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Attachment-line, crossflow and Tollmien-Schlichting instabilities on swept ONERA-D and Joukowski airfoils

Linear stability analyses are performed to investigate the boundary layer instabilities developing in an incompressible flow around the whole leading-edge of swept ONERA-D and Joukowski airfoils of infinite span. The stability analyses conducted in our study are global in the chordwise direction and local in the spanwise direction. A neutral curve is drawn at a given leading-edge Reynolds number Re R and several overlapping regions, called "lobes", are identified on a physical basis. A detailed study of the marginal modes reveals the presence of attachment-line and crossflow instabilities, as well as modes whose features do not fall within the standards of a specific type. Connected crossflow/Tollmien-Schlichting modes, that show a dominant spatial structure reminiscent of Tollmien-Schlichting waves but whose destabilization is linked to a crossflow mechanism, have been identified. The comparison of several neutral curves at different Re R values reveals the greater stabilizing effect of the increase of Re R on the crossflow instability compared to the attachment-line instability. The influence of the airfoil shape is also studied by comparing the neutral curves of the ONERA-D with the neutral curves of the Joukowski airfoil. These curves reveal similar characteristics with the presence of distinct lobes and their comparison at constant sweep angle shows that, under the conditions studied, the ONERA-D airfoil is more stable than the Joukowski airfoil, even for crossflow instabilities. The absolutely or convectively unstable nature of the flow in the spanwise direction is also tackled and our results suggest that the flow is only convectively unstable.

Introduction

The understanding of the laminar-to-turbulent transition process on swept wings is a crucial issue both from a theoretical and practical point of view for aerodynamic optimization and transition control. This is why, over the last decades, many studies have been conducted to better understand this phenomenon. When the environmental disturbances have a sufficiently small amplitude, as often occurs in flight conditions, instabilities growing following a linear mechanism can develop within the boundary layer. It is then important to identify the physical mechanism involved and the spatial structure of the instability in order to control it and thus delay the transition. In the case of swept wings, and in the absence of contamination by the turbulence of the fuselage, three types of instabilities are mainly responsible for the transition: attachment-line (AL), crossflow (CF), and Tollmien-Schlichting (TS) instabilities.

The Tollmien-Schlichting instability is related to the streamwise component of the flow and takes the form of vortices almost perpendicular to the streamwise direction. As mentioned by [START_REF] Reed | Stability of three-dimensional boundary layers[END_REF], Tollmien-Schlichting instabilities are destabilized by an adverse pressure gradient and arise in regions with no or weak positive pressure gradient. In the case of a Blasius boundary layer flow, the value of the critical Reynolds number based on the freestream velocity and the boundary layer displacement thickness is Re crit " 520 and the phase speed of the corresponding marginal mode is 0.397 [START_REF] Schmid | Transition to turbulence[END_REF].

Attachment-line instabilities are characterized by counter-rotating vortices developing in the attachment line region and aligned with the chordwise direction. The mechanism responsible for these instabilities is similar to that of the 2D Tollmien-Schlichting instabilities in the pz, ηq-plane, where z and η are respectively the spanwise and wallnormal directions. This instability has long been studied through the analysis of a flow impinging on a flat swept plate with the chordwise velocity linear in the chordwise coordinate x, representative of the attachment line of a swept cylinder. This model is called the Swept Hiemenz Flow (SHF) and was comprehensively studied in [START_REF] Hall | On the stability of an infinite swept attachment line boundary layer[END_REF] where Görtler-Hammerlin perturbations with a linear dependency in the chordwise direction cause the flow to be linearly unstable above a critical sweep Reynolds number Re S " 583. The sweep Reynolds number Re S , based on the spanwise velocity and a typical length scale of the boundary layer at the attachment line, is commonly used in studies dealing with attachment line flows. In order to remove the assumption about chordwise linear dependency of the perturbation, [START_REF] Lin | On the stability of attachment-line boundary layers. part 1. the incompressible swept hiemenz flow[END_REF] considered more general two-dimensional perturbations. They validated the threshold value of [START_REF] Hall | On the stability of an infinite swept attachment line boundary layer[END_REF] and noted the observation of symmetric and antisymmetric modes, the symmetric Görtler-Hammerlin mode described by [START_REF] Hall | On the stability of an infinite swept attachment line boundary layer[END_REF] remaining the most unstable. Following on from this study, [START_REF] Lin | On the stability of attachment-line boundary layers. part 2. the effect of leading-edge curvature[END_REF] studied the influence of leading-edge curvature using second-order boundary-layer theory, which made it possible to show the stabilizing effect of leading-edge curvature on attachment-line instabilities.

Unlike attachment-line and Tollmien-Schlichting instabilities, crossflow instabilities are inflectional and are caused by the combined effect of sweep and wall curvature further downstream. Indeed, the centripetal force and the favorable pressure gradient create a deflection of the flow outside the boundary layer. Within the boundary layer, the centripetal force decreases while the pressure gradient is conserved, creating a velocity profile with an inflection point, which is the source of crossflow instability. As described in the review by [START_REF] Saric | Stability and transition of three-dimensional boundary layers[END_REF], crossflow instability can be either steady or travelling. It is characterized by co-rotating vortices almost aligned with the streamwise direction, especially for the steady modes. Contrary to the Tollmien-Schlichting instabilities, crossflow instabilities are often destabilized by a negative pressure gradient. They are sufficiently strong (inviscid instability) to trigger absolute instability in the chordwise direction, see [START_REF] Lingwood | On the impulse response for swept boundary-layer flows[END_REF].

During the 20th century, all these instabilities were mainly studied independently from simplified models with assumptions on the flow or a perturbation form depending on the type of instability sought. However, the origin of this independence mostly comes from practical limitations rather than physical considerations and a realistic instability may be a superposition of different types. By investigating the interaction of oblique waves with two-dimensional waves for the SHF case, [START_REF] Hall | Wave interactions in a three-dimensional attachment-line boundary layer[END_REF] suggested a connection between attachment-line and crossflow instabilities. Then, [START_REF] Bertolotti | On the connection between cross-flow vortices and attachment-line instabilities[END_REF] found modes connecting attachment-line to crossflow in the SHF case using confluent hypergeometric functions. To study the diversity of the instabilities, the need to perform stability analyses which are global in the chordwise direction on domains that extend over the whole leading edge was perceived. These chordwise-global analyses, contrary to chordwise-local analyses, allow us to directly conclude on the absolute nature of the instability in the chordwise direction [START_REF] Huerre | Local and global instabilities in spatially developing flows[END_REF] but also to have access to its wavemaker, as well as to its whole spatial structure. The concept of wavemaker was introduced by [START_REF] Gianetti | Structural sensitivity of the first instability of the cylinder wake[END_REF] and is relevant for the identification of the physical mechanisms at play. The increase of computational capacities has made this type of global analysis possible, but the difficulty lies in the possibly very high sensitivity of the computed eigenvalues to numerical parameters such as domain size or eigenvalue shift [START_REF] Alizard | Spatially convective global modes in a boundary layer[END_REF][START_REF] Garnaud | Modal and transient dynamics of jet flows[END_REF][START_REF] Brynjell-Rahkola | Stability and sensitivity of a cross-flow-dominated falknerskan-cooke boundary layer with discrete surface roughness[END_REF]. [START_REF] Cerqueira | Eigenvalue sensitivity, singular values and discrete frequency selection mechanism in noise amplifiers: The case of flow induced by radial wall injection[END_REF] have shown that this issue is linked to the modification of the ϵ-pseudospectrum with the extension of the domain. To date, only a few studies deal with chordwise-global stability analyses using a domain covering the entire leading edge [START_REF] Mack | Global stability of swept flow around a parabolic body: connecting attachment-line and crossflow modes[END_REF][START_REF] Mack | Global stability of swept flow around a parabolic body: The neutral curve[END_REF][START_REF] Meneghello | Receptivity and sensitivity of the leading-edge boundary layer of a swept wing[END_REF]. In [START_REF] Mack | Global stability of swept flow around a parabolic body: connecting attachment-line and crossflow modes[END_REF], a first temporal chordwise-global stability analysis was conducted on a parabolic leading-edge in supersonic flow. The authors reported "connected modes" with features of both attachment-line and crossflow. In [START_REF] Mack | Global stability of swept flow around a parabolic body: The neutral curve[END_REF], a neutral curve was established, still in supersonic condition. Their study was done at a constant sweep angle, which implies a simultaneous variation of the sweep and leading-edge Reynolds numbers Re S and Re R . [START_REF] Meneghello | Receptivity and sensitivity of the leading-edge boundary layer of a swept wing[END_REF] dealt with the incompressible flow around the leading-edge of a Joukowski airfoil. Only strongly stable modes were analyzed. One of their observations is the appearance of an AL/CF connected mode with a first spatial growth of the direct mode close to the attachment line and a second spatial amplification further downstream, where the direct mode has characteristics reminiscent of a crossflow type instability. They used the wavemaker to conclude that the observed mode is fed by the attachment-line instability. This last result additionally implied that effective open-loop control strategies should focus on baseflow modifications in the region where the attachment-line instability prevails. Thus, chordwise-global analyses provide important information about the spatial structure of the modes and their sensitivity, and the previous studies of leading-edge instabilities have highlighted the complexity of the modes involved. Yet, only a strongly stable configuration around a Joukowski profile has been studied for the case of an incompressible flow and studies of unstable or marginally stable flows have been limited to a narrow field of the parameter space in a compressible case around a parabolic body.

The first objective of this paper is to extend the study of boundary layer instabilities that develop in an incompressible flow around the leading-edge of swept realistic airfoils, here the ONERA-D and Joukowski airfoils with infinite span. In particular, we are interested in studying the neutral curves in extended parameter space and in characterizing the physical nature of the chordwise-global modes along them. By studying in depth the features of the marginal modes, including the study of the wavemaker position, we would like to further the study of the diversity of the modes developing on the leadingedge and improve our understanding of the connection between the different types of instabilities. We also want to investigate the impact of the streamwise pressure gradient on the instabilities by comparing the results between a ONERA-D airfoil and a Joukowski airfoil, which exhibit strongly different pressure gradients.

