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Abstract

Uncertainty quantification in ill-posed inverse problems is
a critical issue in a variety of scientific domains, includ-
ing among others signal processing, imaging science, geo-
science, remote sensing.... This has led to a variety of ap-
proaches, especially using Bayesian schemes such as Kalman
methods, particle filtering schemes and variational Bayesian
inference. Dealing with non-linear and non-Gaussian pro-
cesses remain however a challenge, especially when consid-
ering high-dimensional systems. Recently, normalizing flows
using deep neural networks have emerged as a very pow-
erful tool to train generative models, which can sample re-
alistic states, while making feasible the computation of the
likelihood function. Their exploitation for uncertainty quan-
tification in terms of differential Shannon entropy however
requires the use Monte Carlo methods whose computational
cost can be prohibitive, especially for high-dimensional sys-
tems such as time, space and space-time processes. Here, we
introduce a new class of continuous normalizing flows with
a divergence-free constraint for the underlying governing or-
dinary differential equations. This divergence-free constraint
results in the preservation of the differential Shannon entropy
through the trained flows.
We demonstrate the relevance of the proposed framework to
reach state-of-the-art performance for generative modeling
tasks. We also illustrate applications to uncertainty quantifi-
cation for the reconstruction of 1D and 2D states from partial
observations. We discuss further our main contributions and
applications to real-world case-studies.

Introduction
The reconstruction of hidden states from partial and/or noisy
observations, referred to as inverse problems, are key chal-
lenges in numerous domains such as signal processing, com-
putational imaging, medical imaging, remote sensing, geo-
science,..... Model-driven schemes have long been the state-
of-the-art methods, especially when dealing with physical
states (Evensen 2009). They state the inverse problem as the
minimization problem with two terms, a data-fidelity or ob-
servation term J and a re regularization term R:

X̂ = argmin
X

J(X,Y ) +R(Y ) (1)

with Y the observation and X the state to be reconstructed.
The observation terms involves the definition of the forward
observation model to relate X and Y . Regularization term

states some prior on considered problem. For example when
dealing with physics-driven dynamical systems, prior R is
stated as R(.) :=

∑T
k=1 ∥M(xk−1) − xk∥ where M de-

notes a forecast operator associated to a physical equations
(Courtier and Talagrand 1987). Recently, data-driven and
deep learning methods have arised as relevant alternatives to
address inverse problems. While deep learning approaches
lead to the state-of-art-performance for inverse problems
(Dong et al. 2014), (Minaee et al. 2021) (Xie, Xu, and Chen
2012) (Yu et al. 2018), they also compete with model-driven
schemes for the reconstruction and forecasting of geophys-
ical systems (Fablet et al. 2021; Nonnenmacher and Green-
berg 2021).

These method are generally trained by gradient descent to
minimize a given reconstruction cost.

θ∗ = argminE(d(µθ(Y ), X)) (2)
it is known (Bishop 2006) that when 2 is treated as a re-
gression problem with least square estimation, a minimizer
of 2 is given by the expectation of the conditional density
p(X|Y ). The estimation of p(X|Y ) is of a key importance
for in order to transpose many applications of a Data assim-
ilation task in a stochastic perspective : One would like to
take decision on the basis of a risk minimization for a wide
range of applications instead of taking a decision relying
only on the estimated mean µθ. Furthermore, the knowledge
of the probability density p(.|Y ) allows the computation of
information theoretic related quantities such as the differen-
tial entropy : this quantities extends the classical Shannon
entropy (Shannon and Weaver 1949) to continuous variable.
For a random variable X with associated density function p,
the differential entropy of X is defined by:

H(X) := Ep[−log(p(x))] = −
∫
Ω

p(x)log(p(x)).dx (3)

It can be understood as a measure of uncertainty : a ran-
dom variable with high concentration of the measure would
trend to have low entropy. One can give two examples for 1-
d variables : dirac distributions δ (no uncertainty) for which
H(δ) = −∞ or uniform distribution U on Ω = [a, b],
which corresponds to a case of maximal uncertainty veri-
fies H(U) = ln(b − a) → +∞ if |b − a| → +∞. and is
of a key importance for applications such as sensor place-
ment (Yin et al. 2017), However for an arbitrary distribution



f , the computation of the differential Shannon entropy re-
lies on Monte Carlo methods (James 1980) whose computa-
tional cost may be prohibitive for real-world processes.Thus
derivation of approximation method of the differential en-
tropy is an active area of researches (Huber et al. 2008;
Hyvärinen 1997; Ao and Li 2022).

