
HAL Id: hal-03813345
https://hal.science/hal-03813345

Submitted on 13 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards conflict resolution in collaborative clustering
Germain Forestier, Cedric Wemmert, Pierre Gancarski

To cite this version:
Germain Forestier, Cedric Wemmert, Pierre Gancarski. Towards conflict resolution in collaborative
clustering. IEEE International Conference Intelligent Systems (IS), Jul 2010, London, United King-
dom. pp.361-366, �10.1109/is.2010.5548343�. �hal-03813345�

https://hal.science/hal-03813345
https://hal.archives-ouvertes.fr

Towards conflict resolution in collaborative clustering

Germain Forestier, Cédric Wemmert and Pierre Gancarski
LSIIT - CNRS - University of Strasbourg - UMR 7005
Pôle API, Bd Sébastien Brant - 67412 Illkirch, France

email: forestier@unistra.fr

Abstract—In recent years, a lot of work has focused on the use
of multiple clusterings for partitioning data. These approaches
are supported by the existence of a huge number of clustering
algorithms. Thus, different methods have been proposed to create
alternative clustering results from the same data. However, the
different clustering results are usually generated without sharing
information and the user is often asked to select the final result.
To cope with these issues, a new paradigm named collaborative
clustering has been proposed recently. In collaborative clustering,
different clustering methods work together (i.e. collaborate) to
reach an agreement on the clustering of a common dataset.
At the end of the collaboration, the results are expected to
be strongly similar. In this paper, we address the problem
of the collaboration of different clustering methods and we
compare four collaboration strategies. Our experiments compare
the different strategies on synthetic and real-life datasets and
provide insight into the advantages and the drawbacks of each
strategy.

©2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: https://doi.org/10.1109/IS.2010.5548343

I. INTRODUCTION

Over the last fifty years, many new clustering algorithms
have been developed, and existing methods have been modified
and improved [1], [2]. This abundance of methods can be
explained by the ill-posed nature of clustering. Indeed, each
clustering algorithm is biased by the objective function used
to build the clusters. Consequently, different methods can,
from the same data, produce very different clustering results.
Furthermore, even the same algorithm can produce different
results, when parameters or initialization vary. A recent ap-
proach to cope with this problem is based on the idea that the
information provided by different clustering algorithms may be
complementary. Thus, the combination of different clustering
results may increase their efficiency and accuracy.

In this paper, we address the problem of the collabora-
tion between different clustering methods. In collaborative
clustering, different clustering methods work together (i.e.
collaborate) to reach an agreement on the clustering of a
common dataset. One of the main challenges in collaborative
clustering is the comparison of the different clustering results,
in order to identify precisely where they are in disagreement.
However, the clusters of one result do not have a trivial link
with the clusters of another one. This lack of straightfor-
ward correspondence increases the challenge of discovering
disparities (called conflicts) among the results. Once these
conflicts are detected, the goal of a collaborative clustering
process is to solve them by modifying the pair of results
involved in the conflict. Thus, another challenging problem
is the order in which the conflicts have to be solved. Indeed,
many conflicts exist at the same time between the different

results and the system has to choose which one to solve first.
The main heuristic developed so far is the resolution of the
most important conflict at each step of the algorithm. However,
when the number of methods involved increases and when the
dataset is complex, the size of the search-space (i.e. the space
of existing solutions) increases tremendously. Consequently,
it can have many local optima and always solving the most
important conflict can lead to non-optimal solutions.

The purpose of this paper is to present alternative strategies
of conflict resolution. We introduce three resolution strategies
to improve the way the collaboration is processed. Three
strategies are based on an iterative algorithm whereas the last
one uses a genetic algorithm to drive the collaboration.

The rest of the paper is organized as follows. In Section
2, a review of related work is presented. Then in Section 3,
the main principles of collaborative clustering are described.
Section 4 introduces the different strategies studied in the
paper, and Section 5 presents their assessments through var-
ious experiments. Finally, Section 6 concludes the paper and
discusses future work.

II. RELATED WORK

In recent years, a lot of work has focused on the use of
multiple clusterings as it is often difficult to design a single
algorithm whose results reflect what users need and expect.

