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Divergence-free continuous normalizing flows for uncertainty quantification

Uncertainty quantification in ill-posed inverse problems is a critical issue in a variety of scientific domains, including among others signal processing, imaging science, geoscience, remote sensing.... This has led to a variety of approaches, especially using Bayesian schemes such as Kalman methods, particle filtering schemes and variational Bayesian inference. Dealing with non-linear and non-Gaussian processes remain however a challenge, especially when considering high-dimensional systems. Recently, normalizing flows using deep neural networks have emerged as a very powerful tool to train generative models, which can sample realistic states, while making feasible the computation of the likelihood function. Their exploitation for uncertainty quantification in terms of differential Shannon entropy however requires the use Monte Carlo methods whose computational cost can be prohibitive, especially for high-dimensional systems such as time, space and space-time processes. Here, we introduce a new class of continuous normalizing flows with a divergence-free constraint for the underlying governing ordinary differential equations. This divergence-free constraint results in the preservation of the differential Shannon entropy through the trained flows. We demonstrate the relevance of the proposed framework to reach state-of-the-art performance for generative modeling tasks. We also illustrate applications to uncertainty quantification for the reconstruction of 1D and 2D states from partial observations. We discuss further our main contributions and applications to real-world case-studies.

Introduction

The reconstruction of hidden states from partial and/or noisy observations, referred to as inverse problems, are key challenges in numerous domains such as signal processing, computational imaging, medical imaging, remote sensing, geoscience,..... Model-driven schemes have long been the stateof-the-art methods, especially when dealing with physical states [START_REF] Evensen | Data Assimilation[END_REF]. They state the inverse problem as the minimization problem with two terms, a data-fidelity or observation term J and a re regularization term R:

X = arg min X J(X, Y ) + R(Y ) (1) 
with Y the observation and X the state to be reconstructed.

The observation terms involves the definition of the forward observation model to relate X and Y . Regularization term states some prior on considered problem. For example when dealing with physics-driven dynamical systems, prior R is stated as R(.) := T k=1 ∥M(x k-1 ) -x k ∥ where M denotes a forecast operator associated to a physical equations [START_REF] Courtier | Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. Ii: Numerical Results[END_REF]. Recently, data-driven and deep learning methods have arised as relevant alternatives to address inverse problems. While deep learning approaches lead to the state-of-art-performance for inverse problems [START_REF] Dong | Learning a deep convolutional network for image super-resolution[END_REF], [START_REF] Minaee | Image segmentation using deep learning: A survey[END_REF] [START_REF] Xie | Image Denoising and Inpainting with Deep Neural Networks[END_REF] [START_REF] Yu | Generative image inpainting with contextual attention[END_REF], they also compete with model-driven schemes for the reconstruction and forecasting of geophysical systems [START_REF] Fablet | Learning Variational Data Assimilation Models and Solvers[END_REF][START_REF] Nonnenmacher | Deep Emulators for Differentiation, Forecasting, and Parametrization in Earth Science Simulators[END_REF].

These method are generally trained by gradient descent to minimize a given reconstruction cost.

θ * = arg min E(d(µ θ (Y ), X))

(2) it is known [START_REF] Bishop | Pattern recognition and machine learning[END_REF]) that when 2 is treated as a regression problem with least square estimation, a minimizer of 2 is given by the expectation of the conditional density p(X|Y ). The estimation of p(X|Y ) is of a key importance for in order to transpose many applications of a Data assimilation task in a stochastic perspective : One would like to take decision on the basis of a risk minimization for a wide range of applications instead of taking a decision relying only on the estimated mean µ θ . Furthermore, the knowledge of the probability density p(.|Y ) allows the computation of information theoretic related quantities such as the differential entropy : this quantities extends the classical Shannon entropy [START_REF] Shannon | The Mathematical Theory of Communication[END_REF] to continuous variable. For a random variable X with associated density function p, the differential entropy of X is defined by:

H(X) := E p [-log(p(x))] = - Ω p(x)log(p(x)).dx (3)
It can be understood as a measure of uncertainty : a random variable with high concentration of the measure would trend to have low entropy. One can give two examples for 1d variables : dirac distributions δ (no uncertainty) for which

