two classifiers added to a features
extractor. They are trained asymmetrically: one is trained
normally (with the standard cross-entropy classification
loss only), and the other with both a cross-entropy loss and
an additional shortcut avoidance loss. This loss slightly
encourages memorization rather than generalization by
learning batch-specific patterns, i.e. patterns that lower the
loss on the running batch but with a limited effect on the
other batches of data. The features extractor is trained with
respect to both classification branches.

To summarize, our contribution is threefold:

• To the best of our knowledge, we are the first to inves-
tigate the effect of training-time single-source methods
on a test-time adaptation strategy. We show that it usu-
ally does not increase performance and can even have
an adverse effect.

• We apply, for the first time, several state-of-the-art
single-source domain generalization algorithms on the
more challenging and rarely used Office-Home bench-
mark and showed that very few yield a robust cross-
domain representation.

• We propose an original algorithm to learn a larger than
usual subset of predictive features. We show that it
yields results competitive or over the state-of-the-art
with the combination of test-time batch normalization.

Figure 1. Schema of our bi-headed architecture. The naming con-
vention is the same as the one used in algorithm 1.

2. Related Works

2.1. Single-Source Domain Generalization

Most domain generalization algorithms require several
identified domains to enforce some level of distributional
invariance. Because this is an unrealistic hypothesis in some
situations (such as in healthcare or defense-related tasks),
methods were developed to deal with a domain shift is-
sue with only one single domain available during training.
Some of them rely on a domain shift invariance hypothe-
sis. A commonly used invariance hypothesis is the texture
shift hypothesis. Indeed, many domain shifts are primar-
ily textures shifts, and using style-transfer-based data aug-
mentation will improve the generalization. It can be done
explicitly by training a model on stylized images [38, 20]
or implicitly in the internal representation of the network
[44, 28]. Such methods are limited to situations where it
is indeed a shift of the hypothesized nature that is encoun-
tered. Others wish to learn a larger set of predictive pat-
terns to make the network more robust should one or sev-
eral training-time predictive patterns be missing at test-time.
Volpi et al. [36] and Zhang et al. [45] propose to incre-
mentally add adversarial images crafted to maximize the
classification error of the network to the training dataset.
These images no longer contain the original obvious pre-
dictive patterns, which then forces the learning of new pat-
terns. These strategies are inspired by adversarial training
methods [17, 22] that were originally designed to improve
adversarial robustness in deep networks. Wang et al. [38]
used a similar approach in an online fashion, without the
impractical ever-growing training dataset, and combined it
with a style augmentation approach. Huang et al. [18] and
Shi et al. [32] used a dropout-based [34] strategy to prevent
the network from relying only on the most predictive pat-
terns by muting the most useful channels or mitigating the
texture bias. These methods were evaluated in the single-
source setting on several benchmarks, including the very
common PACS dataset.



Algorithm 1: Learning Less Generalizable Patterns (L2GP)

1 Method specific hyper-parameters:
2 - weight for the shortcut avoidance loss α
3 - step size used for the gradient perturbation lr+
4 Networks:
5 - features extractor f , and its weights W (ResNet18 without its last linear layer)
6 - first classifier c1 (single linear layer)
7 - second classifier c2 (single linear layer)
8 while training is not over do
9 sample 2 batches of data {(xi, yi), i = 0...N − 1}, {(x̃i, ỹi), i = 0...N − 1}

10 calculate the cross-entropy loss L on the first batch for both branches on the original weights W :
11 L(f, c1) = 1

N

∑
i L[c1(f(W,xi)), yi]

12 L(f, c2) = 1
N

∑
i L[c2(f(W,xi)), yi]

13 calculate the gradient of the cross-entropy loss L w.r.t W on the first batch:
14 ∇WL = ∇W

1
N

∑
i L[c2(f(W,xi)), yi]

15 add the perturbation to the running weight W , and track this addition in the computational graph:
16 W+ =W + lr+∇WL
17 calculate the shortcut avoidance loss on the second batch:
18 Lsa(f, c2) =

1
N

∑
i ||c2(f(W, x̃i))− c2(f(W+, x̃i))||1

19 update all networks to minimize Ltotal(f, c1, c2) =
1
2 (L(f, c1) + L(f, c2)) + αLsa(f, c2)