One of the existing approach is to generate a set of
alternative clusterings and let the user select the solution
according to its need. The challenging issue is to generate
a set of solutions offering a good quality and a good diversity.
For example, Caruana et al. [3] presented a method for
automatically generating a diverse set of alternate clusterings,
as well as methods for grouping clusterings into meta-clusters.
At the end of the process, the user can navigate among
the meta-clusters to select the final solution. Bae et al. [4]
addressed the problem of creating an alternative clustering
result starting from one existing solution. The key challenge
is to use this initial solution to create a new alternative
result which is different from the previous one but also
reflecting a good clustering of the data. Davidson et al. [5]
also addressed the problem of alternative clustering through
the use of constraints. The constraints generated between data
objects from previous clusterings are used to constraint the
generation of the alternative solution.

Another existing approach consists in creating a single
clustering result, which summarizes a set of existing results.
In the method proposed by Law et al. [6], different algorithms
are applied on the same dataset and the final solution is created

https://doi.org/10.1109/IS.2010.5548343

by selecting different clusters among the different results. A
similar idea is presented by Jiamthapthaksin et al. [7], where
the authors proposed an architecture for multi-run clustering
where different clustering solutions are explored in an iterative
way. The final result is created from information selected
from every step of the process. However, in other existing
methods, the final solution is not always composed of parts of
the initial clustering results. For example, Gionis and al. [8]
presented clustering aggregation algorithms creating a final
clustering that minimizes the total number of disagreements
among all clusterings. These approaches, generally referred as
ensemble clustering, have received a strong interest during the
recent years [9], [10], [11]. However, the ensemble clustering
approaches do not generally address the problem of the gen-
eration of the initial results, and the algorithms used to create
the initial results are not used in the combination process.
Consequently, ensemble clustering approaches introduce a new
bias, relative to the objective function chosen when merging
the different clusterings.

The majority of these work focus on the merging process of
the different clusterings, whereas our approach addresses the
task of the collaboration between different methods. Indeed,
in these approaches, the amount of information shared by
the methods during the clustering process is relatively low.
In our approach, the different methods collaborate and share
information throughout the clustering process.

III. COLLABORATIVE CLUSTERING

Given a set R̆ = 〈Ri〉i=1...m of m different clustering results
of the same dataset, the goal of collaborative clustering is
to find a consensus among these results by reducing their
disagreements. R̆ is composed of clustering results created
with different algorithms or the same algorithm with different
parameters. Let 〈Ci

k
〉k=1...ni be the ni clusters of one result

Ri from R̆. Note that we work here with results that do not
necessary have the same number of clusters (e.g. ni , nj is
possible if i , j).

To identify and solve the disagreements between the clusters
of the different results, a similarity S between clusters from
each pair of results has to be evaluated. We define that there is
a conflict between a cluster Ci

k
and a clustering R j if no cluster

of R j is identical to Ci
k

according to S. Thus, the conflicts K̆
in the ensemble R̆ can be defined as:

K̆ =
{
(Ci

k
,R j) : i , j, S

(
Ci
k
, ψ

(
Ci
k
,R j

))
< 1

}
with ψ

(
Ci
k
,R j

)
= arg max

C
j
l
∈R j S

(
Ci
k
, C

j
l

) (1)

Consequently, we have to design a local similarity measure
capable to compare two clusters from two different results.
This measure will then be used to identify the pairs of clusters
(of two different results) having a poor similarity (i.e. sharing
a poor overlap of data objects). These pairs will define the
conflicts to solve to increase the similarity between the results.

Moreover, we also have to estimate the global similarity of
all the clusterings involved in the collaboration to be able to
assess the global usefulness of a local modification. Indeed, a

conflict is identified between a pair of results whereas more
than two methods can be involved in the collaboration process.
Therefore, modification at the local level (i.e. between a pair
of results) has to be assessed at a global level (i.e. all the
results involved in the collaboration). The goal of collaborative
clustering is to maximize this global similarity which is an
indicator of the agreement among the set of results.