Here, we address uncertainty quantification according to
the differential Shannon entropy in inverse problems, while
keeping analytical an computation of the differential Shan-
non entropy to overcome the shortcomings of Monte-Carlo
schemes for high-dimensional systems. We state the pro-
posed framework as the learning constrained continuous
normalizing flows (Chen et al. 2018). Our main contribu-
tions are as follows:

• We introduce a novel class of divergence-free continu-
ous normalizing flows. We show that the divergence-free
constraint guarantees the preservation of information-
theoretic quantities such as the differential Shannon en-
tropy.

• We present a neural implementation of the proposed
scheme with an explicit divergence-preserving parame-
terization of the neural architecture.

• We asses the performance of the proposed scheme for
generative modeling tasks with respect to state-of-the-art
schemes and for application to uncertainty quantification
in inverse problems.

This paper is organized as follows. Section 2 introduces the
background and related work. We present for the proposed
divergence-free continuous normalizing flows in Section 3.
Section 4 introduces the resulting neural architecture and as-
sociated learning scheme. We report numerical experiments
in Section 5 and further discuss our main contributions in
Section 6. We include Proofs in Appendix.

Background and related work
Inverse problem and uncertainty quantification:
As stated in the introduction, we address uncertainty quan-
tification issues in inverse problems. Let us assume that we
are provided with a reconstruction scheme µ(Y ) for state X
given partial observation Y . As mentioned above, we may
consider both model-driven and learning-based schemes for
the design of µ(·). Let ε(X) be the reconstruction error:

ε(X) := Y − µ(X) (4)

We aim at characterizing the density function p(.|y) asso-
ciated to the reconstruction error ε p(.|y) and it’s associ-
ated differential Shannon entropy. When considering Gaus-
sian approximations for posterior p(x|y), one can derive an-
alytically this quantity. It is however widely acknowledged
that this approximation does not apply to most real-world
processes which involve non-Gaussian statistics (Evensen
2009). State-of-the-art schemes also exploit Monte Carlo
methods when one can sample posterior p(x|y) and com-
pute log-likelihood log(p(ε(Y ))) The latter opens the floor
to the exploitation of learning-based generative models such
as normalizing flows (Rezende and Mohamed 2015).

Learning-based inference and normalizing flows:
From a probabilistic viewpoint, the maximum likelihood es-
timation (MLE) is the classic formulation for inference of
probabilistic models. Given a parametric family of distribu-
tions according to parameter set Θ, we aim at identifying
parameters θ∗ which maximize the likelihood of the recon-
struction error ε(Y ) conditionnally to observation Y . This
leads to the following minimization issue:

θ∗ = argmax
θ∈Θ

N∑
i=1

log(p(xi − µ(yi)|yi, θ)) (5)

Deep learning has recently widened the class of parame-
teric probabilistic models one can consider in MLE frame-
work through the introduction of normalizing flows. Nor-
malizing flows (Rezende and Mohamed 2015; Kobyzev,
Prince, and Brubaker 2020) make use of the formulas the
change of variables to extend the MLE framework beyond
classic parametric probabilistic families. Given a latent ran-
dom variable u of density p, the density p̂ of the image
v = fΦ(u) is given by:

p̂(v) =
1

|JfΦ(u)|
p(u) (6)

where JfΦ(u) denotes the Jacobian matrix of fΦ evaluated
at point u. Given a parameterization of the likelihood of the
latent variable, usually as a Gaussian distribution, normaliz-
ing flows then come to design mapping operator fΦ so that
one can compute the determinant of its Jacobian.

Among normalizing flow approaches, continuous normal-
izing flows (CNF) (Chen et al. 2018) states mapping opera-
tor FΦ as a flow operator governed by an ordinary differen-
tial equation:

∂u(t)

∂t
= fΦ(u(t)) (7)

Under this parameterization, the resulting mapping for like-
lihood values involve the divergence of the flow:

∂log(p(u(t))

∂t
= −Tr

(
∂fΦ(u(t))

∂u(t)

)
= div (fΦ) (8)

This equation relates to a Lagrangian point of view of
Liouville equations which describe the infinitesimal evo-
lution of the log-density by a flow governed by the ODE
∂u
∂t = fΦ(u(t)). This framework allows to fit complex dis-
tributions without computing the determinant of (6) which
is O(N3). The price to pay is the numerical integration of
the ODE.

