
HAL Id: hal-03813339
https://hal.science/hal-03813339v2

Submitted on 30 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Attachment-line, crossflow and Tollmien-Schlichting
instabilities on swept ONERA-D and Joukowski airfoils
Euryale Kitzinger, Tristan Leclercq, Olivier Marquet, Estelle Piot, Denis Sipp

To cite this version:
Euryale Kitzinger, Tristan Leclercq, Olivier Marquet, Estelle Piot, Denis Sipp. Attachment-line,
crossflow and Tollmien-Schlichting instabilities on swept ONERA-D and Joukowski airfoils. Journal
of Fluid Mechanics, 2023, 957, �10.1017/jfm.2023.38�. �hal-03813339v2�

https://hal.science/hal-03813339v2
https://hal.archives-ouvertes.fr


This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Attachment-line, crossflow and
Tollmien-Schlichting instabilities on swept

ONERA-D and Joukowski airfoils

Euryale Kitzinger1:, Tristan Leclercq1, Olivier Marquet1, Estelle
Piot2, and Denis Sipp1

1DAAA, ONERA, University of Paris-Saclay
F-92190 Meudon - France

2ONERA/DMPE, University of Toulouse
F-31055 Toulouse - France

(Received xx; revised xx; accepted xx)

Linear stability analyses are performed to investigate the boundary layer instabilities
developing in an incompressible flow around the whole leading-edge of swept ONERA-D
and Joukowski airfoils of infinite span. The stability analyses conducted in our study are
global in the chordwise direction and local in the spanwise direction. A neutral curve is
drawn at a given leading-edge Reynolds number ReR and several overlapping regions,
called “lobes”, are identified on a physical basis. A detailed study of the marginal modes
reveals the presence of attachment-line and crossflow instabilities, as well as modes whose
features do not fall within the standards of a specific type. Connected crossflow/Tollmien-
Schlichting modes, that show a dominant spatial structure reminiscent of Tollmien-
Schlichting waves but whose destabilization is linked to a crossflow mechanism, have
been identified. The comparison of several neutral curves at different ReR values reveals
the greater stabilizing effect of the increase of ReR on the crossflow instability compared
to the attachment-line instability. The influence of the airfoil shape is also studied by
comparing the neutral curves of the ONERA-D with the neutral curves of the Joukowski
airfoil. These curves reveal similar characteristics with the presence of distinct lobes and
their comparison at constant sweep angle shows that, under the conditions studied, the
ONERA-D airfoil is more stable than the Joukowski airfoil, even for crossflow instabilities.
The absolutely or convectively unstable nature of the flow in the spanwise direction is
also tackled and our results suggest that the flow is only convectively unstable.

1. Introduction

The understanding of the laminar-to-turbulent transition process on swept wings is
a crucial issue both from a theoretical and practical point of view for aerodynamic
optimization and transition control. This is why, over the last decades, many studies
have been conducted to better understand this phenomenon. When the environmental
disturbances have a sufficiently small amplitude, as often occurs in flight conditions,
instabilities growing following a linear mechanism can develop within the boundary layer.
It is then important to identify the physical mechanism involved and the spatial structure
of the instability in order to control it and thus delay the transition. In the case of swept
wings, and in the absence of contamination by the turbulence of the fuselage, three types
of instabilities are mainly responsible for the transition: attachment-line (AL), crossflow
(CF), and Tollmien-Schlichting (TS) instabilities.
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The Tollmien-Schlichting instability is related to the streamwise component of the
flow and takes the form of vortices almost perpendicular to the streamwise direction.
As mentioned by Reed & Saric (1989), Tollmien-Schlichting instabilities are destabilized
by an adverse pressure gradient and arise in regions with no or weak positive pressure
gradient. In the case of a Blasius boundary layer flow, the value of the critical Reynolds
number based on the freestream velocity and the boundary layer displacement thickness
is Recrit “ 520 and the phase speed of the corresponding marginal mode is 0.397 (Schmid
& Henningson 2001).
Attachment-line instabilities are characterized by counter-rotating vortices developing

in the attachment line region and aligned with the chordwise direction. The mecha-
nism responsible for these instabilities is similar to that of the 2D Tollmien-Schlichting
instabilities in the pz, ηq-plane, where z and η are respectively the spanwise and wall-
normal directions. This instability has long been studied through the analysis of a flow
impinging on a flat swept plate with the chordwise velocity linear in the chordwise
coordinate x, representative of the attachment line of a swept cylinder. This model is
called the Swept Hiemenz Flow (SHF) and was comprehensively studied in Hall et al.
(1984) where Görtler-Hammerlin perturbations with a linear dependency in the chordwise
direction cause the flow to be linearly unstable above a critical sweep Reynolds number
ReS “ 583. The sweep Reynolds number ReS , based on the spanwise velocity and a
typical length scale of the boundary layer at the attachment line, is commonly used in
studies dealing with attachment line flows. In order to remove the assumption about
chordwise linear dependency of the perturbation, Lin & Malik (1996) considered more
general two-dimensional perturbations. They validated the threshold value of Hall et al.
(1984) and noted the observation of symmetric and antisymmetric modes, the symmetric
Görtler-Hammerlin mode described by Hall et al. (1984) remaining the most unstable.
Following on from this study, Lin & Malik (1997) studied the influence of leading-edge
curvature using second-order boundary-layer theory, which made it possible to show the
stabilizing effect of leading-edge curvature on attachment-line instabilities.
Unlike attachment-line and Tollmien-Schlichting instabilities, crossflow instabilities are

inflectional and are caused by the combined effect of sweep and wall curvature further
downstream. Indeed, the centripetal force and the favorable pressure gradient create
a deflection of the flow outside the boundary layer. Within the boundary layer, the
centripetal force decreases while the pressure gradient is conserved, creating a velocity
profile with an inflection point, which is the source of crossflow instability. As described in
the review by Saric et al. (2003), crossflow instability can be either steady or travelling. It
is characterized by co-rotating vortices almost aligned with the streamwise direction, es-
pecially for the steady modes. Contrary to the Tollmien-Schlichting instabilities, crossflow
instabilities are often destabilized by a negative pressure gradient. They are sufficiently
strong (inviscid instability) to trigger absolute instability in the chordwise direction, see
Lingwood (1997).
During the 20th century, all these instabilities were mainly studied independently from

simplified models with assumptions on the flow or a perturbation form depending on the
type of instability sought. However, the origin of this independence mostly comes from
practical limitations rather than physical considerations and a realistic instability may
be a superposition of different types. By investigating the interaction of oblique waves
with two-dimensional waves for the SHF case, Hall & Seddougui (1990) suggested a
connection between attachment-line and crossflow instabilities. Then, Bertolotti (2000)
found modes connecting attachment-line to crossflow in the SHF case using confluent
hypergeometric functions. To study the diversity of the instabilities, the need to perform
stability analyses which are global in the chordwise direction on domains that extend



Attachment-line, crossflow and Tollmien-Schlichting instabilities on swept airfoils 3

over the whole leading edge was perceived. These chordwise-global analyses, contrary
to chordwise-local analyses, allow us to directly conclude on the absolute nature of the
instability in the chordwise direction (Huerre & Monkewitz 2003) but also to have access
to its wavemaker, as well as to its whole spatial structure. The concept of wavemaker
was introduced by Gianetti & Luchini (2007) and is relevant for the identification of
the physical mechanisms at play. The increase of computational capacities has made
this type of global analysis possible, but the difficulty lies in the possibly very high
sensitivity of the computed eigenvalues to numerical parameters such as domain size or
eigenvalue shift (Alizard & Robinet 2007; Garnaud et al. 2013; Brynjell-Rahkola et al.
2017). Cerqueira & Sipp (2014) have shown that this issue is linked to the modification
of the ϵ-pseudospectrum with the extension of the domain. To date, only a few studies
deal with chordwise-global stability analyses using a domain covering the entire leading
edge (Mack et al. 2008; Mack & Schmid 2011; Meneghello et al. 2015). In Mack et al.
(2008), a first temporal chordwise-global stability analysis was conducted on a parabolic
leading-edge in supersonic flow. The authors reported “connected modes” with features
of both attachment-line and crossflow. In Mack & Schmid (2011), a neutral curve was
established, still in supersonic condition. Their study was done at a constant sweep
angle, which implies a simultaneous variation of the sweep and leading-edge Reynolds
numbers ReS and ReR. Meneghello et al. (2015) dealt with the incompressible flow
around the leading-edge of a Joukowski airfoil. Only strongly stable modes were analyzed.
One of their observations is the appearance of an AL/CF connected mode with a first
spatial growth of the direct mode close to the attachment line and a second spatial
amplification further downstream, where the direct mode has characteristics reminiscent
of a crossflow type instability. They used the wavemaker to conclude that the observed
mode is fed by the attachment-line instability. This last result additionally implied that
effective open-loop control strategies should focus on baseflow modifications in the region
where the attachment-line instability prevails. Thus, chordwise-global analyses provide
important information about the spatial structure of the modes and their sensitivity, and
the previous studies of leading-edge instabilities have highlighted the complexity of the
modes involved. Yet, only a strongly stable configuration around a Joukowski profile has
been studied for the case of an incompressible flow and studies of unstable or marginally
stable flows have been limited to a narrow field of the parameter space in a compressible
case around a parabolic body.
The first objective of this paper is to extend the study of boundary layer instabilities

that develop in an incompressible flow around the leading-edge of swept realistic airfoils,
here the ONERA-D and Joukowski airfoils with infinite span. In particular, we are inter-
ested in studying the neutral curves in extended parameter space and in characterizing
the physical nature of the chordwise-global modes along them. By studying in depth
the features of the marginal modes, including the study of the wavemaker position, we
would like to further the study of the diversity of the modes developing on the leading-
edge and improve our understanding of the connection between the different types of
instabilities. We also want to investigate the impact of the streamwise pressure gradient
on the instabilities by comparing the results between a ONERA-D airfoil and a Joukowski
airfoil, which exhibit strongly different pressure gradients.
The chordwise-global analyses used in our study remain local in the spanwise direction.