20 end
21 At test-time: use c1 ◦ f (discard c2) combined with test-time batch normalization

2.2. Test-Time Adaptation

Test-time adaption has emerged as a promising paradigm
to deal with domain shifts. Waiting to gather information
about the target domain, in the shape of an unlabeled batch
of samples (or even a single sample), alleviates the main
drawbacks of training-time domain generalization methods:
the lack of information about the target domain, and the ne-
cessity to simultaneously adapt to all possible shifts. The
simplest test-time adaptation strategy consists of replacing
the training-time statistics in the batch normalization layers
with the running test batch statistics. It is now a mandatory
algorithm block for almost all methods [27, 3, 41, 16, 30].
This strategy was originally designed to deal with test-time
image corruptions but proved to be efficient in a more gen-
eral domain shift setting [41, 40]. In a situation where
samples of a test batch cannot be assumed to come from
the same distribution, workarounds requiring a single sam-
ple were developed by mixing test-time and training-time
statistics [41, 40, 16, 30], or by using data augmentation
[16]. Some solutions, such as the work of Yang et al. [40]
or Wang et al. [37], further rely on test-time entropy mini-
mization to remove inconsistent features from the predic-
tion. Finally, Zhang et al. [42] quickly adapt a network
to make consistent predictions between different augmen-
tations of the same test sample. All these strategies rely on
a model trained with the standard training procedure.

3. Method

Our approach requires two classification layers plugged
after the same features extractor: one will be tasked with
learning the patterns that are normally learned (as they
are not necessarily spurious and, therefore, should not be
systematically ignored), and the other the normally ”hid-
den” ones. This lightweight modification of the standard
architecture, illustrated in figure 1, is compatible with many
networks and tasks. The primary branch, consisting in the
features extractor and the primary classifier, is trained to
minimize the usual cross-entropy loss (algo. 1, lines 11).
The secondary one is trained to minimize the cross-entropy
loss (algo. 1, line 12) alongside a novel shortcut avoidance
loss. The complete procedure is available in algorithm 1.

If we are able to update a model in a direction that
lowers the loss value on a certain batch of data, but does
not produce a similar decrease on another batch of the same
distribution, it means that the patterns learned are both
predictive as they lower the loss and generalize poorly, i.e.
they are less predictive. These are precisely the patterns
we are looking for. Our shortcut avoidance loss follows
this idea. We first compute a new set of weights for
the secondary branch by applying a single cross-entropy
gradient ascent step to the branch weights (algo. 1, lines
13-16). The gradient is computed on the original running
batch, already used for the cross-entropy losses. We, then,



without TTBN with TTBN
Method Avg. Val. Acc. Avg. Test Acc. Avg. Val. Acc. Avg. Test Acc.

PACS dataset
ERM 96.8± 0.4 52.0± 1.9 97.4± 0.3 66.1± 1.1

RSC [18] 97.7± 0.4 54.3± 1.8 97.2± 0.2 58.7± 1.6
InfoDrop [32] 96.6± 0.3 53.4± 2.0 95.9± 0.3 65.5± 1.0

ADA [36] 96.9± 0.8 55.9± 2.9 96.6± 1.1 66.5± 1.2
ME-ADA [45] 96.7± 1.3 54.7± 3.1 96.5± 0.9 66.7± 2.0

EFDM [44] 96.9± 0.5 59.6± 2.3 97.5± 0.5 71.3± 1.0
SagNet [28] 97.2± 0.7 57.9± 2.9 97.8± 0.7 62.4± 1.8
L.t.D [38] 97.9± 1.0 59.9± 2.7 97.6± 0.7 66.3± 1.5

Spectral Decoupling [29] 95.9± 0.4 52.9± 2.6 96.2± 0.7 66.7± 1.1
L2GP (ours) 98.6± 0.2 56.1± 2.7 96.4± 0.3 71.3± 0.6

Office-Home dataset
ERM 82.0± 0.8 52.0± 0.8 81.6± 1.1 52.6± 0.6

RSC [18] 80.9± 0.4 49.2± 0.7 80.2± 0.5 48.9± 0.7
InfoDrop [32] 76.4± 0.8 45.9± 0.5 77.1± 0.7 46.4± 0.6

