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Abstract—Deep neural networks do not discriminate between
spurious and causal patterns, and will only learn the most
predictive ones while ignoring the others. This shortcut learning
behaviour is detrimental to a network’s ability to generalize to an
unknown test-time distribution in which the spurious correlations
do not hold anymore. Debiasing methods were developed to make
networks robust to such spurious biases but require to know in
advance if a dataset is biased and make heavy use of minority
counter-examples that do not display the majority bias of their
class. In this paper, we argue that such samples should not be
necessarily needed because the ”hidden” causal information is
often also contained in biased images. To study this idea, we
propose 3 publicly released synthetic classification benchmarks,
exhibiting predictive classification shortcuts, each of a different
and challenging nature, without any minority samples acting
as counter-examples. First, we investigate the effectiveness of
several state-of-the-art strategies on our benchmarks and show
that they do not yield satisfying results on them. Then, we propose
an architecture able to succeed on our benchmarks, despite
their unusual properties, using an entropic adversarial data
augmentation training scheme. An encoder-decoder architecture
is tasked to produce images that are not recognized by a classifier,
by maximizing the conditional entropy of its outputs, and keep
as much as possible of the initial content. A precise control of
the information destroyed, via a disentangling process, enables
us to remove the shortcut and leave everything else intact.
Furthermore, results competitive with the state-of-the-art on the
BAR dataset ensure the applicability of our method in real-life
situations.

I. INTRODUCTION

Deep neural networks are now the preferred method in
computer vision when facing classification, object detection,
or semantic segmentation tasks, as they exhibit human-level
performances on such kind of tasks [1], [2]. However, a
mismatch between the training and testing data distribution
often leads to a sharp drop in performance [3]. One of
the reasons behind the inability of deep networks to ensure
good performance on unseen data distribution is the frequent
presence of biases in the training dataset [4]–[7]. If these
biases are the most predictive patterns for the task, a network
will learn to use them, and ignore the less effective ones, to
make its decision (a behaviour called shortcut learning [8],
a bias is a spurious shortcut). On a new data distribution,
with different biases, the network will not be able to use the
previously learned patterns to take proper decisions.

Fig. 1. Samples of our benchmarks. First and second rows are our Colored-
MNIST training and test data. Third and fourth rows are training and test
data for the Colored-Patch CIFAR10 benchmark, fifth and last rows are the
training and test data for the Located-Patch CIFAR10 benchmark

Several strategies have been designed to prevent deep
networks from overly focusing on the biases. A first family
of works assumes that the bias is given as an auxiliary label
(such as in [9]) on the images, other works [8], [10]–[14]
consider that the bias is what is naturally learned by a model.
Both aims to make the network invariant to the bias. The
second family of works still requires to know that the dataset
is strongly biased and that what is naturally learned can be
safely ignored, without losing information. Most of these
debiasing methods rely on particular training samples that do
not exhibit the majority bias and increase their importance in
the training procedure to prevent the model from learning the
biases.

We argue that it is desirable to design methods that do not
rely on such few portion of samples. In real-life situations,
it could lead to overestimate the importance of outliers that
should be ignored, such as annotation errors (Northcutt et al.
[15] estimated that the average annotation errors percentage
in usual computer vision datasets was 3.3%). It may also
be optimistic to find counter-examples of the biases in some
situations, e.g. with synthetic datasets where there is often a



Fig. 2. Overview of our architecture. Full lines denote the algorithm pipeline for the original images, dashed lines the pipeline for the reconstructed images
and the dotted lines for the entropic images. CE denotes a cross-entropy loss, H the conditional entropy of the final classifier, and L1 an L1 distance loss.
The 2 encoders displayed refer to the unique one used, but were displayed twice for readability.

low diversity of situations. Furthermore, most of the time, the
causal patterns are still present in the biased images, they are
simply ”hidden” behind the more effective biases. Finding
the causal patterns in the biased samples should therefore
be possible, and probably leads to better generalization
than counter-examples based debiasing methods due to the
reliance on a vastly larger amount of data. Besides, knowing
in advance that a dataset is biased is often an unrealistic
hypothesis (spurious biases can be noticeable background or
context, as in [16], but also inconspicuous hospital specific
clues, as in [17]).

To study debiasing without the help of minority samples,
we first design 3 synthetic benchmark datasets, for a
classification task, based on the CIFAR-10 [18] and MNIST
[19] datasets, without any counter-examples. The nature
of the biases in the datasets is crafted to be diverse and
challenging. On our Colored-MNIST, the bias is spatially
mingled with the underlying causal patterns, on our Colored-
Patch CIFAR10, the bias is a very local one, and for our
Located-Patch CIFAR10, the biases are not texture-based
biases but positional ones. Samples of our dataset can be
found in Figure 1. Experiments on state-of-the-art strategies
show that the benchmarks are indeed challenging since no
methods yield satisfying results on them. Furthermore, to
solve the shortcut issue without using particular data samples,
we draw inspiration from methods coming from the domain
generalization research field, in which the goal is to make
networks robust to unknown domain shifts. From a biased
image, we aim to create an image from which the shortcut,
or bias, is ”removed”, but for which everything else is kept

intact. Using an encoder-decoder architecture, we transform
biased images into images that maximize the entropy of a
classifier (trained on both original and transformed images).
With a precise control of the amount of information destroyed,
via a disentanglement process, we are able to generate images
where only the shortcuts are noticeably altered and replaced
by patterns that not recognized by the classifier. A classifier
trained on these transformed images learn the previously
missed patterns since the most obvious ones are now missing.
Since we do not assume that the shortcuts were spurious (in
a real-life situation, what is naturally learned by a network
will be a complex mix of causal and spurious features), we
train a classifier on both original and transformed images to
learn both the shortcuts and the less effective patterns.

