Mir Junaid

Signal Processing on Graphs

published or not. The documents may come

Introduction

The research on signal processing is going on for decades and has wide variety of applications. Large-scale data analysis is one of its latest applications based on the Discrete Signal Processing on Graphs(DSP G). DSP G extends the use of signal processing from conventional signal processing to data indexed by general graphs. There are various challenges presented by Big Data to DSP G , and in particular, the filtering and frequency analysis of large data sets is one of the major challenges [START_REF] Sandryhaila | Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular structure[END_REF]. One of the advantages of signal processing is that the problems of several domains can be solved using it. The main aim of using DSP G is to apply traditional signal processing methods to the data sets with complex and irregular structure. This diverse data set structure can be represented with graphs and quantifying the data into graph signals. Graphs provide the versatile data abstraction for multiple types of data including sensor network measurements, text documents, image and video databases, social networks and others [START_REF] Shuman | The emerging filed of signal processing on graphs[END_REF]. Using this abstraction, data analysis methods and tools can be developed and applied to data sets of different nature. Graphs are general data representation forms that are used to describe the geometric structures of data domains in various applications, including, social, energy, transporation, sensor, and neuronal networks. The associated weights with each edge in the graph denotes the similarity between the two connected vertices. The connectivities and edge weights are inferred from the data. For example, the weight of the edge may be inversely proportional to the distance between the nodes in the network.

Usually, a graph is represented by a tuple G=(V,E), where V denotes the set of vertices and E denotes the set of edges. In case of edges, e in E we define w(e) as weight of the edge e. Using this, we define the weighted adjacency matrix W as a matrix with N rows and N columns which describes the weights in the graph G. In this matrix, the entry in row i and column j is the associated weight with the edge between i-th and j-th vertex, or zero incase there is no such edge. In such cases, it is important to note that in this context we are only concerned about the graphs whose edges are directionless. If there are no natural choices for weights, an unweighted graph can be constructed, where entries of the adjacency matrix are zeros and ones. Here, one illustrates that vertices are directly connected while as zero illustrates that the vertices are not directly connected. The degree matrix D is a diagonal matrix with diagonal entry

d i = D(i,i) = j W(i,j)
where sum is all over the vertices j connected to vertex i. The graph Laplacian matrix is L= D -A where D is the degree matrix and A is the adjacency matrix of the graph. It is already known that many properties of the Laplacian matrix defines the structure of the graph G.

Since, we use signal-processing techniques on graphs, it is important to define what we mean by a signal on graph [START_REF] Dennis | Signal processing on graphs using kron reduction and spline interpolation[END_REF]. The data on the graphs can be visualized as a finite collection of samples, with one sample at each vertex in the graph. Collectively, these are referred to as a graph signal. An example of graph signal is shown in figure 1 [2]. In brain imaging, it is now possible to noninvasively infer the anatomical connectivity of distinct functional regions of the cerebral cortex [START_REF] Zhou | A regularization framework for learning from graph data[END_REF] and this connectivity can be represented by a weighted graph with the vertices corresponding to the functional regions of the interest. Thus, noisy functional magnetic resonance imaging images can be viewed as signals on the weighted graphs. The common use of weighted graphs is to represent similarities between data points in statistical learning problems for applications such as machine vision [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF] and automatic text classification [START_REF] Apté | Automated learning of decision rules for text categorization[END_REF]. Most of the literarture review on graph-based data analysis techniques emanates from the statistical learning community, as graph based methods became especially popular for semi-supervised learning problem where the objective is to classify unknown data with the help of few labelled examples [START_REF] Smola | Kernels and regularization on graphs[END_REF] [START_REF] Zhou | Regularization on discrete spaces[END_REF]. In image processing, there has been a recent spike in graph-based filtering methods that build nonlocal and semilocal graphs to connect the pixels of the image based not only on their physical proximity, but also on noisy versions of the image to be processed [START_REF] Peyré | Non-local regularization of inverse problems[END_REF] [START_REF] Narang | Graph-wavelet filterbanks for edge-aware image processing[END_REF]. Such methods are often able to better recognize and account for image edges and textures.

An adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected, the adjacency matrix is symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory. The adjacency matrix should be distinguished from the incidence matrix for a graph, a different matrix representation whose elements indicate whether vertexedge pairs are incident or not, and degree matrix which contains information about the degree of each vertex. A graph G = (V,E) is a discrete structure composed of a set of vertices V (G) linked by edges E(G) subset V (G) * V (G). When clear from context we simply denote these sets as V and E. Note that a calligraphic symbol such as G will most often denote a graph. We call a loop an edge linking a vertex to itself. A weighted graph is a graph whose edges have weights. Although complex valued weights or real negative weights could be considered, we only consider real nonnegative weights for which strong theoretical results using linear algebra exist. Remark, that a graph without weights is a graph for which all weights can be chosen as 1. By extension, we denote w ij the weight of the edge ij .