Therefore, the convective or absolute nature in the spanwise direction of the studied in-
stabilities is still to be explored. This problem aims at determining whether an instability
in the flow has a chance to sustain the perturbation so as to grow temporally at a given
spanwise position and contaminate the whole airfoil, or whether it will be convected
away along the span. Studies addressing this issue were conducted at the end of the 20th
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century. Indeed, Türkylmazoglu & Gajjar (1999), and Lingwood (1997) respectively dealt
with the incompressible Swept Hiemenz Flow and Falkner-Skan-Cooke boundary layer
and found that they are absolutely unstable in the chordwise direction, but may still be
only convectively unstable in the spanwise direction. Taylor and Peake have also been
interested in this problem for genuine airfoils in incompressible (Taylor & Peake 1998) and
compressible (Taylor & Peake 1999) regimes. In both cases, they also found convectively
unstable flows without absolute instabilities in both streamwise and crossflow directions.
Similarly, (Piot & Casalis 2009) studied the absolute instability mechanisms on a swept
cylinder with imposed spanwise periodic conditions. All previously mentioned absolute
stability analyses were conducted using stability analyses that are local both in the
spanwise and chordwise directions.
The second objective of this paper is to study the absolute/convective nature in

the spanwise direction of the instabilities developing in the boundary layer of the
incompressible flow around the leading-edge of the ONERA-D airfoil. To the authors’
knowledge, this is the first study of this nature using chordwise-global stability analyses.
The outline of the paper is the following. In §2 the methodology that will be used in

this paper is described. The flow configurations as well as the governing equations and
the computational domain are introduced. The numerical methods and the procedure for
finding modes with zero-group velocity are also detailed. In §3 the results and discussions
are presented. In §3.1, some results of the baseflow are described. In §3.2, a neutral curve
for the swept ONERA-D airfoil is drawn and a detailed analysis of its structure and its
marginal modes is provided. The convective/absolute nature of the instabilities is tackled
in §3.3. Then, a parametric study of the influence of ReR is performed by comparing
neutral curves in the case of the ONERA-D in §3.4. Finally, in §3.5, the neutral curves
for the swept ONERA-D and Joukowski airfoils are compared to assess the influence of
the airfoil shape.

2. Methodology

2.1. Flow configurations

We consider the swept ONERA-D and Joukowski airfoils of infinite span at 0˝ angle
of attack, the Joukowski airfoil having a thickness parameter ϵ “ 0.1. The ONERA-
D is a reference airfoil for the study of the boundary layer transition and has a shape
designed specifically to stabilize TS waves. We pick an orthonormal coordinate system
px, y, zq whose origin is located on the leading-edge, the x-direction being along the
chord orthogonal to the leading-edge, the z-direction along the span, and the y-direction
orthogonal to the symmetry plane (see figure 1).
The leading-edge radius of curvature of the airfoils in the px, yq-plane is noted rc and the

sweep angle Λ “ anglep
ÝÑ
U

8
,ÝÑx q with the inflow velocity U8 which may be decomposed as

a sweep velocity U8
z “ U8 sinΛ and a chordwise velocity U8

x “ U8 cosΛ (with U8
y “ 0).

The chord in the direction of the free-stream velocity is noted C, while Cn “ C cosΛ is
the chord normal to the leading-edge of the airfoil.
We will consider two local orthonormal coordinate systems:
‚ ps, η, zq, where s is the curvilinear abscissa along the surface of the airfoil in a

pz “ cstq-plane and η is the wall-normal direction (η “ 0 corresponds to the surface).
‚ pχ, η, bq, where χ is a curvilinear abscissa along a streamline of the external baseflow

velocity field, just outside of the boundary layer (see section 3.1). Again η is the wall-
normal direction and b is normal to the plane pχ, ηq.
Two non-dimensional parameters are needed to describe the flow configuration. A
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Figure 1: paq: Schematic of the mesh and flow configuration with the ONERA-D airfoil.
pbq: Angles and coordinate systems are indicated. An external streamline is illustrated in
green. The blue lines correspond to the leading/trailing edges.

natural parameterization is the one based on the sweep angle and the streamwise
Reynolds number:

ˆ

Λ, ReQ “
U8C

ν

˙

. (2.1)

where ν denotes the kinematic viscosity. These two parameters, commonly used in wind
tunnel experiments, will be used in the result section 3.5 to compare the stability of the
Joukowski and ONERA-D airfoils.
In our study, we will mainly use a parameterization more representative of the physics

of the flow at the leading-edge by defining the “leading-edge Reynolds number” ReR and
the “sweep Reynolds number” ReS :

ˆ

ReR “
U8
x rc
ν

, ReS “
U8
z ∆

ν

˙

. (2.2)

Here ∆ is a typical length scale of the boundary layer thickness at the attachment line
and is based on the potential flow:

∆ “

c

ν

S0
, S0 “

BUpot
s

Bs

ˇ

ˇ

ˇ

ˇ

x“0,y“0

, (2.3)
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where Upot
s denotes the s-component of the potential velocity. The detail of the calculation

of the potential flow will be given in section 2.2.1. S0 is then the strain rate of the potential
flow around the profile at the attachment-line.
This parameterization has been used intensively in the study of transition in simplified

leading-edge configurations. The sweep Reynolds number ReS , often used for the study
of attachment line flows, and sometimes also denoted R̄, drives the instability mechanism
along the attachment line (Hall et al. 1984; Lin & Malik 1996). The leading-edge Reynolds
number ReR can be seen as a scaling of the boundary layer thickness with respect to the
radius of curvature at the attachment-line since:

∆

rc
“

1
?
KReR

, (2.4)

where K “ S0rc{U8
x .

Lin & Malik (1997) used this Reynolds number to measure the influence of the leading-
edge curvature on the attachment-line instabilities. K is the ratio between two length-
scales: the leading edge radius of curvature rc and the characteristic length-scale U8

x {S0

of variation of the potential flow in the vicinity of the leading edge.
For the ONERA-D and Joukowski airfoils, we have prc{Cn,Kq “ p0.0180, 1.37484q

and prc{Cn,Kq “ p0.016129, 1.2669q respectively (for comparison, prc{Cn,Kq “ p0.5, 2q

in the case of the cylinder).
Both sets of parameters pReQ, Λq and pReR, ReSq may be linked through:

ˆ

tanΛ “

c

K

ReR
ReS , ReQ “ ReR

1 ` tan2 Λ

rc{Cn

˙

. (2.5)

2.2. Governing equations and computational domain

In the context of our study, we seek to determine the stability of a perturbation
qpx, y, z, tq “ pu, pqpx, y, z, tq of small amplitude which emerges within a baseflow
Qpx, y, z, tq “ pU , P qpx, y, z, tq. The baseflow being steady and homogeneous in z, then
we simply have Qpx, y, z, tq “ Qpx, yq.
The total flow Qtot is expressed as the sum of the baseflow and the perturbation:

Qtotpx, y, z, tq “ Qpx, yq ` ϵqpx, y, z, tq

with ϵ ăă 1.
We want to study the temporal stability of the perturbations by expressing them

in the form qpx, y, z, tq “ q̃px, y, zqe´iωt with ω P C. The real part ωr and imaginary
part ωi represent respectively the frequency and the amplification rate. A perturbation
with ωi ą 0 will be said to be “unstable” while a perturbation with ωi ă 0 will
be said to be “stable”. Considering the homogeneity of the configuration in the z-
direction, any perturbation can be decomposed as a sum of perturbations of the form
qpx, y, z, tq “ q̂px, yqeiβze´iωt. The stability analysis being linear, we can reduce our
study to instabilities of this form. We are then dealing with a temporal analysis that is
global in the chordwise x-direction but local in the spanwise z-direction. These analyses
will then be referred to as chordwise-global/spanwise-local. In the present study, except
for the section 3.3, we will consider the case β P R. This assumption allows us to tackle
the question of the temporal stability of spanwise periodic perturbations. However, it
tells us nothing of the absolute or convective nature of the instability. In other words, it
does not allow us to predict whether a perturbation would temporally grow at a given
location along the span, or if it would be washed away downstream along the span as it
grows in time. To tackle this last point, the one of absolute stability in the z-direction,
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it is necessary to consider β P C. The methodology used to deal with this problem will
be described in section 2.2.4.

2.2.1. Baseflow

The velocity and pressure fields of the baseflow, respectively U “ pUx, Uy, Uzq and P ,
are governed by the steady incompressible Navier–Stokes equations. As a result of the
homogeneity in the z-direction, BzQ “ 0 and the governing equations of U2D “ pUx, Uyq

and Uz are decoupled. All variables are made non-dimensional with the length of the chord
Cn (normal to the leading-edge) and the velocity U8

x . We then introduce the chordwise
Reynolds number ReCn “ ReRCn{rc and we get the following system of equations:

$

’

&

’

%

∇U2D ¨ U2D ` ∇P ´Re´1
Cn
∆U2D “ 0

∇Uz ¨ U2D ´Re´1
Cn
∆Uz “ 0

∇ ¨ U2D “ 0

(2.6)

Using the symmetry of the airfoil in y “ 0, we can consider a domain defined only
on the upper half of the airfoil, as shown in figure 1paq, and we then have the following
boundary conditions:

$

’

’

’

&

’

’

’

%

U “ 0 on Γw

pUx, Uy, Uzq “
`

Upot
x , Upot

y , U8
z

˘

on Γin

ByUx “ ByUz “ Uy “ 0 on Γsym

∇U ¨ n “ 0 and P “ P pot on Γout

(2.7)

where Γw, Γin, Γsym and Γout are defined in figure 1. n denotes the vector normal to the
boundary and the superscript pot corresponds to the 2D potential solution around the
airfoil.

In the farfield, we have
`

Upot
x “ 1, Upot

y “ 0, Upot
z “ U8

z , P
pot “ 0

˘

. For the ONERA-D,
the potential solution is computed by solving a Laplace equation for the stream-function
ψ with appropriate Dirichlet boundary conditions on a domain comprising the full airfoil
and extending sufficiently far so that uniform flow field conditions hold. The potential
velocity field is obtained by computing Upot

x “ Byψ and Upot
y “ ´Bxψ. The potential

pressure is computed as P pot “ p1 ´ pUpot
x q2 ´ pUpot

y q2q{2.

In the case of the Joukowski airfoil, which is defined from a Joukowski transform of a
cylinder, the potential solution is computed analytically.