To summarize, our contributions are threefold :
• We design 3 synthetic biased benchmark datasets, for a

classification task, based on the CIFAR10 and MNIST
datasets.

• We show that existing works only very partially mitigate
the accuracy drop at test-time on our datasets.

• We propose a novel method relying on an adversarial
encoder-decoder model that removes the bias from the
images via entropy maximization. We demonstrate the
effectiveness of our strategy on our datasets and on the
more realistic BAR [10] dataset.

II. RELATED WORKS

A. Debiasing

Deep neural networks learn correlations between patterns
and labels without any regard to how spurious they are [9],



[10]. In a situation where a dataset is heavily biased, this
behaviour will hinder generalization but this issue might be
mitigated by having the network ignore the biased patterns
even though they are predictive. Kim et al. [9], are able to
make a network invariant to biased patterns, but require the
bias to be given as an auxiliary label. This is tedious from
a human annotation perspective and restrict the application
of the method to a bias that can be spotted with the human
eye. Based on this limitation, another line of work [8], [10]–
[14] focuses on finding counter-examples i.e., samples that
do not share the majority bias of their class, often via a loss-
based criterion. Once such samples are found, their importance
during the training is increased via an over-sampling scheme
as in Just-Train-Twice (JTT) [13] or via a loss re-weighting
scheme as in Learning-from-Failure (LfF) [10]. Closest to our
work is the work of Kim et al. [14] that allows the creation
of a debiased dataset from a biased one, by generating hybrid
images in which biases and labels are decorrelated. A model
is then simply trained on this decorrelated dataset and does
not learn the biases as they are no longer predictive. Iterating
over this idea, in [12] (LDD), Lee et al. propose to train on
”virtual” hybrids by disentangling bias and causal patterns at
features level and creating combinations unseen in the training
set before training on them.

B. Domain Generalization

Domain generalization is a research field aiming to make
deep networks robust to unknown and unforeseen domain
shifts between training and test-time, without having any
information about the test-time domain (such as non-annotated
samples from the target domain, as in unsupervised domain
adaptation [20], [21]). Most algorithms assume to have access
to data coming from several identified different domains and
aim to learn more robust features by learning features that
are shared among all source domains [21]–[23]. In single-
source domain generalization, however, only one domain is
available at training time. In such situation, it is no longer
possible to find domain-invariant features, and some meth-
ods rely instead on finding more diverse and semantically
different patterns than normal. Carlucci et al. [24] (Jigsaw),
for instance, used a self-supervised objective alongside the
classification, based on solving jigsaw puzzles: having an
auxiliary task not related to classification enables the network
to learn less domain specific patterns. Representation Self-
Challenging (RSC) [25] is a dropout strategy in which the
muted coefficients in the intermediary features are the ones
most responsible for the prediction and not randomly chosen
ones. This therefore forces the network to use less strongly
correlated patterns. Spectral Decoupling, a method introduced
by Pezeshki et al. [26], proposes an L2 regularization on the
output logits of the network (instead of the weights), to combat
the ”gradient starvation” phenomenon and prevent the network
from learning only a subset of the useful patterns. Finally,
adversarial data augmentation [27] has been used to generate
samples outside of the training distribution by maximizing the
cross-entropy classification loss. In this context, Zhao et al.

[28] used entropy maximization as a secondary regularizer to
further push samples away from the training manifold. Our
method only uses entropy maximization and a strict control
mechanism to only alter the shortcuts.

C. Disentanglement

Disentanglement is extensively used in the image-to-image
translation field where the content of an image is often
divided between domain-specific scene-invariant and scene-
specific domain-invariant information [29]–[31]. Our method
is inspired by image-to-image translation strategies, such as
MUNIT [29], but applied to a different content division. We
disentangle the content into semantic (what is learned by a
network solving a task), and non-semantic (the remaining
information contained in the image), which may contain
information useful for the task but only what is normally
overlooked by a network.

III. BENCHMARK DATASETS

We introduce 3 benchmark datasets based on the MNIST,
and CIFAR-10 datasets. The datasets are publicly available on
github 1.

A. Colored-MNIST

In the training set of this biased dataset, every digit is
colored with its particular class color. All the colors chosen
are fairly different, and there are no counter-examples. The
validation dataset is colored with the same colors as the
training set. In the test set however, all the digits are colored
with the same color no matter the class so that the accuracy
on the test set reflects how well the network learned the less
efficient patterns, i.e. the shapes of the digits. The test color
is the average of all training colors so that the network can’t
rely on color anymore to classify the images. Other works
have introduced color-biased MNIST datasets [11], [26], [32].
Ours differs from theirs most notably by the lack of counter-
examples, but also by having a single domain for training, and
by having an unbiased dataset for test rather than a dataset
differently biased e.g. with different class-color combinations.
One particularity of the colored MNIST datasets is the fact that
the shape and color information are spatially mingled, which
prevents a simple training with cropping or cutout [33] data
augmentation to find the shape information.

B. Colored-Patch CIFAR10

Inspired by the work of [8], we also design a more complex
benchmark dataset based on CIFAR10. For each of the training
images, a 5x5 pixels colored patch is added in the top left
corner. The color of the patch is the image’s class color, again
with no counter-examples. In the test set all the images have
the same patch color, which is the average of the training
colors. For this dataset, the bias is spatially located in a tiny
part of the images instead of being global as with the MNIST
dataset. The colors used are the same than the ones used for
the previous dataset.