The chordwise-global analyses used in our study remain local in the spanwise direction. Therefore, the convective or absolute nature in the spanwise direction of the studied instabilities is still to be explored. This problem aims at determining whether an instability in the flow has a chance to sustain the perturbation so as to grow temporally at a given spanwise position and contaminate the whole airfoil, or whether it will be convected away along the span. Studies addressing this issue were conducted at the end of the 20th century. Indeed, [START_REF] Türkylmazoglu | On the Absolute Instability of the Attachment-Line and Swept-Hiemenz Boundary[END_REF][START_REF] Türkylmazoglu | On the Absolute Instability of the Attachment-Line and Swept-Hiemenz Boundary[END_REF][START_REF] Lingwood | On the impulse response for swept boundary-layer flows[END_REF] respectively dealt with the incompressible Swept Hiemenz Flow and Falkner-Skan-Cooke boundary layer and found that they are absolutely unstable in the chordwise direction, but may still be only convectively unstable in the spanwise direction. Taylor and Peake have also been interested in this problem for genuine airfoils in incompressible [START_REF] Taylor | The long-time behaviour of incompressible swept-wing boundary layers subject to impulsive forcing[END_REF] and compressible [START_REF] Taylor | The long-time impulse response of compressible swept-wing boundary layers[END_REF] regimes. In both cases, they also found convectively unstable flows without absolute instabilities in both streamwise and crossflow directions. Similarly, [START_REF] Piot | Absolute stability mechanism of a swept cylinder laminar boundary layer with imposed spanwise periodic conditions[END_REF] studied the absolute instability mechanisms on a swept cylinder with imposed spanwise periodic conditions. All previously mentioned absolute stability analyses were conducted using stability analyses that are local both in the spanwise and chordwise directions.

The second objective of this paper is to study the absolute/convective nature in the spanwise direction of the instabilities developing in the boundary layer of the incompressible flow around the leading-edge of the ONERA-D airfoil. To the authors' knowledge, this is the first study of this nature using chordwise-global stability analyses.

The outline of the paper is the following. In §2 the methodology that will be used in this paper is described. The flow configurations as well as the governing equations and the computational domain are introduced. The numerical methods and the procedure for finding modes with zero-group velocity are also detailed. In §3 the results and discussions are presented. In §3.1, some results of the baseflow are described. In §3.2, a neutral curve for the swept ONERA-D airfoil is drawn and a detailed analysis of its structure and its marginal modes is provided. The convective/absolute nature of the instabilities is tackled in §3.3. Then, a parametric study of the influence of Re R is performed by comparing neutral curves in the case of the ONERA-D in §3.4. Finally, in §3.5, the neutral curves for the swept ONERA-D and Joukowski airfoils are compared to assess the influence of the airfoil shape.

Methodology

Flow configurations

We consider the swept ONERA-D and Joukowski airfoils of infinite span at 0 ˝angle of attack, the Joukowski airfoil having a thickness parameter ϵ " 0.1. The ONERA-D is a reference airfoil for the study of the boundary layer transition and has a shape designed specifically to stabilize TS waves. We pick an orthonormal coordinate system px, y, zq whose origin is located on the leading-edge, the x-direction being along the chord orthogonal to the leading-edge, the z-direction along the span, and the y-direction orthogonal to the symmetry plane (see figure 1).

The leading-edge radius of curvature of the airfoils in the px, yq-plane is noted r c and the sweep angle Λ " anglep Ý Ñ U

8

, Ý Ñ x q with the inflow velocity U 8 which may be decomposed as a sweep velocity U 8 z " U 8 sin Λ and a chordwise velocity U 8

x " U 8 cos Λ (with U 8 y " 0). The chord in the direction of the free-stream velocity is noted C, while C n " C cos Λ is the chord normal to the leading-edge of the airfoil.

We will consider two local orthonormal coordinate systems: ' ps, η, zq, where s is the curvilinear abscissa along the surface of the airfoil in a pz " cstq-plane and η is the wall-normal direction (η " 0 corresponds to the surface).

' pχ, η, bq, where χ is a curvilinear abscissa along a streamline of the external baseflow velocity field, just outside of the boundary layer (see section 3.1). Again η is the wallnormal direction and b is normal to the plane pχ, ηq.

Two non-dimensional parameters are needed to describe the flow configuration. A natural parameterization is the one based on the sweep angle and the streamwise Reynolds number:

ˆΛ, Re Q " U 8 C ν ˙. (2.1)
where ν denotes the kinematic viscosity. These two parameters, commonly used in wind tunnel experiments, will be used in the result section 3.5 to compare the stability of the Joukowski and ONERA-D airfoils.

In our study, we will mainly use a parameterization more representative of the physics of the flow at the leading-edge by defining the "leading-edge Reynolds number" Re R and the "sweep Reynolds number" Re S :

ˆRe R " U 8 x r c ν , Re S " U 8 z ∆ ν ˙. (2.2)
Here ∆ is a typical length scale of the boundary layer thickness at the attachment line and is based on the potential flow:

∆ " c ν S 0 , S 0 " BU pot s Bs ˇˇˇx "0,y"0 , (2.3)
where U pot s denotes the s-component of the potential velocity. The detail of the calculation of the potential flow will be given in section 2.2.1. S 0 is then the strain rate of the potential flow around the profile at the attachment-line.

This parameterization has been used intensively in the study of transition in simplified leading-edge configurations. The sweep Reynolds number Re S , often used for the study of attachment line flows, and sometimes also denoted R, drives the instability mechanism along the attachment line [START_REF] Hall | On the stability of an infinite swept attachment line boundary layer[END_REF][START_REF] Lin | On the stability of attachment-line boundary layers. part 1. the incompressible swept hiemenz flow[END_REF]. The leading-edge Reynolds number Re R can be seen as a scaling of the boundary layer thickness with respect to the radius of curvature at the attachment-line since:

∆ r c " 1 ? KRe R , (2.4)
where K " S 0 r c {U 8

x . [START_REF] Lin | On the stability of attachment-line boundary layers. part 2. the effect of leading-edge curvature[END_REF] used this Reynolds number to measure the influence of the leadingedge curvature on the attachment-line instabilities. K is the ratio between two lengthscales: the leading edge radius of curvature r c and the characteristic length-scale U 8

x {S 0 of variation of the potential flow in the vicinity of the leading edge.

For the ONERA-D and Joukowski airfoils, we have pr c {C n , Kq " p0.0180, 1.37484q and pr c {C n , Kq " p0.016129, 1.2669q respectively (for comparison, pr c {C n , Kq " p0.5, 2q in the case of the cylinder).

Both sets of parameters pRe Q , Λq and pRe R , Re S q may be linked through:

ˆtan Λ " c K Re R Re S , Re Q " Re R 1 `tan 2 Λ r c {C n ˙.
(2.5)

Governing equations and computational domain

In the context of our study, we seek to determine the stability of a perturbation qpx, y, z, tq " pu, pqpx, y, z, tq of small amplitude which emerges within a baseflow Qpx, y, z, tq " pU , P qpx, y, z, tq. The baseflow being steady and homogeneous in z, then we simply have Qpx, y, z, tq " Qpx, yq.

The total flow Q tot is expressed as the sum of the baseflow and the perturbation:

Q tot px, y, z, tq " Qpx, yq `ϵqpx, y, z, tq with ϵ ăă 1.

We want to study the temporal stability of the perturbations by expressing them in the form qpx, y, z, tq " qpx, y, zqe ´iωt with ω P C. The real part ω r and imaginary part ω i represent respectively the frequency and the amplification rate. A perturbation with ω i ą 0 will be said to be "unstable" while a perturbation with ω i ă 0 will be said to be "stable". Considering the homogeneity of the configuration in the zdirection, any perturbation can be decomposed as a sum of perturbations of the form qpx, y, z, tq " qpx, yqe iβz e ´iωt . The stability analysis being linear, we can reduce our study to instabilities of this form. We are then dealing with a temporal analysis that is global in the chordwise x-direction but local in the spanwise z-direction. These analyses will then be referred to as chordwise-global/spanwise-local. In the present study, except for the section 3.3, we will consider the case β P R. This assumption allows us to tackle the question of the temporal stability of spanwise periodic perturbations. However, it tells us nothing of the absolute or convective nature of the instability. In other words, it does not allow us to predict whether a perturbation would temporally grow at a given location along the span, or if it would be washed away downstream along the span as it grows in time. To tackle this last point, the one of absolute stability in the z-direction, it is necessary to consider β P C. The methodology used to deal with this problem will be described in section 2.2.4.

Baseflow

The velocity and pressure fields of the baseflow, respectively U " pU x , U y , U z q and P , are governed by the steady incompressible Navier-Stokes equations. As a result of the homogeneity in the z-direction, B z Q " 0 and the governing equations of U 2D " pU x , U y q and U z are decoupled. All variables are made non-dimensional with the length of the chord C n (normal to the leading-edge) and the velocity U 8

x . We then introduce the chordwise Reynolds number Re Cn " Re R C n {r c and we get the following system of equations:

$ ' & ' % ∇U 2D ¨U 2D `∇P ´Re ´1 Cn ∆U 2D " 0 ∇U z ¨U 2D ´Re ´1 Cn ∆U z " 0 ∇ ¨U 2D " 0 (2.6)
Using the symmetry of the airfoil in y " 0, we can consider a domain defined only on the upper half of the airfoil, as shown in figure 1paq, and we then have the following boundary conditions:

$ ' ' ' & ' ' ' % U " 0 on Γ w pU x , U y , U z q " `U pot x , U pot y , U 8 z ˘on Γ in B y U x " B y U z " U y " 0 on Γ sym ∇U ¨n " 0 and P " P pot on Γ out (2.7)
where Γ w , Γ in , Γ sym and Γ out are defined in figure 1. n denotes the vector normal to the boundary and the superscript pot corresponds to the 2D potential solution around the airfoil.

In the farfield, we have `U pot

x " 1, U pot y " 0, U pot z " U 8 z , P pot " 0 ˘. For the ONERA-D, the potential solution is computed by solving a Laplace equation for the stream-function ψ with appropriate Dirichlet boundary conditions on a domain comprising the full airfoil and extending sufficiently far so that uniform flow field conditions hold. The potential velocity field is obtained by computing U pot x " B y ψ and U pot y " ´Bx ψ. The potential pressure is computed as P pot " p1 ´pU pot x q 2 ´pU pot y q 2 q{2. In the case of the Joukowski airfoil, which is defined from a Joukowski transform of a cylinder, the potential solution is computed analytically.