ADA [36] 81.2± 2.6 50.4± 0.9 80.3± 2.0 50.0± 0.7
ME-ADA [45] 78.9± 1.4 49.8± 0.6 81.4± 1.2 50.0± 0.7

EFDM [44] 82.9± 0.5 52.8± 0.6 83.3± 1.0 53.3± 0.5
SagNet [28] 81.5± 1.5 51.9± 0.7 81.1± 1.1 51.8± 0.9
L.t.D [38] 81.0± 1.2 50.9± 0.7 81.7± 2.7 51.2± 0.8

Spectral Decoupling [29] 83.8± 0.7 52.5± 0.5 82.5± 0.6 53.2± 0.3
L2GP (ours) 84.0± 0.6 53.4± 0.6 83.8± 0.5 54.5± 0.3

Table 1. Performances of our approach and comparison with the state-of-the-art.

compare the predictions of the secondary branch with the
current weights and the computed altered weights (algo. 1,
lines 17-18). This difference in predictions constitutes our
shortcut avoidance loss.

Our approach requires the sampling of two batches of
data simultaneously because the shortcut avoidance loss
is computed on a batch of data different from the one
used to compute the applied gradient. As the features
learned in the applied gradient generalize from one batch
of data to the other, the altered weights’ predictions are
a lot less accurate than the running weights’ predictions
(cross-entropy gradient ascent). As a result, these predic-
tions differ greatly. By training the secondary branch to
minimize the gap between both predictions, we are pushing
the weights toward an area in which the applied gradient
does not change the network’s secondary output. This
would mean that the patterns extracted for the second batch
are different from the ones learned in the applied gradient.
By adding the cross-entropy loss to the training procedure,
we are driving the network to learn weights that are both
predictive for the running classification batch but that have
a low effect on the predictions of another batch and are,
hence, less predictive. Note that the running network’s
weights are optimized with regard to both sides of the

shortcut avoidance loss. The addition of the gradient must
thus be tracked in the computational graph. This is akin
to the MAML [6] meta-learning framework in which the
starting point of a few optimization steps is itself optimized.

During the evaluation, only the first classifier is used, and
the secondary one can be discarded. Indeed, the first clas-
sifier uses every available feature at its disposal, including
those learned by the secondary branch, while the secondary
branch only favors less simple features. Furthermore, we
use test-time batch normalization (abbreviated as TTBN).
This method has been chosen because of its simplicity and
its wide range of applicability. We do not use the usual
exponential average training mean and standard deviation
(computed during training) in the batch normalization lay-
ers. Instead, we first calculate the statistics on the running
test batch and use them to update an exponential average of
the test statistics, as in [27, 3, 41, 16, 30], before using this
estimate to normalize the features. A correct target statis-
tics approximation can be reached only if all samples en-
countered at test-time come from the same data distribution.
This is a realistic scenario for applications like autonomous
driving, in which the data distribution is not expected to
change over the course of a few consecutive images. Sev-
eral methods [41, 16] provide ways to circumvent this issue



without TTBN with TTBN
Ablation Avg. Val. Acc. Avg. Test Acc. Avg. Val. Acc. Avg. Test Acc.

PACS dataset
Double branch only (A) 96.8± 0.6 53.4± 2.6 96.4± 0.3 67.4± 0.8
Detached loss term (B) 97.5± 0.1 52.6± 2.3 97.3± 0.3 68.2± 1.3

Secondary prediction branch (C) 98.0± 0.1 53.4± 2.8 96.9± 0.2 70.1± 0.4
Single branch (D) 92.8± 1.1 46.4± 4.9 93.0± 0.9 51.2± 5.1
Complete method 98.6± 0.2 56.1± 2.7 96.4± 0.3 71.3± 0.6

Office-Home dataset
Double branch only (A) 82.7± 0.4 52.8± 0.5 82.6± 0.3 53.5± 0.4
Detached loss term (B) 83.5± 0.7 52.7± 0.6 82.3± 0.6 54.0± 0.6

Secondary prediction branch (C) 81.3± 0.4 53.9± 0.7 83.8± 0.6 54.8± 0.5
Single branch (D) 82.6± 0.7 53.7± 0.4 82.0± 0.5 54.3± 0.5
Complete method 84.0± 0.6 53.4± 0.6 83.8± 0.5 54.5± 0.3

Table 2. Ablation study.

if needed.