2.2.2. Direct modes: temporal chordwise-global/spanwise-local stability analysis

As previously introduced, the small amplitude unsteady perturbations q are sought
under the form

q “ q̂px, yqeipβz´ωtq, (2.8)

where q̂ “ pû, p̂q “ pûx, ûy, ûz, p̂q is the complex spatial distribution of the mode, β P R
is the real spanwise wavenumber and ω P C is the complex pulsation of the perturbation.

The equation governing the couple pω, q̂q corresponds to the following linear eigenvalue-
eigenvector problem:

Lq̂ “ ωBq̂, (2.9)
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where L and B are defined as:

L “

»

—

—

—

—

–

BxUx ` Cβ ´ Dβ ByUx 0 Bx

BxUy ByUy ` Cβ ´ Dβ 0 By

BxUz ByUz Cβ ´ Dβ iβ

Bx By iβ 0

fi

ffi

ffi

ffi

ffi

fl

and B “

»

—

—

—

—

–

i 0 0 0

0 i 0 0

0 0 i 0

0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

,

(2.10)
with Cβ “ UxBx `UyBy ` iβUz and Dβ “ Re´1

Cn
pBx2 ` By2 ´ β2q. The following boundary

conditions hold:
$

’

’

’

&

’

’

’

%

û “ 0 on Γw

û “ 0 on Γin

Byûx “ Byûz “ ûy “ 0 on Γsym

p̂n ´Re´1
Cn

∇û ¨ n “ 0 on Γout

, (2.11)

which corresponds to a symmetric boundary condition at the symmetry plane. Although
antisymmetric modes also exist, the present study focuses on symmetric modes because
they are expected to be the most unstable. Indeed, the modes most likely to be affected
by the boundary condition at Γsym are the modes with a spatial structure close to the
attachment line, and for these, the literature indicates that symmetric modes are the
most unstable (Joslin 1996; Lin & Malik 1996; Meneghello et al. 2015).
In this study, the direct modes are normalized such that:

pû, ûq “ 1. (2.12)

with the inner product p¨, ¨q defined as:

pq1, q2q “

ż

Ω

q˚
1q2dΩ, (2.13)

the superscripts ˚ referring to the transconjugate and Ω being the computational domain.

2.2.3. Adjoint modes and wavemaker

We now briefly introduce adjoint operators, adjoint modes and the wavemaker. The
adjoint operator L: of L is the operator such that for any q1 and q2:

pq1,Lq2q “ pL:q1, q2q, (2.14)

The definition of L: is provided in appendix A. The adjoint eigenvalue ω: and adjoint
mode q̂: “ pû:, p̂:q are then solution of the following eigenvalue-eigenvector problem:

L:q̂: “ ω:B:q̂:. (2.15)

Since each eigenvalue ω: of the adjoint problem is the conjugate of an eigenvalue ω of
the direct problem, it is possible to associate every direct mode with an adjoint mode.
In this study, the adjoint modes are normalized such that:

pû:, û:q “ 1. (2.16)

The knowledge of the adjoint mode is of particular interest since it is linked to the
notion of wavemaker λpx, yq of the direct eigenvector q̂ (Gianetti & Luchini 2007). It is
defined as the local product of the norms of the direct and the associated adjoint mode:

λpx, yq “ }ûpx, yq} ¨ }û:px, yq}, (2.17)

where }upx, yq}2 “ u˚px, yqupx, yq is the pointwise squared norm of the velocity vector.
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In regions where the wavemaker is strong, the eigenvalue is very sensitive to a local
modification of the structure of the governing equations. Consideration of the wavemaker
is important for the identification of mode instability types (Meneghello et al. 2015).
The consideration of the wavemaker is also important from a numerical point of view

since it is necessary to verify that this region is located inside the computational domain.

2.2.4. Absolute / convective stability analysis in the spanwise z-direction

We are interested here in the search for absolute instabilities. The results on this point
will be presented in section 3.3.
For given parameters pReR, ReSq where the flow is temporally unstable, ie there is

a real β such that there exists a mode with ωipβq ą 0, we look for a complex spatial
wavenumber β0 such that the mode exhibits a zero spanwise group velocity:

Bβωpβ0q “ 0. (2.18)

The flow is absolutely unstable if ω0,i ą 0 where ω0 “ ωpβ0q.
To find such values, we follow the strategy described in Meliga et al. (2008). We first

perform a temporal stability analysis, as described in section 2.2.2, and compute the
most unstable eigenvalue for varying real wavenumbers β and look for all wavenumbers
βpeak where ωipβq is maximal, i.e. Bβωipβ

peakq “ 0. Then, at these points, the spanwise
group velocity is real: V peak

g “ Bβωpβpeakq “ Bβωrpβpeakq.
We then allow both β and ω “ ωpβq to be complex and monitor the values of

wavenumbers βVg
and frequencies ωVg

for which we have a branch point:

ωpβq « ωVg
` Vg

“

β ´ βVg

‰

` l
“

β ´ βVg

‰2
. (2.19)

Vg is the control variable and l is a term to determine. Note that for V peak
g , the

branch point is reached for pβpeak, ω
`

βpeakq
˘

. We then decrease Vg, follow the solution
by continuity and identify pβ0, ω0, Vg “ 0q. This may yield multiple branch points at
zero spanwise group velocity. The transition from convective to absolute instability is
determined by the branch point that exhibits largest growth rate ω0,i.
In this way, we should be able to evaluate ω0 for all pReR, ReSq couples and determine

where the flow is absolutely unstable (ω0,i ą 0), or convectively unstable (ω0,i ă 0). It
should be noted, though, that the presence of modes with ω0,i ą 0 is only a necessary
but not sufficient condition for absolute instability. However, the absence of modes with
ω0,i ą 0 is therefore a sufficient condition to conclude that the flow is only convectively
stable.

2.3. Numerical methods

The airfoils being symmetric, we choose to restrict the study to symmetric flowfields.
The computational domain is restricted to the y ě 0 domain, and symmetry conditions
will be used at the axis of symmetry y “ 0, as defined in equation 2.11.
As shown in figure 1, we consider a 2D domain Ω covering the upper half of the

airfoil and which extends up to typically 15% and 35% in the chordwise direction for
the ONERA-D and Joukowski airfoils respectively. The domain size in the chordwise
direction has been chosen small enough so that the non-normality effects described by
Cerqueira & Sipp (2014) and Brynjell-Rahkola et al. (2017) do not affect the accuracy of
the results, but large enough to include the entire region of the wavemaker of the modes.
Validation of the stability analysis results with respect to the chordwise extension of the
mesh is presented in section 2.4.2.
For the ONERA-D, the body-fitted mesh for the baseflow solution is made up of an
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internal Mi (in red in figure 1) and an external Me (in blue) part. The external mesh
is obtained with successive automatic mesh adaptations, based on criteria pertaining to
the computed baseflow velocities. The mesh extends to about 50Cn in the η-direction,
contrary to what is shown in figure 1 for clarity. On the other hand, the internal mesh
remains fixed and consists of the superposition of several layers, each layer extending
over the whole chord and being one rectangle thick (each rectangle is divided into two
triangles). There is a scale factor of 1.04 between the wall-normal length of successive
layers, the layer attached to the wall having an aspect ratio of 10 and the external layer
an aspect ratio of 1. For pReR, ReSq “ p25000, 652q, we then get 59 layers, the internal
mesh extending up to 45∆ in the η-direction and being composed of 101418 triangles.
The total number of triangles in the complete mesh is 120901.

For the Joukowski airfoil, the baseflow solution is also made up of an internal and an
external part. In the case of the Joukowski profile, the mesh is constructed analytically
using the Joukowski transform. For our study, the parameters are chosen such that the
internal mesh has a thickness that increases along the chord so that it is about 5δ99
with half the points within the boundary layer δ99. The boundary layer thickness δ99
will be properly introduced in the section 3.1. The mesh has a chordwise extension of
XΓout

“ 0.35. The internal and external meshes are made of 60000 and 90000 triangles
respectively. The external mesh extends to about 50δ99 in the η-direction.

For the stability computations, we have considered only the internal mesh Mi, the
inflow boundary being sufficiently far from the airfoil so that homogeneous boundary
conditions hold for the perturbations.

All numerical details are handled with FreeFem++ (Hecht 2012). The baseflow
non-linear system is solved with Newton’s iterative method using the MUMPS solver
(Amestoy et al. 2000) for the inversion of the Jacobian (Sipp & Lebedev 2007). The
algorithm is initialized with the potential solution.

To allow coarsening of the ONERA-D mesh in the free-stream by mesh adaptation, we
used a SUPG method associated with a grad-div stabilization for solving the baseflow
equations. (Ahmed & Rubino 2019; Franca et al. 1992).

For both the baseflow computation and the stability analysis, the spatial discretiza-
tions are handled with second-order finite elements. We use Lagrange type elements
(P2,P2,P2,P1). The eigenvalues and associated eigenmodes are computed using a Krylov-
Schur algorithm associated with a shift-invert method (the matrix inversions are handled
by the direct LU MUMPS solver). We rely on the SLEPc solver (Hernandez et al. 2005)
with a basis of 100 Krylov vectors.

2.4. Validation

2.4.1. Baseflow

The baseflow solution was validated by comparing the streamwise velocity component
Uχ and crossflow component Ub within the boundary layer with those obtained by
using an ONERA in-house boundary layer code which solves the Prandtl’s equations
(Houdeville 1992). A comparison along the wall-normal direction η for pReR, ReSq “

p25000, 652q is shown in figure 2 for the chordwise coordinate s “ 0.07. We observe a
close agreement between the results obtained with the two methods with a growth of the
Uχ component up to a value of about 5 for η ą 10´3. For the Ub component, we observe
with both methods, a maximum of 0.028 for η “ 3ˆ10´4 and a minimum around ´0.012
for η “ 8.5 ˆ 10´4.
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Figure 2: Validation of baseflow for the ONERA-D at pReR “ 25000, ReS “ 652q, which
corresponds to pReQ “ 3.38ˆ107, Λ “ 78.31˝q. paq: streamwise velocity profile at s “ 0.07
and pbq: corresponding crossflow velocity profile, the solid blue line refers to the present
computation and the dashed red line to the solution of the Prandtl’s equations.