GRAPHS AND TYPES OF GRAPHS

A graph is symmetric or undirected if its edges do not have an orientation, i.e. if ij is an edge, then ji is also an edge. On the contrary, if at least one edge has an orientation, the graph is directed or non symmetric. An edge ij such that ji is not an edge is called a directed edge and is represented by an arrow from its source vertex i to its target vertex j .

A complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges (one in each direction). For example, people and topics lead to a bipartitioned set of vertices, and edges are drawn whenever a person is interested in the corresponding topic. A path is a succession of vertices connected by edges. A symmetric graph is connected if there exists a path between any pair of vertices. The equivalent definition for directed graphs is that of strongly connected graph having a path between any (ordered) pair of vertices. Finally, if the symmetrized graph of a directed graph is connected, the graph is said to be weakly connected. By extension, a connected component of a symmetric graph is a connected subgraph. For simplicity, and without loss of generality, we suppose the graphs to be connected.

A graphs product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G1 and G2 and produces a graph H. The vertex set of H is the cartesian product of V(G1) * V(G2), where V(G1) and V(G2) are the vertex sets of G1 and G2. Two vertices (u1,u2) of H are connected by an edge if and only if the vertices u1, u2, v1, v2 satisfy the condition that takes into account the edges of G1 and G2.

SIGNAL PROCESSING ON GRAPHS

The purpose of signal processing on Graphs is to help solve some of the central problems of Big Data. It is not necessary that the accuracy will be improved but it will make ways to apply them efficiently to huge data sets while achieving accuracy similar to some of the best algorithms existing so far [START_REF] Martin | Robust and efficient data clustering with signal processing on graphs[END_REF]. The standard data processing tasks in the applications include filtering, denois-ing, inpainting, and compressing graph signals. Since, the field DSP G is still emerging, there are various questions which arise. How data can be processed on irregular data domains such as arbitrary graphs? Which are the best possible ways to efficiently extract informations, either statistically or visually, from this high dimensional data for the purpose of storage, communication and analysis? Will it be feasible to use operators or algorithms from classical digital signal processing toolboxes. These are some of the questions that underlie the field of DSP G .

Principles of Signal Processing on Graphs

Discrete Signal Processing (DSP) consists of two important terms, signal and processing. Signal is defined as the quantity which varies as a function of space or time and has the ability to carry information. Signal can also be defined as evolution of a physical phenomenon, for example, the variation of temperature in weather over time. Today, the signals are found everywhere and there are various types of signals like electrical and mechanical signals (e.g. audio and video signals, sound or pressure waves, vibrations in structure, earthquakes etc.), biomedical signals like electro-encephalogram and heart monitoring. Also, signals are used in time variation of stock value or market analysis. In short, every series of measurements of physical phenomenon can be represented as a signal. The commom representation of signal in mathematical terms is defined as a funtion x(t). Here, 'x' represents the dependent variable, for example, voltage, pressure, etc., and 't' represents the independent variables like time and space. There are various types of signals depending on the nature of dependent and independent variables, e.g. analog signal, discrete signal, digital signal, multichannel signal, multi-dimensional signal. The processing part mainly deals with the analysis and synthesis, i.e. to understand the information carried by the signal and to create a signal to contain the given information. Signal processing is must as the information they contain can be displayed, analyzed, or converted to other type of signal that may be of use. To sum up, Discrete Signal Processing (DSP) provides a comprehensive, elegant and efficient methodology to describe, represent, transform, analyze, process, or synthesize the time, image or different kinds of signals [START_REF] Sandryhaila | Discrete signal processing on graphs[END_REF].

Literature Review

This article [START_REF] Sandryhaila | Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular structure[END_REF] discusses a paradigm for large-scale data analysis based on the dsicrete signal processing on graphs (DSPG). It reviews the fundamental concepts of DSPG, including graph signals and graph filters, graph Fourier transform, graph frequency, and spectrum ordering, and compare them with their counterparts from the classical signal processing theory. The product graphs is considered as graph model that helps extend the application of DSPG meth-ods to large data sets through efficient implementation based on paralellization and vectorization. It considers the use of DSPG as a methodology for big data analysis and discusses how, for appropriate graph models, fundamental signal processing techniques, such as filtering and frequency analysis, can be implemented efficiently for large data sizes. The discussed framework addresses some of the key challenges of big data through arithmetic cost reduction of associated algorithms and use of parallel and distributed computations. The presented methodology introduces elements of high-performance computing to DSPG and offers a structured approach to the development of data analysis tools for large data volumes.