1https://github.com/liris-tduboudin/Look-Beyond-Bias



C. Located-Patch CIFAR10

Finally, to experiment on a biased dataset for which the bias
is not texture-based, we create a CIFAR10-based benchmark
where it is the position of a 5x5 pixels patch that is absolutely
correlated with the label e.g. top left corner patch for planes,
bottom right corner for horses. The color of the added patch
is red, for all classes. For the test dataset, the average patch
is added to all the images no matter their class.

IV. ENTROPIC ADVERSARIAL DATA AUGMENTATION

A. Proposed Method

Our method uses 4 distinctly trained neural networks:
2 classifiers: a first classifier C0, with its convolutional
features extractor F0, and a final classifier Cf , with the same
architecture, one encoder E, and one decoder D. The decoder
D takes as input the output of the encoder E(x), and the
output of the features extractor F0(x). These 2 feature maps
are simply resized and concatenated in the channel dimension
before being sent to the decoder. We chose this fusion strategy
against AdaIN [34] based methods, such as [14], because
it is simpler and makes it easier for the decoder to learn
spatial information. The decoder outputs simultaneously 2
images (the output image has 6 channels, the first 3 being the
reconstructed image DR, and the remaining 3 the entropic
images image DH ).

The first classifier C0 is trained to minimize the cross-
entropy on the original images, without alteration to a standard
training procedure. The encoder, through a latent space recon-
struction loss, is made invariant to the shortcuts learned by the
first classifier C0. The decoder DR is conditioned to output the
encoder’s input content with the features extractor’s F0 input
shortcut. This architecture aims to produce a disentangled
representation of an image between the features used by
the first classifier C0 and the remaining information E(x)
needed to reconstruct the original images. The remaining
3 channels of the decoder (DH ) are used to generate the
entropic images via an adversarial training scheme. Samples
of such hybrid and entropic images can found in Figure
3. The final classifier is simply trained to classify both the
original and the entropic images coming from DH to learn
both the shortcuts (not necessarily spurious) and the ”hidden”
patterns. All the networks are simultaneously trained with their
corresponding losses, though the first classifier can be trained
offline beforehand and frozen during the training of the other
networks. A full schema of the proposed method is available
in Figure 2.

LR(DR, E) = αEx∼px
[||DR(E(x), F0(x))− x||1]

+ βE(x1,x2)∼px
2 [||E(DR(E(x1), F0(x2)))− E(x1)||1]

+ γE(x1,x2)∼px
2 [−

∑
i

δi(C0(x2))×

logδi(C0(DR(E(x1), F0(x2))))] (1)

To properly condition the encoder and the decoder DR to
yield a disentangled representation, several training objectives
are required: a reconstruction loss in the image space be-
tween the original image and the reconstructed one (Eq.1,
line 1), an encoder latent space reconstruction loss (Eq.1,
line 2), and a classifier prediction consistency loss (Eq.1,
line 3). The classifier consistency loss is a cross-entropy
between the prediction on an original image x2, C0(x2),
and the prediction on a hybrid image created from E(x1)
and F0(x2): C0(DR(E(x1), F0(x2))), with δi being the i-th
softmax coefficient: δi(y) = eyi/

∑
j e

yj . The last 2 losses
require the sampling of 2 images simultaneously (x2 can be
obtained by applying a permutation on the current batch along
the sample dimension). These losses enable the encoder to
learn all necessary patterns for the reconstruction task but
the shortcuts already provided by the features extractor F0,
and prevent the decoder from inferring the shortcuts from the
encoder representation, as the shortcut of its hybrid output
DR(E(x1), F0(x2)) must be the one of x2. The first and
the final classifiers are not optimized with regards to these
constraints.

LH(DH) = εEx∼px [−
∑
i

qlogδi(Cf (DH(E(x), F0(x))))]

+ µEx∼px [||DH(E(x), F0(x))− Ef0∼pf0
[DH(E(x), f0)||1]

+ νEx∼px
[||E(DH(E(x), F0(x)))− E(x)||1] (2)

The entropic output of the decoder DH is trained to maxi-
mize the entropy of the final classifier, that is trained on both
the original images and the entropic ones. The rational behind
this adversarial loss is that high-entropy images do not contain
patterns that can be preferentially linked to a class, and hence
are more likely to be devoid of the original shortcuts. Maxi-
mizing the entropy of the first classifier only leads to changes
in the bias, and not to the complete removal we are aiming
for. Alongside the entropy maximization (Eq. 2, line 1, with
q the uniform probability density: q = 1/Nc where Nc is the
number of classes), the entropic images are subject to several
constraints to avoid the destruction of all information. The first
constraint lies in the decoder itself: up until the last layer, the
weights are shared for both the entropic images generation
and the reconstruction task. We also use the encoder latent
space reconstruction loss (Eq.2, line 3) on the ground that the
entropic images should precisely not modify what is extracted
by the encoder (everything but the shortcut). Finally, we use an
encoder-conditioned expected image reconstruction loss (Eq.2,
line 2). This loss aims to drive the entropic images toward an
image that should already be confusing for the classifier, while
keeping the information not used in classification intact. It is
implemented by minimizing the L1 loss between the entropic
image DH(E(x1), F0(x1)) and an hybrid image generated
from the encoding of x1: DR(E(x1), F0(x2)). Because the
semantic image x2 is randomly sampled every iteration, mini-
mizing this loss will eventually yield the average-biased image
Ef0∼pf0

[DR(E(x1), f0)].