XΓout Nlayer Nt SF

Mref 0.15 59 101418 1.04
M12 0.12 59 83349 1.04
M20 0.20 59 132050 1.04
Mfin 0.15 78 178423 1.03

Table 1: Properties of the meshes Mref , M12, M20, and Mfin. XΓout , Nlayer, Nt and SF
correspond respectively to the chordwise extension of the mesh, the number of layers,
the total number of triangles and the scale factor between the thickness of the different
layers. All meshes have the same wall-normal extension (close to 45∆) and triangles at
the wall with a similar aspect ratio (formed by splitting a rectangle of aspect ratio 10).

2.4.2. Stability analysis

Validation of the convergence of our results with respect to the chordwise extension of
the domain and the refinement of the mesh for the ONERA-D airfoil was done.
Three sets of parameters pReR, ReS , β∆q have been considered: p25000, 652, 0.32q,

p25000, 652, 0.126q, and p25000, 527, 0.057q. This choice was made because for each of
these three sets of parameters, the most unstable mode is a marginal mode with very
distinct features. These three modes will be investigated in detail in section 3.2.2 and
exhibit characteristics close to attachment-line, crossflow, and Tollmien-Schlichting in-
stabilities, respectively.
For the refinement validation, we compare the results obtained with the internal mesh

used in our study (XΓout “ 15% and 101418 triangles) to a finer mesh (XΓout “ 15%
and 178423 triangles). These two meshes are labeled as “Mref” and “Mfin” respectively.
The finer mesh has a scale factor of 1.03 (instead of 1.04), the total thickness of the mesh
and the aspect ratio of the first layer remaining the same, thus increasing the number
of layers and the number of triangles in each layer. The informations concerning the
different meshes compared are listed in the table 1.
Concerning the chordwise extension, the comparison is done between meshes with



12 E. Kitzinger, T. Leclercq, O. Marquet, E. Piot and D. Sipp

pReR, ReS , β∆q p25000, 652, 0.32q p25000, 652, 0.126q p25000, 527, 0.057q

Mref 6074.79 ´ 0.367388i 1771.52 ` 1.16744i 706.780 ` 1.62710i
M12 6075.88 ´ 1.71778i 1771.91 ` 1.07461i 707.122 ` 1.62300i
M20 6075.84 ´ 1.50948i 1770.63 ` 0.487658i 706.958 ` 1.45661i
Mfin 6074.63 ´ 3.92335i 1771.34 ` 1.04354i 707.397 ` 1.28739i

Table 2: Most unstable eigenvalue for the three validation cases computed with several
meshes.

domains extending up to XΓout
“ 12% (M12), XΓout

“ 15% (Mref ) and XΓout
“ 20%

(M20), keeping the mesh density constant.
We focus the comparison on the eigenvalues and the normalized magnitude dûpsq of

the most unstable eigenvector. dûpsq is defined as:

dûpsq “

b

şLη

0
}ûps, ηq}2dη

b

şLs

0

şLη

0
}ûps, ηq}2dηds

(2.20)

with Lη and Ls respectively the wall-normal and chordwise extension of the internal
mesh.
The most unstable eigenvalue computed with the different meshes are given in table 2

for the three sets of parameters pReR, ReS , β∆q “ p25000, 652, 0.32q, p25000, 652, 0.126q,
and p25000, 527, 0.057q. The differences between the meshes result in a relative error
of about 10´3 for the most unstable eigenvalues and an absolute error of the order of
unity. These deviations are acceptable in the context of our study because they do not
significantly affect the neutral curves positions and do not change the conclusions that
can be drawn from them.
In figure 3pa, c, eq, we compare the spectra calculated with the meshes M12 (in red),

Mref (in black), M20 (in blue)Mfin (in green) for pReR, ReS , β∆q “ p25000, 652, 0.32q,
p25000, 652, 0.126q, and p25000, 527, 0.057q, respectively. Significant differences are ob-
served for the highly stable eigenvalues but good agreement is found for the most
unstable eigenvalue, which are the ones of interest. This strong disparity for very stable
eigenvalues between the meshes with domains of different chordwise extension is related
to the dependency of the ϵ-pseudospectrum on the domain sizes (Cerqueira & Sipp 2014).

In figures 3pb, d, fq, the magnitude of the most unstable mode according to the
chordwise coordinate s for the meshes M12 (in red), Mref (in black), M20 (in blue)
and Mfin (in green) are compared in a logarithmic scale, with a zoom in linear scale
in the high magnitude area. Since the normalization of the amplitude depends on the
extension of the domain, for a better comparison, all the magnitude maxima have been
set to the value obtained in the Mref mesh. In the case of the attachment-line mode
represented in figure 3pbq, a gap is seen for s ą 0.03. However, this gap occurs in the
low magnitude region while in the region where the mode is strongest (s ă 0.03), we
find a good agreement. Indeed, although there is a slight difference in magnitude on the
zoomed window, we observe for the 4 meshes that the maximum magnitude is in the close
vicinity of the attachment line, at s « 0.005, and that the spatial structure of the mode is
sufficiently similar that its analysis and the identification of the instability mechanism at
play are not impacted. In the cases of the other two modes (figures 3pd, fq), we observe
a good superposition of the 4 curves. For the crossflow mode, we have an increase in
magnitude up to a value of 60 at s “ 0.04 and then a decrease until the end of the
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Figure 3: Comparison for the ONERA-D airfoil of the spectra pa, c, eq and the
magnitudes pb, d, fq, as a function of s, of the most unstable mode for sets of parameter
pReR, ReS , β∆q: p25000, 652, 0.32q pa, bq, p25000, 652, 0.126q pc, dq and p25000, 527, 0.057q

pe, fq calculated with 4 different meshes. The mesh Mref used in our study (in black) is
compared with a shorter mesh (M12, in red), a longer mesh (M20, in blue) and a finer
mesh (Mfin, in green).
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domain. For the mode exhibiting Tollmien-Schlichting features, we note two magnitude
maxima of 0.5 and 26 for abscissas s “ 0.06 and s “ 0.127 respectively.
Whether with respect to the extension of the mesh in the chordwise direction or

the refinement of the internal mesh, the results are converged, both in terms of mode
magnitude and eigenvalue. The same kind of validation was done for the Joukowski airfoil
case with a reference mesh with XΓout

“ 35% and 60000 triangles. The need for a higher
chordwise extension of the mesh in the Joukowski case is explained by the location of
the marginal modes further downstream compared to the ONERA-D case.
Appendix B gives, for a few marginal modes, a comparison of the spatial structure

obtained with the present chordwise-global approach and that obtained by chordwise-
local stability analysis.
As a validation in the Joukowski case, we compared our stability results with

those obtained by Meneghello et al. (2015) for the parameter set pReR, ReS , β∆q “

p16129, 113, 0.45q (corresponding to pReCn , Λ, βq “ p106, 45˝, 4000q in their paper).
The 3 least stable symmetric eigenvalues and the spatial structure of the least stable
eigenmode are presented in appendix C. A very close agreement is observed.

3. Results

3.1. Baseflow

The baseflow for pReR, ReSq “ p25000, 652q is presented in figures 4 and 5. This
choice of set of parameters corresponds to a sweep angle Λ “ 78.31˝ for the ONERA-
D airfoil, and Λ “ 77.84˝ for the Joukowski airfoil. These particularly high values
compared to realistic configurations are explained by the fact that drawing neutral
curves with lower sweep angles would require increasing ReR, which would make the
numerical computations too expensive for our current capabilities. However, the results
and conclusions drawn from our theoretical study remain insightful as to the physical
mechanisms involved, regardless of the value of the sweep angle. In figure 4, potential
streamlines, δ99, and the wall-pressure coefficient Cp “ 2P are represented in the case
of ONERA-D and Joukowski airfoils. In this figure, the two represented airfoils have the
same spanwise extension, but the radial and chordwise extensions of the domains are
different, as described in the section 2.3.
In figure 5, the NACA0012 profile is used as a reference to help the reader compare

and identify the properties of the two profiles studied in the paper. The three profiles are

superimposed in figure 5paq. The deflection angle γpsq “ anglep
ÝÑ
U

e
psq,

ÝÑ
U

8
q is the angle

between the direction of the external streamline (
ÝÑ
U

e
“ pUe

s , U
e
z q) and the freestream

velocity
ÝÑ
U

8
. It is represented in figure 5pbq. Close to the attachment line, the flow is

along the direction of the span z, so that γ “ 90˝ ´ Λ « 12˝. Then, in the ONERA-D
case, as s increases, the γ angle reaches a minimum of ´2.9˝ at s “ 0.35 before increasing
again to ´1.4˝ at s “ 0.15. For the Joukowski airfoil, the γ angle decreases on the whole
domain to a value of ´2.7˝ in a way similar to the case of NACA0012.

In figure 5pcq is displayed the ratio, for each s-coordinate, of the crossflow velocity
maximum Ubpηq over the η-direction and the external streamwise velocity Ue

χ. This ratio
shows that the crossflow component is overall weak (less than « 4%) for all airfoils and
justifies an analysis in the pχ, η, bq orthonormal system. It also indicates where crossflow
modes are likely to develop (high values of the ratio). In all cases, the maximum is
reached around s “ 0.02. The sharp change in variation around s “ 0.05 in the case of
the ONERA-D airfoil is related to the presence of two maxima of the crossflow velocity
in the η-direction, as shown in figure 2pbq. It can be noted that the presence of these
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(a) (b)

Figure 4: Baseflow for pReR “ 25000, ReS “ 652q, which corresponds to pReQ “ 3.38 ˆ

107, Λ “ 78.31˝q for the ONERA-D airfoil paq and pReQ “ 3.49 ˆ 107, Λ “ 77.84˝q for
the Joukowski airfoil pbq.Potential streamlines (black arrow lines) are shown. Pressure
coefficient Cp and boundary layer thickness δ99 (black line) are represented on a slice
corresponding to the respective internal mesh.

two maxima leads to the presence of two inflection points, which has an impact on
the destabilization of crossflow waves, as will be discussed in section 3.2.2. Figure 5pdq

represents, as a function of s, the pressure gradient scaled using Uτ “ pνBηUχpη “ 0qq0.5.
In the ONERA-D case, the streamwise pressure gradient is close to that of the NACA0012
airfoil and is negative up to s “ 0.035, then positive until the limit of the domain, with
a flattening around s “ 0.09. This pressure-gradient changeover is typical of a flow on a
swept wing and explains the existence of two inflection points in the crossflow velocity
profile Ub for some values of s, as shown in figure 2pbq (Wassermann & Kloker 2005;
Arnal & Casalis 2000a). This indicates schematically that crossflow instabilities should
be favored for s ă 0.035 and Tollmien-Schlichting instabilities after. In the case of the
Joukowski airfoil, the streamwise pressure gradient remains negative up to s “ 0.14. The
scaled streamwise pressure gradient reaches values of about 2ˆ10´3, which indicates that
the gradients are only moderate. Boundary layer thickness values (∆, δ99psq, displacement

δ˚psq, momentum Θpsq) and Reynolds number Reδ˚ “
Ue

χδ
˚

ν of the ONERA-D and
Joukowski airfoils are shown in figure 5pe, fq. All thicknesses δpsq are defined from the
streamwise velocity profile Uχpηq, for example Uχpδ99q “ 0.99Ue

χ. The external velocity

Ue
χ may be evaluated in the ps, η, zq coordinate system according to Ue

χ “
a

pUe
s q2 ` pUe

z q2

with Ue
s “ ´

şLη

0
ω̃zdη (close to Upot

s pη “ 0q) and Ue
z “

şLη

0
ω̃sdη (equal to U8

z ), ω̃z and
ω̃s being the vorticity components of the baseflow along z and s. Lη is a distance to the
wall sufficiently large to reach the potential region where the vorticity components are
zero.