Direct modes: temporal chordwise-global/spanwise-local stability analysis

As previously introduced, the small amplitude unsteady perturbations q are sought under the form q " qpx, yqe ipβz´ωtq , (2.8)

where q " pû, pq " pû x , ûy , ûz , pq is the complex spatial distribution of the mode, β P R is the real spanwise wavenumber and ω P C is the complex pulsation of the perturbation. The equation governing the couple pω, qq corresponds to the following linear eigenvalueeigenvector problem:

Lq " ωB q,

(2.9)

where L and B are defined as:

L " » - - - - - B x U x `Cβ ´Dβ B y U x 0 B x B x U y B y U y `Cβ ´Dβ 0 B y B x U z B y U z C β ´Dβ iβ B x B y iβ 0 fi ffi ffi ffi ffi fl and B " » - - - - - i 0 0 0 0 i 0 0 0 0 i 0 0 0 0 0 fi ffi ffi ffi ffi fl ,
(2.10) with C β " U x B x `Uy B y `iβU z and D β " Re ´1 Cn pB x 2 `By 2 ´β2 q. The following boundary conditions hold:

$ ' ' ' & ' ' ' % û " 0 on Γ w û " 0 on Γ in B y ûx " B y ûz " ûy " 0 on Γ sym pn ´Re ´1 Cn ∇û ¨n " 0 on Γ out , (2.11)
which corresponds to a symmetric boundary condition at the symmetry plane. Although antisymmetric modes also exist, the present study focuses on symmetric modes because they are expected to be the most unstable. Indeed, the modes most likely to be affected by the boundary condition at Γ sym are the modes with a spatial structure close to the attachment line, and for these, the literature indicates that symmetric modes are the most unstable [START_REF] Joslin | Simulation of three-dimensional symmetric and asymmetric instabilities in attachment-line boundary layers[END_REF][START_REF] Lin | On the stability of attachment-line boundary layers. part 1. the incompressible swept hiemenz flow[END_REF][START_REF] Meneghello | Receptivity and sensitivity of the leading-edge boundary layer of a swept wing[END_REF].

In this study, the direct modes are normalized such that:

pû, ûq " 1.

(2.12)

with the inner product p¨, ¨q defined as: (2.13) the superscripts ˚referring to the transconjugate and Ω being the computational domain.

pq 1 , q 2 q " ż Ω q 1 q 2 dΩ,

Adjoint modes and wavemaker

We now briefly introduce adjoint operators, adjoint modes and the wavemaker. The adjoint operator L : of L is the operator such that for any q 1 and q 2 : pq 1 , Lq 2 q " pL : q 1 , q 2 q,

(2.14)

The definition of L : is provided in appendix A. The adjoint eigenvalue ω : and adjoint mode q: " pû : , p: q are then solution of the following eigenvalue-eigenvector problem:

L : q: " ω : B : q: . (2.15)
Since each eigenvalue ω : of the adjoint problem is the conjugate of an eigenvalue ω of the direct problem, it is possible to associate every direct mode with an adjoint mode.

In this study, the adjoint modes are normalized such that:

pû : , û: q " 1.

(2.16)

The knowledge of the adjoint mode is of particular interest since it is linked to the notion of wavemaker λpx, yq of the direct eigenvector q [START_REF] Gianetti | Structural sensitivity of the first instability of the cylinder wake[END_REF]. It is defined as the local product of the norms of the direct and the associated adjoint mode: λpx, yq " }ûpx, yq} ¨}û : px, yq},

(2.17)

where }upx, yq} 2 " u ˚px, yqupx, yq is the pointwise squared norm of the velocity vector.

In regions where the wavemaker is strong, the eigenvalue is very sensitive to a local modification of the structure of the governing equations. Consideration of the wavemaker is important for the identification of mode instability types [START_REF] Meneghello | Receptivity and sensitivity of the leading-edge boundary layer of a swept wing[END_REF].

The consideration of the wavemaker is also important from a numerical point of view since it is necessary to verify that this region is located inside the computational domain.

2.2.4. Absolute / convective stability analysis in the spanwise z-direction

We are interested here in the search for absolute instabilities. The results on this point will be presented in section 3.3.

For given parameters pRe R , Re S q where the flow is temporally unstable, ie there is a real β such that there exists a mode with ω i pβq ą 0, we look for a complex spatial wavenumber β 0 such that the mode exhibits a zero spanwise group velocity:

B β ωpβ 0 q " 0.
(2.18)

The flow is absolutely unstable if ω 0,i ą 0 where ω 0 " ωpβ 0 q.

To find such values, we follow the strategy described in [START_REF] Meliga | Absolute instability in axisymmetric wakes: Compressible and density variation effects[END_REF]. We first perform a temporal stability analysis, as described in section 2.2.2, and compute the most unstable eigenvalue for varying real wavenumbers β and look for all wavenumbers β peak where ω i pβq is maximal, i.e. B β ω i pβ peak q " 0. Then, at these points, the spanwise group velocity is real: V peak g " B β ωpβ peak q " B β ω r pβ peak q. We then allow both β and ω " ωpβq to be complex and monitor the values of wavenumbers β Vg and frequencies ω Vg for which we have a branch point:

ωpβq « ω Vg `Vg " β ´βVg ‰ `l " β ´βVg ‰ 2 . (2.19)
V g is the control variable and l is a term to determine. Note that for V peak g , the branch point is reached for pβ peak , ω `βpeak q ˘. We then decrease V g , follow the solution by continuity and identify pβ 0 , ω 0 , V g " 0q. This may yield multiple branch points at zero spanwise group velocity. The transition from convective to absolute instability is determined by the branch point that exhibits largest growth rate ω 0,i .

In this way, we should be able to evaluate ω 0 for all pRe R , Re S q couples and determine where the flow is absolutely unstable (ω 0,i ą 0), or convectively unstable (ω 0,i ă 0). It should be noted, though, that the presence of modes with ω 0,i ą 0 is only a necessary but not sufficient condition for absolute instability. However, the absence of modes with ω 0,i ą 0 is therefore a sufficient condition to conclude that the flow is only convectively stable.

Numerical methods

The airfoils being symmetric, we choose to restrict the study to symmetric flowfields. The computational domain is restricted to the y ě 0 domain, and symmetry conditions will be used at the axis of symmetry y " 0, as defined in equation 2.11.

As shown in figure 1, we consider a 2D domain Ω covering the upper half of the airfoil and which extends up to typically 15% and 35% in the chordwise direction for the ONERA-D and Joukowski airfoils respectively. The domain size in the chordwise direction has been chosen small enough so that the non-normality effects described by [START_REF] Cerqueira | Eigenvalue sensitivity, singular values and discrete frequency selection mechanism in noise amplifiers: The case of flow induced by radial wall injection[END_REF] and [START_REF] Brynjell-Rahkola | Stability and sensitivity of a cross-flow-dominated falknerskan-cooke boundary layer with discrete surface roughness[END_REF] do not affect the accuracy of the results, but large enough to include the entire region of the wavemaker of the modes. Validation of the stability analysis results with respect to the chordwise extension of the mesh is presented in section 2.4.2.

For the ONERA-D, the body-fitted mesh for the baseflow solution is made up of an internal M i (in red in figure 1) and an external M e (in blue) part. The external mesh is obtained with successive automatic mesh adaptations, based on criteria pertaining to the computed baseflow velocities. The mesh extends to about 50C n in the η-direction, contrary to what is shown in figure 1 for clarity. On the other hand, the internal mesh remains fixed and consists of the superposition of several layers, each layer extending over the whole chord and being one rectangle thick (each rectangle is divided into two triangles). There is a scale factor of 1.04 between the wall-normal length of successive layers, the layer attached to the wall having an aspect ratio of 10 and the external layer an aspect ratio of 1. For pRe R , Re S q " p25000, 652q, we then get 59 layers, the internal mesh extending up to 45∆ in the η-direction and being composed of 101418 triangles. The total number of triangles in the complete mesh is 120901.

For the Joukowski airfoil, the baseflow solution is also made up of an internal and an external part. In the case of the Joukowski profile, the mesh is constructed analytically using the Joukowski transform. For our study, the parameters are chosen such that the internal mesh has a thickness that increases along the chord so that it is about 5δ 99 with half the points within the boundary layer δ 99 . The boundary layer thickness δ 99 will be properly introduced in the section 3.1. The mesh has a chordwise extension of X Γout " 0.35. The internal and external meshes are made of 60000 and 90000 triangles respectively. The external mesh extends to about 50δ 99 in the η-direction.

For the stability computations, we have considered only the internal mesh M i , the inflow boundary being sufficiently far from the airfoil so that homogeneous boundary conditions hold for the perturbations.

All numerical details are handled with FreeFem++ [START_REF] Hecht | New development in freefem++[END_REF]). The baseflow non-linear system is solved with Newton's iterative method using the MUMPS solver [START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF] for the inversion of the Jacobian [START_REF] Sipp | Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows[END_REF]. The algorithm is initialized with the potential solution.

To allow coarsening of the ONERA-D mesh in the free-stream by mesh adaptation, we used a SUPG method associated with a grad-div stabilization for solving the baseflow equations. [START_REF] Ahmed | Numerical comparisons of finite element stabilized methods for a 2d vortex dynamics simulation at high reynolds number[END_REF][START_REF] Franca | Stabilized finite element methods: I. application to the advective-diffusive model[END_REF].

For both the baseflow computation and the stability analysis, the spatial discretizations are handled with second-order finite elements. We use Lagrange type elements (P2,P2,P2,P1). The eigenvalues and associated eigenmodes are computed using a Krylov-Schur algorithm associated with a shift-invert method (the matrix inversions are handled by the direct LU MUMPS solver). We rely on the SLEPc solver [START_REF] Hernandez | SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems[END_REF] with a basis of 100 Krylov vectors.

Validation

Baseflow

The baseflow solution was validated by comparing the streamwise velocity component U χ and crossflow component U b within the boundary layer with those obtained by using an ONERA in-house boundary layer code which solves the Prandtl's equations [START_REF] Houdeville | Three-dimensional boundary layer calculation by a characteristic method[END_REF]. A comparison along the wall-normal direction η for pRe R , Re S q " p25000, 652q is shown in figure 2 for the chordwise coordinate s " 0.07. We observe a close agreement between the results obtained with the two methods with a growth of the U χ component up to a value of about 5 for η ą 10 ´3. For the U b component, we observe with both methods, a maximum of 0.028 for η " 3 ˆ10 ´4 and a minimum around ´0.012 for η " 8.5 ˆ10 ´4. correspond respectively to the chordwise extension of the mesh, the number of layers, the total number of triangles and the scale factor between the thickness of the different layers. All meshes have the same wall-normal extension (close to 45∆) and triangles at the wall with a similar aspect ratio (formed by splitting a rectangle of aspect ratio 10).

Stability analysis

Validation of the convergence of our results with respect to the chordwise extension of the domain and the refinement of the mesh for the ONERA-D airfoil was done.

Three sets of parameters pRe R , Re S , β∆q have been considered: p25000, 652, 0.32q, p25000, 652, 0.126q, and p25000, 527, 0.057q. This choice was made because for each of these three sets of parameters, the most unstable mode is a marginal mode with very distinct features. These three modes will be investigated in detail in section 3.2.2 and exhibit characteristics close to attachment-line, crossflow, and Tollmien-Schlichting instabilities, respectively.

