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Abstract. Change detection in satellite image time series is an impor-
tant domain with various applications in land study. Most previous works
proposed to perform this detection by studying two images and analysing
their differences. However, those methods do not exploit the whole set of
images that is available today and they do not propose a description of
the detected changes. We propose a sequential pattern mining approach
for these image time series with two important features. First, our pro-
posal allows for the analysis of all the images in the series and each image
can be considered from multiple points of view. Second, our technique
is specifically designed towards image time series where the changes are
not the most frequent patterns that can be discovered. Our experiments
show the relevance of our approach and the significance of our patterns.

1 Introduction

As remote sensing has witnessed an important technological progress with high
definition images, another progress is taking shape with satellites (e.g. Venus,
Sentinel-2) able to acquire image time series at high frequency (two, three im-
ages a week and even more). These Satellite Image Time Series (SITS) are an
important source of information for scene (i.e. geographic area) analysis. A pos-
sible but naive usage of these images would consist in selecting two images from
the series and study their differences and the evolutions they reveal. However,
changes in a scene might spread over a long time period (urbanization, for in-
stance, lasts for several years and building sites do not have the same start time
and end time) or they might cycle (such as crop rotation). Consequently, the
number of possible combinations is intractable and cannot be reduced to the
analysis of two images. We propose to analyse a scene with satellite images on
important time periods (our approach will be tested over 35 images and a period
of 20 years).

Our approach combines an adequate transform of satellite images and a tar-
geted sequential pattern mining algorithm [1,2]. This family of algorithms is
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typical of knowledge discovery and allows to discover regular or frequent pat-
terns from a set of records. Here a record will be the values of one pixel (i.e.
its evolution in time). Let us consider, for instance, a set of 24 satellite images
of Dubal, over a period of 2 years (1 image each month). An expected frequent
pattern that would be discovered from such a dataset would probably be “15% of
all pixels are typical of a desert, then they have the characteristics of a building
site and then the characteristics of buildings”. In other words if there exists a
large enough set of pixels with the same “behaviour” (i.e. these pixels have the
same evolution), then this behaviour must be discovered. Let us mention that
the pixels’ position is not a criteria here (our goal is not to extract pixels because
of a shape). Our goal is to extract significant schemas in the evolution of a set
of pixels.

Mining sequential patterns from satellite images makes sense, since pixels
having the same evolution will be characterized by the same pattern. Once dis-
covered, these specific schemas of evolution will be given to experts for vali-
dation. Examples of such schemas can be found in urbanization (like in Dubai
for instance) or in road creation (where the schema would contain “vegetation”
followed by “bare soil” followed by “road”).

This paper if organized as follows. In Sect. 2 we give an overview of existing
works in SITS analysis. Section 3 gives the main definitions of sequential patterns
and Sect. 4 describes the preprocessing of SITS for the discovery of such patterns.
In Sect. 5 we propose a sequential pattern mining technique devoted to SITS
and our results are described in Sect. 6. Eventually, we conclude this paper in
Sect. 7.

2 Related Works: SITS Analysis

Change detection in a scene allows the analysis, through observations, of land
phenomenon with a broad range of applications such as the study of land-cover
or even the mapping of damages following a natural disaster. These changes may
be of different types, origins and durations.

In the literature, we find three main families of change detection methods.
Bi-temporal analysis, i.e., the study of transitions, can locate and study abrupt
changes occurring between two observations. Bi-temporal methods include im-
age differencing [3], image ratioing [4] or change vector analysis (CVA) [5]. A
second family of mixed methods, mainly statistical, applies to two or more im-
ages. They include methods such as post-classification comparison [6], linear
data transformation (PCA and MAF) [7], image regression or interpolation [8]
and frequency analysis (e.g., Fourier, wavelet) [9]. Eventually, we find methods
designed towards image time series and based on radiometric trajectory analysis
[10].

Whatever the type of methods used in order to analyse satellite image time
series, there is a gap between the amount of data representing these time series,
and the ability of algorithms to analyse them. First, these algorithms are often
dedicated to the study of a change in a scene from bi-temporal representation.



Second, even if they can map change areas they are not able to characterize
them. As for multi-date methods, their results are usually easy to interpret and
do not characterize the change.

Meanwhile, frequent sequential pattern mining [1,2] is intending to extract
patterns of evolution in a series of symbols. These methods allow to identify
sets of sequences that had the same underlying evolution. Furthermore, they are
able to characterize this evolution, by extracting the pattern shared by this set
of sequences.

Extracting frequent sequences from SITS was introduced in [11]. The authors
study the advantages of such sequences in two applications: weather and agro-
nomics. However, their proposal allows discovering sequences on series of images
where the pixels can have only one value.

Our proposal, as explained in Sect. 4, applies to images where the pixels take
values on tuples, each value corresponding to a separate band. This character-
istics, along with the large number of images, will have important consequences
on the patterns, their relevance and the complexity of their discovery.