Equation (8) also stresses that divergence-free flows sat-
isfying div(fΦ) = 0 would even simplify the computation
of likelihoods to the evaluation of the likelihoods in the la-
tent space. We explore this avenue in this work and show it
also leads to an analytical derivation of the differential Shan-
non entropy for image variable v. While the parameteriza-
tion of divergent-free flows is relatively straightforward for
2D and 3D processes using Helmoltz decomposition of ve-
locity fields, we also address higher-dimensional processes.
We may also point out that divergent-free flows also relate to



some extent to Halmitonian flows. This class of flows is gov-
erned by some underlying energy functions. Recent explo-
ration of trainable Halmitonian flows (Greydanus, Dzamba,
and Yosinski 2019; Sanchez-Gonzalez et al. 2019) for the
data-driven discovery of dynamical systems emphasize the
relevance of constrained neural ODE schemes to regularize
learning problems.

Divergence-free continuous normalizing flow
Here, we focus on a particular class of continuous nor-
malizing flow by enforcing a divergence-free constraint on
the CNF. This constraint relates to an incompressibility
or volume-preserving constraint on the vector fields de-
fined by the CNF. We show that the proposed divergence-
free CNF allows us to derive an analytical computation
of information-theoretic quantities such as the differential
Shannon entropy. Formally, let us consider the following
CNF:

u(0) ∼ N (µ, σ2)

∂u(t)

∂t
= fΦ(u(t)) s.t. div [fΦ (u(t))] = 0

(9)

Early litterature on normalizing flow already investigated
the use of volume preserving flow (Dinh, Krueger, and Ben-
gio 2014) with additive transformation whose triangular ma-
trix is triangular making the computation of its determinant
trivial. the proposed approach allows the computation of
more complex flows.

Parameterization of divergence-free flows The con-
struction of the particular class of divergence-free normal-
izing flow presented here rely on the ability to represent
divergent-free functions. Let us introduce the following pa-
rameterization:

fΦ = A.∇Ψ (10)
where A is an antisymmetric linear operator satisfying
AT = −A and Ψ a learnable scalar function. Overall, pa-
rameters Φ combine the parameterization of matrix A and of
scalar function Ψ. As detailed below, functions of the form
are divergent free. For a more intuitive physical interpreta-

tion of the presented approach, we adopt a graph represen-
tation of the function described above.

Graph representation of divergence-free flows: For any
point of Rn, any governing ODE x′(t) = f(x(t)) is de-
scribed by a graph (V,E) and a potential function Ψ. For
any edge (xi, xj) ∈ E, we associate the stream function de-
fined as

Sij(x) = [0, ...,−∂Ψ(x)

∂xj
, 0, ..,

∂Ψ(x)

∂xi
, 0, ...0] (11)

whose i− th component equals −∂Ψ(x)
∂xj

and j − th compo-

nent equals ∂Ψ(x)
∂xi

. For each (xi, xj) ∈ E we then associate
a weight wij , the dynamical model f is stated as :

f(x) :=
∑

(i,j)∈E

wijSij(x) (12)

Figure 1: An example of graph (V,E) with two components
: nodes represents the data features, edges their connection
through the existence of a function Sij described below. In
terms of physical interpretation the existence of an edge ij
authorize the learned model to advect the measure in the plan
of R2 corresponding to features xi, xj

The graph (V,E) describes the coupling between data
features which in turn relates to ODE x′(t) = f(x(t)). The
following lemma state that f can be split onto independent
dynamic corresponding to components of (V,E) which are
divergent-free:

Lemma 1. Let assume that the graph (V,E) is composed of
N components (Vn, En). Then the equation x′(t) = f(x(t))
can be split into N coupled non-autonomous equations
x′
n(t) = Fn(x(t)) with Fn verifying :

Tr(∇Xk
Fk(x)) = 0 (13)

As a corollary, we retrieve the expected divergent-free
feature for the considered parameterization.

Corollary 2. The function f described in (Eq.11) is
divergent-free i.e :

div(f) = 0 (14)

From this property, we can derive the volume-preserving
property of the considered CNF:

Lemma 3. Let f be a C1(Rn,Rn) function. Then, for any
t ∈ R+, the semi-group Γ(t) of solutions of the ODE :
x′(t) = fΦ(x(t)) is volume preserving i.e :

|JΓ(t)(x)| = 1 (15)

for any x ∈ Rn where JΓ denotes the jacobian of flow Γ.