For the refinement validation, we compare the results obtained with the internal mesh used in our study (X Γout " 15% and 101418 triangles) to a finer mesh (X Γout " 15% and 178423 triangles). These two meshes are labeled as "M ref " and "M f in " respectively. The finer mesh has a scale factor of 1.03 (instead of 1.04), the total thickness of the mesh and the aspect ratio of the first layer remaining the same, thus increasing the number of layers and the number of triangles in each layer. The informations concerning the different meshes compared are listed in the table 1.

Concerning the chordwise extension, the comparison is done between meshes with We focus the comparison on the eigenvalues and the normalized magnitude d ûpsq of the most unstable eigenvector. d ûpsq is defined as:

d ûpsq " b ş Lη 0 }ûps, ηq} 2 dη b ş Ls 0 ş Lη 0 }ûps, ηq} 2 dηds (2.20)
with L η and L s respectively the wall-normal and chordwise extension of the internal mesh.

The most unstable eigenvalue computed with the different meshes are given in table 2 for the three sets of parameters pRe R , Re S , β∆q " p25000, 652, 0.32q, p25000, 652, 0.126q, and p25000, 527, 0.057q. The differences between the meshes result in a relative error of about 10 ´3 for the most unstable eigenvalues and an absolute error of the order of unity. These deviations are acceptable in the context of our study because they do not significantly affect the neutral curves positions and do not change the conclusions that can be drawn from them.

In figure 3pa,c, eq, we compare the spectra calculated with the meshes M 12 (in red), M ref (in black), M 20 (in blue)M f in (in green) for pRe R , Re S , β∆q " p25000, 652, 0.32q, p25000, 652, 0.126q, and p25000, 527, 0.057q, respectively. Significant differences are observed for the highly stable eigenvalues but good agreement is found for the most unstable eigenvalue, which are the ones of interest. This strong disparity for very stable eigenvalues between the meshes with domains of different chordwise extension is related to the dependency of the ϵ-pseudospectrum on the domain sizes [START_REF] Cerqueira | Eigenvalue sensitivity, singular values and discrete frequency selection mechanism in noise amplifiers: The case of flow induced by radial wall injection[END_REF].

In figures 3pb, d, f q, the magnitude of the most unstable mode according to the chordwise coordinate s for the meshes M 12 (in red), M ref (in black), M 20 (in blue) and M f in (in green) are compared in a logarithmic scale, with a zoom in linear scale in the high magnitude area. Since the normalization of the amplitude depends on the extension of the domain, for a better comparison, all the magnitude maxima have been set to the value obtained in the M ref mesh. In the case of the attachment-line mode represented in figure 3pbq, a gap is seen for s ą 0.03. However, this gap occurs in the low magnitude region while in the region where the mode is strongest (s ă 0.03), we find a good agreement. Indeed, although there is a slight difference in magnitude on the zoomed window, we observe for the 4 meshes that the maximum magnitude is in the close vicinity of the attachment line, at s « 0.005, and that the spatial structure of the mode is sufficiently similar that its analysis and the identification of the instability mechanism at play are not impacted. In the cases of the other two modes (figures 3pd, f q), we observe a good superposition of the 4 curves. For the crossflow mode, we have an increase in magnitude up to a value of 60 at s " 0.04 and then a decrease until the end of the c, eq and the magnitudes pb, d, f q, as a function of s, of the most unstable mode for sets of parameter pRe R , Re S , β∆q: p25000, 652, 0.32q pa, bq, p25000, 652, 0.126q pc, dq and p25000, 527, 0.057q pe, f q calculated with 4 different meshes. The mesh M ref used in our study (in black) is compared with a shorter mesh (M 12 , in red), a longer mesh (M 20 , in blue) and a finer mesh (M f in , in green).

domain. For the mode exhibiting Tollmien-Schlichting features, we note two magnitude maxima of 0.5 and 26 for abscissas s " 0.06 and s " 0.127 respectively. Whether with respect to the extension of the mesh in the chordwise direction or the refinement of the internal mesh, the results are converged, both in terms of mode magnitude and eigenvalue. The same kind of validation was done for the Joukowski airfoil case with a reference mesh with X Γout " 35% and 60000 triangles. The need for a higher chordwise extension of the mesh in the Joukowski case is explained by the location of the marginal modes further downstream compared to the ONERA-D case.

Appendix B gives, for a few marginal modes, a comparison of the spatial structure obtained with the present chordwise-global approach and that obtained by chordwiselocal stability analysis.

As a validation in the Joukowski case, we compared our stability results with those obtained by [START_REF] Meneghello | Receptivity and sensitivity of the leading-edge boundary layer of a swept wing[END_REF] for the parameter set pRe R , Re S , β∆q " p16129, 113, 0.45q (corresponding to pRe Cn , Λ, βq " p10 6 , 45 ˝, 4000q in their paper). The 3 least stable symmetric eigenvalues and the spatial structure of the least stable eigenmode are presented in appendix C. A very close agreement is observed.

Results

Baseflow

The baseflow for pRe R , Re S q " p25000, 652q is presented in figures 4 and 5. This choice of set of parameters corresponds to a sweep angle Λ " 78.31 ˝for the ONERA-D airfoil, and Λ " 77.84 ˝for the Joukowski airfoil. These particularly high values compared to realistic configurations are explained by the fact that drawing neutral curves with lower sweep angles would require increasing Re R , which would make the numerical computations too expensive for our current capabilities. However, the results and conclusions drawn from our theoretical study remain insightful as to the physical mechanisms involved, regardless of the value of the sweep angle. In figure 4, potential streamlines, δ 99 , and the wall-pressure coefficient C p " 2P are represented in the case of ONERA-D and Joukowski airfoils. In this figure, the two represented airfoils have the same spanwise extension, but the radial and chordwise extensions of the domains are different, as described in the section 2.3.

In figure 5, the NACA0012 profile is used as a reference to help the reader compare and identify the properties of the two profiles studied in the paper. The three profiles are superimposed in figure 5paq . It is represented in figure 5pbq. Close to the attachment line, the flow is along the direction of the span z, so that γ " 90 ˝´Λ « 12 ˝. Then, in the ONERA-D case, as s increases, the γ angle reaches a minimum of ´2.9 ˝at s " 0.35 before increasing again to ´1.4 ˝at s " 0.15. For the Joukowski airfoil, the γ angle decreases on the whole domain to a value of ´2.7 ˝in a way similar to the case of NACA0012.

In figure 5pcq is displayed the ratio, for each s-coordinate, of the crossflow velocity maximum U b pηq over the η-direction and the external streamwise velocity U e χ . This ratio shows that the crossflow component is overall weak (less than « 4%) for all airfoils and justifies an analysis in the pχ, η, bq orthonormal system. It also indicates where crossflow modes are likely to develop (high values of the ratio). In all cases, the maximum is reached around s " 0.02. The sharp change in variation around s " 0.05 in the case of the ONERA-D airfoil is related to the presence of two maxima of the crossflow velocity in the η-direction, as shown in figure 2pbq. It can be noted that the presence of these two maxima leads to the presence of two inflection points, which has an impact on the destabilization of crossflow waves, as will be discussed in section 3.2.2. Figure 5pdq represents, as a function of s, the pressure gradient scaled using U τ " pνB η U χ pη " 0qq 0.5 . In the ONERA-D case, the streamwise pressure gradient is close to that of the NACA0012 airfoil and is negative up to s " 0.035, then positive until the limit of the domain, with a flattening around s " 0.09. This pressure-gradient changeover is typical of a flow on a swept wing and explains the existence of two inflection points in the crossflow velocity profile U b for some values of s, as shown in figure 2pbq [START_REF] Wassermann | Transition mechanisms in a three-dimensional boundary-layer flow with pressure-gradient changeover[END_REF]Arnal & Casalis 2000a). This indicates schematically that crossflow instabilities should be favored for s ă 0.035 and Tollmien-Schlichting instabilities after. In the case of the Joukowski airfoil, the streamwise pressure gradient remains negative up to s " 0.14. The scaled streamwise pressure gradient reaches values of about 2ˆ10 ´3, which indicates that the gradients are only moderate. Boundary layer thickness values (∆, δ 99 psq, displacement δ ˚psq, momentum Θpsq) and Reynolds number Re δ ˚" U e χ δ ν of the ONERA-D and Joukowski airfoils are shown in figure 5pe, f q. All thicknesses δpsq are defined from the streamwise velocity profile U χ pηq, for example U χ pδ 99 q " 0.99U e χ . The external velocity U e χ may be evaluated in the ps, η, zq coordinate system according to U e χ " a pU e s q 2 `pU e z q 2 with U e s " ´şLη 0 ωz dη (close to U pot s pη " 0q) and U e z "

ş Lη 0 ωs dη (equal to U 8 z ), ωz and ωs being the vorticity components of the baseflow along z and s. L η is a distance to the wall sufficiently large to reach the potential region where the vorticity components are zero.

The Reynolds number Re δ ˚exhibits values between 700 and 3900 in the domain, which allows spatial amplification of Tollmien-Schlichting instabilities for zero-pressure gradient or adverse pressure gradient boundary layers (we recall that Re crit « 520 in the case of the Blasius boundary layer flow [START_REF] Schmid | Transition to turbulence[END_REF]). and pdq: streamwise pressure gradient made non-dimensional with friction velocity U τ " pνB η U χ pη " 0qq 0.5 and kinematic viscosity ν. pe, f q: ∆ (green), chordwise evolution of the boundary layer thicknesses, δ 99 (red), displacement thickness δ ˚(orange), momentum thickness θ (black) and Reynolds number Re δ ˚(blue) based on external streamwise velocity and displacement thickness for the ONERA-D peq and Joukowski pf q airfoils.

Temporal chordwise-global/spanwise-local stability analysis for the ONERA-D airfoil

In order to determine the physical mechanisms involved, a classification of the types of modes studied is commonly made. The classification is based on the study of several features specific to each type of mode. As stated in the introduction, the main instabilities developing in the configurations studied here are related to attachment-line, crossflow, and Tollmien-Schlichting types.

To help discern the type of instability, as commonly done in chordwise-local stability approaches (Arnal & Casalis 2000b), we introduce the Ψ angle between the local planar wave vector Ý Ñ k psq " rk s psq, k z s of the mode and the direction of the external streamline:

Ψ " anglep Ý Ñ k psq, Ý Ñ U e psqq.
In the context of chordwise-global instability, we may approximate such a planar wave-vector as follows: if ûpx, yqe iβz is a component of the mode, then pk s , k z q " pB s ϕ, βq where ϕps, ηq " arg ûps, ηq. The choice of the component and wall-normal distance η does not matter as long as the flow is weakly non-parallel (condition for the existence of such a local wave-vector). Here we used the ûy -component and η " δ 99 {2. From the literature, the following observations can be made for each of the instabilities: ' Attachment-line instabilities: low value of Ψ angle, location of the direct mode and wavemaker close to the attachment line, normalized phase speed c z {U 8 z around 0.39 where c z " ω r {β.