3 Mining frequent sequential patterns

Sequential patterns are extracted from large sets of records. These records con-
tain sequences of values that belong to a specific set of symbols, as stated by
definition 1 (inspired by the definitions of [1]).

Definition 1. Let 7 = {i1,ia,...,im}, be a set of m values (or items). Let I =
{t1,t2,...tn}, be a subset of T. I is called an itemset. A sequence s is a non-
empty list of itemsets noted < s1,82,...,5, > where s; is an itemset. A data
sequence s a sequence in the dataset being analysed.

Definition 2 shows the conditions for the inclusion of two sequences. In other
words, s1 is included in s if each itemset of s; is included in an itemset of s
with the same order. This definition is illustrated by Example 1.

Definition 2. Let s1 =< a1,a3,...,a, > and sy =< by, ba,..., b, > be two
sequences. s1 is included in sy (s1 < s2) if and only if Fix < ia < ... < iy
integers, such that a; C b;,, a2 Cby,,... an C b, .

Exemple 1 The sequence s1 =< (3) (4 5) (8) > is included in the sequence
s2=<(7)(38)(9) (456)(8) > (i.e., sl <s2)since(3)C(38), (45) C(456)
and (8) C (8). Meanwhile, the sequence s3 =< (3 8 9) (4 5) > is not included in
sg since (3 8 9) is not included in an itemset of s2.

In this paper, the main characteristic for sequential pattern extraction will be
their frequency. This notion is based on the number of occurrences of a pattern,
compared to the total number of sequences, as stated by definition 3. Eventually,
for simplicity in the results, only the longest patterns are kept (C.f. definition
4).



Definition 3. A data sequence sq supports a sequence s (or participates in the
support of ) if s < sq. Let D be a set of data sequences. The support of s in D
is the fraction of data sequences in D that support s: support(s) = |{sq € D/s <
sqa}|/|D|. Let minSupp be the minimum support value, given by the end-user. A
sequence having support higher than minSupp is frequent.

Definition 4. Let FP be the set of frequent sequential patterns in D. In a set of
sequences, a sequence s is maximal if s is not contained in any other sequence.
Let LP be the set of mazimal sequences of FP. LP is the set of maximal frequent
sequential patterns in D.

4 Data preprocessing (SITS)
We want to analyse images from the Kalideos database (the scenes are located in

the south-west of France). We have extracted a series of 35 images as illustrated
by Fig. 1. These images cover a period of 20 years.

Image 1 Image 2 e Image 34 Image 35

Fig. 1. Extract of the Satellite Image Time Serie of KALIDEOS used. (©) CNES 2010 —
Distribution Spot Image

Since these images were acquired by different sensors, the comparison of
radiometric levels of a pixel (z,y) from one image to another calls for corrections.
The value of each pixel has to be adjusted. First, we need to make sure that
pixel (z,y) in a series cover the very same geographic localization in every image.
Then, some corrections are performed by the CNES in order to reduce the impact
of atmospheric changes from one picture to another (since two pictures can be
separated by several months).

Once the corrections performed, we are provided with 35 images where
each pixel takes values on three bands: Near Infra-Red (NIR), Red (R) and
Green (G). To these bands, we add a fourth one, corresponding to the Nor-
malized Difference Vegetation Index (NDVI) calculated as follows for a pixel p:

_ NIRm-Rp)
NDVE(p) = NIR(»)+Ror)
Then, each sequence is built as the series of tuples (NIR,R,G,NDVTI) for each

pixel (x,y) in the image series.



Eventually, a discretization step is necessary on the bands’ values for a
sequential pattern extraction. Actually, this step will lower the total number
of items during the mining step. Therefore, on each band, we have applied a
K-MEANS algorithm [12] in order to obtain 20 clusters of values. For readability,
the cluster numbers have been reordered according to their centroids values. We
are thus provided, for each pixel, with a sequence of discrete values as follows:

(NIRl,RG,Gg,NDVIl(;) —> = (NIng,Rg, G14,NDV119) (1)

where (NIR;, Rg,G3, NDVI15) means that the value of that pixel in the
first image is in the first slice of near infra-red, in the 6** slice of red, in the third
slice of green and in the 19" slice of NDVI.

5 Extracting Sequential Patterns from SITS

The preprocessing steps described in Sect. 4 provide us with a series of images
where each pixel is described on a tuple of values. Let us consider the series of
3 images merely reduced to 4 pixels (pl to p4) illustrated by Fig. 2. Each pixel
in this figure is described on 3 values (corresponding to bands B1 to B3). With
a minimum support of 100 %, there is no frequent pattern in these images (no
“behaviour” corresponding to the whole set of pixels). With a minimum support
of 50 %, however, we find two frequent behaviours:

1. < (B1,white; B2, white) (B1, grey; B2, red) >. This behaviour matches the
sequences of values of pixels p2 on images 1 and 2 (or 3) and p3 on images
1 (or 2) and 3.

2. < (Bl,white; B2, white) (B1,white; B2, white) > (corresponding to pl and
p3 on images 1 and 2).