This framework [START_REF] Sandryhaila | Discrete signal processing on graphs[END_REF] extends traditional discrete signal processing theory to structured datasets by viewing them as signals represented by graphs, so that signal coefficients are indexed by graph nodes and relations between them are represented by weighted graph edges. As a potential application of the graph Fourier transform, they demonstrate that graph signals can be sparsely represented in their frequency domain, and thus efficiently approximated using a few Fourier basis functions with little approximation error. These datasets share a common trait: their elements are related to each other in a structured manner, for example, through similarities or dependencies between data elements. This relational structure is often represented with graphs, in which data elements correspond to nodes, relation between elements are represented by edges, and the strength or significance of relations is reflected in edge weights. For example [START_REF] Heimowitz | A unified view of diffusion maps and signal processing on graphs[END_REF], a graph representing the MNIST data set. Each node represents a single handwritten digit and is connected by an edge to similar images according to some similarity measure. A signal on this graph may be a mapping between each element or image and a value from the set [0,1]. A node representing an image of the digit 4 will be mapped to the value 1. All other nodes will be mapped to the value 0. Assuming a good similarity measure is used, neighboring nodes should represent images of the same digit, and thus graph signal is smooth.

This paper [START_REF] Sandryhaila | Discrete signal processing on graphs: Frequency analysis[END_REF] introduces, low-pass, high-pass, and band-pass signals and low-pass, high-pass, and band-pass filters on graphs. These concepts do not have a simple and intuitive interpretations for general graphs. They defined them using the concept of frequencies in digital signal processing on graphs. They proposed a novel definition of a total variation on graphs that measures the difference between a graph signal and its shifted version. They then used the total variation to order graph frequencies and to define low-and high-pass graph signals and filters. It is demonstrated how to design filters with specified frequency response by finding least squares approximations to solutions of systems of linear algebraic equations. They applied these concepts and methodologies to sensor network analysis and data classification and conducted experiments with real-world datasets of temperature measurements collected by a sensor network and databases of images and hyperlinked documents. The results show that the techniques presented are promising in problems like detecting sensor malfunctions, graph signal regularization, and classification of partially labeled data.

The signal processing techniques is focused on extracting information from a static signal on a static, weighted, undirected graph. While the number of new analytic techniques for signals on graphs has been steadily increasing over the past decade, the application of these techniques to real science and engineering problems is still in its infancy. It is believed the number of potential applications is vast, and hoping to witness increased utilization of these important theoretical developments in the coming decade. This article [START_REF] Sandryhaila | Discrete signal processing on graphs: Graph fourier transform[END_REF] has proposed a framework for discrete signal processing of signals indexed by graphs. The notions of graph signals and filters, and defined the concepts of spectral decomposition, spectrum, and Fourier transform for graph signals is also discussed. They have also identified their relation to the Jordan decomposition of the adjacency matrices of representation graphs. As a potential application of the graph Fourier transform, it is demonstrated that graph signals can be sparsely represented in their frequency domain, and thus efficiently approximated using a few Fourier basis functions with little approximation error.

The ability of wavelet, time-frequency, curvelet, and other localized transforms to sparsely represent different classes of highdimensional data such as audio signals and images that lie on regular Euclidean spaces has led to a number of resounding successes in the aforementioned signal processing tasks. Both a signal on a graph with N vertices and a classical discrete-time signal with N samples can be viewed as vectors in R N . However, a major obstacle to the application of the classical signal processing techniques in the graph setting is that processing the graph signal in the same ways as a discrete-time signal ignores key dependencies arising from the irregular data domain. Moreover, many extremely simple yet fundamental concepts that underlie classical signal processing techniques become significantly more challenging in the graph setting. The main challenges of processing signals on graphs are 1) in cases where the graph is not directly dictated to us by the application, deciding how to construct a weighted graph that captures the geometric structure of the underlying data domain; 2) incorporating the graph structure into localized transform methods; 3) at the same time, leveraging invaluable intuitions developed from years of signal processing research on Euclidean domains; and 4) developing computationally efficient implementations of the localized transforms, to extract information from high-dimensional data on graphs and other irregular data domains.