H(δ) = -∞ or uniform distribution U on Ω = [a, b],
which corresponds to a case of maximal uncertainty verifies H(U ) = ln(b -a) → +∞ if |b -a| → +∞. and is of a key importance for applications such as sensor placement [START_REF] Yin | Entropy-based optimal sensor placement for model identification of periodic structures endowed with bolted joints[END_REF], However for an arbitrary distribution f , the computation of the differential Shannon entropy relies on Monte Carlo methods [START_REF] James | Monte Carlo theory and practice[END_REF] whose computational cost may be prohibitive for real-world processes.Thus derivation of approximation method of the differential entropy is an active area of researches [START_REF] Huber | On entropy approximation for Gaussian mixture random vectors[END_REF][START_REF] Hyvärinen | New approximations of differential entropy for independent component analysis and projection pursuit[END_REF][START_REF] Ao | Entropy estimation via normalizing flow[END_REF].

Here, we address uncertainty quantification according to the differential Shannon entropy in inverse problems, while keeping analytical an computation of the differential Shannon entropy to overcome the shortcomings of Monte-Carlo schemes for high-dimensional systems. We state the proposed framework as the learning constrained continuous normalizing flows [START_REF] Chen | Neural ordinary differential equations[END_REF]. Our main contributions are as follows:

• We introduce a novel class of divergence-free continuous normalizing flows. We show that the divergence-free constraint guarantees the preservation of informationtheoretic quantities such as the differential Shannon entropy. • We present a neural implementation of the proposed scheme with an explicit divergence-preserving parameterization of the neural architecture. • We asses the performance of the proposed scheme for generative modeling tasks with respect to state-of-the-art schemes and for application to uncertainty quantification in inverse problems.

This paper is organized as follows. Section 2 introduces the background and related work. We present for the proposed divergence-free continuous normalizing flows in Section 3. Section 4 introduces the resulting neural architecture and associated learning scheme. We report numerical experiments in Section 5 and further discuss our main contributions in Section 6. We include Proofs in Appendix.

Background and related work

Inverse problem and uncertainty quantification:

As stated in the introduction, we address uncertainty quantification issues in inverse problems. Let us assume that we are provided with a reconstruction scheme µ(Y ) for state X given partial observation Y . As mentioned above, we may consider both model-driven and learning-based schemes for the design of µ(•). Let ε(X) be the reconstruction error:

ε(X) := Y -µ(X) (4) 
We aim at characterizing the density function p(.|y) associated to the reconstruction error ε p(.|y) and it's associated differential Shannon entropy. When considering Gaussian approximations for posterior p(x|y), one can derive analytically this quantity. It is however widely acknowledged that this approximation does not apply to most real-world processes which involve non-Gaussian statistics [START_REF] Evensen | Data Assimilation[END_REF]. State-of-the-art schemes also exploit Monte Carlo methods when one can sample posterior p(x|y) and compute log-likelihood log(p(ε(Y ))) The latter opens the floor to the exploitation of learning-based generative models such as normalizing flows [START_REF] Rezende | Variational inference with normalizing flows[END_REF].

Learning-based inference and normalizing flows:

From a probabilistic viewpoint, the maximum likelihood estimation (MLE) is the classic formulation for inference of probabilistic models. Given a parametric family of distributions according to parameter set Θ, we aim at identifying parameters θ * which maximize the likelihood of the reconstruction error ε(Y ) conditionnally to observation Y . This leads to the following minimization issue:

θ * = arg max θ∈Θ N i=1 log(p(x i -µ(y i )|y i , θ)) (5) 
Deep learning has recently widened the class of parameteric probabilistic models one can consider in MLE framework through the introduction of normalizing flows. Normalizing flows [START_REF] Rezende | Variational inference with normalizing flows[END_REF][START_REF] Kobyzev | Normalizing flows: An introduction and review of current methods[END_REF]) make use of the formulas the change of variables to extend the MLE framework beyond classic parametric probabilistic families. Given a latent random variable u of density p, the density p of the image v = f Φ (u) is given by:

p(v) = 1 |Jf Φ (u)| p(u) (6) 
where Jf Φ (u) denotes the Jacobian matrix of f Φ evaluated at point u. Given a parameterization of the likelihood of the latent variable, usually as a Gaussian distribution, normalizing flows then come to design mapping operator f Φ so that one can compute the determinant of its Jacobian. Among normalizing flow approaches, continuous normalizing flows (CNF) [START_REF] Chen | Neural ordinary differential equations[END_REF] states mapping operator F Φ as a flow operator governed by an ordinary differential equation:

∂u(t) ∂t = f Φ (u(t)) (7) 
Under this parameterization, the resulting mapping for likelihood values involve the divergence of the flow:

∂log(p(u(t)) ∂t = -T r ∂f Φ (u(t)) ∂u(t) = div (f Φ ) (8) 
This equation relates to a Lagrangian point of view of Liouville equations which describe the infinitesimal evolution of the log-density by a flow governed by the ODE ∂u ∂t = f Φ (u(t)). This framework allows to fit complex distributions without computing the determinant of ( 6) which is O(N 3 ). The price to pay is the numerical integration of the ODE.

Equation ( 8) also stresses that divergence-free flows satisfying div(f Φ ) = 0 would even simplify the computation of likelihoods to the evaluation of the likelihoods in the latent space. We explore this avenue in this work and show it also leads to an analytical derivation of the differential Shannon entropy for image variable v. While the parameterization of divergent-free flows is relatively straightforward for 2D and 3D processes using Helmoltz decomposition of velocity fields, we also address higher-dimensional processes. We may also point out that divergent-free flows also relate to some extent to Halmitonian flows. This class of flows is governed by some underlying energy functions. Recent exploration of trainable Halmitonian flows [START_REF] Greydanus | Hamiltonian neural networks[END_REF][START_REF] Sanchez-Gonzalez | Hamiltonian graph networks with ode integrators[END_REF] for the data-driven discovery of dynamical systems emphasize the relevance of constrained neural ODE schemes to regularize learning problems.

Divergence-free continuous normalizing flow

Here, we focus on a particular class of continuous normalizing flow by enforcing a divergence-free constraint on the CNF. This constraint relates to an incompressibility or volume-preserving constraint on the vector fields defined by the CNF. We show that the proposed divergencefree CNF allows us to derive an analytical computation of information-theoretic quantities such as the differential Shannon entropy. Formally, let us consider the following CNF:

     u(0) ∼ N (µ, σ 2 ) ∂u(t) ∂t = f Φ (u(t)) s.t. div [f Φ (u(t))] = 0 (9)
Early litterature on normalizing flow already investigated the use of volume preserving flow [START_REF] Dinh | Nice: Nonlinear independent components estimation[END_REF] with additive transformation whose triangular matrix is triangular making the computation of its determinant trivial. the proposed approach allows the computation of more complex flows.

Parameterization of divergence-free flows The construction of the particular class of divergence-free normalizing flow presented here rely on the ability to represent divergent-free functions. Let us introduce the following parameterization:

f Φ = A.∇Ψ (10) where A is an antisymmetric linear operator satisfying A T = -A and Ψ a learnable scalar function. Overall, parameters Φ combine the parameterization of matrix A and of scalar function Ψ. As detailed below, functions of the form are divergent free. For a more intuitive physical interpretation of the presented approach, we adopt a graph representation of the function described above.

Graph representation of divergence-free flows: For any point of R n , any governing ODE x ′ (t) = f (x(t)) is described by a graph (V, E) and a potential function Ψ. For any edge (x i , x j ) ∈ E, we associate the stream function defined as