Let us note that, in the illustration above, patterns may be frequent even despite
a lag in the images that support them.

Fig. 2. A series of 3 images, with 4 pixels described on 3 bands.

Our goal is to extract sequential patterns, as described above. However, given
the characteristics of our data, we find a large number of items (pixel values
for one band) with a high support (say, more than 80 %). This has important



consequences on the discovery process. First, this will lead to numerous patterns
which contain several occurrences of only one frequent item. Such patterns reveal
non-evolutions such as < (B1, white; B2, white) (B1, white; B2, white) > in our
previous illustration and are not really informative. In our images, patterns with
high support always correspond to geographic areas that did not change (these
areas are majority).

To solve that issue, a naive approach would consist in lowering the minimum
support in order to obtain patterns that correspond to changes (since the areas
of changes are minority). Actually, specialists on this topic are interested in
patterns that correspond to changes. Therefore, we need to extract patterns
having lower support (say, between 1 % and 10 %).

However, let us consider v;b; the i*" value on the j*® band. If the support
of v;b; is larger than 80 % then it is larger than any support below 80 %.
Therefore, our extraction process will have to handle every frequent value during
the discovery of frequent patterns. Unfortunately, these frequent values will flood
the process with an intractable number of candidate and frequent patterns with
two important consequences. First, the results are difficult, or even impossible,
to obtain (because of the combination curse associated with frequent pattern
extraction). Second, if the results can be obtained, they will be difficult to read
and very few will be relevant because they will contain a lot of non-evolution
patterns.

Therefore, we propose a frequent pattern extraction algorithm that is based
on [2] with two important adjustments for SITS:

1. During the first step (discovery of frequent items) we only keep the items
having threshold between a minimum and a maximum value. To that end,
we have added a new support value to the process, which corresponds to a
maximum support. Any item having support below the minimum or above
the maximum value will be discarded.

2. During the remaining steps, we discard candidates that contain two succes-
sive identical values for a band. For instance, the candidate < (B1,white)
(B2, white) > is authorized, but not the candidate < (B1,white)
(B1,white) >.

6 Experiments

Our images have a definition of 202,500 pixels (450x450). Once preprocessed, (as
described in Sect. 4) each pixel takes values on 4 bands and our data contain
a total of 28 millions values in the series. By applying the method described in
Sect. 5 to the SITS illustrated in Fig. 1, we obtained patterns corresponding to
thresholds between 5 % and 50 %. In this section, we report and describe three
significant patterns selected from this result.

As we have illustrated in Fig. 2 a frequent pattern is extracted if it corre-
sponds to the behaviour of a given number of pixels. When the pattern is found,
we can retrieve the pixels whose series of values contain the pattern. These
pixels may than be visualised (highlighted) as illustrated by Fig. 3(b). In this



i g 2
(a) June 3 2006: image selected from the (b) Ilustration of three selected patterns
SITS (one color per pattern)

Fig. 3. A sample of our results.

figure, each colour corresponds to a pattern selected from our SITS. Here is the
geographic explanation of these patterns:

1. Pattern < (IR,1) (NDVI,20) > is represented by the green dots in Fig.
3(b). Tt corresponds to swamps (wetlands) in the SITS. During winter,
swamps are almost covered with water, resulting in a low infra-red level (slice
1) since water does not reflect light a lot. During summer, these swamps are
not covered with water any more and light is reflected by the vegetation. Due
to its high chlorophyll concentration (due to high irrigation), vegetation in
summer has a very high level in NDVT (slice 20).

2. The orange dots represent pattern < (R,17) (R, 18; NDVI,3) >. It corre-
sponds to urban areas that get denser (the number of residences has grew).
Actually, urban areas (residences) have a high response in the red band. The
level at the beginning of the pattern (slice 17) is highly likely to be the sign
of a urban area. The following level (slice 18) shows a urban densification
(slices 17 and 18 are separated by a radiometric increase of nearly 25 %),
confirmed by a low level of NDVT (corresponding to almost no vegetation).

3. Pattern < (NDVI,2) (G,20) (NDVI,1) > is represented by the purple
dots. This pattern corresponds to a densification of industrial areas (e.g.
increase in the number of warehouses). In fact, industrial areas have high
response in the green band and show very low values of NDVI. Furthermore,
the decrease of NDVT (nearly 30 % from slice 2 to slice 1) shows that vege-
tation almost disappeared from these areas. Eventually, the maximum level
of green is typical of flat roofs (e.g. corrugated iron) of industrial areas.



7 Conclusion

Our pattern extraction principle allowed us to find a significant number of rel-
evant patterns such as the sample described in Sect. 6. Our patterns all have a
geographic meaning. They correspond either to cyclic behaviours (swamps) or
to long term evolutions through the dataset (densifications). Our technique is
designed towards this specific extraction with a data mining process that takes
into account a maximum support in the extraction. Indeed, when the support of
a value is too high, it might lead to non-evolution patterns and numerous com-
binations. Thanks to our principle, this drawback is avoided and the discovered
patterns are easy to read and understand.
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