B. Baselines for comparison

We compare ourselves with several state-of-the-art strate-
gies from either the debiasing or the domain generalization
community. A change of biases between training and test is a
domain shift, and even though domain generalization methods
were not developed with such shift in mind, it is interesting to
see how they perform. We also compare ourselves with simple
baselines as a reality check: first, with the standard training
procedure (stochastic gradient descent with momentum, with
the cross-entropy loss), then, with dropout [35]. Dropout is
a naive way of finding more useful patterns, by preventing
the network to use all the available information at disposal.
Since nothing prevents the network from learning the same
patterns in several filters, we experiment with an orthogonality
constraints on the weights (inspired by [36]) to force neurons
to be different, and with a constraint over the covariance
matrix of the intermediary activations (inspired by [37]), on the
ground that filters that activate very often together are likely
to check for the same patterns. Finally, we compare ourselves
with the single-source domain generalization methods (Jigsaw,
Spectral Decoupling, and RSC) and debiasing methods (LfF,
JTT and LDD) reviewed in the related works section.

V. EXPERIMENTS AND DISCUSSION

A. Experimental setup

Our architecture exists in 2 different flavors : large-scale,
and small-scale. The large-scale version uses a ResNet18 [1]
(adapted to the CIFAR10 and MNIST datasets as in [38])
as classifier, and a UNet [39] as encoder and decoder. The
features extractor F0 is the classifier without its last layer. The
UNet is divided into a multi-output encoder and a multi-input
decoder to account for the skip-connections. Each encoder
output is taken as input by the corresponding decoder input.
The semantic information from the features extractor F0 is
concatenated to the deepest encoder output before being given
to the deepest decoder input. The small-scale version uses
a LeNet as classifier (as used in [24] for the MNIST-based
experiments), a 4-layers convolutional network as encoder,
and a 4-layers decoder with transposed convolutions. For both
architecture, the optimizer used is Adam [40] with the same
learning rates for all the networks. We evaluate our approach
on our synthetic benchmarks and on the more realistic Biased-
Action-Recognition (BAR) dataset. BAR images are divided
into 6 activity classes and exhibit a strong (but not absolute)
background bias in the training data: climbing often takes
place in on grey rocky background, throwing on a green
baseball field, etc. The test set however is mostly made of
images taken from unusual circumstances. This dataset is a
common benchmark for debiasing methods that make use of
the training minority samples. No data augmentation is used
for the experiments as we want to assess the effectiveness
of our method without adding any predefined invariances to
the training procedure. Hyper-parameters settings and model
selection are done without using the test set, to mimic a
situation where the test-time data distribution is unknown.

For our architecture, we use the entropy loss curve to set
the sensitive ε hyper-parameters: it should, in fact, increase
continuously during training. A diminishing entropy means
that the final classifier cannot keep up with the decoder’s
entropic images and that there is a destruction of information.
The goal is to aim for the slowest increasing entropy curve
possible. For the model selection with our method, we use the
model at the final epoch, on the ground that training on the
entropic images is much slower than the training on the normal
images. Training is considered complete when the entropy
curve is no longer increases. Finally, because the effect of the
random initialization of the network is greater than usual in a
domain shift situation [41], results are averaged over 3 runs.
More details about the architecture and the training hyper-
parameters are available in the supplementary material.

B. Results and analysis

Fig. 3. Samples of generated images. First & second rows: original images.
Third row: hybrid images with first row content and second row shortcuts.
Fourth row: hybrid images with second row content and first row shortcuts.
Last row: entropic images of the first row.

Our main results are available in Table I for the large-scale
version. Small-scale results are available in the supplementary
material. The numbers displayed are the average accuracy
± the standard deviation. Our method yields a significant
accuracy improvement over the previous works on our
synthetic benchmarks on the test sets, while retaining a
very high accuracy on the validation sets. A high accuracy
reached in both validation and test indicates that both the
shortcuts and the ”hidden” patterns are learned: if the
shortcuts are completely ignored, we expect the accuracy to
be similar for the biased and unbiased datasets. The drop
in validation for Colored-Patch CIFAR10 is most likely
due to non-optimal hyper-parameters: we used the same
hyper-parameters for all 3 synthetic datasets. Final accuracy
seems to be moderately sensitive to loss weights, except for
the entropy maximization weight. Other strategies perform
only marginally better than the standard training procedure.
It is not surprising for debiasing methods that require explicit
counter-examples. Furthermore, our architecture enables the
final classifier to find all the possible patterns ”hidden”
behind the shortcut: the accuracy of our method on the
test dataset is roughly equal to the accuracy we get when



TABLE I
MAIN RESULTS

Large-Scale Experiments (Resnet18 as classifier)
Dataset → Colored-MNIST Colored-Patch CIFAR10 Located-Patch CIFAR10 BAR
Method ↓ Val. Acc. Test Acc. Val. Acc. Test Acc. Val. Acc. Test Acc. Val. Acc. Test Acc.