' Crossflow instabilities: Ψ P r80 ˝´90 ˝s, location of the direct mode away from the attachment line, position of the wavemaker in the region where the pressure gradient is negative and the cross-stream component of the baseflow is strong (see figures 5(c,d))

' Tollmien-Schlichting instabilities: Ψ P r0 ˝´40 ˝s, location of the direct mode further downstream, position of the wavemaker in the positive pressure gradient area. We will try to use those criteria to distinguish the physical nature of each mode in the following. The following relation holds β " k s psq tanpΛ `γpsq `Ψ psqq.

3.2.1.

Neutral curve in the pRe S , β∆q-plane at Re R " 25000.

The search for the eigenmodes of a flow characterized by pRe R , Re S q is done by computing the spectrum at a given β (examples of obtained spectra are plotted in figure 3pa, c, eq). By setting one of these three parameters, neutral curves can be drawn varying the two remaining ones. The neutral curve is the limit between configurations where all modes of the spectrum are stable and configurations where at least one mode is unstable. By studying the characteristics of the modes along the neutral curve, called "marginal modes", one can determine the types of instability responsible for the destabilization of the flow and the physical mechanisms involved.

We have represented (solid line) in figure 6paq the neutral curve in the pRe S , β∆q parameter space for Re R " 25000. Black dots indicate 10 specific marginal eigenvalue/eigenvectors, labeled (i) (highest spanwise wavenumber) to (x) (smallest wavenumber). These modes are listed in table 3. Their spatial structure will be analyzed in detail in the next section, and more specifically the modes (i), (vi), and (ix) noted in red in table 3 and figure 6. The presence of kinks along the neutral curve indicates that marginal modes with different features may be responsible for instability, depending on the spanwise wavenumber. A detailed study (not shown here) of regions in the vicinity of the kinks confirms the presence of several unstable modes. The neutral curve is composed of the overlapping of six distinct curves (which will be called "lobes") in the present case, each represented by a different color in figure 6. The prolongation of each partial neutral curve in the "unstable" region is indicated by dashed lines. The critical sweep Reynolds number is Re S,crit " 527 and is reached for β crit ∆ " 0.057. We notice that the upper lobe (in dark blue) fits relatively well with the upper part of the neutral curve of the SHF [START_REF] Obrist | On the linear stability of swept abttachment-line boundary layer flow. part 1. spectrum and asymptotic behaviour[END_REF], shown in dotted-orange line. As we will see in the section 3.2.3, the modes associated to this lobe are of attachmentline type. They are thus located close to the attachment line and are almost invariant in the crossflow b-direction. At the attachment line, we have pχ, η, bq " pz, ´x, yq and s " y. This lobe also corresponds to large values of β. The high value of β implies a large variation in the z-direction, also in the x-direction due to the continuity equation and the invariance in y-direction. The small structures of the modes in the px " η, zq-plane imply that they will be less impacted by the variation of the curvature in the s-direction. Therefore, the less dependent they are on the radius of curvature r c of the leading-edge. The limit corresponds to the SHF configuration for which r c " 8. For the other lobes at lower values of β, the leading-edge radius of curvature r c and therefore Re R must have a greater influence. Yet, the curvature explains why the critical value of the Reynolds number of the upper lobe (dark blue), Re S,crit « 621, is different from the one given in [START_REF] Obrist | On the linear stability of swept abttachment-line boundary layer flow. part 1. spectrum and asymptotic behaviour[END_REF] and [START_REF] Lin | On the stability of attachment-line boundary layers. part 1. the incompressible swept hiemenz flow[END_REF] for the SHF, which is Re S,crit « 582. This is confirmed by [START_REF] Lin | On the stability of attachment-line boundary layers. part 2. the effect of leading-edge curvature[END_REF] who studied the effect of Re R on attachment line instabilities and determined the values Re S,crit " 637.6 and Re S,crit " 599.5 for Re R " 10000 and Re R " 100000 respectively. An interpolation for Re R " 25000 yield a value Re S,crit « 620, which is close to the value we find.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Δ z / ∞
The associated phase speed c z " ω r {β normalized by the spanwise baseflow velocity U 8 z is represented in figure 6pbq as a function of the spanwise wavenumber β∆. The lobe changes result in discontinuities of the phase speed, which confirm that the marginal modes of the different lobes have distinct features. The same color code as in figure 6paq has been used to ease the correspondence of the lobes. The upper lobe (dark blue) is characteristic of attachment-line instabilities with phase speeds close to those of Tollmien-Schlichting waves in Blasius boundary layer c χ {U 8 χ « 0.39 where c χ " ω r {k χ (see [START_REF] Schmid | Transition to turbulence[END_REF]). In close vicinity of the attachment line, the values obtained in the case of the Blasius boundary layer are comparable to those of c z {U 8 z insofar as χ and z directions are equal and the streamwise pressure gradient is zero (see figure 5pdq). As the spanwise wavenumber decreases, the phase speed of the marginal modes decreases till values around c z {U 8 z « 0.27 reached for β∆ « 0.1. The phase speed on the two lowest lobes (red and purple) is in strong contrast with the phase speed of the previous ones since it jumps up to c z {U 8 z « 0.32 at β∆ « 0.1. We also note that except for the upper (dark blue) and lower (purple) lobes, the phase speed of the lobes decreases almost linearly with the decrease of β. The change in variation for the lower lobe, around β∆ " 0.07 may indicate a change in the nature of the modes.

3.2.2. Study of modes (i), (vi) and (ix) at Re R " 25000.

We now analyze the spatial structure of marginal modes, and in particular modes (i), (vi), and (ix) in table 3. Figure 7paq shows, for each of these 3 marginal modes, 2 isosurfaces of the real part of the vertical velocity of the perturbation ℜpû y px, yqe iβz q at ˘0.01 times the absolute maximum (red and blue), the wavemaker region (green), the pressure coefficient C p of the baseflow (shown on the vertical planes) and the boundary layer thickness δ 99 (black solid line on the vertical planes). An example of Ψ angle is drawn for mode (vi), with Ý Ñ k designating the local planar wave vector of the mode. For mode (i), the wavemaker is not seen because it is covered by the iso-surfaces of the direct mode. With this display, the perturbations seem also strong outside the boundary layer (η ą δ 99 ). In fact, the extremal values are found at positions around δ 99 {2 in the η-direction, as shown in figures 7pbq ´pdq where δ 99 and the real part of the vertical velocity of the perturbation in the ps, ηq-plane are drawn. In figures 7peq ´pgq are plotted the normalized magnitude as a function of s of the wavemaker (green line), direct mode (blue line) and adjoint mode (red line). The Ψ angle at altitude η " δ 99 {2 of the vertical velocity component of the perturbation is represented in figures 7phq´pjq. The oscillations observed in figures 7ph, jq occur when the mode magnitude is low or the orientation changes abruptly. We have checked that they are not due to insufficient refinement of the mesh since automatic adaptations based on the modes and their wavemaker have been tried, without removing these oscillations.

Concerning mode (i), we notice in figures 7pa, eq that the direct mode and the wavemaker are located close to the attachment line, the magnitude being vanishingly small for s ą 0.03. Moreover, figures 7pa, hq reveals that the Ψ angle is low p0 ˝´15 ˝q in the vicinity of the attachment line zone, where the mode is strongest. In the low-magnitude region, it is seen that the Ψ angle is greater than 80 ˝. These features are common to all the upper lobe modes (dark blue lobe) that have been calculated. Unlike reported in [START_REF] Meneghello | Receptivity and sensitivity of the leading-edge boundary layer of a swept wing[END_REF] for a stable mode of the flow around a Joukowski airfoil, we do not find a second high magnitude region where the modes have crossflow characteristics.

Even if the change of Ψ angle at s « 0.05 is reminiscent of the "connected modes" described by [START_REF] Mack | Global stability of swept flow around a parabolic body: connecting attachment-line and crossflow modes[END_REF] in the case of a compressible supersonic swept flow around a parabolic body, the low amplitude and high damping of the mode where it exhibits crossflow characteristics is such that we will not define it as a connected mode.

For mode (vi), we can see in figures 7pa, f q that the mode is located further downstream but that the wavemaker remains localized in the negative pressure gradient zone. The magnitude of the direct mode increases in the negative pressure gradient zone (s ă 0.035) and starts to decrease in the positive pressure gradient zone (s ą 0.035). In figure pa, iq, we find that the Ψ angle increases with s from 30 ˝to 60 ˝in the area where the wavemaker is maximum. The Ψ angle at the maximum magnitude of the direct mode is greater than 80 ˝. From these observations, we can conclude that this mode is of the crossflow type.

In figures 7pa, gq, we observe that the direct mode and the wavemaker are located further along the chord, where the pressure gradient is positive. Moreover, the direct mode extends over a significantly greater range and admits two local maxima (at s=0.06 and s=0.127). In figures 7pa, jq, we find a Ψ angle of 60 ˝at the location where the magnitude of the wavemaker is maximum and the direct mode reaches its first local ℜpû y px, yqe iβz q of modes (i): pb, e, hq, (vi): pc, f, iq and (ix): pd, g, jq. paq: for each mode 2 iso-surfaces at ˘0.01 times the absolute maximum are represented in red and blue. The baseflow pressure field C p (red and blue isocontours with the same colorbar as in figure 4paq) and boundary layer thickness δ 99 (black line) are shown in the vertical planes separating the modes. The wavemaker region is sketched by a green iso-surface at 95% of its maximum value. Several external streamlines of the baseflow are shown (black arrow lines). An example of wavevector and Ψ angle is also displayed for mode (vi). pbq ´pdq: plot in ps, ηq-plane as a proportion of the absolute maximum. δ 99 is displayed (black line). pe ´gq: normalized magnitude of direct mode (blue), adjoint mode (red) and wavemaker (green). Position of the zero pressure gradient (red dashed line) and of the maximum of the ratio max η |U b ps, ηq| to U e χ (black dashed line) are indicated. ph ´jq: chordwise evolution of the Ψ angle. maximum of magnitude. However, at the location of the global maximum of the direct mode, the Ψ angle is equal to 23 ˝.

Thus, we have the presence of two distinct spatial amplifications where the spatial structure of the direct mode exhibits features corresponding to distinct types of instability at the two amplitude maxima: crossflow for the first and Tollmien-Schlichting for the second. We can then define this as a CF/TS connected mode, the existence of which, to the authors' knowledge, had not yet been documented.