The Reynolds number Reδ˚ exhibits values between 700 and 3900 in the domain, which
allows spatial amplification of Tollmien-Schlichting instabilities for zero-pressure gradient
or adverse pressure gradient boundary layers (we recall that Recrit « 520 in the case of
the Blasius boundary layer flow (Schmid & Henningson 2001)).
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Figure 5: paq: Comparison of airfoil shapes. pb ´ fq: Baseflow for pReR “ 25000, ReS “

652q. pbq: deflection angle γ. pcq: chordwise evolution of the ratio of maxη |Ubps, ηq| to Ue
χ

and pdq: streamwise pressure gradient made non-dimensional with friction velocity Uτ “

pνBηUχpη “ 0qq0.5 and kinematic viscosity ν. pe, fq: ∆ (green), chordwise evolution of the
boundary layer thicknesses, δ99 (red), displacement thickness δ˚ (orange), momentum
thickness θ (black) and Reynolds number Reδ˚ (blue) based on external streamwise
velocity and displacement thickness for the ONERA-D peq and Joukowski pfq airfoils.
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3.2. Temporal chordwise-global/spanwise-local stability analysis for the ONERA-D
airfoil

In order to determine the physical mechanisms involved, a classification of the types
of modes studied is commonly made. The classification is based on the study of several
features specific to each type of mode. As stated in the introduction, the main instabilities
developing in the configurations studied here are related to attachment-line, crossflow,
and Tollmien-Schlichting types.
To help discern the type of instability, as commonly done in chordwise-local stability

approaches (Arnal & Casalis 2000b), we introduce the Ψ angle between the local planar
wave vector

ÝÑ
k psq “ rkspsq, kzs of the mode and the direction of the external stream-

line: Ψ “ anglep
ÝÑ
k psq,

ÝÑ
U

e
psqq. In the context of chordwise-global instability, we may

approximate such a planar wave-vector as follows: if ûpx, yqeiβz is a component of the
mode, then pks, kzq “ pBsϕ, βq where ϕps, ηq “ arg ûps, ηq. The choice of the component
and wall-normal distance η does not matter as long as the flow is weakly non-parallel
(condition for the existence of such a local wave-vector). Here we used the ûy-component
and η “ δ99{2. From the literature, the following observations can be made for each of
the instabilities:

‚ Attachment-line instabilities: low value of Ψ angle, location of the direct mode and
wavemaker close to the attachment line, normalized phase speed cz{U8

z around 0.39
where cz “ ωr{β.

‚ Crossflow instabilities: Ψ P r80˝ ´ 90˝s, location of the direct mode away from the
attachment line, position of the wavemaker in the region where the pressure gradient is
negative and the cross-stream component of the baseflow is strong (see figures 5(c,d))

‚ Tollmien-Schlichting instabilities: Ψ P r0˝ ´ 40˝s, location of the direct mode further
downstream, position of the wavemaker in the positive pressure gradient area.
We will try to use those criteria to distinguish the physical nature of each mode in the
following. The following relation holds β “ kspsq tanpΛ` γpsq ` Ψpsqq.

3.2.1. Neutral curve in the pReS , β∆q-plane at ReR “ 25000.

The search for the eigenmodes of a flow characterized by pReR, ReSq is done by
computing the spectrum at a given β (examples of obtained spectra are plotted in figure
3pa, c, eq). By setting one of these three parameters, neutral curves can be drawn varying
the two remaining ones. The neutral curve is the limit between configurations where all
modes of the spectrum are stable and configurations where at least one mode is unstable.
By studying the characteristics of the modes along the neutral curve, called “marginal
modes”, one can determine the types of instability responsible for the destabilization of
the flow and the physical mechanisms involved.

We have represented (solid line) in figure 6paq the neutral curve in the pReS , β∆q

parameter space for ReR “ 25000. Black dots indicate 10 specific marginal eigen-
value/eigenvectors, labeled (i) (highest spanwise wavenumber) to (x) (smallest wavenum-
ber). These modes are listed in table 3. Their spatial structure will be analyzed in detail
in the next section, and more specifically the modes (i), (vi), and (ix) noted in red
in table 3 and figure 6. The presence of kinks along the neutral curve indicates that
marginal modes with different features may be responsible for instability, depending on
the spanwise wavenumber. A detailed study (not shown here) of regions in the vicinity of
the kinks confirms the presence of several unstable modes. The neutral curve is composed
of the overlapping of six distinct curves (which will be called “lobes”) in the present case,
each represented by a different color in figure 6. The prolongation of each partial neutral
curve in the “unstable” region is indicated by dashed lines.
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Figure 6: paq: Neutral curve (solid line) of ONERA-D airfoil in pReS , β∆q-plane at ReR “

25000 and SHF neutral curve (orange dotted line) from Obrist & Schmid (2003). The
six different “lobes” composing the full neutral curve are displayed in different colors.
pbq: Phase speed in the spanwise direction of marginal modes of ONERA-D airfoil at
ReR “ 25000. The colored lines indicate the lobes to which the modes belong to. In paq

and pbq, dashed lines refer to the prolongation of the solid line in the “unstable” domain.
Modes from table 3 are indicated with black dots, modes (i), (vi) and (ix) being circled
in red.
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ReS β∆ cz{U8
z

(i) 652 0.32 0.381
(ii) 610 0.295 0.379
(iii) 603 0.261 0.366
(iv) 585 0.231 0.350
(v) 588 0.187 0.322
(vi) 652 0.126 0.285
(vii) 688 0.089 0.314
(viii) 652 0.080 0.317
(ix) 527 0.057 0.308
(x) 652 0.038 0.279

Table 3: pReS , β∆q value of 10 marginal modes, listed in decreasing order of β, for
ReR “ 25000. The phase speed in the spanwise direction cz{U8

z is also shown. Red
noted modes will be analyzed in detail in the next part.

The critical sweep Reynolds number is ReS,crit “ 527 and is reached for βcrit∆ “ 0.057.
We notice that the upper lobe (in dark blue) fits relatively well with the upper part

of the neutral curve of the SHF (Obrist & Schmid 2003), shown in dotted-orange line.
As we will see in the section 3.2.3, the modes associated to this lobe are of attachment-
line type. They are thus located close to the attachment line and are almost invariant
in the crossflow b-direction. At the attachment line, we have pχ, η, bq “ pz,´x, yq and
s “ y. This lobe also corresponds to large values of β. The high value of β implies a large
variation in the z-direction, but also in the x-direction due to the continuity equation and
the invariance in y-direction. The small structures of the modes in the px “ η, zq-plane
imply that they will be less impacted by the variation of the curvature in the s-direction.
Therefore, the less dependent they are on the radius of curvature rc of the leading-edge.
The limit corresponds to the SHF configuration for which rc “ 8. For the other lobes at
lower values of β, the leading-edge radius of curvature rc and therefore ReR must have
a greater influence. Yet, the curvature explains why the critical value of the Reynolds
number of the upper lobe (dark blue), ReS,crit « 621, is different from the one given in
Obrist & Schmid (2003) and Lin & Malik (1996) for the SHF, which is ReS,crit « 582.
This is confirmed by Lin & Malik (1997) who studied the effect of ReR on attachment
line instabilities and determined the values ReS,crit “ 637.6 and ReS,crit “ 599.5 for
ReR “ 10000 and ReR “ 100000 respectively. An interpolation for ReR “ 25000 yield a
value ReS,crit « 620, which is close to the value we find.
The associated phase speed cz “ ωr{β normalized by the spanwise baseflow velocity

U8
z is represented in figure 6pbq as a function of the spanwise wavenumber β∆. The lobe

changes result in discontinuities of the phase speed, which confirm that the marginal
modes of the different lobes have distinct features. The same color code as in figure
6paq has been used to ease the correspondence of the lobes. The upper lobe (dark blue) is
characteristic of attachment-line instabilities with phase speeds close to those of Tollmien-
Schlichting waves in Blasius boundary layer cχ{U8

χ « 0.39 where cχ “ ωr{kχ (see Schmid
& Henningson (2001)). In close vicinity of the attachment line, the values obtained in the
case of the Blasius boundary layer are comparable to those of cz{U8

z insofar as χ and
z directions are equal and the streamwise pressure gradient is zero (see figure 5pdq). As
the spanwise wavenumber decreases, the phase speed of the marginal modes decreases
till values around cz{U8

z « 0.27 reached for β∆ « 0.1. The phase speed on the two
lowest lobes (red and purple) is in strong contrast with the phase speed of the previous
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ones since it jumps up to cz{U8
z « 0.32 at β∆ « 0.1. We also note that except for

the upper (dark blue) and lower (purple) lobes, the phase speed of the lobes decreases
almost linearly with the decrease of β. The change in variation for the lower lobe, around
β∆ “ 0.07 may indicate a change in the nature of the modes.