S ij (x) = [0, ..., - ∂Ψ(x) ∂x j , 0, .., ∂Ψ(x) ∂x i , 0, ...0] (11) 
whose i -th component equals -∂Ψ(x) ∂xj and j -th component equals ∂Ψ(x) ∂xi . For each (x i , x j ) ∈ E we then associate a weight w ij , the dynamical model f is stated as : The graph (V, E) describes the coupling between data features which in turn relates to ODE x ′ (t) = f (x(t)). The following lemma state that f can be split onto independent dynamic corresponding to components of (V, E) which are divergent-free:

f (x) := (i,j)∈E w ij S ij (x) (12) 
Lemma 1. Let assume that the graph (V, E) is composed of N components (V n , E n ). Then the equation x ′ (t) = f (x(t)) can be split into N coupled non-autonomous equations x ′ n (t) = F n (x(t)) with F n verifying : T r(∇ X k F k (x)) = 0 (13) 
As a corollary, we retrieve the expected divergent-free feature for the considered parameterization. Corollary 2. The function f described in (Eq.11) is divergent-free i.e : div(f ) = 0 (14)

From this property, we can derive the volume-preserving property of the considered CNF: Lemma 3. Let f be a C 1 (R n , R n ) function. Then, for any t ∈ R + , the semi-group Γ(t) of solutions of the ODE :

x ′ (t) = f Φ (x(t)) is volume preserving i.e : |JΓ(t)(x)| = 1 (15)
for any x ∈ R n where JΓ denotes the jacobian of flow Γ.

Robustness to mode collapse:

Training continuous normalizing flows under the maximum likelihood framework may be subject to generate probability density function with singularities. Let think about a dynamical system f for which each training point x i is attractive. This would result in the negative likelihood function going to +∞. From a dynamical system perspective, a point x i is attractive if f (x i ) = 0 and if the eigenvalues of the linearized system have negative real-part eigenvalues. As stated by the following theorem, the considered CNF has no attractive points, which in turn should prevent from mode collapse issues.

Theorem 4 (Robustness to mode collapse). Let x ∈ R n be a zero of the divergent-free function described above i.e f Φ(x) = 0. Then the eigenvalues of Df (x) have zero real parts.

Derivation of information-theoretic quantities

We further exploit the key features of the proposed CNF to derive information-theoretic quantities. More specifically, the flow defined by (Eq. 9) preserves the differential Shannon entropy as a direct by-product of the divergence-free constraint.

Lemma 5. Let be q a C 1 (R n , R) scalar function, and Q the scalar quantity defined as :

Q(p) = R n q(p(x))dx (16) If Φ ∈ Dif f (R n ) denotes a diffeomorphism of R n which satisfies |JΦ(x)| = 1.
Then, the push-forward density p := p#Φ verifies

Q(p) = Q(p) (17) 
In particular, p and p have same differential Shannon entropy.

As the divergence-free constraint implies the volumepreserving property, the later applies to the proposed CNF to derive information-theoretic quantities. More specifically, the flow defined by (Eq.9). A direct consequence of this lemma is that the differential Shannon entropy of any push-forward density image according to (Eq.9) is solely determined by the entropy of initial distribution N (µ, σ 2 ) given by H = 1 2 ln{(2πe) d det(σ 2 )}. As such, it avoids computationally-expensive computation required by classical Monte-Carlo methods which integrates the highdimensional ODE for each sample.

Figure 2: Samples generated from a diagonal gaussian after 2 days of training : The divergence-free flow was limited to a 8-neighbours graph structure, it fail to generate realistic samples, however we discuss in appendix of way to improve the expressiveness of the presented approach.

Learning framework

Given an arbitrary algorithms µ(.) which delivers a reconstruction of state X from partial observations Y , we address the characterization of the reconstruction error using a neural implementation of the proposed divergence-free CNF. The proposed implementation relies on CNN architectures satisfying the divergent-free constraints presented above. As stated in (Eq.11), our model relies on learning a CNN parameterization for potential Ψ and a linear antisymmetric transformation. We first describe the latter. We then introduce the resulting end-to-end neural architectures and the associated training setting.

The antisymmetric transformation layer: In order to apply the proposed framework to high-dimensional ndimensional space, we propose to implement a translationinvariant antisymmetric transformation in a CNN-fashion. This can simply be done using convolutional transform and applying a antisymmetric operator to the channel dimension.

as described in Figure 3.

Figure 3: For 1-channel image, the antisymmetric transform layer consist in 3-step.