4. Experiments and results

4.1. Baselines for comparison and experimental
setup

We compare our approach with the standard training
procedure (expected risk minimization, abbreviated ERM),
with several methods designed for single-source domain
generalization [38, 44, 28, 36, 45, 32], with Spectral
Decoupling [29], a method designed to reduce the shortcut-
learning phenomenon in deep networks, and with RSC
[18], and InfoDrop [32], that are domain generalization
algorithms which do not explicitly require several training
domains. These baselines were selected because they
yield state-of-the-art results, are representative of the main
ideas in the single-source domain generalization research
community, and because they have a publicly available
implementation. This was a necessity as the original works’
results were given without any test-time adaptation, and
trained models were not provided. Our experiments are
conducted on the PACS (7 classes, 4 domains, around
10k images in total), and the Office-Home (65 classes, 4
domains, around 15k images in total) benchmarks. PACS
has already been used in the single-source setting in several
works, but not Office-Home.

For a classification task, using a ResNet [12], our archi-
tectural changes break down to adding a single fully con-
nected layer after the average pooling layer, next to the
original last classification layer. To avoid a target domain
information leak, the models selected for the test are those
with the best validation accuracy. Furthermore, we chose to
use the same common hyper-parameters for all baselines to
precisely measure the effect of the training procedure mod-

ifications rather than the influence of a perhaps better than
usual hyper-parameter. This change of hyper-parameters
and differences in the model selection process are respon-
sible for some inconsistencies between the results reported
in the original works and ours (such as with SagNet [28]:
61.9% average accuracy on PACS in the original work, 57.9
in our own). Further experimental details, including com-
mon hyper-parameters and hyper-parameters selected for
our approach and the comparison baselines, are available
in the supplementary material.

4.2. Results and analysis

Our main results are available in table 1. The reported
results are the mean, over the 12 distinct pairs of training
and test domains, of the averages and standard deviations,
over 3 runs, of the validation and test accuracies. More
details about the precise calculation process are given
in the supplementary material. Used alongside test-time
batch normalization, our method reaches a performance
similar to that of EFDM [44] on the PACS datasets but
exceeds it on the Office-Home datasets. When test-time
batch normalization is not used, our method remains
state-of-the-art on the Office-Home dataset but falls behind
the style-transfer-based methods on the PACS dataset by a
noticeable margin. Besides, our approach also benefits the
accuracy on the validation sets.

We observe a completely different behavior between
experiments on PACS and Office-Home. While all the
existing methods improve upon the standard training pro-
cedure (ERM) on PACS, only EFDM, spectral decoupling
[29], and our method yield better results on Office-Home.
Likewise, while always positive, the effect of the test-time
batch normalization is much more noticeable on PACS than
on Office-Home. Furthermore, it is interesting to notice that



Figure 2. Mean absolute difference for ERM and our approach.

the performance gain due to the test-time batch normaliza-
tion is highly dependant on the training-time method used.
Indeed, the gain is the highest when our approach or ERM
is used and only reaches a result closely similar to ERM
or below in most of the other cases. We hypothesize that
the domain shifts of the PACS datasets are mostly textures
shifts, while they are not for the Office-Home datasets. This
would explain why test-time batch normalization yields a
large improvement on the PACS benchmark: the simple use
of test-time statistics, that encode textures [3], is enough to
significantly bridge the domain gap. It would also explain
why the methods reaching the highest results [44, 28, 38]
in the usual setting (without test-time batch normalization)
are all style-transfer-based methods. As our approach is not
related to style transfer in any way, we are able to reach a
higher accuracy on Office-Home than other existing works.
Regarding the effect of different training-time methods,
we hypothesize that the magnitude of the gain is related to
whether the method is really learning a more diverse set of
patterns or rather only weighting differently patterns that
would also be learned naturally. This would explain why
several methods that improve upon ERM without test-time
batch normalization only perform precisely as well once
it is used. Style-transfer-based methods, for instance, es-
sentially grant a higher importance to shape-based patterns
rather than texture-based patterns but not necessarily learn
new patterns.