A. Local clusterings comparison
A large number of criteria exist to evaluate the similarity

between a pair of clustering results [12]. However, these
criteria only give a global evaluation of the similarity between
two partitions. As we want to identify exactly which clusters
are involved in the conflict, we have to compare each cluster
of one result with all the clusters of the other results. In order
to compare a pair of results, we use the confusion matrix or
matching matrix (2). The matching matrix Mi, j between two
results Ri and R j is a ni × nj matrix defined by:

Mi, j =

©«
α
i, j
1,1 . . . α

i, j
1,n j

...

α
i, j
ni,1 . . . α

i, j
ni,n j

ª®®®¬ where αi, j
k,l
=

���Cik ⋂
C

j
l

�����Ci
k

�� (2)

The adequacy ωi, j
k

of a cluster Ci
k

compared to a clustering
R j is evaluated by observing the intersection (2) between
the cluster Ci

k
and its corresponding cluster (i.e. the most

overlapping cluster) in R j , and by taking into account the
distribution ρ

i, j
k

(4) of the cluster Ci
k

in all the clusters of R j :

ω
i, j
k
= ρ

i, j
k
α
j,i
l,k

(3)

where α j,i
l,k
= max〈α j,i

l,k
〉l=1...n j and

ρ
i, j
k
=

n j∑
r=1
(α

i, j
k,r
)2 (4)

To compute the local similarity between a pair of results,
the adequacies of each pair of clusters of the two results are
averaged. The similarities have to be computed in each of the
two ways, as the matching matrices are not usually symmetric
(ωi, j

k
, ω

j,i
k

).
However, if we try to only maximize the local similarity

of the results, we could easily end up with a trivial (and
not wanted) solution like a unique cluster with all the data
objects inside it. To cope with this problem, we introduce an
evaluation of the quality of the two clusterings in the local
similarity measure as follows:

γi, j =
1
2

©«
(

1
ni

ni∑
k=1

ω
i, j
k
+

1
nj

n j∑
k=1

ω
j,i
k

)
︸ ︷︷ ︸

similarity

+
(
δi + δ j

)
︸ ︷︷ ︸

quality

ª®®®®®®®¬
(5)

where δi is a measure of the quality of a result Ri . This
measure depends on the algorithm used in the process. Any
partition validity index can be used here, like Silhouette [13]
or Davies Bouldin [14].

B. Comparing global clusterings

The local similarity (5) evaluates the similarity and the qual-
ity of a pair of results. Though, more than two methods can
be involved in the collaboration process. The global similarity
evaluates the similarity of each pair of results involved in
the collaboration and gives a global assessment of the results
similarities:

Γ =
1
m

m∑
i=1
Γ
i where Γ

i =
1

m − 1

m∑
j=1
j,i

γi, j (6)

C. Conflict definition and assessment

As introduced previously, there is a conflict between two
clustering results Ri and R j about the cluster Cki of Ri , if
there is no cluster in R j similar to Ci

k
. Each conflict K i, j

k
is therefore identified by one cluster Ci

k
and one result R j .

Its importance CI
(
K

i, j
k

)
is computed according to the local

similarity between Ci
k

and R j (3) as:

CI
(
K

i, j
k

)
= 1 − ωi, j

k
(7)

K̆ (1) is the list containing all the conflicts of R̆. Each conflict
has an importance (7) and involves a pair of results.

IV. CONFLICT RESOLUTION STRATEGIES

As already stated, the goal of collaborative clustering is to
maximize the global similarity of the results (6), by solving
the conflicts between the different results. In this section, we
present different strategies to solve these conflicts. The four
different strategies are detailed in the following subsections.
Firstly, we introduce three iterative conflict resolution strate-
gies and then a conflict resolution strategy based on a genetic
algorithm.

A. Iterative resolution strategies

As presented in Algorithm 1, the main approach to solve the
conflicts in collaborative clustering works in an iterative way.
At each iteration, one conflict is selected and its resolution
is computed. Algorithm 2 describes in details the resolution
of a conflict using split, merge and recluster operators. Note
that a parameter pcr is introduced, representing the minimal
similarity above which the clusters are evaluated as identical.
The process iterates, and one conflict is solved at each step if
this conflict improves the local agreement (5). If the resolution
of this conflict is not relevant, this conflict is removed from
the conflict list. When the list of conflicts is empty, the process
stops.