Standard Training Procedure 100± 0.0 18.8± 7.4 100± 0.0 10.3± 0.5 100± 0.0 10.0± 0.0 97.5± 0.6 49.1± 1.9
Dropout 100± 0.0 14.6± 6.2 100± 0.0 11.0± 1.8 100± 0.0 10.1± 0.1 98.9± 0.3 49.4± 1.0
Dropout & Orthogonality [36] 100± 0.0 10.2± 0.1 100± 0.0 10.0± 0.0 100± 0.0 10.0± 0.0 98.8± 0.6 48.0± 1.4
Dropout & Covariance [37] 93.3± 3.8 27.2± 5.4 86.4± 10.5 21.6± 2.4 67.9± 9.5 26.3± 2.2 90.6± 3.1 28.0± 3.2
Jigsaw Puzzle [24] 99.8± 0.3 21.5± 4.9 99.9± 0.0 17.8± 0.9 100± 0.0 12.1± 0.5 97.5± 0.3 49.8± 1.8
Spectral Decoupling [26] 99.9± 0.0 24.5± 2.9 100± 0.0 10.4± 0.35 100± 0.0 10.2± 0.1 96.1± 0.6 44.5± 1.8
RSC [25] 100± 0.0 12.5± 1.9 96.7± 5.7 10.0± 0.1 100± 0.0 10.0± 0.0 96.8± 0.9 50.2± 1.4
LfF [10] 100± 0.0 9.8± 1.9 100± 0.0 10.2± 0.3 100± 0.0 10.6± 0.7 97.4± 0.3 54.3± 2.3
JTT [13] 100± 0.0 12.5± 4.3 100± 0.0 10.4± 0.4 100± 0.0 10.0± 0.02 97.3± 0.8 50.2± 2.9
LDD [12] 100± 0.0 14.8± 5.3 100± 0.0 10.0± 0.2 100± 0.0 10.2± 0.3 98.3± 0.8 53.61± 2.7
Ours 99.8± 0.2 97.3± 0.84 93.8± 1.3 78.9± 0.34 98.0± 0.6 75.6± 3.8 97.1± 0.8 54.4± 1.1
Standard Training Procedure 99.4± 0.04 99.4± 0.04 77.4± 0.08 77.4± 0.08 77.4± 0.08 77.4± 0.08 - -
on the original datasets

training the same network normally on the original MNIST or
CIFAR10 datasets (without biases). On the BAR dataset, our
method performs on par with the state-of-the-art debiasing
methods, without explicitly relying on the unusual samples.
Discrepancies between original LfF results and ours is
mostly due to the resizing of the images for computational
convenience (128x128 in our experiments, 224x224 in the
original ones). Samples of our entropic images can found
in Figure 3 and are effectively devoid of the original shortcuts.

We also conduct an ablation study of the small-scale version
of our architecture on the synthetic benchmark datasets. Our
study was conducted to shed the light on 2 questions: 1
- is the disentangling part of the architecture needed i.e.
can’t an entropy maximization and a L1 loss between the
transformed image and the original one be sufficient to yield
unbiased images ? 2 - is the entropy maximization constraint
needed i.e. can’t the disentangling part with the encoder-
conditioned expected image L1 reconstruction loss be enough
? Results of the ablation study are available in Table II.
The reported numbers are the average accuracy on the test
sets of the datasets. For the first experiment, we conduct a
study with varying entropy maximization loss weight ε, the
weight for the identity loss α is fixed to 1.0. For the second
experiment, all the used weights (α, β, γ, µ) are fixed to 1, all
the others to 0.0. Our study shows that, while either simplified
architecture can yield satisfying results on a certain dataset,
for a strategy to work well on all benchmarks it has to use all
the proposed constraints. Without the disentangling part (Eq.
1), the accuracy suffers on all datasets but especially on the
Colored-MNIST dataset, no matter the ε used. We hypothesize
that this is due to the spatially widespread bias in the dataset.
Without the entropy maximization loss, the architecture is not
able to learn anything on the CIFAR10-based benchmarks. For
the Located-Patch CIFAR10, this is due to the positional nature
of the bias: without the entropy maximization constraint, the
patch is simply replaced by a brown patch (similar to what can
be seen in Figure 3 with the hybrid images). A classification
model trained on these samples will simply make use of a

differently colored patch to take its decisions. There are no
constraints to push the encoder-decoder to realistically inpaint
the missing patch (such as a co-occurrence discriminator loss
[31]) as the entropy maximization is effective enough. For the
Colored-Patch CIFAR10, imperfections in the disentanglement
process prevents the decoder from completely removing the
original color of the patch.

TABLE II
ABLATION STUDY

Dataset → Colored-
MNIST

Colored-Patch
CIFAR10

Located-Patch
CIFAR10

1 - no
disentanglement

ε = 10−4 67.1 63.5 12.1
ε = 10−3 63.6 69.3 53.5
ε = 10−2 31.2 62.7 60.3
ε = 10−1 49.1 35.7 22.4
ε = 1.0 25.6 14.4 16.0

2 - no entropy
maximization 97.7 16.0 17.3

Full Method 98.4 69.2 67.3

VI. CONCLUSION

In this paper, we created 3 different benchmarks to study
the behaviour of domain generalization and debiasing methods
when facing a dataset where the bias is shared by all the
samples without exception. No existing work yield satisfying
results on it. We then proposed a generative architecture rely-
ing on entropic adversarial data augmentation and on disentan-
gling a representation between shortcuts and remaining useful
patterns and showed that it performed as well as possible
considering the classifiers used, on our 3 benchmarks. Further
experiments on the BAR dataset yielded results competitive
with state-of-the-art methods. This is an indication that the
explicit search for counter-examples might not be necessarily
needed: the information usually overlook by neural networks
is contained even in samples that exhibit the shortcuts. The
future works will be dedicated to the study of more real-life
like situations.
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SUPPLEMENTARY MATERIAL

This supplementary material presents additional results and
details about the experiments conducted in the paper, that were
not directly included due to the 6 pages limit.