3.2.2. Study of modes (i), (vi) and (ix) at ReR “ 25000.

We now analyze the spatial structure of marginal modes, and in particular modes (i),
(vi), and (ix) in table 3. Figure 7paq shows, for each of these 3 marginal modes, 2 iso-
surfaces of the real part of the vertical velocity of the perturbation ℜpûypx, yqeiβzq at
˘0.01 times the absolute maximum (red and blue), the wavemaker region (green), the
pressure coefficient Cp of the baseflow (shown on the vertical planes) and the boundary
layer thickness δ99 (black solid line on the vertical planes). An example of Ψ angle is
drawn for mode (vi), with

ÝÑ
k designating the local planar wave vector of the mode.

For mode (i), the wavemaker is not seen because it is covered by the iso-surfaces of the
direct mode. With this display, the perturbations seem also strong outside the boundary
layer (η ą δ99). In fact, the extremal values are found at positions around δ99{2 in the
η-direction, as shown in figures 7pbq ´ pdq where δ99 and the real part of the vertical
velocity of the perturbation in the ps, ηq-plane are drawn. In figures 7peq´pgq are plotted
the normalized magnitude as a function of s of the wavemaker (green line), direct mode
(blue line) and adjoint mode (red line). The Ψ angle at altitude η “ δ99{2 of the vertical
velocity component of the perturbation is represented in figures 7phq´pjq. The oscillations
observed in figures 7ph, jq occur when the mode magnitude is low or the orientation
changes abruptly. We have checked that they are not due to insufficient refinement of the
mesh since automatic adaptations based on the modes and their wavemaker have been
tried, without removing these oscillations.

Concerning mode (i), we notice in figures 7pa, eq that the direct mode and the wave-
maker are located close to the attachment line, the magnitude being vanishingly small
for s ą 0.03. Moreover, figures 7pa, hq reveals that the Ψ angle is low p0˝ ´ 15˝q in the
vicinity of the attachment line zone, where the mode is strongest. In the low-magnitude
region, it is seen that the Ψ angle is greater than 80˝. These features are common to
all the upper lobe modes (dark blue lobe) that have been calculated. Unlike reported in
Meneghello et al. (2015) for a stable mode of the flow around a Joukowski airfoil, we do
not find a second high magnitude region where the modes have crossflow characteristics.

Even if the change of Ψ angle at s « 0.05 is reminiscent of the “connected modes”
described by Mack et al. (2008) in the case of a compressible supersonic swept flow around
a parabolic body, the low amplitude and high damping of the mode where it exhibits
crossflow characteristics is such that we will not define it as a connected mode.

For mode (vi), we can see in figures 7pa, fq that the mode is located further downstream
but that the wavemaker remains localized in the negative pressure gradient zone. The
magnitude of the direct mode increases in the negative pressure gradient zone (s ă 0.035)
and starts to decrease in the positive pressure gradient zone (s ą 0.035). In figure pa, iq,
we find that the Ψ angle increases with s from 30˝ to 60˝ in the area where the wavemaker
is maximum. The Ψ angle at the maximum magnitude of the direct mode is greater than
80˝. From these observations, we can conclude that this mode is of the crossflow type.

In figures 7pa, gq, we observe that the direct mode and the wavemaker are located
further along the chord, where the pressure gradient is positive. Moreover, the direct
mode extends over a significantly greater range and admits two local maxima (at s=0.06
and s=0.127). In figures 7pa, jq, we find a Ψ angle of 60˝ at the location where the
magnitude of the wavemaker is maximum and the direct mode reaches its first local
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Figure 7: Spatial structure of the real part of the vertical velocity of the perturbation
ℜpûypx, yqeiβzq of modes (i): pb, e, hq, (vi): pc, f, iq and (ix): pd, g, jq. paq: for each mode
2 iso-surfaces at ˘0.01 times the absolute maximum are represented in red and blue.
The baseflow pressure field Cp (red and blue isocontours with the same colorbar as in
figure 4paq) and boundary layer thickness δ99 (black line) are shown in the vertical planes
separating the modes. The wavemaker region is sketched by a green iso-surface at 95% of
its maximum value. Several external streamlines of the baseflow are shown (black arrow
lines). An example of wavevector and Ψ angle is also displayed for mode (vi). pbq ´ pdq:
plot in ps, ηq-plane as a proportion of the absolute maximum. δ99 is displayed (black line).
pe´ gq: normalized magnitude of direct mode (blue), adjoint mode (red) and wavemaker
(green). Position of the zero pressure gradient (red dashed line) and of the maximum
of the ratio maxη |Ubps, ηq| to Ue

χ (black dashed line) are indicated. ph ´ jq: chordwise
evolution of the Ψ angle.
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maximum of magnitude. However, at the location of the global maximum of the direct
mode, the Ψ angle is equal to 23˝.
Thus, we have the presence of two distinct spatial amplifications where the spatial

structure of the direct mode exhibits features corresponding to distinct types of instability
at the two amplitude maxima: crossflow for the first and Tollmien-Schlichting for the
second. We can then define this as a CF/TS connected mode, the existence of which, to
the authors’ knowledge, had not yet been documented.
To better characterize this mode and understand the interplay between both mech-

anisms, 8paq represents the evolution with s of BUb

Bη at the level of the inflection points
of the velocity profile Ub. We observe that for s ą 0.35, i.e. near the change of sign of
the pressure gradient (represented in figure 5pdq), a second inflection point appears. The
solid line corresponds to the inflection point farthest from the wall, while the dashed
line corresponds to the one close to it. This quantity is related to the strength of the
crossflow instability mechanism, and we notice that the inflection point closest to the
wall is the most critical one when it exists. These two inflection points are represented
on the profile of Ub plotted in figure 8pbq for the coordinate s “ 0.053, which corresponds
to the position where the wavemaker of the mode pixq is maximal. The wavemaker profile
at the position s “ 0.053 is also shown in figure 8pcq. At this position, the wavemaker
reaches its maximum for η “ 2.6 ˆ 10´4, which coincides with the position of the most
critical inflection point.
Therefore, although the dominant spatial structure is that corresponding to the

Tollmien-Schlichting type, the location of the wavemaker at an inflection point of
the crossflow velocity with high values of BUb

Bη suggests that the physical mechanism
responsible for the initial spatial amplification and overall destabilization of the mode
is related to the crossflow instability. Moreover, the position of the wavemaker in a
zone where the pressure gradient is positive justifies that the TS-like spatial structure
develops. The presence of such CF/TS connected modes is related to the pressure-
gradient changeover typical of a swept wing. Indeed, this configuration allows for
crossflow velocity profiles with strong enough shear to trigger crossflow instabilities,
located in strongly positive pressure gradient regions that allow Tollmien-Schlichting type
spatial amplification. This type of flow had not been studied in previous chordwise-global
stability analyses (Mack et al. 2008; Meneghello et al. 2015). The stability of a profile
with a pressure-gradient changeover had only been studied in a chordwise-local context
by Wassermann & Kloker (2005) and although crossflow and Tollmien-Schlichting modes
were observed, no mode with both features was found. This can be partly explained by
the fact that modes with such abrupt spatial structure changes are particularly difficult
to identify in a chordwise-local framework.

3.2.3. Modes between modes (i), (vi) and (ix) at ReR “ 25000.

We have seen through the analysis of modes (i), (vi) and (ix), that there is a great
diversity of marginal modes in our configuration. In order to better understand how the
different instabilities are related along the neutral curve, the whole set of marginal modes
is studied in this part. Figure 9 shows all the modes referenced in table 3, similarly to
figure 7paq.
In figure 10 the magnitude of the direct and adjoint marginal modes are plotted, as

well as their wavemaker and the Ψ angle as a function of s with β∆ ranging from 0.034 to
0.33, in increments of 0.01. The delimitations between the different lobes introduced in
figure 6 are indicated with black horizontal lines, and the wavenumber β∆ of the different
modes of table 3 are indicated by green ticks on the right. The chordwise coordinate of the
maximum magnitude of the direct mode (red circles) and adjoint modes (yellow circles),
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Figure 8: paq: Evolution according to s of BUb

Bη at the inflection points of the crossflow
velocity wall-normal profile. The inflection point farthest from the wall corresponds to
the black solid line and the second (when it exists) to the black dashed line. The positions
of the pressure-gradient changeover (blue dotted line at s “ 0.035) and of the maximum
of the wavemaker magnitude of the mode pixq (green dotted line at s “ 0.053) are shown.
Wall-normal profiles of the crossflow velocity pbq and the wavemaker pcq at s “ 0.053 are
plotted. The inflection points farthest and closest from the wall are represented by solid
and empty dashed black circles respectively. The maximum of the wavemaker in the wall-
normal direction coincides with the inflection point closest to the wall, which is the most
critical.

as well as the position where the pressure gradient is zero (red vertical dotted line) are
indicated. In figure 10pdq, only the Ψ angles for locations where the magnitude of the
direct mode is greater than 10´2 have been shown.
The first comment in figures 9 and 10 is that, in addition to the modes described in

section 3.2.2, we observe modes with more diverse features. Moreover, we notice in figure
10 that these characteristics are closely related to the belonging to particular lobes. For
all lobes, except between the last two, abrupt changes in the magnitude and/or Ψ angle
are noted. This observation confirms once again the presence of distinct instabilities
between lobes. The last two lobes have been distinguished only from discontinuities in
the phase speed curve in figure 6pbq.
Concerning the upper lobe (dark blue), we see, with figure 10 and modes (i) and (ii)

of figure 9, that its marginal modes fall into the characteristics of attachment-line modes
with a direct mode and a wavemaker located close to the attachment line and iso-phases
perpendicular to the streamwise direction (low Ψ angle).
For the gray and green lobes of figure 6, figure 10 and modes (iii) and (iv) of figure 9

show that their marginal modes are still close to the attachment line but with a location
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Figure 9: Spatial structure of the marginal modes identified in table 3 with the same
representation as figure 7paq.