Selecting the right conflict to solve is of particular interest.
We present three different strategies corresponding to three
different definitions of the conflictChoice function in
Algorithm 1: worst conflict choice (WCC), stochastic conflict
choice (SCC), and roulette-wheel conflict choice (R-WCC).
In the following definitions of each strategy, K(i) is the ith

conflict of K̆, and p(K(i)) its probability to be selected for the
next resolution attempt.

Algorithm 1 Collaborative clustering process

Let R̆ = 〈Ri〉1≤i≤m be the initial set of clusterings
Let K̆ = conflicts(R̆) be the set of conflicts in R̆ as
defined in section III-C
Let R̆best := R̆ be the best temporary solution
Let K̆best := K̆ be the conflicts of the best temporary
solution
while |K̆ | ≥ 0 do
K

i, j
k

:= conflictChoice
(
K̆

)
R̆ := conflictResolution

(
R̆,K

i, j
k

)
(Alg.2)

if Γ(R̆) > Γ(R̆best) then
R̆best := R̆
K̆best := K̆ := conflicts(R̆)
bt := 0

else if R̆t+1 = R̆t then
K̆ := K̆ rK i, j

k
else

bt := bt + 1
K̆ := K̆ rK i, j

k

if bt > |K̆ | then
R̆ := R̆best
K̆ := K̆best rK

i, j
k

end if
end if

end while
Consensus computation

Algorithm 2 Conflict resolution

Require: R̆ the ensemble of clusterings
Require: K i, j

k
the conflict to solve

Ensure: R̆? = conflictResolution
(
R̆,K

i, j
k

)
the new

ensemble after the resolution
let κ = {C j

l
, ∀1 ≤ l ≤ nj : ωi, j

k
> pcr }

if |κ | > 1 then
Ri′ = Ri r {Ci

k
} ∪ split(Ci

k
, |κ |)

R j′ = R j r κ ∪ merge(κ,R j)

else
Ri′ = recluster(Ri r {Ci

k
})

end if
{Ri?,R j?} = arg max γI,J for I ∈ {i, i′}, J ∈ { j, j ′}
R̆? = R̆ r {Ri,R j} ∪ {Ri?,R j?}

1) Worst conflict choice (WCC): This first approach con-
sists in choosing the worst conflict, i.e. the one having the
highest conflict importance (7). This approach assumes that
the resolution of the most important conflict between a pair
of results will increase the global agreement between all
the methods. This assumption is supported by the intuition
that the resolution of an important conflict should increase
significantly the similarity of a pair of solutions. In this case,

the conflictChoice is defined as:

K := arg max
K(i)∈K̆

CI
(
K(i)

)
(8)

It means that the probability of the most important conflict
is p(K(1)) = 1 whereas the other conflict have no chance to
be selected p(K(i>1)) = 0. As illustrated in Figure 1(a), only
the first conflict of the list can be selected. Note that the list
is ordered by conflict importance.

2) Stochastic conflict choice (SCC): This approach consist
in choosing randomly a conflict to solve in the list of conflicts.
This naive strategy assumes that solving a conflict with a
high importance is not always relevant. In this case, the
conflictChoice is defined as:

K := random
(
K̆

)
(9)

where the random function selects a conflict randomly in the
list of conflicts K̆. Consequently, the probability p(K(i)) for
this strategy is defined by p(K(i)) = 1

Nc
with Nc the number

of conflicts. As illustrated in Figure 1(b), each conflict has the
same probability to be selected.