We also conducted an extensive ablation study to

understand and demonstrate the necessity of our choices.
As a sanity check, we first study the α = 0 situation: a
single features extractor on which two classification layers
are plugged in, trained only with the cross-entropy on the
same batch at each iteration for both branches (line A in the
table 2). The differences in initialization of the classifiers
may have an implicit ensembling effect, as in MIMO [11],
which could lead to a better out-of-distribution generaliza-
tion without the need for the shortcut avoidance loss. This
experiment yields a small increase of performance on both
benchmarks, but it remains far below our approach, whose
gain is, therefore, not coming from an implicit ensembling
mechanism. We also study the effect of detaching from the
computational graph the c2(f(W, x̃i)) term (not optimizing
the features extractor with respect to this part of the loss)
in the shortcut avoidance loss (line B), as this could lead
to a substantial improvement in memory consumption,
and as the simultaneous optimization on both terms in not
needed per se to decrease the generalization ability of the
network. This experiment shows a decreased performance
as well. The detachment most likely only results in a slower
learning as the constraint’s gradient pushes in the reverse
direction of the classification loss gradient. This behavior
is prevented when the features extractor is optimized with
regard to both terms of the regularization: pushing in the re-
verse direction of the classification gradient will only slide
the difference in the parameter space but not shorten the
gap. Then, to show that the performance gain is effectively
linked to a mitigation of the shortcut learning phenomenon,



we conduct two experiments. Firstly, we study the impact
of using the secondary prediction branch at test-time rather
than the primary one (line C). This experiment results in
performances fairly similar to the first branch, only lower
in validation. This was to be expected as the secondary
branch is precisely trained so that it generalizes less on the
training domain. Secondly, we study the effect of applying
our shortcut avoidance loss on an architecture without the
added secondary branch (line D). The shortcut avoidance
loss is thus applied to the original classifier. The results
show a dramatic drop in accuracy on the PACS dataset but
not on the Office-Home dataset. This difference is most
likely due to the higher diversity in Office-Home, which
prevents the original patterns from being ignored.

To further show the effect of our loss, we track during
training a measure of the diversity of the learned patterns
for both our approach and ERM. Inspired by [1], we use the
mean absolute difference (MAD) between normalized con-
volutional filters f (or neurons for fully connected layers) of
a certain layer, computed over all layers L of size NL and
training domains D, for an epoch t, following the equation
1. The results are available in figure 2 and show a system-
atic increase in the diversity of the learned patterns for our
approach compared to ERM, for both benchmarks. Finally,
as the tuning of hyper-parameters in the domain generaliza-
tion setting is a critical issue, we conduct a broad hyper-
parameters sensitivity analysis, available in the supplemen-
tary material in table 3. Our study shows a relatively low
sensitivity and a large match between hyper-parameters fit
for all training-test pairs of PACS and Office-Home.

MAD(t) =
∑
D

∑
L

1

NL
2

∑
i,j

||ft,D,L,i − ft,D,L,j ||1 (1)

5. Conclusion
In this paper, we investigated the behavior of different

single-source methods when used in conjunction with test-
time batch normalization on the PACS and Office-Home
benchmarks. We showed that test-time batch normaliza-
tion always has a positive, yet highly variable, influence
and that, most of the time, the addition of a training-time
method is superfluous. We hypothesized that this lack of
additional performance was linked to the selection behav-
ior of some algorithms, which still learn the same subset of
patterns as the standard training, but weigh them differently.
We thus proposed a novel approach learning normally ”hid-
den” patterns by looking for predictive patterns that gener-
alize less. We showed that it yielded state-of-the-art results
on both benchmarks and benefits the most to test-time batch
normalization. Future work will be dedicated to a better un-
derstanding of the origin of this test-time batch normaliza-

tion variability and to experiments with our method on the
DomainBed [10] benchmark.
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[29] Mohammad Pezeshki, Sékou-Oumar Kaba, Yoshua Bengio,
Aaron Courville, Doina Precup, and Guillaume Lajoie. Gra-
dient starvation: A learning proclivity in neural networks.
arXiv preprint arXiv:2011.09468, 2020.