Robustness to mode collapse: Training continuous nor-
malizing flows under the maximum likelihood framework
may be subject to generate probability density function with
singularities. Let think about a dynamical system f for
which each training point xi is attractive. This would re-
sult in the negative likelihood function going to +∞. From
a dynamical system perspective, a point xi is attractive if
f(xi) = 0 and if the eigenvalues of the linearized system
have negative real-part eigenvalues. As stated by the follow-
ing theorem, the considered CNF has no attractive points,
which in turn should prevent from mode collapse issues.

Theorem 4 (Robustness to mode collapse). Let x ∈ Rn

be a zero of the divergent-free function described above i.e
fΦ(x) = 0. Then the eigenvalues of Df(x) have zero real
parts.



Derivation of information-theoretic quantities
We further exploit the key features of the proposed CNF
to derive information-theoretic quantities. More specifically,
the flow defined by (Eq. 9) preserves the differential Shan-
non entropy as a direct by-product of the divergence-free
constraint.

Lemma 5. Let be q a C1(Rn,R) scalar function, and Q
the scalar quantity defined as :

Q(p) =

∫
Rn

q(p(x))dx (16)

If Φ ∈ Diff(Rn) denotes a diffeomorphism of Rn which
satisfies |JΦ(x)| = 1. Then, the push-forward density p̃ :=
p#Φ verifies

Q(p) = Q(p̃) (17)

In particular, p and p̃ have same differential Shannon en-
tropy.

As the divergence-free constraint implies the volume-
preserving property, the later applies to the proposed CNF
to derive information-theoretic quantities. More specifi-
cally, the flow defined by (Eq.9). A direct consequence
of this lemma is that the differential Shannon entropy
of any push-forward density image according to (Eq.9)
is solely determined by the entropy of initial distribution
N (µ, σ2) given by H = 1

2 ln{(2πe)
ddet(σ2)}. As such, it

avoids computationally-expensive computation required by
classical Monte-Carlo methods which integrates the high-
dimensional ODE for each sample.

Figure 2: Samples generated from a diagonal gaussian after
2 days of training : The divergence-free flow was limited to
a 8-neighbours graph structure, it fail to generate realistic
samples, however we discuss in appendix of way to improve
the expressiveness of the presented approach.

Learning framework
Given an arbitrary algorithms µ(.) which delivers a recon-
struction of state X from partial observations Y , we address
the characterization of the reconstruction error using a neu-
ral implementation of the proposed divergence-free CNF.
The proposed implementation relies on CNN architectures
satisfying the divergent-free constraints presented above. As
stated in (Eq.11), our model relies on learning a CNN pa-
rameterization for potential Ψ and a linear antisymmetric
transformation. We first describe the latter. We then intro-
duce the resulting end-to-end neural architectures and the
associated training setting.

The antisymmetric transformation layer: In order to
apply the proposed framework to high-dimensional n-
dimensional space, we propose to implement a translation-
invariant antisymmetric transformation in a CNN-fashion.

Figure 4: Given an arbitrary denoising algorithms µ, the pro-
posed neural network architecture aim to learn the density
function p associated to the reconstruction error ε : first a
CNN neural network Θ (green) extract both features θ and
log-variance ln(σ) of an initial gaussian distribution, then
a divergence-free flow parametrized by θ advect the gaus-
sian distribution using an ODE solver (red) to match the re-
construction error distribution ε in the sense of maximum-
likelihood estimation.

This can simply be done using convolutional transform and
applying a antisymmetric operator to the channel dimension.

as described in Figure 3.

Figure 3: For 1-channel image, the antisymmetric transform
layer consist in 3-step. Step 1 : a fixed convolution layer is
applied to an input, which are stacked onto 4 channels. Step
2 : a antisymmetric operator is applied over the channel. Step
3 : the inverse of operation performed in step 1.

Neural architecture : overall, the considered neural ar-
chitecture for the modeling and characterization of the pos-
terior p(X|y) is sketched in Fig.4. The considered neural
architecture involves two main components:

• A first neural network Θ which takes as inputs the obser-
vation Y and the reconstructed state µ(X) and outputs
the initial condition of the flow. It combines a prediction
of the the covariance of the initial Gaussian distribution
N (µ, σ2) (we consider a diagonal coavariance param-
eterization); z0: an augmented component used by the
neural integrator to better advect the initial gaussian den-
sity. We may recall that the estimation of the mean µ(x)
is given by an arbitrary denoising algorithm µ.