3) Roulette-wheel conflict choice (R-WCC): This approach
is based on roulette-wheel selection or fitness proportionate
selection well known in the field of evolutionary optimization
[15]. The conflict importance is used to associate a probability
of selection with each conflict. In this case, the probability of
each conflict is defined as p(K(i)) =

CI(K(i))∑Nc
j=1 CI(K(j))

with Nc the

number of conflicts. While conflicts with a high importance
will be more likely to be selected, there is still a chance that
they may be avoided. In this case, the conflictChoice is
defined as:

K := K(i) |
©«
i−1∑
j=0

p(K(j)) ≤ ν ∧
i+1∑
k=0

p(K(k)) > ν
ª®¬ (10)

where ν is a random value in [0; 1].
As illustrated in Figure 1(c), each conflict has a probability

to be selected which is proportionate to its importance. This
probability is represented in the Figure 1(c) by the width of
each cell.

B. Genetic resolution strategy (GR)

Genetic algorithms were first proposed as a way to solve
problems where no other computational tractable algorithms
exist. Genetic algorithms are heuristic searches and optimiza-
tion techniques inspired by natural evolution [15] which find
exact or approximate solutions of complex problems. They
are used in various types of application, for example to find
values of continuous variables. A genetic algorithm requires an
initial population defined as a set of genotypes to perform the
evolutionary process. In this process, the population evolves to
obtain better genotypes at each generation, i.e. better solutions
of the optimization problem under consideration. We used this
scheme to define a new strategy of conflict resolution. In this
strategy, we consider g (the genotype in the genetic frame-
work) as a set of clustering results 〈Ri〉i=1...m. Each genotype

K
(2,1)
4 K

(2,1)
2 K

(1,2)
4 K

(2,1)
5 K

(1,2)
3 K

(1,2)
1 K

(2,1)
6 K

(1,2)
2 K

(2,1)
1 K

(2,1)
3

K(1) K(i). . .

︸ ︷︷ ︸
p(K (i, j)

k
) = 0

p(K (2,1)4) = 1

(a) WCC

K
(2,1)
4 K

(2,1)
2 K

(1,2)
4 K

(2,1)
5 K

(1,2)
3 K

(1,2)
1 K

(2,1)
6 K

(1,2)
2 K

(2,1)
1 K

(2,1)
3

K(1) K(i). . .

︸ ︷︷ ︸
p(K (i, j)

k
) = 1

N c = 0.10

(b) SCC

K
(2,1)
4 K

(2,1)
2 K

(1,2)
4 K

(2,1)
5 K

(1,2)
3 K

(1,2)
1 K

(2,1)
6

.

K(1) K(i). . .

p
(
K
(2,1)
4

)
=

CI (K
(2,1)
4)∑Nc

j=1 CI (K(j))
= 0.17

(c) R-WCC

Fig. 1. The different strategies for choosing the conflict to solve.

represents a set of clustering results and consequently one
solution to the collaborative clustering problem. To generate
the initial population, we used the initial solution composed of
different clustering results. We computed the conflicts list of
this initial solution and we solved conflicts randomly. For each
conflict resolution attempt, the generated alternative solution
was stored as a member of the initial population. Another
way to create the initial population could have been to make
multiple runs of the algorithms used to create the initial
solution. However, to be fair with the iterative methods we
decided to only use the initial solution.

Once the initial population created, the algorithm relies on
the following steps, which represent the transition between two
generations:

1) assessment of genotypes in the population: each solution
is evaluated (i.e fitness evaluation) according to its global
similarity value (5). This fitness reflects the similarity
and the quality of the set of results and is used to assess
the quality of the solution. The higher the value, the
better the solution.

2) selection of genotypes for crossover operation according
to the fitness. A solution with a high global similarity
value will have more chance to be selected than a
solution with a lower one. This fitness proportionate
selection uses the same principle we used in Section
IV-A3 but based on the fitness of the solution and not
the conflict importance.

3) crossover: the crossover operator is used to create new

C : C(1) C(2) C(3) C(4) C′ : C′(1) C′(2) C′(3) C′(4)

C′′ : C(1) C′(2) C′(3) C(4)

Fig. 2. Cross-over operation in GR algorithm.

solutions from existing solutions in the population. Two
solutions are selected and breed to create a new solution,
by mixing the clustering results present in these two
solutions (slicing cross-over). Figure 2 illustrates this
process. Note that the order of the results in each
solution is important and has to be kept. Indeed, each
result is linked with the method used to generate this
particular result, and used to solve the conflicts (see
Algorithm 2). During the crossover operation, at each
rank, it is equiprobable to select the result from the first
parent or from the second one

4) mutation: at each generation a random conflict resolution
is applied with a user-given probability. This attempts
to avoid the genetic algorithm being trapped in a local
minimum, and new alternative solutions are created to
maintain a relative diversity within the population. Note
that the best genotype of a generation is kept unchanged.