A. Debiasing and label noise

We want to study the behaviour of debiasing methods when
they are applied to a dataset containing annotation errors, or
label noise, as their impact might be a potential drawback. To
do so, we create another synthetic dataset based on MNIST.
The training images are colorized as in our original Colored-
MNIST dataset (every images of a particular class are colored
the same), but the image label is replaced by a random one
(chosen uniformly among all labels) with a certain probability
p. We used p = 0.01, which gives 1% of randomly labeled
samples. This is the order of magnitude of label noise that is
encountered in usual datasets [15]. The test set is from the
same data distribution, with label noise. There is no domain
shift in this situation. We conducted this experiment with a
ResNet18 as classifier for the debiasing methods, and with
the large-scale version of our architecture. Results of debiasing
methods and of our approach on this dataset are available in
Table III.

TABLE III
DEBIASING AND LABEL NOISE

Method Colored-MNIST w. label noise

LDD [12] 99.1

JTT [13] 99.3

LfF [10] 63.9

Standard Training 99.2

Ours 99.0

The only method that does not succeed in dealing with the
label noise is LfF: training collapses after a few iterations
(see Figure 4), and does not recover. The best test accuracy
is reached at the very beginning of the training, before the
minority samples are noticeably over-weighted, and even then
it is far below the other works. All the other methods yield
perfect results. Training debiasing methods on a dataset with
wrongly labeled samples might have a adverse effect on the
resulting accuracy, depending on the precise strategy used.

Fig. 4. Test accuracy over training iterations for LfF, on our Colored-MNIST
with label noise.

B. Ablation study
1 - for the first ablation experiment, the reconstruction output
of the decoder DR is no longer trained with any objectives.
The entropic output DH and the encoder E are trained with
both an entropy maximization and an image reconstruction
loss, between the entropic image and the original one. Samples
of generated entropic images for this ablation are available in
Figure 6. The visualization of the samples confirms the quan-
titative results: too much information starts to be destroyed
for ε = 10−2, and too little for ε = 10−4, hence the drops
in test-time accuracy at both ends of the weight range for
Located-Patch CIFAR10, and Colored-MNIST.

Fig. 5. Samples of generated encoder-conditioned expected images for the
second ablation study.

2 - for the second ablation experiment, the only modification
of the architecture lies in the weights used for the different
losses: all the introduced losses are used for the reconstruction
output DR, but for the entropic output DH only the encoder-
conditioned image reconstruction loss remains. All other losses
are removed. Samples of generated images for this study
are available in Figure 5. The encoder-conditioned image
reconstruction loss is not sufficient to ensure the complete
removal of the shortcut, as can be seen with the samples of
the Located-Patch CIFAR10 dataset.

C. Experimental details for the large-scale experiments
Synthetic Datasets: the MNIST images are colorized and
resized to 32x32 pixels, resulting in 3x32x32 pixel images,



Fig. 6. Samples of generated entropic images for the first ablation study. The first row corresponds to an entropy maximization objective weight of ε = 10−4.
This weight is increased by a factor 10 between each row. For every dataset, the first 3 columns are the original images, and the remaining 3 the corresponding
entropic images.

as the CIFAR10-based benchmarks images. For all synthetic
experiments, the images are normalized with a mean and a
standard deviation both of [0.5,0.5,0.5]. The validation set
and the test set are both made with the images from the
original MNIST or CIFAR10 test sets, but biased differently.
There is no pretraining of the classifiers for these datasets.

BAR: the BAR images are resized to 128x128 pixels,
for computational convenience, and normalized with the
following means and standard deviations: [0.485, 0.456,
0.406], and [0.229, 0.224, 0.225]. The validation set is made
of 300 images that are removed from the original training
set, keeping ∼ 1700 images for training. For all experiments
on BAR, whether for our approach or existing methods, the
ResNet18 is pretrained on ImageNet. Samples of the original
BAR dataset can be found in Figure 7 alongside with their
hybrid and entropic counterparts.

Standard Training Procedure: for all datasets, we used a
learning rate of 10−3 with the stochastic gradient descent
(SGD) with a momentum of 0.9 and trained for 100 epochs,
with a batch size of 128 for all datasets (all the experiments
are trained with this batch size). The test-time model is
selected by best accuracy on the validation set. In the case
where the best accuracy is reached several time during
training (a common phenomenon since it is easy to reach
100% accuracy on the biased datasets), the model retained is
the first to reach it.

Jigsaw: images are divided into a 2x2 grid, whose patches are
then shuffled. The weight for the permutation classification
loss is fixed to 1.0 for BAR, 1.0 for the synthetic datasets.
Early stopping was applied as soon as the validation accuracy
reached 99%. Subsequently, the model selected was the last
one. Other training hyper-parameters are the same as for the
standard training procedure and this will also be the case for
the next experiments, unless specified otherwise.

Dropout: dropout was applied at the end of the features

extractor part of the classifiers. It is before the last
fully-connected layer for the ResNet18, and after the 2
convolutional layers for the LeNet. The zeroing probability is
chosen randomly at each iteration.

Dropout & Covariance Constraint: the penalty is calculated
with the L2 norm of the covariance matrix of the features
extractor activations computed over the current batch. The
diagonal of the covariance matrix is fixed to 0 beforehand.
The weight for the covariance penalty was fixed to 10−4 for
all experiments.