Step 1 : a fixed convolution layer is applied to an input, which are stacked onto 4 channels.

Step 2 : a antisymmetric operator is applied over the channel.

Step 3 : the inverse of operation performed in step 1.

Neural architecture : overall, the considered neural architecture for the modeling and characterization of the posterior p(X|y) is sketched in Fig. 4. The considered neural architecture involves two main components:

• A first neural network Θ which takes as inputs the observation Y and the reconstructed state µ(X) and outputs the initial condition of the flow. It combines a prediction of the the covariance of the initial Gaussian distribution N (µ, σ 2 ) (we consider a diagonal coavariance parameterization); z 0 : an augmented component used by the neural integrator to better advect the initial gaussian density. We may recall that the estimation of the mean µ(x) is given by an arbitrary denoising algorithm µ. • The second neural network consists in a Runge-Kutta integration scheme ofof the considered divergent-free neural flow f Φ applied to initial condition u(0) = (ε(X), z 0 ). For the numerical integration, we make use of the open source library torchdiffeq provided by the authors of [START_REF] Chen | Neural ordinary differential equations[END_REF].

Training setting :

Given the considered neural architecture, we train the proposed divergence-free CNF using a MLE criterion (Eq.??) as considered in [START_REF] Chen | Neural ordinary differential equations[END_REF][START_REF] Grathwohl | Ffjord: Free-form continuous dynamics for scalable reversible generative models[END_REF]:

L(θ) = ln(|σ|) + (z i -µ(x)) t σ -1 (z i -µ(x)) (18)
with z i := Φ(-t)(y i , Θ(x)) the output of the flow integrated backward in time. We also perform training of a gaussian model with full covariance for benchmarking purpose.

All experiments were run using pytorch. The training procedure is performed by gradient descent using Adam algorithm over 150 epoch. As mentioned above, the neural solver for ODE is the pytorch implementation of [START_REF] Chen | Neural ordinary differential equations[END_REF].

Numerical experiments

This section reports numerical experiments for the proposed approach. We first assess divergence-free CNF for generative modelling tasks before considering applications to inverse problems and uncertainty quantification.

Benchmarking for generative modeling tasks : We perform density estimation tasks using the benchmarking framework proposed in [START_REF] Papamakarios | Masked autoregressive flow for density estimation[END_REF]. The reported quantitative comparison involves state-of-the-art normalizing flow approaches, namely the masked autoregressive flows (MAF) [START_REF] Papamakarios | Masked autoregressive flow for density estimation[END_REF], the masked autoencoder for distribution estimation (MADE) from [START_REF] Germain | Made: Masked autoencoder for distribution estimation[END_REF] and the continuous normalizing flow. All schemes are evaluated in terms of log-likelihood of the test set. We report state-of-the-art performance, better than MADE [START_REF] Germain | Made: Masked autoencoder for distribution estimation[END_REF], with a clear improvement compared with the Gaussian baseline. Given that the proposed scheme can be regarded as a constrained version of [START_REF] Grathwohl | Ffjord: Free-form continuous dynamics for scalable reversible generative models[END_REF], we do not expect to outperform [START_REF] Grathwohl | Ffjord: Free-form continuous dynamics for scalable reversible generative models[END_REF] in general. Sampled examples illustrated in Fig. 2 for MNIST dataset may in this respect point out that we may increase the complexity of the our implementation to sample more realistic examples. We may however stress that the considered parameterization was primarily considered here for an application to unvertainty quantification as illustrated below.