[30] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bring-
mann, Wieland Brendel, and Matthias Bethge. Improving
robustness against common corruptions by covariate shift
adaptation. Advances in Neural Information Processing Sys-
tems, 2020.

[31] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek
Jain, and Praneeth Netrapalli. The pitfalls of simplicity bias
in neural networks. In Advances in Neural Information Pro-
cessing Systems, 2020.

[32] Baifeng Shi, Dinghuai Zhang, Qi Dai, Zhanxing Zhu,
Yadong Mu, and Jingdong Wang. Informative dropout for
robust representation learning: A shape-bias perspective. In
International Conference on Machine Learning, 2020.

[33] Sahil Singla, Besmira Nushi, Shital Shah, Ece Kamar, and
Eric Horvitz. Understanding failures of deep networks via
robust feature extraction. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2021.

[34] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 2014.

[35] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2017.

[36] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C
Duchi, Vittorio Murino, and Silvio Savarese. Generalizing
to unseen domains via adversarial data augmentation. In Ad-
vances in Neural Information Processing Systems, 2018.

[37] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. In International Conference on
Learning Representations, 2021.

[38] Zijian Wang, Yadan Luo, Ruihong Qiu, Zi Huang, and
Mahsa Baktashmotlagh. Learning to diversify for single do-
main generalization. In IEEE/CVF International Conference
on Computer Vision, 2021.

[39] Zhenlin Xu, Deyi Liu, Junlin Yang, Colin Raffel, and Marc
Niethammer. Robust and generalizable visual representation
learning via random convolutions. In International Confer-
ence on Learning Representations, 2021.

[40] Tao Yang, Shenglong Zhou, Yuwang Wang, Yan Lu, and
Nanning Zheng. Test-time batch normalization. arXiv
preprint arXiv:2205.10210, 2022.



[41] Fuming You, Jingjing Li, and Zhou Zhao. Test-time batch
statistics calibration for covariate shift. arXiv preprint
arXiv:2110.04065, 2021.

[42] Marvin Mengxin Zhang, Sergey Levine, and Chelsea Finn.
Memo: Test time robustness via adaptation and augmen-
tation. In NeurIPS 2021 Workshop on Distribution Shifts:
Connecting Methods and Applications, 2021.

[43] Xingxuan Zhang, Linjun Zhou, Renzhe Xu, Peng Cui,
Zheyan Shen, and Haoxin Liu. Nico++: Towards better
benchmarking for domain generalization. arXiv preprint
arXiv:2204.08040, 2022.

[44] Yabin Zhang, Minghan Li, Ruihuang Li, Kui Jia, and Lei
Zhang. Exact feature distribution matching for arbitrary style
transfer and domain generalization. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2022.

[45] Long Zhao, Ting Liu, Xi Peng, and Dimitris Metaxas.
Maximum-entropy adversarial data augmentation for im-
proved generalization and robustness. Advances in Neural
Information Processing Systems, 2020.

Supplementary Material
Results details

The results were obtained as follows:

• For the 12 distinct pairs of training and test domains,
we calculate the average and the standard deviation
of the validation and test accuracies over 3 runs with
different random seeds (because the effect of the net-
work’s initialization on the test accuracy is greater than
usual in a test-time domain shift situation).

• The reported numbers are the non-weighted mean over
all distinct pairs of the average accuracies per training-
test pair previously computed ± the mean over all dis-
tinct pairs of the pairwise standard deviation (as we are
interested in the randomness of the initialization rather
than the variation of accuracies between training-test
pairs).

Hyper-parameters details

Data: for all the methods and benchmarks, we use the
data augmentation described in [18] (random resized crops,
color jitter, random horizontal flips, random grayscale). For
a particular domain used in training, 90% of the dataset is
used for training and the remaining 10% for validation. The
test set is obtained using another domain dataset entirely.

Common hyper-parameters: experiments were con-
ducted with a ResNet18 [12] trained for 100 epochs, with
the stochastic gradient descent, a learning rate of 1e − 3, a
batch size of 64, a weight decay of 1e − 5, and a Nesterov
momentum of 0.9. After 80 epochs, the learning rate is
divided by 10. The exponential average momentum used in

the batch normalization layers at test-time is set to 0.1.