Dropout & Orthogonality Constraint: the orthogonality
constraint is calculated for all the layers, and the final
constraint used is the average penalty over all layers. A
particular layer’s penalty is the L2 norm of the dot product
between a layer’s weights and its transpose. The weight of the
penalty is fixed to 1.0 for all experiments. Overall, the effects
of these additional constraints compared to a simple dropout
are negligible. Nonetheless, due to the apparent simplistic
nature of our synthetic datasets, we deemed necessary to try
naive approaches first to ensure that a more complex one was
indeed needed to reach satisfying results.

RSC: we used channel-wise dropout with a batch percentage
of 100% and the amount of channels dropped is randomly
chosen at every step. Channels are sorted with respect to their
usefulness for the classification on each samples in the batch,
and a varying number of the most effective ones are dropped.

Spectral Decoupling: the weight for the L2 on the raw
logits of the network (before the softmax) is fixed to 0.01
for BAR, and to 1.0 for the synthetic benchmarks. Early
stopping is applied when the validation accuracy reaches 99%.

LfF: the architecture was trained with Adam and a learning
rate of 10−4, for 100 epochs, with an amplification factor
q = 0.7, for all the experiments.



LDD: the architecture was trained with Adam and a learning
rate of 10−4, for 100 epochs. The amplification factor
is the same as for LfF. The hyper-parameters specific to
LDD (λdis, λswapb

, λswap) were kept to the default value:
[1.0,1.0,1.0], used in the original paper for datasets similar
to ours. The bias-conflicting augmentation is scheduled to be
applied after the first epoch for BAR and after the default
value (10k iterations) for the synthetic datasets. Without
counter-examples, this parameter has no impact on the results.

JTT: one of the core principle in JTT is to train the first
network only for a limited amount of epochs, to avoid
overfitting on the train set and keep a few number of
misclassified train samples. For our synthetic experiments,
the perfect classifier was reached before the end of the first
epoch. To properly adapt the method we stopped the training
after a 99% accuracy on the current batch was reached for
the 10-th time since the beginning. On BAR, the first network
was trained for 1 epoch, before switching to training on the
over-sampled dataset.

Ours: The architecture was trained for 100 epochs, with Adam
and a learning rate of 10−4. The hyper-parameters used were:
α = 1.0, β = γ = 0.1, ε = 10−3, µ = 1.0, ν = 0.1, for both
the experiments on the synthetic datasets and BAR.

D. Small-scale experiments

To demonstrate the wide range of applicability of our
method, we experiment with a small-scale version of our
architecture. The classifier used is a LeNet (taken from [24]),
the encoder (respectively the decoder) is a custom network
with 4 convolutional (respectively transposed convolutional)
layers. The architecture details are available in Table IV. The
decoder has 256 input channels while the encoder only has 128
output channels, because the LeNet features extractor (layers
parts of the features extractor are marked in bold) output also
has 128 channels. There are no skip-connections, and the
encoder and decoder are single-output and single-input. The
hyper-parameters used for the small-scale experiments are
exactly the same as before for our approach and the debiasing
methods. Some domain generalization algorithms however
required different hyper-parameters: they were only trained
for 20 epochs, the weight for the logits norm minimization
in Spectral Decoupling was fixed to 5.0, the weight for the
permutation classification loss in Jigsaw was fixed to 10.0
and the covariance norm minimization weight used was 10−3.
The results of our small-scale architecture, alongside with the
debiasing and domain generalization methods (also evaluated
with our LeNet), are available in Table V.

Our method is still effective, but the difference between
the results on the original datasets and ours is shortened
compared to the large-scale version. The debiasing methods
perform as bad as with the large-scale version, which was to
be expected again. Interestingly, the small-scale version of
the domain generalization methods perform better than their

TABLE IV
SMALL-SCALE NETWORKS ARCHITECTURE

Syntax follows PyTorch format
LeNet Encoder Decoder

Conv2d(3,64,5) Conv2d(3,32,3) ConvTranspose2d(256,64,4,2)
ReLU ReLU ReLU

MaxPool2d(2,2) Conv2d(32,64,3) ConvTranspose2d(64,64,3)
Conv2d(64,128,5) ReLU ReLU

ReLU Conv2d(64,64,3) ConvTranspose2d(64,32,3)
MaxPool2d(2,2) ReLU ReLU

Linear(3200, 1024) Conv2d(64,128,3,2) ConvTranspose2d(32,6,3)
ReLU ReLU

Linear(1024,1024)
ReLU

Linear(1024, 10)

large-scale counterparts, especially on the Colored-MNIST
dataset. While for the large-scale setting all of these performed
similarly on all 3 benchmarks, there are clear differences in
the small-scale setting: most of the strategies now perform
better on the Colored-MNIST benchmark. Dropout-based
methods and Jigsaw yield an important increase of accuracy
on the Colored-MNIST, but not on the CIFAR10-based
benchmarks. Notably, Spectral Decoupling produces an
increase of accuracy in all 3 benchmarks, even if not the best
on Colored-MNIST.

To compare our method with the debiasing strategies in
a situation where they should be able to perform well, we
design a version of our benchmarks with counter-examples.
For 1% of the samples, the shortcut e.g. the red patch
position, is chosen randomly (with equal probability for each
shortcuts) and not based on the image label. The test set is the
same as the original one, with an average shortcut applied to
each image. The small-scale results of these experiments are
available in Table VI. The hyper-parameters used are the same
as the ones used for the previous small-scale experiments,
except for the starting bias-conflicting augmentation iteration
in LDD. In a situation with counter-examples, the scheduling
is important. We start the bias-conflicting augmentation after
the first training epoch for all datasets.