To better characterize this mode and understand the interplay between both mechanisms, 8paq represents the evolution with s of BU b Bη at the level of the inflection points of the velocity profile U b . We observe that for s ą 0.35, i.e. near the change of sign of the pressure gradient (represented in figure 5pdq), a second inflection point appears. The solid line corresponds to the inflection point farthest from the wall, while the dashed line corresponds to the one close to it. This quantity is related to the strength of the crossflow instability mechanism, and we notice that the inflection point closest to the wall is the most critical one when it exists. These two inflection points are represented on the profile of U b plotted in figure 8pbq for the coordinate s " 0.053, which corresponds to the position where the wavemaker of the mode pixq is maximal. The wavemaker profile at the position s " 0.053 is also shown in figure 8pcq. At this position, the wavemaker reaches its maximum for η " 2.6 ˆ10 ´4, which coincides with the position of the most critical inflection point.

Therefore, although the dominant spatial structure is that corresponding to the Tollmien-Schlichting type, the location of the wavemaker at an inflection point of the crossflow velocity with high values of BU b Bη suggests that the physical mechanism responsible for the initial spatial amplification and overall destabilization of the mode is related to the crossflow instability. Moreover, the position of the wavemaker in a zone where the pressure gradient is positive justifies that the TS-like spatial structure develops. The presence of such CF/TS connected modes is related to the pressuregradient changeover typical of a swept wing. Indeed, this configuration allows for crossflow velocity profiles with strong enough shear to trigger crossflow instabilities, located in strongly positive pressure gradient regions that allow Tollmien-Schlichting type spatial amplification. This type of flow had not been studied in previous chordwise-global stability analyses [START_REF] Mack | Global stability of swept flow around a parabolic body: connecting attachment-line and crossflow modes[END_REF][START_REF] Meneghello | Receptivity and sensitivity of the leading-edge boundary layer of a swept wing[END_REF]. The stability of a profile with a pressure-gradient changeover had only been studied in a chordwise-local context by [START_REF] Wassermann | Transition mechanisms in a three-dimensional boundary-layer flow with pressure-gradient changeover[END_REF] and although crossflow and Tollmien-Schlichting modes were observed, no mode with both features was found. This can be partly explained by the fact that modes with such abrupt spatial structure changes are particularly difficult to identify in a chordwise-local framework.

3.2.3. Modes between modes (i), (vi) and (ix) at Re R " 25000.

We have seen through the analysis of modes (i), (vi) and (ix), that there is a great diversity of marginal modes in our configuration. In order to better understand how the different instabilities are related along the neutral curve, the whole set of marginal modes is studied in this part. Figure 9 shows all the modes referenced in table 3, similarly to figure 7paq.

In figure 10 the magnitude of the direct and adjoint marginal modes are plotted, as well as their wavemaker and the Ψ angle as a function of s with β∆ ranging from 0.034 to 0.33, in increments of 0.01. The delimitations between the different lobes introduced in figure 6 are indicated with black horizontal lines, and the wavenumber β∆ of the different modes of table 3 are indicated by green ticks on the right. The chordwise coordinate of the maximum magnitude of the direct mode (red circles) and adjoint modes (yellow circles), Bη at the inflection points of the crossflow velocity wall-normal profile. The inflection point farthest from the wall corresponds to the black solid line and the second (when it exists) to the black dashed line. The positions of the pressure-gradient changeover (blue dotted line at s " 0.035) and of the maximum of the wavemaker magnitude of the mode pixq (green dotted line at s " 0.053) are shown. Wall-normal profiles of the crossflow velocity pbq and the wavemaker pcq at s " 0.053 are plotted. The inflection points farthest and closest from the wall are represented by solid and empty dashed black circles respectively. The maximum of the wavemaker in the wallnormal direction coincides with the inflection point closest to the wall, which is the most critical.

as well as the position where the pressure gradient is zero (red vertical dotted line) are indicated. In figure 10pdq, only the Ψ angles for locations where the magnitude of the direct mode is greater than 10 ´2 have been shown.

The first comment in figures 9 and 10 is that, in addition to the modes described in section 3.2.2, we observe modes with more diverse features. Moreover, we notice in figure 10 that these characteristics are closely related to the belonging to particular lobes. For all lobes, except between the last two, abrupt changes in the magnitude and/or Ψ angle are noted. This observation confirms once again the presence of distinct instabilities between lobes. The last two lobes have been distinguished only from discontinuities in the phase speed curve in figure 6pbq.

Concerning the upper lobe (dark blue), we see, with figure 10 and modes (i) and (ii) of figure 9, that its marginal modes fall into the characteristics of attachment-line modes with a direct mode and a wavemaker located close to the attachment line and iso-phases perpendicular to the streamwise direction (low Ψ angle).

For the gray and green lobes of figure 6, figure 10 and modes (iii) and (iv) of figure 9 show that their marginal modes are still close to the attachment line but with a location (as well as the wavemaker one) slightly shifted in the chordwise direction and the Ψ angle at the maximum magnitude of the direct mode starting to increase: the modes start transitioning to crossflow-like modes.

In the case of the light blue lobe, as illustrated by modes (v) and (vi), marginal modes are located even further downstream and their maxima are now close to the region of minimal C p . Mode (v) exhibits a highly localized distribution in the chordwise direction, with a strong increase of the perturbation magnitude in the accelerated region before a sharp decrease in the decelerated one. Yet, contrarily to before, the wavemaker region is now located fully in the accelerated region and in the area where the ratio of the crossflow velocity to the streamwise velocity is highest, as shown in figure 5pcq. The iso-phases of the perturbations are nearly aligned with the streamlines of the external flow (Ψ angle close to 90 ˝). These modes are fully of crossflow type. Contrary to the stable mode described in [START_REF] Meneghello | Receptivity and sensitivity of the leading-edge boundary layer of a swept wing[END_REF], the crossflow marginal modes observed here have wavemakers that are not localized at the attachment line, thus indicating that efficient control of these instabilities in the considered case cannot be restricted to the attachment line area.

Figures 10pa,cq show that direct modes and wavemakers of the last two lobes are fully localized in the decelerated region. As shown in figure 9, for (vii) and (viii), the chordwise magnitude distribution exhibits a strong amplification before the maximum magnitude and weak damping afterward. The Ψ angle is very close to 90 ˝. These are modes which have crossflow characteristics even if the wavemaker is in the decelerated region.

For the last two modes (ix) and (x), we notice a sharp change, both in the orientation of the modes and their location. Indeed, the Ψ angle is close to 10 ˝(as for modes (i) and (ii)) and their location is even more downstream and more extended in the chordwise direction than before. On the other hand, the wavemaker region has nearly not moved and is still at the beginning of the decelerated region. As revealed in figure 10, along the lower lobe, we switch from a situation with a single magnitude maximum for the direct mode and a Ψ angle relatively high (crossflow type mode) to a direct mode with two local magnitude maxima, the first still of crossflow type (large angle) but the second (the global one) being much farther away and corresponding to a location where the Ψ angle is low (reminiscent of Tollmien-Schlichting type). For β ă 0.05, although the direct modes could continue to grow downstream, the maximum magnitude is located at s " 0.165, which corresponds to the end of the domain. Contrary to the direct mode, we observe that the magnitude of the adjoint mode evolves very weakly as a function of β∆ and reaches the location of positive pressure gradient around β∆ « 0.073, which is the β∆ value where the magnitude and orientation of direct modes vary abruptly. This value of β∆ « 0.073 also corresponds to the value at which the phase speed curve of the lower lobe in figure 6pbq starts to decrease again.

In the case of very stable modes, we observe even more varied features. In appendix C is represented the spatial structure of the mode studied by [START_REF] Meneghello | Receptivity and sensitivity of the leading-edge boundary layer of a swept wing[END_REF] in the case of a Joukowski airfoil and, by considering the orientation of the direct mode, we note a mode mainly of crossflow type but with a double amplification and a wavemaker contained in the attachment line.

Absolute / Convective stability analysis in the spanwise z-direction

We will now follow the methodology described in the section 2.2.4 to study the convective or absolute nature in the spanwise direction of some instabilities.

In the case pRe R , Re S q " p25000, 652q, figure 11 shows the imaginary part of the most unstable eigenvalue with respect to β∆. We notice the presence of several parabolas similar to those noted in [START_REF] Mack | Global stability of swept flow around a parabolic body: connecting attachment-line and crossflow modes[END_REF]; [START_REF] Mack | Global stability of swept flow around a parabolic body: The neutral curve[END_REF] and which are related to the crossing of the different lobes. A maximum of ω i is reached for 3 values of β peak ∆: 0.285, 0.187 and 0.062, with respective spanwise group velocities V peak g " Bωr Bβ β"β peak : 2.147, 2.065 and 1.736. The marginally stable modes piq, pviq, and pxq introduced in the table 3 are indicated with black dots circled in red.

In figure 12 are represented the evolutions of pω Vg , β Vg ∆q with the decrease of V g values from the three initial couples pβ peak ∆, V peak g q: pβ init,1 ∆, V g,init,1 q " p0.28, 2.147q, pβ init,2 ∆, V g,init,2 q " p0.19, 2.065q and pβ init,3 ∆, V g,init,3 q " p0.06, 1.736q. For each case, we made steps in V g of size V g,init {300. The variation of ω Vg,i as a function of V g is specifically shown in figure 13 for the three initial configurations considered. Note that the "steps" that can be observed for pβ init,1 ∆, V g,init,1 q have no physical meaning and are rather related to the definition of the stopping criteria. The spanwise group velocities are only decreased down to 1.934, 1.837 and 1.644 for pβ init,1 ∆, V g,init,1 q, pβ init,2 ∆, V g,init,2 q and pβ init,3 ∆, V g,init,3 q respectively. As the modes to be computed move away in chord with the decrease of V g , the chord extension of the mesh used was not sufficient when the value of V g was too low. However, the ω Vg,i values being negative and ω Vg,i decreasing with the V g values [START_REF] Huerre | Open shear flow instabilities[END_REF], we assume that no unstable modes would have been found at V g " 0 in the studied flow conditions. Furthermore, we can note that according to the starting couple pβ init ∆, V g,init q, ω Vg decreases more or less slowly with the value of V g . Thus, as in the present case, the initial couple to investigate to find the unstable mode at V g " 0 is not necessarily the most unstable one for β P R.

