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Abstract Dynamic dielectric properties of an isotactic polypropylene matrix grafted with maleic anhydride (CA 100) and then crosslinked by polyether
amine molecules and reinforced with different weight percentages of graphite nanoplatelets (GNPs), KNG180, were studied for the first time
and compared to those obtained by DMA (Dynamic Mechanical Analysis). The main objective of this work was to investigate the
reinforcement effect of GNPs focusing on the GNPs/matrix interfacial adhesion using dynamic dielectric relaxation spectroscopy in the
frequency range from 0.1 Hz to 1 MHz and temperature range from 20 to 140 °C. The obtained interfacial polarization increments ΔεMWS
from MWS (Maxwell Wagners Sillars) relaxation showed a threshold value of 3% in weight of KNG180. This analysis suggests that interfacial
compatibility between matrix and fillers in the case of nanocomposite KNG180 3 wt% is higher than those of other nanocomposites. A new
plasma treatment was used to modify graphite nano-fillers to produce different types of nanocomposites. The 5 wt% plasma treated graphite
nanocomposite shows a good dispersion of the nano-fillers but also a high value of ΔεMWS, which is an indication of high graphite/graphite
interaction. This evolution could show that this material can be close to the formation of an electrical percolation network.
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Abstract
Dynamic dielectric properties of an isotactic polypropylene matrix grafted with 
maleic anhydride (CA 100) and then crosslinked by polyether amine molecules 
and reinforced with different weight percentages of graphite nanoplatelets (GNPs), 
KNG180, were studied for the first time and compared to those obtained by DMA 
(Dynamic Mechanical Analysis). The main objective of this work was to investigate 
the reinforcement effect of GNPs focusing on the GNPs/matrix interfacial adhesion 
using dynamic dielectric relaxation spectroscopy in the frequency range from 0.1 Hz 
to 1 MHz and temperature range from 20 to 140 °C. The obtained interfacial polari-
zation increments Δ�

MWS
 from MWS (Maxwell Wagners Sillars) relaxation showed 

a threshold value of 3% in weight of KNG180. This analysis suggests that interfa-
cial compatibility between matrix and fillers in the case of nanocomposite KNG180 
3 wt% is higher than those of other nanocomposites. A new plasma treatment was 
used to modify graphite nano-fillers to produce different types of nanocomposites. 
The 5 wt% plasma treated graphite nanocomposite shows a good dispersion of the 
nano-fillers but also a high value of Δ�

MWS
 , which is an indication of high graphite/

graphite interaction. This evolution could show that this material can be close to the 
formation of an electrical percolation network.

Keywords  Isotactic polypropylene · Graphite nanosheets · Dynamic dielectric 
properties
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Introduction

Polypropylene (PP) is a well-known semi-crystalline thermoplastic polymer 
which has been widely applied in many fields. Along the past two decades, PP 
has been reinforced with several fibers to enhance its mechanical and physical 
properties. Lately, PP/Graphite and PP/graphene composites have attracted great 
research interest, because mechanical as well as physical properties (thermal con-
ductivity, electrical conductivity, barrier property, etc.) can be simultaneously 
improved to fulfill the requirements of many practical applications [1]. The iso-
tactic polypropylene or iPP was mainly chosen for its mechanical properties with 
regards to the nanocomposite conception. It is a well-known material for its prop-
erties and generally used in a lot of industrial application. The main advantage 
of this nanocomposite is its capability to be used in different industrial applica-
tion and specifically in the automotive industry, the polymer/metal composite to 
enlightened the structure. Composites based on isotactic polypropylene anhydride 
(iPP-g-MAH) crosslinked by the use of polyetheramine molecules [2] were stud-
ied in this work as a matrix reinforced with graphite nanosheets (GNPs), KNG 
180. Since, the use of maleic anhydride (MAH) is one of the most common ways 
in the reactive blending to improve the interfacial adhesion in immiscible poly-
mer blends, particles and fibers filled polymer matrix and multi-layered multi-
material’s composites [3].

The GNPs used as nano-reinforcing phase were characterized and successfully 
dispersed into iPP-g-MAH matrix to produce iPP-g-MAH/GNPs nanocomposites. 
In polymers and composite polymer materials, interfacial polarization is almost 
present due to the existence of heterogeneities (multiphase systems, semi crys-
talline polymers, fillers, impurities). Many techniques have been used to explore 
the interface. Among these techniques, Broadband Dielectric spectroscopy (BDS) 
is one of the most powerful methods providing a direct experimental access to 
a variety of physical phenomena taking place at different length and time-scale, 
such as molecular fluctuation, charge transport processes in the bulk and at the 
interfaces [4]. That is why in this paper, the effects of the incorporated GNPs 
with loading of various content (1 wt%, 3 wt%, 5 wt% and 10 wt %) on the dielec-
tric properties of iPP-g-MAH matrix were investigated using this technique [5].