Reconstruction of Lorenz-63 dynamics

We illustrate the relevance of the proposed framework for uncertainty quantification in inverse problems with dynamical systems. As toy model, we consider Lorenz-63 system which involve chaotic dynamics:

x ′ 1 (t) = σ(x 2 -x 1 ) x ′ 2 (t) = x 1 (ρ -x 3 ) -x 2 x ′ 3 (t) = x 1 x 2 -βx 3 (19) 
We asses the ability to estimate the conditional probability p(x T |y 1:T ) of the state x T given all previous noisy observations Y 1:T -1 . We state the observational model as

H(x 1 , x 2 , x 3 ) = x 1 + x 2 .
Given a time series of noisy observations, a LSTM (µ) is trained to reconstruct the true state while an other LSTM (Θ) is trained to estimate the parameters of the flow : In (de Bezenac Emmanuel 2020) authors propose the same framework for filtering, the estimation of the conditional distribution was performed using realNVP [START_REF] Dinh | Density estimation using real nvp[END_REF]. We report results in Table 2 where we compare the learned model with a Gaussian baseline. They clearly point out that the proposed scheme outperforms a Gaussian approximation for the posterior, which is the classically considered including in learning-based variational Bayesian scheme [START_REF] Kingma | Auto-encoding variational bayes[END_REF]. Table 2: Reconstruction performance in terms of conditional log-likelihood over the test set for Lorenz-63 case-study: we compare the proposed approach to a Gaussian baseline. We refer the reader to the main text for the experimental setting. Figure 6: Differential entropy of the estimated distribution p(ε|y 1 ) over the test dataset :As expected, the entropy of the estimated density is higher over the middle region where it is hard to predict in which part of the attractor the true state lies due to the chaotic nature of the governing equations.

MNIST case-study : We consider an inpainting application for MNIST dataset and aims at assessing how the observation patterns impact the reconstruction performance. We set two observation configurations with the same number of observed pixels set to d = 81: the first configuration involves regularly-sampled pixels in both horizontal and vertical directions, the second configuration samples pixels regularlyspaced along the horizontal axis and randomly along the ver-tical axis. We also add a gaussian white noise to the data to ensure that the reconstruction error does not lie in an area with zero Lebesgue measure. We trained two neural network µ 1 , µ 2 on the image space to perform the reconstruction from the gappy observations. For each reconstruction network, we train a divergence-free CNF to model the reconstruction posterior and evaluate the associated Shannon entropy. We reduce train and test sets to digits from 7 to 9 in order to reduce training time and power consumption of the experience. We perform training over 600 epoch using Adam algorithm and stop each models after 36 hours of training, no improvement over the training set were observed. We report in Fig. 8 examples of the random sapling patterns, of mean reconstruction and samples from the inferred posterior for the randomly-sampled observations. We report in Fig. 9 the distributions of reconstruction error of the inferred Shannon entropy for the two observation configurations. The random sampling configuration leads on average to smaller reconstruction errors, our model infers more similar distribution of reconstruction uncertainty, with even a greater uncertainty for the iregular sampling configuration. This is in line with compressive sampling results. While random sampling strategies improve almost surely the reconstruction performance compared with a regularly-spaced sampling, it may also lead to reconstruction outliers, which in turn results in heavier-tail for the posterior distribution.

We interpret the results reported in Fig. 9 as an illustration of the proposed scheme to capture differences in the non-Gaussian tails of the posterior through the inferred Shannon entropy. how volume-preserving transformations and the underlying graph structure of the dynamical system affects the learning process.

Figure 1 :

 1 Figure 1: An example of graph (V,E) with two components : nodes represents the data features, edges their connection through the existence of a function S ij described below. In terms of physical interpretation the existence of an edge ij authorize the learned model to advect the measure in the plan of R 2 corresponding to features x i , x j

Figure 4 :

 4 Figure4: Given an arbitrary denoising algorithms µ, the proposed neural network architecture aim to learn the density function p associated to the reconstruction error ε : first a CNN neural network Θ (green) extract both features θ and log-variance ln(σ) of an initial gaussian distribution, then a divergence-free flow parametrized by θ advect the gaussian distribution using an ODE solver (red) to match the reconstruction error distribution ε in the sense of maximumlikelihood estimation.