The flow at pRe R , Re S q " p25000, 652q is, a priori, only convectively unstable in the spanwise direction. An identical study for pRe R , Re S q " p25000, 800q gave an equal conclusion. To be more conclusive about the convective or absolute nature of the boundary layer instabilities of the flow around ONERA-D, it would be necessary to evaluate a large number of values of pRe R , Re S q. However, these first results and those reported by previous studies in the literature [START_REF] Türkylmazoglu | On the Absolute Instability of the Attachment-Line and Swept-Hiemenz Boundary[END_REF][START_REF] Lingwood | On the impulse response for swept boundary-layer flows[END_REF]; Taylor Figure 13: ω Vg,i as a function of V g for the three pβ∆, V g q initial values: p0.28, 2.147q (in blue), p0.19, 2.065q (in indigo) and p0.06, 1.736q (in black). [START_REF] Obrist | On the linear stability of swept abttachment-line boundary layer flow. part 1. spectrum and asymptotic behaviour[END_REF]. SHF neutral curve is plotted in dashed orange line and ONERA-D neutral curves for Re R " 10000, Re R " 25000 and Re R " 50000 are drawn respectively in blue, green and black. the increase in Re R leads to a slight increase in β of the upper part of the lobe and to a slight decrease of its critical Reynolds number, Re S,crit,AL going from 609 to 601 for Re R " 25000 and Re R " 50000 respectively. Overall, the upper lobe is only weakly impacted by the value of Re R .

UNSTABLE STABLE

On the other hand, all the other lobes are strongly stabilized with the increase of Re R and shifted to larger Re S values. For values of Re R lower than Re R « 30000, the most critical marginal mode belongs to the lower lobe, bringing the critical value of Re S to values lower than 595. For Re R " 25000 and Re R " 10000, we have values of Re S,crit at 521 and 429 respectively. For values of Re R ą 50000, we can presume that non-AL instabilities are stabilized enough to find thresholds close to the ones predicted by [START_REF] Lin | On the stability of attachment-line boundary layers. part 1. the incompressible swept hiemenz flow[END_REF], i.e. around Re S " 600. For Re R " 50000, we find Re S,crit " 601, which is close to Re S « 610 that we can expect for SHF at Re R " 50000 by interpolating the values given by [START_REF] Lin | On the stability of attachment-line boundary layers. part 2. the effect of leading-edge curvature[END_REF] for Re R " 10 4 and 10 5 .

The parametric study based on the value of the parameter Re R was not pursued for larger values because this would lead to numerical difficulties, including the need to use a significantly finer mesh. Moreover, as previously mentioned, the consideration of a high Re R makes the structure of the neutral curve more complex, with an increase in the number of lobes, and its detailed study would be difficult. However, it can be noted that for Re R " 100000, a study at Re S " 620 confirmed that the unstable modes are only of attachment-line type with high values of β∆.

In conclusion, from these observations and from the study of the instabilities associated with the different lobes, we can deduce that the parameter Re R has a more or less significant influence according to the nature of the instabilities involved, the attachmentline ones being the least stabilized with the increase of Re R .

Comparison of neutral curve with a Joukowski airfoil as a function of Re S at

Re R " 25000 and as a function of Re Q at Λ " 80.03

In order to study the influence of the airfoil, we compare the neutral curves of the ONERA-D airfoil and the Joukowski airfoil of thickness parameter ϵ " 0.1. Neutral curves at Re R " 25000 are drawn in figure 15paq. A comparison of some characteristic of both baseflow at Re S " 652 is shown in figures 5. In both cases, we observe a neutral curve composed of several lobes. For the Joukowski airfoil, the lower lobe reaches its critical value at a smaller β. The critical Reynolds number is reached at β∆ « 0.20 and Re S,c,Jouk " 517, thus the Joukowski airfoil is less stable than the ONERA-D in these conditions. The study of some marginal modes (not shown here), in particular on the lower lobe shows important differences in the spatial structure between the Joukowski and ONERA-D cases. Indeed, due to the negative pressure gradient extending further in the chord in the Joukowski case, the observed marginal modes are located farther downstream and do not show Tollmien-Schlichting features.

In order to assess the differences between the two airfoils with an applied point of view, we now compare the neutral curves using the flow parameters pRe Q , Λq introduced in section 2.1, since the two simplest parameters that can be varied independently in a wind tunnel are the upstream infinite velocity U 8 and the sweep angle Λ. In figure 15pbq are superimposed the neutral curves of the ONERA-D and Joukowski airfoils in the pRe Q , β∆q-plane by setting Λ " 80.03 ˝. This implies, a joint variation of Re R and Re S . The critical Reynolds numbers are Re Q,c,ON ERA´D " 1.34 ˆ10 7 (corresponding to pRe R,c , Re S,c q " p7229, 413q) and Re Q,c,Jouk " 1.12 ˆ10 7 (corresponding to pRe R,c , Re S,c q " p5414, 372q) and the neutral curve of ONERA-D is included in the Joukowski curve. We can conclude that for Λ " 80.03 ˝, the ONERA-D airfoil is more stable than the Joukowski airfoil. This conclusion was expected for instabilities with Tollmien-Schlichting features since ONERA-D was designed to stabilize them, but it was more difficult to make an early opinion on crossflow instabilities. The lesser stability of the Joukowski airfoil compared to the ONERA-D at low β may be related to the fact that it also corresponds to low k χ and modes with k χ " 0 correspond to Tollmien-Schlichting instabilities.

Such a neutral curve was drawn according to pβ, Re S q by Mack & Schmid (2011) for a compressible flow around a parabolic body with a radius of curvature of 0.1 at a swept angle of Λ " 72.38 ˝. The authors observed the presence of a single lobe with a critical value Re S,c « 375. This difference can be explained by the fact that the neutral curve was computed in a supersonic regime with M a S " W8 c8 " 1.25 where c 8 corresponds to the speed of sound, and by the difference in the value of the radius of curvature of the studied airfoils. 

Conclusion

In this paper, we investigated the boundary-layer instabilities of an incompressible flow around a swept ONERA-D and Joukowski airfoils with infinite span and no incidence. Temporal chordwise-global stability analyses have been performed on a domain covering the whole leading-edge. We first focused on the case of the ONERA-D airfoil at Re R " 25000 by computing the neutral curve according to the sweep Reynolds number Re S and the spanwise wavenumber β. The composite nature of the neutral curve has been evidenced and several overlapping regions, or "lobes", have been identified. A justification for the existence of different lobes constituting the total neutral curve could be made on a physical basis by considering the kinks of the neutral curve, the presence of multiple unstable modes at the overlap of the lobes as well as the changes in phase speed and spatial structure of the marginal modes between the different lobes. A detailed study of the marginal modes was conducted based on the spatial structure of the direct and adjoint modes in addition to the position of the wavemaker, in connection with the streamwise pressure gradient and the three-dimensionality of the baseflow. This study revealed the presence of marginal modes of attachment-line and crossflow type, as well as modes that do not fall into standard classifications of one particular type. We identified modes with two distinct spatial amplifications, the first amplification being related to a crossflow-like spatial structure of the direct mode while the second amplification is associated with a spatial structure reminiscent of Tollmien-Schlichting instabilities. These modes have been defined as connected CF/TS mode where the dominant spatial structure is close to Tollmien-Schlichting waves but the physical mechanism responsible for the instability is related to a crossflow mechanism. To the authors' knowledge, a mode with a connection of this nature has not been previously reported. However, no clear connected AL/CF modes have been identified.

The absolutely or convectively unstable nature of the flow in the spanwise direction was also tackled, by using chordwise-global stability analyses. Our results suggest that the flow is only convectively unstable in the spanwise direction. To the authors' knowledge, this is the first study to address this issue in a chordwise-global framework.

We then did a parametric study by comparing neutral curves of ONERA-D at 3 values of Re R . It reveals that the increase of Re R has a greater stabilizing effect on crossflow and Tollmien-Schlichting modes than attachment-line ones. The increase of Re R also implies an increasing number of lobes, as well as a neutral curve that tends to be closer to that of the SHF. Therefore, for Re R ą 30000, the attachment-line instabilities lobe becomes the most critical ones.

A measure of the influence of the airfoil geometry was made by comparing two neutral curves of the Joukowski (with parameter thickness ϵ " 0.1) and ONERA-D airfoils at given Re R and sweep Λ. For Re R " 25000, for both airfoils, several lobes are noticed and the critical sweep Reynolds number is close but the critical spanwise wavenumber is significantly higher for the Joukowski case than for the ONERA-D case. The comparison at Λ " 80.03 ˝reveals that, under the conditions studied, the ONERA-D airfoil is more stable than the Joukowski airfoil for every spanwise wavenumber. Table 4: ω{pβU 8 z q of the three least stable symmetric eigenvalues.

Concerning the orientation of the least stable mode, its Ψ angle is represented in figure 17pbq as a function of s. We observe a growth until s " 0.02 up to a value of Ψ " 45 then a decrease until s " 0.05 reaching Ψ " 30 ˝. At s " 0.05, we observe a discontinuity and the Ψ angle remains at a plateau around 70 ˝until the end of the domain. 

Figure 1 :

 1 Figure 1: paq: Schematic of the mesh and flow configuration with the ONERA-D airfoil. pbq: Angles and coordinate systems are indicated. An external streamline is illustrated in green. The blue lines correspond to the leading/trailing edges.

Figure 2 :

 2 Figure2: Validation of baseflow for the ONERA-D at pRe R " 25000, Re S " 652q, which corresponds to pRe Q " 3.38ˆ10 7 , Λ " 78.31 ˝q. paq: streamwise velocity profile at s " 0.07 and pbq: corresponding crossflow velocity profile, the solid blue line refers to the present computation and the dashed red line to the solution of the Prandtl's equations.

Figure 3 :

 3 Figure3: Comparison for the ONERA-D airfoil of the spectra pa, c, eq and the magnitudes pb, d, f q, as a function of s, of the most unstable mode for sets of parameter pRe R , Re S , β∆q: p25000, 652, 0.32q pa, bq, p25000, 652, 0.126q pc, dq and p25000, 527, 0.057q pe, f q calculated with 4 different meshes. The mesh M ref used in our study (in black) is compared with a shorter mesh (M 12 , in red), a longer mesh (M 20 , in blue) and a finer mesh (M f in , in green).

  . The deflection angle γpsq " anglep Ý

Figure 4 :

 4 Figure 4: Baseflow for pRe R " 25000, Re S " 652q, which corresponds to pRe Q " 3.38 10 7 , Λ " 78.31 ˝q for the ONERA-D airfoil paq and pRe Q " 3.49 ˆ10 7 , Λ " 77.84 ˝q for the Joukowski airfoil pbq.Potential streamlines (black arrow lines) are shown. Pressure coefficient C p and boundary layer thickness δ 99 (black line) are represented on a slice corresponding to the respective internal mesh.