In our experiments, we considered the following parameters
for the genetic algorithm: a population size of 20 genotypes, a
mutation probability Pm of 10% and a number of generations
equals to 100. The number of generations has been kept
relatively low for computational reasons. At the end of the
evolution, the best solution of the population is kept as the final
solution. The relative high rate of mutation is motivated by the
fact that the initial population is created from the same initial
solution. We assume that this high mutation probability allows
the algorithm to maintain a strong diversity in the population.

We used the Lamarckian evolutionary model [16], which
consists in applying a local optimization on each individual
of the population at each generation. This process is used
to improve the convergence of the genetic algorithm. In our
framework, the local optimization applied consists in solving
the most important conflict of each solution at each generation.
The local optimization is only applied if the resolution of the
conflict is worthwhile (i.e. increase of the global similarity
(5)). Experiments have been carried out with and without local
optimization. We only report here the results of the version
with local optimization, as it gave better or identical results.

V. EXPERIMENTS

We evaluated the four proposed approaches on synthetic
datasets included in the Cluster generators package 1, and real-
life datasets from the UCI repository [17]. All the datasets
are real valued and show a great heterogeneity in terms
of number of features, instances and classes. The synthetic

1http://dbkgroup.org/handl/generators/

datasets contain four Gaussian shaped clusters described with
two attributes in 2d-4c-no0 and 2d-4c-no1, and with ten
attributes in 10d-4c-no0 and 10d-4c-no1. These datasets
are freely available on the authors website. We used four
different quality indexes to assess the quality of the results:
the Rand index, the Jaccard index, the Folks & Mallows index
and the F-Measure. This choice was made to reduce the bias
involved by the selection of a single criteria. The true class
information contained in the datasets was used to compute the
value of these accuracy indexes.

In all of the experiments, we used the KMeans algorithm
as the base clustering method. Five instances of KMeans
were randomly initialized with a number of clusters randomly
picked in [2; 10] to create the initial set of results. Then, the
different strategies of conflict resolution were applied, each
one individually, but starting from the same initial set of results
(i.e. the same initial solution). The experiments were carried
out 100 times for each dataset, and the results were averaged.
The results are summarized in Table I. The values in the table
are mean accuracy among the five methods at the end of the
process, and standard deviations are into brackets. The mean
global similarity value (5), which reflects the similarity and
the quality of the methods, is also presented in the table.

The results indicate that the genetic approach (GR) always
gives the best results on the different tested datasets. The
worst conflict choice strategy (WCC) gives good results when
the datasets are simple (i.e. 2d-4c-no0 and 2d-4c-no1
with four clusters with two attributes). However, when the
datasets are more complex (with ten attributes and from UCI)
the roulette-wheel strategy (R-WCC) gives better results than
worst conflict choice strategy (WCC). It can be explain by
the fact that WCC is more likely to be trapped in a local
minimum, as it always tries to solve the most important
conflict. Conversely, roulette-wheel strategy (R-WCC) might
avoid local optima by selecting less important conflict to
solve. The last strategy, random selection (SCC), always gives
the poorest results, except for one dataset (10d-4c-no1).
These results reveal that the conflict importance (7) is an
important indicator to chose the conflict to solve. However, it
also highlights that blindly solving the most important conflict
is not always relevant. These results are consistent as the
genetic resolution strategy (GR) better explores the search
space, and evaluates solutions which are not explored by the
other iterative methods.