To address these challenges, the emerging field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with computational harmonic analysis. There is an extensive literature in both algebraic graph theory and spectral graph theory; however, the bulk of the research prior to the past decade focused on analyzing the underlying graphs, as opposed to signals on graphs.

The recent papers have developed key principles for signal processing of graph signals, and these have shown significant promise for some important applications, there remain significant challenges. On the theoretical front, work to date has focused on results that can be applied to arbitrary graphs. But given the significant differences between the spectral properties of graphs, there is strong current interest in developing tools that can take into consideration the particular characteristics of specific classes of graphs. On the application front, GSP is a good match for datasets exhibiting irregular relationships between samples that can be captured by a graph. However, additional research is needed within each application to further understand the best ways to combine GSP tools with existing techniques in order to achieve significant gains in terms of the metrics of interest for each application.

Signal Processing on Wireless Sensor Networks

Sensor networks are broadly studied with objective of efficiently sensing the real world. Key questions are the arrangement of the sensors(e.g, ground weather stations), routing strategies(e.g, in content centric networks), transmission of the right amount of data(compressive detecting), detection of faulty sensor, or even onboard processing of data.

Wireless Sensor Networks (WSNs) is an area where Graph Signal Processing can be implemented effectively. The graph represents the relative position of the sensor in the environment using nodes and edges of the graph. The main goals of the GSP are compression, denoising, reconstruction, or distributed processing of the sensor data [START_REF] Ortega | Graph signal processing[END_REF]. Mostly, the research on Graph Signal Processing focusses on sensor networks. The first approach to define a sensor network is to choose edge weights as a decreasing function of the distance between the nodes. Then, the data observation that are similar at the neighboring nodes lead to a smooth graph signal. Such a smooth graph signal makes it possible to detect outliers or abnormal values by high-pass filtering and thresholding, or to build effective signal reconstruction methods from sparse set of sensor readings which can potentially lead to significant savings in energy resources, bandwidth, and latency in wireless sensor network applications.

Another scenario is that the graph is used for data analysis, e.g., urban data processing relies on data that naturally live on networks, such as energy, transportation or road networks. Graph Signal Processing is used in these applications to monitor air pollution, or to analyze and monitor the power consumption. For example, to analyze traffic and mobiltity in large cities, Graph Signal Processing can be used. Wavelets on graphs can serve to extract useful traffic patterns to detect disruptive traffic events such as congestion. In some cases, relations among sensor readings are not exclusively explained by the distance between sensor locations, or by some actual network constraints. There are other factors that can influence the data values observed at the sensor readings such as the presence of geographical obstacles(e.g., in temperature measurements) or the interaction between networks of different types. In some cases the phenomenon that can explain these relations betweeen measurements are latent and this leads to the challenging problem of learning a graph that can explain the data observations under signal smoothness or other signal model assumptions. This allows inferring system features and behaviours that are hidden in the measured datasets (e.g., ozone datasets). However, still there are lot of opportunities for the development of GSP algorithms that are able to extend to large-scale networks and big data applications.

Today, sensors are ubiquitous. They are usually cheap to manufacture and deploy, so networks of sensors are used to measure and monitor a wide range of physical quantities from structural integrity of buildings to air pollution. However, the sheer quantity of sensors and the area of their deployment may make it challenging to check that every sensor is operating correctly. As an alternative, it is desirable to detect a malfunctioning sensor solely from the data it generates. This article [START_REF] Sandryhaila | Discrete signal processing on graphs: Frequency analysis[END_REF] illustrates how the DSPG framework can be used to devise a simple solution to this problem. Many physical quantities represent graph signals with small variation with respect to the graph of sensors.

Figure 1 :

 1 Figure 1: A random positive graph signal on the vertices of the Petersen graph. The height of each blue bar represents the signal value at the vertex. There are many examples of graph signals in different engineering and science fields.In brain imaging, it is now possible to noninvasively infer the anatomical connectivity of distinct functional regions of the cerebral cortex[START_REF] Zhou | A regularization framework for learning from graph data[END_REF] and this connectivity can be represented by a weighted graph with the vertices corresponding to the functional regions of the interest. Thus, noisy functional magnetic resonance imaging images can be viewed as signals on the weighted graphs. The common use of weighted graphs is to represent similarities between data points in statistical learning problems for applications such as machine vision[START_REF] Lowe | Object recognition from local scale-invariant features[END_REF] and

Figure 2 :

 2 Figure 2: A complete graph with 7 vertices.

Figure 3 :

 3 Figure 3: Regular graph

Figure 4 :

 4 Figure 4: Bipartite graph

This thesis is funded by