  Figure7further reveals the non-Gaussian features of the posterior when the state is close to the bifurcation zone from one lobe to another one of Lorenz-63's attractor. This Figure plots samples of the inferred posterior p(X T |Y 1:T ) for different values of T for a true state close to the bifurcation zone. As expected, the more observations, i.e. T being larger, the lower the spread of the samples, which indicates a lower uncertainty. Figure5further illustrates this global pattern through the comparison of the inferred Shannon entropy averaged over the test set compared with the mean square error of the reconstruction. We may recall that we cannot derive analytically the true posterior, nor true Shannon entropy for Lorenz-63 dynamics. We further illustrate the relevance of the proposed derivation of the Shannon entropy of the posterior in Figure6. The inferred entropy alongside the attractor of the Lorenz 63 nicely emphasizes that the reconstruction uncertainty is larger when getting closer to the bifurcation zone.

Figure 5 :

 5 Figure 5: Evolution of the mean differential Shannon entropy associated to the inferered posterior p(X T |Y 1::T ) with respect to time horizon T for Lorenz-63 case-study (red). For comparison purposes, we consider the evolution of the mean square error (MSE) of the reconstruction of the true state (blue).

Figure 7 :

 7 Figure 7: Left : true and inferred Lorenz-63 states and states, right : sampling of 1000 points of the inferred posterior p(x T |y 1:T ) for different value of T. It clearly illustrates the ability of the proposed framework to address non-Gaussian features.

Figure 8 :

 8 Figure 8: left : masked input y, center : estimated reconstruction µ(y), right : a data sample s generated using the learned distribution ε by the additive relation s = µ(y) + ε

Table 1 :

 1 Caption : performances in terms of likelihood over the test set (higher is better).

	method	POWER GAS HEPMASS MNIST
	Gaussian	-7.74	-3.58	-27.93	-1366
	MADE	-3.08	3.56	-20.98	-1380
	FFJORD	-0.46	8.59	-14.92	NA *
	MAF	0.14	9.07	-17.7	-1300
	VPCNF (ours)	-1.96	6.32	-20.13	-1176

* : authors provides results in terms of bits per dim

Appendix

proof of lemma 1 Suppose the graph (V, E) is composed of N components (V n , E n ) : then the equation x ′ (t) = f (x(t)) can be split onto N coupled non-autonomous equations x ′ n (t) = F n (x(t)) with F n verifying :

T r(∇ X k F k (x)) = 0 (20)

Proof. Without loss a generality, we suppose

The last line follow from the Cauchy Lemma

Proof of lemma 4:

Proof. if we denote as z = Φ(x), the change of variable formula states that p(z), the image density is given by p(z) = p(x)

It follows from dz = |JΦ(x)|dx and |JΦ(x)| = 1 that :

Thus, the differential Shanon entropy H(p) of an image density associed to a measure-preserving flow is invariant. It is entierly determined by the initial density p and ca be computed analytically if H(p) does.

Proof of theorem 4:

which is antisymetric as the matricial product between the antisymmetric matrix A and the symmetric hessian matrix ∇ 2 Ψ(x). Thus its eigenvalues have zero real part.

limitations of the proposed approach

Given a divergent free flow F and a familly P 0 of initial probability density, It may arise that the presented framework here still lack of expressiveness in order to fit an arbitrary density probability f . For example, the set of 1dimensional divergent free flow contains only the translations. Here we discuss about two ways to overcome this issue :

Graph structure and data representation : All experience performed in this paper (except for the Lorenz-96) make use of the same 8-neighbours graph-structure as described in figure 10. Because it remains fixed during the training, this may limit the performances of the proposed framework for density estimation tasks. In future works we may investigate the optimization of this graph and consider different representation of the input. In [START_REF] Voleti | Multi-Resolution Continuous Normalizing Flows[END_REF] authors provides an interesting multi-scale representation using volume preserving transformations. Augmented state Given a set of examples x i ∈ R n , we can construct an a set of augmented variable xi := [x i , ε i ] with ε i ∼ N (0, σI) and apply the above mentioned framework This may help to match an arbitrary distribution f with the marginal density of the learned probability density. The price to pay is that the Shanon entropy of the marginal density of f is no more given by the initial density, we can only compute a lower bound given the inequality :

Extend the set P 0 In this work we only considered diagonal gaussian distributions as set P 0 of initial density function, the action of volume preserving on this set results in a non-universal approximator. However, it extends any mathematical results on estimation of the differential Shanon entropy of any initial set P.