Figure 5 :

 5 Figure 5: paq: Comparison of airfoil shapes. pb ´f q: Baseflow for pRe R " 25000, Re S " 652q. pbq: deflection angle γ. pcq: chordwise evolution of the ratio of max η |U b ps, ηq| to U e χ

Figure 6 :

 6 Figure 6: paq: Neutral curve (solid line) of ONERA-D airfoil in pRe S , β∆q-plane at Re R " 25000 and SHF neutral curve (orange dotted line) from[START_REF] Obrist | On the linear stability of swept abttachment-line boundary layer flow. part 1. spectrum and asymptotic behaviour[END_REF]. The six different "lobes" composing the full neutral curve are displayed in different colors. pbq: Phase speed in the spanwise direction of marginal modes of ONERA-D airfoil at Re R " 25000. The colored lines indicate the lobes to which the modes belong to. In paq and pbq, dashed lines refer to the prolongation of the solid line in the "unstable" domain. Modes from table 3 are indicated with black dots, modes (i), (vi) and (ix) being circled in red.

Figure 7 :

 7 Figure7: Spatial structure of the real part of the vertical velocity of the perturbation ℜpû y px, yqe iβz q of modes (i): pb, e, hq, (vi): pc, f, iq and (ix): pd, g, jq. paq: for each mode 2 iso-surfaces at ˘0.01 times the absolute maximum are represented in red and blue. The baseflow pressure field C p (red and blue isocontours with the same colorbar as in figure4paq) and boundary layer thickness δ 99 (black line) are shown in the vertical planes separating the modes. The wavemaker region is sketched by a green iso-surface at 95% of its maximum value. Several external streamlines of the baseflow are shown (black arrow lines). An example of wavevector and Ψ angle is also displayed for mode(vi). pbq ´pdq: plot in ps, ηq-plane as a proportion of the absolute maximum. δ 99 is displayed (black line). pe ´gq: normalized magnitude of direct mode (blue), adjoint mode (red) and wavemaker (green). Position of the zero pressure gradient (red dashed line) and of the maximum of the ratio max η |U b ps, ηq| to U e χ (black dashed line) are indicated. ph ´jq: chordwise evolution of the Ψ angle.

Figure 8 :

 8 Figure 8: paq: Evolution according to s of BU bBη at the inflection points of the crossflow velocity wall-normal profile. The inflection point farthest from the wall corresponds to the black solid line and the second (when it exists) to the black dashed line. The positions of the pressure-gradient changeover (blue dotted line at s " 0.035) and of the maximum of the wavemaker magnitude of the mode pixq (green dotted line at s " 0.053) are shown. Wall-normal profiles of the crossflow velocity pbq and the wavemaker pcq at s " 0.053 are plotted. The inflection points farthest and closest from the wall are represented by solid and empty dashed black circles respectively. The maximum of the wavemaker in the wallnormal direction coincides with the inflection point closest to the wall, which is the most critical.

Figure 9 :

 9 Figure 9: Spatial structure of the marginal modes identified in table 3 with the same representation as figure 7paq.

Figure 10 :

 10 Figure 10: Normalized magnitude of direct mode paq, adjoint mode pbq and wavemaker pcq and Ψ angle (in degrees) pdq, as a function of s for marginal modes with β∆ ranging from 0.034 to 0.33 in increments of 0.01. β∆ ordinate of the delimitation between lobes (black horizontal lines), chordwise position of zero pressure gradient (red dotted line) and chordwise position of maximum magnitude of wavemakers (green circles) and direct (red circles) and adjoint (yellow circles) modes are indicated.

Figure 14 :

 14 Figure 14: Comparison of neutral curves of ONERA-D at various Re R values and SHF neutral curve from[START_REF] Obrist | On the linear stability of swept abttachment-line boundary layer flow. part 1. spectrum and asymptotic behaviour[END_REF]. SHF neutral curve is plotted in dashed orange line and ONERA-D neutral curves for Re R " 10000, Re R " 25000 and Re R " 50000 are drawn respectively in blue, green and black.

Figure 15 :

 15 Figure 15: Comparison between neutral curves of ONERA-D (blue line) and Joukowski airfoils (red line). paq: as a function of Re S at Re R " 25000. pbq: a function of Re Q at Λ " 80.03 ˝. The latter case describes the stability characteristics of a wing at sweep 80.03 ˝when, for example, the inflow velocity is increased.

Figure 16 :

 16 Figure 16: Comparison of magnitude pa, bq and Ψ pc, dq between chordwise-local (in red) and chordwise-global (in blue) analyses for modes (vi) pa, cq(viii) pb, dq

Figure 17 :

 17 Figure17: Stability results at pRe R , Re S , β∆q " p16129, 113, 0.45q for the Joukowski airfoil. paq: normalized magnitude of direct mode (blue), adjoint mode (red) and wavemaker (green). pbq: Ψ angle.

Table 1 :

 1 7 , Λ " 78.31 ˝q. paq: streamwise velocity profile at s " 0.07 and pbq: corresponding crossflow velocity profile, the solid blue line refers to the present computation and the dashed red line to the solution of the Prandtl's equations. Properties of the meshes M

	XΓ out N layer	Nt	SF
	M ref 0.15	59	101418 1.04
	M12 0.12	59	83349 1.04
	M20 0.20	59	132050 1.04
	M f in 0.15	78	178423 1.03

ref , M 12 , M 20 , and M f in . X Γout , N layer , N t and SF

Table 2 :

 2 Most unstable eigenvalue for the three validation cases computed with several meshes. domains extending up to X Γout " 12% (M 12 ), X Γout " 15% (M ref ) and X Γout " 20% (M 20 ), keeping the mesh density constant.

Table 3 :

 3 pRe S , β∆q value of 10 marginal modes, listed in decreasing order of β, for Re R " 25000. The phase speed in the spanwise direction c z {U 8 z is also shown. Red noted modes will be analyzed in detail in the next part.
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Figure 11: Imaginary part of the most unstable eigenvalue at pRe R , Re S q " p25000, 652q for β∆ ranging from 0.03 to 0.35 in increments of 0.1. Points where ω i reaches a maximum is depicted (red dots) and corresponding spanwise group velocity is shown. The marginal modes piq, pviq, and pxq referenced in the table 3 are marked with black dots circled in red. 
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Figure 12: ω Vg paq and β Vg ∆ pbq at several V g for the three pβ∆, V g q inital values: p0. [START_REF] Taylor | The long-time behaviour of incompressible swept-wing boundary layers subject to impulsive forcing[END_REF][START_REF] Taylor | The long-time impulse response of compressible swept-wing boundary layers[END_REF], indicate that no absolute instability in px, y, zq is expected to be found.

Effect of Re R for the ONERA-D airfoil

In figure 14 are superimposed the neutral curves corresponding to different values of Re R , as well as the neutral curve of the SHF from [START_REF] Obrist | On the linear stability of swept abttachment-line boundary layer flow. part 1. spectrum and asymptotic behaviour[END_REF]. The number of lobes of the neutral curves tends to increase as Re R increases: for Re R " 10000, only two lobes are observed, while for Re R " 25000, six can be seen, and around ten for Re R " 50000.

We can see that the upper lobe, linked to attachment-line instabilities, fits better with the neutral curve of the SHF as Re R increases. As described by [START_REF] Lin | On the stability of attachment-line boundary layers. part 2. the effect of leading-edge curvature[END_REF],
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Appendix A. Adjoint operators

The adjoint eigenvalue-eigenvector problem is the following:

By using the definition of the adjoint operator presented in equation 2.14 and integration by parts, we get B : " ´B and the adjoint operator L : :

Appendix B. Comparison with chordwise-local stability analyses

In our study, we used chordwise-global perturbations of the form: q " qpx, yqe ipβz´ωtq . Most of the stability analyses done to date have been done using chordwise-local analyses with chordwise-local eigenmodes sought in the ps, η, zq reference frame under the form q " qpηqe ipαs`βz´ωtq . Their spatial amplification rate is defined as ln A A0 "

ş s s0 ´ℑpαqds (see for instance Arnal & Casalis (2000b) or [START_REF] Reed | Linear stability theory applied to boundary layers[END_REF] for reviews on chordwise-local stability approach). We can mention that the presence of chordwise-globally unstable modes implies a chordwise-local absolute unstable flow [START_REF] Huerre | Local and global instabilities in spatially developing flows[END_REF]. In order to validate the results obtained with our chordwise-global method, we compare the spatial structures obtained with a chordwise-local stability analysis for β and ω provided by the chordwise-global stability analysis. We conducted such an analysis for the marginal modes (vi) and (viii), so that both ω and β are real. The spatial stability analysis in the s-direction is solved for these fixed β and ω real values. The chordwiselocal stability code solves the one-dimensional differential eigenvalue problem with a high-order scheme. The parallel flow assumption is used, and the flow computed by the boundary-layer solver is used as the baseflow, to avoid interpolation errors from the FEM mesh. In the chordwise-local stability analysis framework, the Ψ angle is directly derived from the real parts of α and β and the knowledge of the inviscid streamwise direction at each chordwise location. The comparison between chordwise-global and chordwise-local stability results is displayed in figure 16.

An agreement of the Ψ vectors is observed for chordwise-local and chordwise-global analyses in both cases. The magnitude is also close with magnitude maxima at almost identical positions. Thus, we obtain close results, which validate the use of the chordwiseglobal stability analysis. The latter method has the advantage of being able to identify the whole structure of the modes at once, without parallel flow assumptions, and to directly identify the absolute/convective nature in the chordwise direction.

Appendix C. Stability results at pRe R , Re S , β∆q " p16129, 113, 0.45q for a Joukowski airfoil

We report here the results we obtain in a case similar to [START_REF] Meneghello | Receptivity and sensitivity of the leading-edge boundary layer of a swept wing[END_REF], i.e. under the conditions pRe R , Re S , β∆q " p16129, 113, 0.45q with a Joukowski airfoil of thickness parameter ϵ " 0.1, with no incidence and of infinite span. These conditions correspond to a highly stable case.

In table 4, ω{pβU 8 z q of the 3 least stable symmetric eigenvalues are presented. We observe a relative error lower than 0.5% for the 3 eigenvalues.

In figure 17paq is drawn the magnitude of the direct and adjoint modes, as well as the wavemaker, as a function of s. We note a first growth of the magnitude of the direct mode until s " 0.02, then a decrease until s " 0.05, followed by a second growth from s " 0.05 until the end of the domain. The wavemaker is located at the attachment line. These two observations are in good agreement with those of [START_REF] Meneghello | Receptivity and sensitivity of the leading-edge boundary layer of a swept wing[END_REF].