The good results of the genetic solution have to be balanced
by its time and space complexity. As mentioned before,
the genetic solution explores more solutions than the other
methods, and consequently is time and space consuming. In
all our experiments, the three iterative solutions (Section IV-A)
took almost always the same time to compute (around 1 to 5
seconds depending of the dataset), and the genetic resolution
took almost 10 times more (around 10 to 50 seconds). These
results have been obtained on a Intel Core2Duo 6300 with
4GB RAM without any code optimization. It is worth noticing
that these execution times could be greatly reduced as genetic
algorithms are easily parallelizable.

http://dbkgroup.org/handl/generators/

TABLE I
EVALUATION OF THE DIFFERENT STRATEGIES ON THE ARTIFICIAL AND UCI DATASETS.

Strategy Γ Rand Jaccard Folks & Mallows F-Measure
2d-4c-no0 WCC 0.924 0.772 (±0.074) 0.872 (±0.045) 0.869 (±0.049) 0.824 (±0.066)

- RCC 0.872 0.745 (±0.095) 0.857 (±0.057) 0.850 (±0.065) 0.808 (±0.080)
- R-WCC 0.896 0.767 (±0.064) 0.871 (±0.037) 0.866 (±0.041) 0.831 (±0.045)
- GR 0.957 0.850 (±0.037) 0.919 (±0.021) 0.919 (±0.021) 0.890 (±0.028)

2d-4c-no1 WCC 0.897 0.643 (±0.163) 0.788 (±0.110) 0.769 (±0.137) 0.661 (±0.247)
- RCC 0.813 0.616 (±0.097) 0.768 (±0.066) 0.756 (±0.081) 0.693 (±0.074)
- R-WCC 0.800 0.612 (±0.110) 0.765 (±0.074) 0.750 (±0.088) 0.692 (±0.086)
- GR 0.941 0.769 (±0.056) 0.871 (±0.039) 0.868 (±0.038) 0.817 (±0.052)

10d-4c-no0 WCC 0.852 0.900 (±0.100) 0.947 (±0.055) 0.944 (±0.060) 0.913 (±0.093)
- RCC 0.781 0.828 (±0.177) 0.898 (±0.111) 0.888 (±0.123) 0.856 (±0.148)
- R-WCC 0.875 0.937 (±0.080) 0.967 (±0.044) 0.965 (±0.048) 0.946 (±0.073)
- GR 0.887 0.958 (±0.011) 0.979 (±0.006) 0.979 (±0.006) 0.967 (±0.009)

10d-4c-no1 WCC 0.836 0.814 (±0.226) 0.890 (±0.144) 0.876 (±0.171) 0.806 (±0.296)
- RCC 0.835 0.925 (±0.104) 0.958 (±0.062) 0.956 (±0.066) 0.939 (±0.091)
- R-WCC 0.849 0.937 (±0.079) 0.967 (±0.043) 0.965 (±0.045) 0.954 (±0.058)
- GR 0.865 0.972 (±0.049) 0.985 (±0.026) 0.985 (±0.027) 0.979 (±0.037)

iris WCC 0.870 0.586 (±0.006) 0.763 (±0.006) 0.739 (±0.005) 0.615 (±0.010)
- RCC 0.811 0.589 (±0.043) 0.759 (±0.029) 0.740 (±0.035) 0.634 (±0.027)
- R-WCC 0.828 0.594 (±0.036) 0.762 (±0.024) 0.744 (±0.029) 0.636 (±0.027)
- GR 0.898 0.608 (±0.020) 0.771 (±0.009) 0.756 (±0.015) 0.638 (±0.018)

wine WCC 0.740 0.712 (±0.099) 0.831 (±0.065) 0.826 (±0.074) 0.734 (±0.120)
- RCC 0.733 0.670 (±0.149) 0.800 (±0.100) 0.789 (±0.120) 0.658 (±0.249)
- R-WCC 0.743 0.747 (±0.064) 0.852 (±0.043) 0.850 (±0.045) 0.772 (±0.072)
- GR 0.803 0.752 (±0.139) 0.856 (±0.092) 0.849 (±0.115) 0.747 (±0.250)

segment WCC 0.829 0.328 (±0.024) 0.519 (±0.015) 0.491 (±0.028) 0.418 (±0.031)
- RCC 0.767 0.294 (±0.073) 0.510 (±0.062) 0.448 (±0.091) 0.363 (±0.140)
- R-WCC 0.787 0.301 (±0.064) 0.519 (±0.051) 0.457 (±0.076) 0.388 (±0.086)
- GR 0.849 0.332 (±0.078) 0.551 (±0.063) 0.493 (±0.091) 0.433 (±0.101)