The difference of behaviour between Colored-MNIST and
the other benchmarks has widened compared to the situation
without counter-examples: standard training reaches satisfying
accuracy on Colored-MNIST, while having no positive impact
on the others. Likewise, domain generalization methods only
yield good results on the Colored-MNIST. As expected, the
behaviour of debiasing methods changes completely. They all
perform almost perfectly on the MNIST-based benchmark,
and produce a noticeable accuracy increase on the others
benchmarks. LDD’s performance are, on average, on par with
our method, except in the Located-CIFAR10 dataset where
it reaches better test accuracy at the cost of a large drop
in validation accuracy. Our small-scale experiments show the
necessity of trying the various methods on diverse benchmarks,
as the strength of the correlation between the shortcuts and the
labels is not the only factor of success for a method.



TABLE V
SMALL-SCALE EXPERIMENTS

Dataset → Colored-MNIST Colored-Patch CIFAR10 Located-Patch CIFAR10
Method ↓ Val. Acc. Test Acc. Val. Acc. Test Acc. Val. Acc. Test Acc.
Standard Training Procedure 100± 0.0 27.2± 3.3 100± 0.0 13.2± 3.7 100± 0.0 15.5± 0.5
Dropout 100± 0.0 43.0± 5.0 100± 0.0 15.8± 3.5 100± 0.0 15.2± 0.8
Dropout & Orthogonality [36] 100± 0.0 36.5± 1.7 100± 0.0 15.6± 1.5 100± 0.0 24.0± 0.5
Dropout & Covariance [37] 100± 0.0 34.9± 3.9 100± 0.0 14.8± 2.0 100± 0.0 20.9± 1.8
Jigsaw Puzzle [24] 98.3± 0.2 65.9± 4.8 97.7± 0.3 22.0± 1.0 99.7± 0.1 21.3± 0.4
Spectral Decoupling [26] 99.6± 0.1 49.1± 2.5 95.4± 0.2 30.5± 1.0 96.9± 1.8 29.1± 1.2
RSC [25] 99.7± 0.0 45.0± 0.6 95.8± 2.0 14.5± 2.0 100± 0.0 11.4± 0.1
LfF [10] 100± 0.0 23.9± 5 100± 0.0 14.8± 1.8 100± 0.0 15.3± 2.1
JTT [13] 100± 0.0 29.2± 6.7 100± 0.0 15.4± 2.8 100± 0.0 16.1± 0.4
LDD [12] 100± 0.0 12.2± 2.7 100± 0.0 14.2± 4.1 100± 0.0 10.0± 0.0
Ours 99.9± 0.0 98.4± 1.5 94.3± 0.2 69.2± 2.0 97.9± 0.5 67.3± 0.3
Standard Training Procedure 99.2± 0.04 99.2± 0.04 72.8± 0.4 72.8± 0.4 72.8± 0.4 72.8± 0.4
on the original datasets

TABLE VI
SMALL-SCALE EXPERIMENTS ON DATASETS WITH COUNTER-EXAMPLES

Dataset → Colored-MNIST Colored-Patch CIFAR10 Located-Patch CIFAR10
Method ↓ Val. Acc. Test Acc. Val. Acc. Test Acc. Val. Acc. Test Acc.
Standard Training Procedure 99.4± 0.1 65.9± 4.6 99.1± 0.0 18.1± 3.8 99.2± 0.0 27.1± 2.1
Dropout 99.4± 0.0 67.3± 6.1 99.2± 0.0 17.3± 4.9 99.3± 0.0 22.9± 2.9
Dropout & Orthogonality [36] 99.4± 0.0 68.0± 2.0 99.0± 0.1 26.8± 2.0 99.1± 0.1 27.5± 0.2
Dropout & Covariance [37] 99.4± 0.0 59.6± 5.0 99.14± 0.0 22.9± 1.6 99.2± 0.0 17.0± 5.4
Jigsaw Puzzle [24] 98.0± 0.2 72.9± 0.9 95.8± 0.5 23.6± 0.6 98.5± 0.1 20.8± 1.8
Spectral Decoupling [26] 98.8± 0.2 49.6± 1.3 95.3± 0.2 30.4± 1.1 96.9± 1.1 29.0± 2.4
RSC [25] 98.6± 0.0 72.8± 5.5 96.3± 0.4 17.7± 2.3 99.2± 0.0 14.9± 0.8
LfF [10] 98.7± 0.4 94.8± 0.8 89.8± 0.8 37.73± 0.2 87.3± 3.1 40.4± 1.3
JTT [13] 99.8± 0.0 94.1± 0.1 98.6± 0.0 30.5± 0.7 98.7± 0.0 40.7± 0.5
LDD [12] 99.5± 0.1 98.2± 0.2 86.1± 1.0 67.6± 0.6 86.5± 1.2 69.4± 0.7
Ours 99.8± 0.1 97.6± 0.1 88.0± 0.2 68.9± 0.2 95.9± 0.3 64.7± 0.3
Standard Training Procedure 99.2± 0.0 99.2± 0.0 72.7± 0.4 72.7± 0.4 72.7± 0.4 72.7± 0.4
on the original datasets

Fig. 7. Samples of original BAR images (first 2 rows) and their generated hybrid (middle 2 rows) and entropic (last 2 rows) versions. The entropic images
are almost devoid of bright colors, showing that a classifier rely heavily on them instead on the causal patterns. The blue color is not removed as it is not
strongly correlated with a particular class: diving, pole vaulting and fishing images exhibit large amount of blue.