(as well as the wavemaker one) slightly shifted in the chordwise direction and the Ψ
angle at the maximum magnitude of the direct mode starting to increase: the modes
start transitioning to crossflow-like modes.
In the case of the light blue lobe, as illustrated by modes (v) and (vi), marginal modes

are located even further downstream and their maxima are now close to the region of
minimal Cp. Mode (v) exhibits a highly localized distribution in the chordwise direction,
with a strong increase of the perturbation magnitude in the accelerated region before a
sharp decrease in the decelerated one. Yet, contrarily to before, the wavemaker region is
now located fully in the accelerated region and in the area where the ratio of the crossflow
velocity to the streamwise velocity is highest, as shown in figure 5pcq. The iso-phases of
the perturbations are nearly aligned with the streamlines of the external flow (Ψ angle
close to 90˝). These modes are fully of crossflow type. Contrary to the stable mode
described in Meneghello et al. (2015), the crossflow marginal modes observed here have
wavemakers that are not localized at the attachment line, thus indicating that efficient
control of these instabilities in the considered case cannot be restricted to the attachment
line area.
Figures 10pa, cq show that direct modes and wavemakers of the last two lobes are fully
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Figure 10: Normalized magnitude of direct mode paq, adjoint mode pbq and wavemaker
pcq and Ψ angle (in degrees) pdq, as a function of s for marginal modes with β∆ ranging
from 0.034 to 0.33 in increments of 0.01. β∆ ordinate of the delimitation between lobes
(black horizontal lines), chordwise position of zero pressure gradient (red dotted line)
and chordwise position of maximum magnitude of wavemakers (green circles) and direct
(red circles) and adjoint (yellow circles) modes are indicated.

localized in the decelerated region. As shown in figure 9, for (vii) and (viii), the chordwise
magnitude distribution exhibits a strong amplification before the maximum magnitude
and weak damping afterward. The Ψ angle is very close to 90˝. These are modes which
have crossflow characteristics even if the wavemaker is in the decelerated region.
For the last two modes (ix) and (x), we notice a sharp change, both in the orientation

of the modes and their location. Indeed, the Ψ angle is close to 10˝ (as for modes (i) and
(ii)) and their location is even more downstream and more extended in the chordwise
direction than before. On the other hand, the wavemaker region has nearly not moved
and is still at the beginning of the decelerated region. As revealed in figure 10, along the
lower lobe, we switch from a situation with a single magnitude maximum for the direct
mode and a Ψ angle relatively high (crossflow type mode) to a direct mode with two
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local magnitude maxima, the first still of crossflow type (large angle) but the second (the
global one) being much farther away and corresponding to a location where the Ψ angle is
low (reminiscent of Tollmien-Schlichting type). For β ă 0.05, although the direct modes
could continue to grow downstream, the maximum magnitude is located at s “ 0.165,
which corresponds to the end of the domain. Contrary to the direct mode, we observe
that the magnitude of the adjoint mode evolves very weakly as a function of β∆ and
reaches the location of positive pressure gradient around β∆ « 0.073, which is the β∆
value where the magnitude and orientation of direct modes vary abruptly. This value of
β∆ « 0.073 also corresponds to the value at which the phase speed curve of the lower
lobe in figure 6pbq starts to decrease again.

In the case of very stable modes, we observe even more varied features. In appendix C
is represented the spatial structure of the mode studied by Meneghello et al. (2015) in
the case of a Joukowski airfoil and, by considering the orientation of the direct mode, we
note a mode mainly of crossflow type but with a double amplification and a wavemaker
contained in the attachment line.

3.3. Absolute / Convective stability analysis in the spanwise z-direction

We will now follow the methodology described in the section 2.2.4 to study the
convective or absolute nature in the spanwise direction of some instabilities.

In the case pReR, ReSq “ p25000, 652q, figure 11 shows the imaginary part of the most
unstable eigenvalue with respect to β∆. We notice the presence of several parabolas
similar to those noted in Mack et al. (2008); Mack & Schmid (2011) and which are related
to the crossing of the different lobes. A maximum of ωi is reached for 3 values of βpeak∆:
0.285, 0.187 and 0.062, with respective spanwise group velocities V peak

g “ Bωr

Bβ β“βpeak :

2.147, 2.065 and 1.736. The marginally stable modes piq, pviq, and pxq introduced in the
table 3 are indicated with black dots circled in red.

In figure 12 are represented the evolutions of pωVg
, βVg

∆q with the decrease of Vg
values from the three initial couples pβpeak∆,V peak

g q: pβinit,1∆,Vg,init,1q “ p0.28, 2.147q,
pβinit,2∆,Vg,init,2q “ p0.19, 2.065q and pβinit,3∆,Vg,init,3q “ p0.06, 1.736q. For each case,
we made steps in Vg of size Vg,init{300. The variation of ωVg,i as a function of Vg is
specifically shown in figure 13 for the three initial configurations considered. Note that
the “steps” that can be observed for pβinit,1∆,Vg,init,1q have no physical meaning and are
rather related to the definition of the stopping criteria. The spanwise group velocities are
only decreased down to 1.934, 1.837 and 1.644 for pβinit,1∆,Vg,init,1q, pβinit,2∆,Vg,init,2q

and pβinit,3∆,Vg,init,3q respectively. As the modes to be computed move away in chord
with the decrease of Vg, the chord extension of the mesh used was not sufficient when the
value of Vg was too low. However, the ωVg,i values being negative and ωVg,i decreasing
with the Vg values (Huerre 2000), we assume that no unstable modes would have been
found at Vg “ 0 in the studied flow conditions. Furthermore, we can note that according
to the starting couple pβinit∆,Vg,initq, ωVg

decreases more or less slowly with the value
of Vg. Thus, as in the present case, the initial couple to investigate to find the unstable
mode at Vg “ 0 is not necessarily the most unstable one for β P R.

The flow at pReR, ReSq “ p25000, 652q is, a priori, only convectively unstable in the
spanwise direction. An identical study for pReR, ReSq “ p25000, 800q gave an equal con-
clusion. To be more conclusive about the convective or absolute nature of the boundary
layer instabilities of the flow around ONERA-D, it would be necessary to evaluate a
large number of values of pReR, ReSq. However, these first results and those reported by
previous studies in the literature (Türkylmazoglu & Gajjar 1999; Lingwood 1997; Taylor
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Figure 11: Imaginary part of the most unstable eigenvalue at pReR, ReSq “ p25000, 652q

for β∆ ranging from 0.03 to 0.35 in increments of 0.1. Points where ωi reaches a maximum
is depicted (red dots) and corresponding spanwise group velocity is shown. The marginal
modes piq, pviq, and pxq referenced in the table 3 are marked with black dots circled in
red.
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Figure 12: ωVg
paq and βVg

∆ pbq at several Vg for the three pβ∆, Vgq inital values:
p0.28, 2.147q (in blue), p0.19, 2.065q (in indigo) and p0.06, 1.736q (in black). The initial
values are represented in green and the spanwise group velocity Vg of some pωVg

, βVg
∆q

displayed in red are indicated.

& Peake 1998, 1999), indicate that no absolute instability in px, y, zq is expected to be
found.

3.4. Effect of ReR for the ONERA-D airfoil

In figure 14 are superimposed the neutral curves corresponding to different values of
ReR, as well as the neutral curve of the SHF from Obrist & Schmid (2003). The number
of lobes of the neutral curves tends to increase as ReR increases: for ReR “ 10000, only
two lobes are observed, while for ReR “ 25000, six can be seen, and around ten for
ReR “ 50000.
We can see that the upper lobe, linked to attachment-line instabilities, fits better with

the neutral curve of the SHF as ReR increases. As described by Lin & Malik (1997),
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Figure 13: ωVg,i as a function of Vg for the three pβ∆, Vgq initial values: p0.28, 2.147q (in
blue), p0.19, 2.065q (in indigo) and p0.06, 1.736q (in black).
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Figure 14: Comparison of neutral curves of ONERA-D at various ReR values and SHF
neutral curve from Obrist & Schmid (2003). SHF neutral curve is plotted in dashed orange
line and ONERA-D neutral curves for ReR “ 10000, ReR “ 25000 and ReR “ 50000 are
drawn respectively in blue, green and black.

the increase in ReR leads to a slight increase in β of the upper part of the lobe and
to a slight decrease of its critical Reynolds number, ReS,crit,AL going from 609 to 601
for ReR “ 25000 and ReR “ 50000 respectively. Overall, the upper lobe is only weakly
impacted by the value of ReR.
On the other hand, all the other lobes are strongly stabilized with the increase of ReR

and shifted to larger ReS values. For values of ReR lower than ReR « 30000, the most
critical marginal mode belongs to the lower lobe, bringing the critical value of ReS to
values lower than 595. For ReR “ 25000 and ReR “ 10000, we have values of ReS,crit
at 521 and 429 respectively. For values of ReR ą 50000, we can presume that non-AL
instabilities are stabilized enough to find thresholds close to the ones predicted by Lin
& Malik (1996), i.e. around ReS “ 600. For ReR “ 50000, we find ReS,crit “ 601, which
is close to ReS « 610 that we can expect for SHF at ReR “ 50000 by interpolating the
values given by Lin & Malik (1997) for ReR “ 104 and 105.

The parametric study based on the value of the parameter ReR was not pursued for
larger values because this would lead to numerical difficulties, including the need to use
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a significantly finer mesh. Moreover, as previously mentioned, the consideration of a high
ReR makes the structure of the neutral curve more complex, with an increase in the
number of lobes, and its detailed study would be difficult. However, it can be noted that
for ReR “ 100000, a study at ReS “ 620 confirmed that the unstable modes are only of
attachment-line type with high values of β∆.

In conclusion, from these observations and from the study of the instabilities associated
with the different lobes, we can deduce that the parameter ReR has a more or less
significant influence according to the nature of the instabilities involved, the attachment-
line ones being the least stabilized with the increase of ReR.

3.5. Comparison of neutral curve with a Joukowski airfoil as a function of ReS at
ReR “ 25000 and as a function of ReQ at Λ “ 80.03˝

In order to study the influence of the airfoil, we compare the neutral curves of the
ONERA-D airfoil and the Joukowski airfoil of thickness parameter ϵ “ 0.1. Neutral
curves at ReR “ 25000 are drawn in figure 15paq. A comparison of some characteristic
of both baseflow at ReS “ 652 is shown in figures 5. In both cases, we observe a neutral
curve composed of several lobes. For the Joukowski airfoil, the lower lobe reaches its
critical value at a smaller β. The critical Reynolds number is reached at β∆ « 0.20 and
ReS,c,Jouk “ 517, thus the Joukowski airfoil is less stable than the ONERA-D in these
conditions. The study of some marginal modes (not shown here), in particular on the
lower lobe shows important differences in the spatial structure between the Joukowski
and ONERA-D cases. Indeed, due to the negative pressure gradient extending further
in the chord in the Joukowski case, the observed marginal modes are located farther
downstream and do not show Tollmien-Schlichting features.