VI. CONCLUSION

In this paper, we addressed the problem of the collabora-
tion between different clustering methods. One of the main
challenge in collaborative clustering is the comparison of
the different clustering results in order to identify precisely
where they are in strong disagreement. These are referred
as conflicts, and we presented four different strategies to
solve these conflicts. These four different conflicts resolution
strategies were described and compared. The first three are
iterative and solve one conflict at each step of the algorithm.
The last one uses a tuned genetic algorithm which explores the
complex search-space of the potential solutions. The results
are in accordance with the intuition that the genetic algorithm
is more likely to find the best solution. However, the genetic
algorithm is also time and space consuming, which is a critical
issue for some applications. One of the good trade off between
time complexity and efficiency of the results is the roulette-
wheel strategy (R-WCC), where the selection of the conflict
to solve is weighted by its importance. This strategy gives
good results when the datasets are complex and has acceptable
execution times.

In further research, we plan to explore more deeply the
different strategies and try to design new ones. Background
knowledge integration is also in consideration to try to improve
the collaboration between the methods.

REFERENCES

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.

[2] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Trans-
actions on Neural Networks, vol. 16, no. 3, pp. 645–678, 2005.

[3] R. Caruana, M. Elhaway, N. Nguyen, and C. Smith, “Meta clustering,”
in IEEE International Conference on Data Mining, 2006, pp. 107–118.

[4] E. Bae and J. Bailey, “Coala: A novel approach for the extraction of
an alternate clustering of high quality and high dissimilarity,” in IEEE
International Conference on Data Mining, 2006, pp. 53–62.

[5] I. Davidson and Z. Qi, “Finding alternative clusterings using con-
straints,” in IEEE International Conference on Data Mining, 2008, pp.
773–778.

[6] M. Law, A. Topchy, and A. Jain, “Multiobjective data clustering,”
in IEEE International Conference on Computer Vision and Pattern
Recognition, vol. 2, 2004, pp. 424–430.

[7] R. Jiamthapthaksin, C. F. Eick, and V. Rinsurongkawong, “An ar-
chitecture and algorithms for multi-run clustering,” in Computational
Intelligence Symposium on Data Mining, 2009.

[8] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggregation,” in
International Conference on Data Engineering, 2005, pp. 341–352.

[9] A. Fred and A. Jain, “Combining multiple clusterings using evidence
accumulation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 6, pp. 835–850, 2005.

[10] A. Topchy, A. Jain, and W. Punch, “Clustering ensembles: models of
consensus and weak partitions,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 27, no. 12, pp. 1866–1881, 2005.

[11] A. Strehl and J. Ghosh, “Cluster ensembles - a knowledge reuse frame-
work for combining multiple partitions,” Journal of Machine Learning
Research, vol. 3, no. 3, pp. 583–617, 2003.

[12] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classifica-
tion, vol. 2, no. 1, pp. 193–218, 1985.

[13] P. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, vol. 20, no. 1, pp. 53–65, 1987.

[14] D. Davies and D. Bouldin, “A cluster separation measure,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 4, no. 1,
pp. 224–227, 2000.

[15] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1989.

[16] B. Ross, “A lamarckian evolution strategy for genetic algorithms,” in
The Practical Handbook of Genetic Algorithms. CRC Press, 1999, pp.
1–16.

[17] A. Asuncion and D. Newman, “UCI machine learning repository,” 2007.

	Introduction
	Related work
	Collaborative clustering
	Local clusterings comparison
	Comparing global clusterings
	Conflict definition and assessment

	Conflict resolution strategies
	Iterative resolution strategies
	Worst conflict choice (WCC)
	Stochastic conflict choice (SCC)
	Roulette-wheel conflict choice (R-WCC)

	Genetic resolution strategy (GR)

	Experiments
	Conclusion
	References