• The second neural network consists in a Runge-Kutta
integration scheme ofof the considered divergent-free



neural flow fΦ applied to initial condition u(0) =
(ε(X), z0). For the numerical integration, we make use
of the open source library torchdiffeq provided by the au-
thors of (Chen et al. 2018).

Training setting :
Given the considered neural architecture, we train the pro-
posed divergence-free CNF using a MLE criterion (Eq.??)
as considered in (Chen et al. 2018; Grathwohl et al. 2018):

L(θ) =
∑

ln(|σ|) + (zi − µ(x̂))tσ−1(zi − µ(x̂)) (18)

with zi := Φ(−t)(yi,Θ(x̂)) the output of the flow integrated
backward in time. We also perform training of a gaussian
model with full covariance for benchmarking purpose.

All experiments were run using pytorch. The training pro-
cedure is performed by gradient descent using Adam algo-
rithm over 150 epoch. As mentioned above, the neural solver
for ODE is the pytorch implementation of (Chen et al. 2018).

Numerical experiments
This section reports numerical experiments for the proposed
approach. We first assess divergence-free CNF for genera-
tive modelling tasks before considering applications to in-
verse problems and uncertainty quantification.

Benchmarking for generative modeling tasks : We
perform density estimation tasks using the benchmark-
ing framework proposed in (Papamakarios, Pavlakou, and
Murray 2017). The reported quantitative comparison in-
volves state-of-the-art normalizing flow approaches, namely
the masked autoregressive flows (MAF) (Papamakarios,
Pavlakou, and Murray 2017), the masked autoencoder for
distribution estimation (MADE) from (Germain et al. 2015)
and the continuous normalizing flow.

method POWER GAS HEPMASS MNIST
Gaussian -7.74 -3.58 -27.93 -1366
MADE -3.08 3.56 -20.98 -1380

FFJORD -0.46 8.59 -14.92 NA∗

MAF 0.14 9.07 -17.7 -1300
VPCNF (ours) -1.96 6.32 -20.13 -1176

Table 1: Caption : performances in terms of likelihood over
the test set (higher is better).∗ : authors provides results in
terms of bits per dim

All schemes are evaluated in terms of log-likelihood of
the test set. We report state-of-the-art performance, better
than MADE (Germain et al. 2015), with a clear improve-
ment compared with the Gaussian baseline. Given that the
proposed scheme can be regarded as a constrained version
of (Grathwohl et al. 2018), we do not expect to outperform
(Grathwohl et al. 2018) in general. Sampled examples illus-
trated in Fig.2 for MNIST dataset may in this respect point
out that we may increase the complexity of the our imple-
mentation to sample more realistic examples. We may how-
ever stress that the considered parameterization was primar-
ily considered here for an application to unvertainty quan-
tification as illustrated below.

Reconstruction of Lorenz-63 dynamics

We illustrate the relevance of the proposed framework for
uncertainty quantification in inverse problems with dynam-
ical systems. As toy model, we consider Lorenz-63 system
which involve chaotic dynamics:

x′
1(t) = σ(x2 − x1)

x′
2(t) = x1(ρ− x3)− x2

x′
3(t) = x1x2 − βx3

(19)

We asses the ability to estimate the conditional probabil-
ity p(xT |y1:T ) of the state xT given all previous noisy
observations Y1:T−1. We state the observational model as
H(x1, x2, x3) = x1 + x2. Given a time series of noisy ob-
servations, a LSTM (µ) is trained to reconstruct the true
state while an other LSTM (Θ) is trained to estimate the
parameters of the flow : In (de Bezenac Emmanuel 2020)
authors propose the same framework for filtering, the esti-
mation of the conditional distribution was performed using
realNVP (Dinh, Sohl-Dickstein, and Bengio 2016). We re-
port results in Table 2 where we compare the learned model
with a Gaussian baseline. They clearly point out that the
proposed scheme outperforms a Gaussian approximation for
the posterior, which is the classically considered including
in learning-based variational Bayesian scheme (Kingma and
Welling 2013). Figure 7 further reveals the non-Gaussian
features of the posterior when the state is close to the bi-
furcation zone from one lobe to another one of Lorenz-63’s
attractor. This Figure plots samples of the inferred posterior
p(XT |Y1:T ) for different values of T for a true state close to
the bifurcation zone. As expected, the more observations,
i.e. T being larger, the lower the spread of the samples,
which indicates a lower uncertainty. Figure 5 further illus-
trates this global pattern through the comparison of the in-
ferred Shannon entropy averaged over the test set compared
with the mean square error of the reconstruction. We may
recall that we cannot derive analytically the true posterior,
nor true Shannon entropy for Lorenz-63 dynamics. We fur-
ther illustrate the relevance of the proposed derivation of the
Shannon entropy of the posterior in Figure 6. The inferred
entropy alongside the attractor of the Lorenz 63 nicely em-
phasizes that the reconstruction uncertainty is larger when
getting closer to the bifurcation zone.