In order to assess the differences between the two airfoils with an applied point of
view, we now compare the neutral curves using the flow parameters pReQ, Λq introduced
in section 2.1, since the two simplest parameters that can be varied independently in
a wind tunnel are the upstream infinite velocity U8 and the sweep angle Λ. In figure
15pbq are superimposed the neutral curves of the ONERA-D and Joukowski airfoils in
the pReQ, β∆q-plane by setting Λ “ 80.03˝. This implies, a joint variation of ReR and
ReS . The critical Reynolds numbers are ReQ,c,ONERA´D “ 1.34 ˆ 107 (correspond-
ing to pReR,c, ReS,cq “ p7229, 413q) and ReQ,c,Jouk “ 1.12 ˆ 107 (corresponding to
pReR,c, ReS,cq “ p5414, 372q) and the neutral curve of ONERA-D is included in the
Joukowski curve. We can conclude that for Λ “ 80.03˝, the ONERA-D airfoil is more
stable than the Joukowski airfoil. This conclusion was expected for instabilities with
Tollmien-Schlichting features since ONERA-D was designed to stabilize them, but it was
more difficult to make an early opinion on crossflow instabilities. The lesser stability of
the Joukowski airfoil compared to the ONERA-D at low β may be related to the fact that
it also corresponds to low kχ and modes with kχ “ 0 correspond to Tollmien-Schlichting
instabilities.

Such a neutral curve was drawn according to pβ,ReSq by Mack & Schmid (2011) for
a compressible flow around a parabolic body with a radius of curvature of 0.1 at a swept
angle of Λ “ 72.38˝. The authors observed the presence of a single lobe with a critical
value ReS,c « 375. This difference can be explained by the fact that the neutral curve
was computed in a supersonic regime with MaS “ W8

c8
“ 1.25 where c8 corresponds to

the speed of sound, and by the difference in the value of the radius of curvature of the
studied airfoils.
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Figure 15: Comparison between neutral curves of ONERA-D (blue line) and Joukowski
airfoils (red line). paq: as a function of ReS at ReR “ 25000. pbq: a function of ReQ at
Λ “ 80.03˝. The latter case describes the stability characteristics of a wing at sweep
80.03˝ when, for example, the inflow velocity is increased.

4. Conclusion

In this paper, we investigated the boundary-layer instabilities of an incompressible flow
around a swept ONERA-D and Joukowski airfoils with infinite span and no incidence.
Temporal chordwise-global stability analyses have been performed on a domain covering
the whole leading-edge. We first focused on the case of the ONERA-D airfoil at ReR “

25000 by computing the neutral curve according to the sweep Reynolds number ReS
and the spanwise wavenumber β. The composite nature of the neutral curve has been
evidenced and several overlapping regions, or “lobes”, have been identified. A justification
for the existence of different lobes constituting the total neutral curve could be made on
a physical basis by considering the kinks of the neutral curve, the presence of multiple
unstable modes at the overlap of the lobes as well as the changes in phase speed and
spatial structure of the marginal modes between the different lobes. A detailed study of
the marginal modes was conducted based on the spatial structure of the direct and adjoint
modes in addition to the position of the wavemaker, in connection with the streamwise
pressure gradient and the three-dimensionality of the baseflow. This study revealed the
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presence of marginal modes of attachment-line and crossflow type, as well as modes that
do not fall into standard classifications of one particular type. We identified modes with
two distinct spatial amplifications, the first amplification being related to a crossflow-like
spatial structure of the direct mode while the second amplification is associated with
a spatial structure reminiscent of Tollmien-Schlichting instabilities. These modes have
been defined as connected CF/TS mode where the dominant spatial structure is close to
Tollmien-Schlichting waves but the physical mechanism responsible for the instability is
related to a crossflow mechanism. To the authors’ knowledge, a mode with a connection
of this nature has not been previously reported. However, no clear connected AL/CF
modes have been identified.
The absolutely or convectively unstable nature of the flow in the spanwise direction was

also tackled, by using chordwise-global stability analyses. Our results suggest that the
flow is only convectively unstable in the spanwise direction. To the authors’ knowledge,
this is the first study to address this issue in a chordwise-global framework.
We then did a parametric study by comparing neutral curves of ONERA-D at 3 values

of ReR. It reveals that the increase of ReR has a greater stabilizing effect on crossflow and
Tollmien-Schlichting modes than attachment-line ones. The increase of ReR also implies
an increasing number of lobes, as well as a neutral curve that tends to be closer to that
of the SHF. Therefore, for ReR ą 30000, the attachment-line instabilities lobe becomes
the most critical ones.
A measure of the influence of the airfoil geometry was made by comparing two neutral

curves of the Joukowski (with parameter thickness ϵ “ 0.1) and ONERA-D airfoils at
given ReR and sweep Λ. For ReR “ 25000, for both airfoils, several lobes are noticed
and the critical sweep Reynolds number is close but the critical spanwise wavenumber is
significantly higher for the Joukowski case than for the ONERA-D case. The comparison
at Λ “ 80.03˝ reveals that, under the conditions studied, the ONERA-D airfoil is more
stable than the Joukowski airfoil for every spanwise wavenumber.
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Appendix A. Adjoint operators

The adjoint eigenvalue-eigenvector problem is the following:

L:q̂: “ ω:B:q̂:. (A 1)

By using the definition of the adjoint operator presented in equation 2.14 and integra-
tion by parts, we get B: “ ´B and the adjoint operator L::
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L: “

»

—

—

—

—

–

BxU ´ Cβ ´ Dβ BxV BxW ´Bx

ByU ByV ´ Cβ ´ Dβ ByW ´By

0 0 ´Cβ ´ Dβ ´iβ

´Bx ´By ´iβ 0

fi

ffi

ffi

ffi

ffi

fl

(A 2)

Appendix B. Comparison with chordwise-local stability analyses

In our study, we used chordwise-global perturbations of the form: q “ q̂px, yqeipβz´ωtq.
Most of the stability analyses done to date have been done using chordwise-local analyses
with chordwise-local eigenmodes sought in the ps, η, zq reference frame under the form q “

q̂pηqeipαs`βz´ωtq. Their spatial amplification rate is defined as ln A
A0

“
şs

s0
´ℑpαqds (see

for instance Arnal & Casalis (2000b) or Reed et al. (1996) for reviews on chordwise-local
stability approach). We can mention that the presence of chordwise-globally unstable
modes implies a chordwise-local absolute unstable flow (Huerre & Monkewitz 2003). In
order to validate the results obtained with our chordwise-global method, we compare
the spatial structures obtained with a chordwise-local stability analysis for β and ω
provided by the chordwise-global stability analysis. We conducted such an analysis for
the marginal modes (vi) and (viii), so that both ω and β are real. The spatial stability
analysis in the s-direction is solved for these fixed β and ω real values. The chordwise-
local stability code solves the one-dimensional differential eigenvalue problem with a
high-order scheme. The parallel flow assumption is used, and the flow computed by the
boundary-layer solver is used as the baseflow, to avoid interpolation errors from the FEM
mesh. In the chordwise-local stability analysis framework, the Ψ angle is directly derived
from the real parts of α and β and the knowledge of the inviscid streamwise direction at
each chordwise location. The comparison between chordwise-global and chordwise-local
stability results is displayed in figure 16.
An agreement of the Ψ vectors is observed for chordwise-local and chordwise-global

analyses in both cases. The magnitude is also close with magnitude maxima at almost
identical positions. Thus, we obtain close results, which validate the use of the chordwise-
global stability analysis. The latter method has the advantage of being able to identify
the whole structure of the modes at once, without parallel flow assumptions, and to
directly identify the absolute/convective nature in the chordwise direction.

Appendix C. Stability results at pReR, ReS , β∆q “ p16129, 113, 0.45q for a
Joukowski airfoil

We report here the results we obtain in a case similar to Meneghello et al. (2015),
i.e. under the conditions pReR, ReS , β∆q “ p16129, 113, 0.45q with a Joukowski airfoil of
thickness parameter ϵ “ 0.1, with no incidence and of infinite span. These conditions
correspond to a highly stable case.
In table 4, ω{pβU8

z q of the 3 least stable symmetric eigenvalues are presented. We
observe a relative error lower than 0.5% for the 3 eigenvalues.
In figure 17paq is drawn the magnitude of the direct and adjoint modes, as well as the

wavemaker, as a function of s. We note a first growth of the magnitude of the direct
mode until s “ 0.02, then a decrease until s “ 0.05, followed by a second growth from
s “ 0.05 until the end of the domain. The wavemaker is located at the attachment line.
These two observations are in good agreement with those of Meneghello et al. (2015).



Attachment-line, crossflow and Tollmien-Schlichting instabilities on swept airfoils 33

(a) (b)

0.02 0.07 0.12
s

10−7

10−5

10−3

10−1

101

M
ag

ni
tu
de

0.03 0.08 0.13
s

10−7

10−5

10−3

10−1

101

M
ag

ni
tu
de

(c) (d)

0.02 0.07 0.12
s

50

60

70

80

90

Ψ(
∘
∘

0.03 0.08 0.13
s

50

60

70

80

90

Ψ(
∘
∘

Figure 16: Comparison of magnitude pa, bq and Ψ pc, dq between chordwise-local (in red)
and chordwise-global (in blue) analyses for modes (vi) pa, cq(viii) pb, dq

S1 S2 S3

Meneghello et al. (2015) 0.50303 ´ 0.05782i 0.49844 ´ 0.07867i 0.49425 ´ 0.09932i

Our study 0.50287 ´ 0.05678i 0.49835 ´ 0.07874i 0.49415 ´ 0.09962

Table 4: ω{pβU8
z q of the three least stable symmetric eigenvalues.

Concerning the orientation of the least stable mode, its Ψ angle is represented in figure
17pbq as a function of s. We observe a growth until s “ 0.02 up to a value of Ψ “ 45˝

then a decrease until s “ 0.05 reaching Ψ “ 30˝. At s “ 0.05, we observe a discontinuity
and the Ψ angle remains at a plateau around 70˝ until the end of the domain.
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Figure 17: Stability results at pReR, ReS , β∆q “ p16129, 113, 0.45q for the Joukowski
airfoil. paq: normalized magnitude of direct mode (blue), adjoint mode (red) and
wavemaker (green). pbq: Ψ angle.
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