L2GP (ours): the gradient ascent learning rate lr+ is set
to 1.0 and the α weight for the shortcut avoidance loss
to 1.0 as well, for all the experiments, that is, for all the
training-test pairs on both the PACS and the Office-Home
datasets. These hyper-parameters were first set arbitrarily
to plausible values and then confirmed to be effective on
the PACS benchmark by looking at target performance.
They were finally reused as is on the Office-Home bench-
mark. This hyper-parameters selection strategy may seem
sub-optimal but is, in fact, more and more used in domain
generalization problems [9, 39]: a method requiring a new
and careful hyper-parameters setting for each new dataset
encountered is impractical, even more so when the target
data distribution is unknown and cannot thus be used to
help the setting.

Comparison baselines specifics hyper-parameters are
detailed below. For the experiments on the PACS datasets,
on which most of the baselines were tested, we use the
same hyper-parameters as in the original works. For the
Office-Home datasets, we used the hyper-parameters of
the multi-source setting if available. If the methods did
not have quantitative hyper-parameters, such as EFDM
[44] with the choice of mixing-layers depths, we used the
ones proposed for the PACS experiments for the ones on
Office-Home. Likewise, if no rigorous hyper-parameters
setting strategy was detailed in the original work, we used
the PACS hyper-parameters for experiments on Office-
Home. Finally, for the Spectral Decoupling work that was
never evaluated on neither PACS nor Office-Home, we
conducted a simple hyper-parameters search using a single
training-test domains pair, and transferred them as is to the
other pairs with the same training domain.

RSC: the percentage of channels (or spatial cross-channel
locations) to be dropped is initialized at 30% and is
increased every 10 epochs linearly to reach 90% for the last
ten. Spatial cross-channel locations dropout and channel
all-locations dropout are applied in a mutually exclusive
way with the same probability. All samples in a batch are
subject to dropout.

InfoDrop: half the layers are subjected to the info-dropout.
The dropout rate is set to 1.5, the temperature to 0.1, the
bandwidth to 1.0, and the radius to 3.

ADA: the number of adversarial gradient ascent steps is
set to 25, and the learning rate for the adversarial gradient
ascent steps is set to 50. The γ and η factors are respectively
set to 10.0 and 50.0. Adversarial images are added to the
training set every 10 epoch.



Avg. test Acc. on PACS - Avg. test Acc. on Office-Home
lr+ ↓ / α→ 10−3 10−2 0.1 1.0 10.0 100.0

10−3 66.9 - 53.7 66.8 - 53.1 67.7 - 53.2 67.0 - 53.5 67.4 - 53.2 68.5 - 53.7
10−2 67.8 - 53.2 67.8 - 53.1 67.6 - 53.3 67.7 - 52.4 68.6 - 53.9 70.6 - 53.2
0.1 67.8 - 53.0 67.5 - 53.2 67.4 - 53.3 69.5 - 53.8 71.3 - 54.7 69.2 - 51.9
1.0 67.1 - 53.3 68.0 - 53.4 69.0 - 53.8 71.3 - 54.4 70.3 - 52.6 20.1 - 49.9
10.0 67.8 - 52.9 67.2 - 53.4 67.4 - 53.3 66.0 - 53.9 54.4 - 51.9 15.0 - 5.2
100.0 66.2 - 53.2 67.9 - 53.4 67.4 - 53.4 67.8 - 53.3 60.5 - 53.2 14.5 - 2.0

Table 3. Broad hyper-parameters sensitivity analysis.

ME-ADA: The same hyper-parameters as the ones above
are used.

EFDM: the EFDMix layers are inserted after the first 3
residual blocks in the ResNet architecture.

SagNet: The randomization stage and the adversarial
weight of SagNets are fixed to 3 and 0.1 for all experi-
ments, as in the original work. A gradient clipping to 0.1 is
applied to the adversarial loss.

L.t.D: α1 and α2 weights for the additional losses were set
to 1.0, β to 0.1, for all experiments.

Spectral Decoupling: the weight of the spectral decoupling
constraint (an L2-norm on the network’s output) is set to
0.001 for experiments on Office-Home Experiments, and to
0.01 for experiments on PACS.