prior T = 1 T = 3 T = 5 T = 7 T = 12
gaussian -0.47 2.27 3.34 4.22 4.34
VPCNF 0.43 3.35 4.39 4.67 4.98

Table 2: Reconstruction performance in terms of conditional
log-likelihood over the test set for Lorenz-63 case-study: we
compare the proposed approach to a Gaussian baseline. We
refer the reader to the main text for the experimental setting.



Figure 5: Evolution of the mean differential Shannon en-
tropy associated to the inferered posterior p(XT |Y1::T ) with
respect to time horizon T for Lorenz-63 case-study (red).
For comparison purposes, we consider the evolution of the
mean square error (MSE) of the reconstruction of the true
state (blue).

Figure 7: Left : true and inferred Lorenz-63 states and states,
right : sampling of 1000 points of the inferred posterior
p(xT |y1:T ) for different value of T. It clearly illustrates the
ability of the proposed framework to address non-Gaussian
features.

Figure 6: Differential entropy of the estimated distribution
p(ε|y1) over the test dataset :As expected, the entropy of the
estimated density is higher over the middle region where it
is hard to predict in which part of the attractor the true state
lies due to the chaotic nature of the governing equations.

MNIST case-study : We consider an inpainting applica-
tion for MNIST dataset and aims at assessing how the obser-
vation patterns impact the reconstruction performance. We
set two observation configurations with the same number of
observed pixels set to d = 81: the first configuration involves
regularly-sampled pixels in both horizontal and vertical di-
rections, the second configuration samples pixels regularly-
spaced along the horizontal axis and randomly along the ver-

tical axis. We also add a gaussian white noise to the data to
ensure that the reconstruction error does not lie in an area
with zero Lebesgue measure. We trained two neural net-
work µ1, µ2 on the image space to perform the reconstruc-
tion from the gappy observations. For each reconstruction
network, we train a divergence-free CNF to model the re-
construction posterior and evaluate the associated Shannon
entropy. We reduce train and test sets to digits from 7 to
9 in order to reduce training time and power consumption
of the experience. We perform training over 600 epoch us-
ing Adam algorithm and stop each models after 36 hours
of training, no improvement over the training set were ob-
served. We report in Fig. 8 examples of the random sapling
patterns, of mean reconstruction and samples from the in-
ferred posterior for the randomly-sampled observations. We
report in Fig.9 the distributions of reconstruction error of the
inferred Shannon entropy for the two observation configura-
tions. The random sampling configuration leads on average
to smaller reconstruction errors, our model infers more sim-
ilar distribution of reconstruction uncertainty, with even a
greater uncertainty for the iregular sampling configuration.
This is in line with compressive sampling results. While
random sampling strategies improve almost surely the re-
construction performance compared with a regularly-spaced
sampling, it may also lead to reconstruction outliers, which
in turn results in heavier-tail for the posterior distribution.
We interpret the results reported in Fig.9 as an illustration
of the proposed scheme to capture differences in the non-
Gaussian tails of the posterior through the inferred Shannon
entropy.

Figure 8: left : masked input y, center : estimated reconstruc-
tion µ(y), right : a data sample s generated using the learned
distribution ε̂ by the additive relation s = µ(y) + ε̂

Conclusion
We introduce a class of divergence-free continuous normal-
izing flows with a specific interest in uncertainty quantifi-
cation for inverse problems. Being associated with volume-
preserving features, these flows lead to an analytical deriva-
tion of information-theoretic quantities for the inferred
posterior, especially the conditional Shannon entropy. As
such, it extends mathematical results on the estimation of
the differential Shannon entropy of complex distributions
such as Gaussian mixture to a wider class of probabil-
ity density function. Numerical experiments support state-
of-the-performance for generative modelling tasks com-
pared to classic normalizing flows. The proposed frame-
work opens new avenues for using Shannon entropy crite-
rions for uncertainty quantification and inverse problems,
especially regarding the comparison of observing systems
or sensor placement problems. Beyond such applications
for real-world systems, future work may further investigate



Figure 9: top : Histograms of the reconstruction error over
the test set for the two different scenarios (blue : random
samplings, orange : uniform samplings), bottom : Histogram
of the differential entropy of the estimated reconstruction er-
ror distribution.

how volume-preserving transformations and the underlying
graph structure of the dynamical system affects the learning
process.

Appendix
proof of lemma 1 Suppose the graph (V,E) is composed
of N components (Vn, En) : then the equation x′(t) =
f(x(t)) can be split onto N coupled non-autonomous equa-
tions x′

n(t) = Fn(x(t)) with Fn verifying :

Tr(∇Xk
Fk(x)) = 0 (20)

Proof. Without loss a generality, we suppose x =
[X1, X2, ..., XN ] and f = [F1, ..., FN ].

Tr(∇Xn
Fn(x)) =

∑
k∈Vn

∂fk
∂xk∑

k∈Vn

(
∑

(ij)∈En

wij

∂Sij(x)k

∂xk
)

∑
(ij)∈En

wij

∑
k∈Vn

∂Sij(x)k

∂xk∑
(ij)∈En

wij(
∑
k ̸=i,j

0 +
∂Sij(x)i

∂xi
+

∂Sij(x)j

∂xj
)

=
∑
k∈Vn

∑
k ̸=i,j

0 +
−∂2Ψ(x)

∂2xixj
+

∂2Ψ(x)

∂2xjxi

= 0

(21)

The last line follow from the Cauchy Lemma

Proof of lemma 4:
Proof. if we denote as z = Φ(x), the change of vari-
able formula states that p̃(z), the image density is given by
p̃(z) = p(x)

|JΦ(x)|

Q(p̃) =

∫
q(p̃(z))dz =

∫
q(

p(x)

|JΦ(x)|
)|JΦ(x)|dz (22)

It follows from dz = |JΦ(x)|dx and |JΦ(x)| = 1 that :

Q(p̃) =

∫
q(p̃(z)dz =

∫
q(p(x))dx = Q(p) (23)

Thus, the differential Shanon entropy H(p̃) of an image
density associed to a measure-preserving flow is invariant.
It is entierly determined by the initial density p and ca be
computed analytically if H(p) does.

Proof of theorem 4:

Proof. if f = A.∇Ψ, then Df(x) = A.∇2Ψ which is anti-
symetric as the matricial product between the antisymmetric
matrix A and the symmetric hessian matrix ∇2Ψ(x). Thus
its eigenvalues have zero real part.

limitations of the proposed approach
Given a divergent free flow F and a familly P0 of initial
probability density, It may arise that the presented frame-
work here still lack of expressiveness in order to fit an ar-
bitrary density probability f . For example, the set of 1-
dimensional divergent free flow contains only the transla-
tions. Here we discuss about two ways to overcome this is-
sue :

Graph structure and data representation : All expe-
rience performed in this paper (except for the Lorenz-96)
make use of the same 8-neighbours graph-structure as de-
scribed in figure 10. Because it remains fixed during the
training, this may limit the performances of the proposed
framework for density estimation tasks. In future works we
may investigate the optimization of this graph and consider
different representation of the input. In (Voleti et al. 2021)
authors provides an interesting multi-scale representation
using volume preserving transformations.

Figure 10: 8-Neighbours graph-structure with n×m vertices
used in numerical experiments presented above. It have a
number of edges #E = 4nm− 3(n+m) + 2.



Augmented state Given a set of examples xi ∈ Rn, we
can construct an a set of augmented variable x̃i := [xi, εi]
with εi ∼ N (0, σI) and apply the above mentioned frame-
work This may help to match an arbitrary distribution f with
the marginal density of the learned probability density. The
price to pay is that the Shanon entropy of the marginal den-
sity of f is no more given by the initial density, we can only
compute a lower bound given the inequality :

H(X,Y ) ≤ H(X) +H(Y ) (24)

Extend the set P0 In this work we only considered diag-
onal gaussian distributions as set P0 of initial density func-
tion, the action of volume preserving on this set results in a
non-universal approximator. However, it extends any math-
ematical results on estimation of the differential Shanon en-
tropy of any initial set P .
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