Experimental

Materials

The polypropylene grafted maleic anhydride used in this work is the Orevac® CA 
100 from Arkema. This isotactic polypropylene is grafted with 1 wt% of maleic 
anhydride. The maleic anhydride grafting to the iPP plays an important role in 
two ways: First, it is well known in the literature that adding MAH to a polymer 
such as the polypropylene can help the dispersion of a carbon–nano-filler such 
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as graphite when there is poor compatibility between the filler and the matrix. 
PP-g-MAH was used as the nanocomposite matrix because of this reason. The 
main problem comes from the poor mechanical behaviour of such matrix (it is 
brittle). Thus, a crosslinked reaction that used diamine molecule and the graft 
MAH was developed to improve the polymer mechanical behaviour and obtain 
a ductile matrix. In this situation, the MAH helps for the homogeneous disper-
sion of the filler and for the crosslinking reaction used to improve the mechanical 
properties. In the context of automotive industry and polymer/metal composite, 
it is the adhesion then the crosslinking and then an help to the dispersion of the 
fillers which is aimed (duality functionalization and conduction from percolation 
of the matrix).

The technical specification sheet provides by Arkema indicated a yield strength 
of 22 MPa and an elongation at break of 12% [6]. The CA 100 average molecular 
weight is estimated at Mn=25,000 g mol−1[8, 9].

The crosslinking agent used is the Jeffamine® THF 100 by huntsman [10]. It is 
a capped-end triblock polyether diamine (H2N–PO2–TMO9–PO3–NH2) and used as 
received. It possesses a molecular weight of 1000 g mol−1.

Two graphites were used in this work. The first one is a GNP from Knano 
(Xianen, China) under the reference KNG 180. It presents a high carbon content 
(> 99.5 wt%), a diameter between 8 and 100 µm and a thickness inferior to 100 nm 
(supplier data). The second one is a KNG 180 treated by a new plasma treatment 
developed for the exfoliation and functionalization of the graphite. The characteriza-
tion of those functionalized nano-fillers was already performed in a previous work 
[11].

Material’s preparation

The crosslinked material was produced with the method described in a previous arti-
cle [2, 6, 7]. The Jeffamine® THF 100 by Huntsman was used to crosslink the CA 
100 by reactive extrusion as described in our previous work [2]. The matrix was 
crosslinked with an amine:MAH molar ratio of 1:1. This configuration gives the best 
mechanical properties. This material is noted CA 100 THF 100 1:1. This matrix is 
used as reference.

The nanocomposites elaboration was performed at LRGP Laboratory (CNRS-
University of Lorraine, Nancy, France), with a 10 mm barrel extruder (Twinscrew 
Benthop Compounding Line from Rondol Technology LdT), with a L:D ratio of 
40:1. The rotation speed was fixed at a specific value of 20 rpm. The process is a 
variation of the process use for the crosslinked matrix [2, 6, 7]. Figure 1 shows the 
screw and temperature profile of the extruder.

A nanocomposite which can be processed at large scale using conventional 
method for polymer processing had to be looked for (i.e., without any particu-
lar investment/development). In previous test, the carbon nano-fillers were added 
early in the extrusion process but it was difficult to produce a homogeneous mate-
rial due to the behaviour of the filler. By introducing the fillers after the poly-
mer (CA 100) was completely mixed with the crosslinking agent (THF 100) in 
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a solvent (mesitylene), a better control of the filler concentration and dispersion 
was obtained [2]. The low screw rotation was imposed by the crosslinked reac-
tion used in this work to produce the composite. After the introduction of the 
crosslinking agent in the melted CA 100, a minimum of 10  min is necessary 
to complete the chemical reaction. The screw rotation was calculated to obtain 
the optimal residence time. The CA 100 was introduced with a mass flow of 
1.1 g  min−1. The nano-fillers (KNG-180 and KNG-180 plasma treated) and the 
crosslinking agent (THF 100) were mixed together with mesitylene to obtain a 
low viscosity liquid that can be injected. The filler dispersion was obtained by 
a sonic bath. The mixture was injected into the extruder barrel between the two 
mixing areas, the mass flow rate was adapted to rich the targeted molar ratios 
NH2:MAH and nano-filler concentration. Two screw elements with large thread 
were added at the end of the extruder to help the mesitylene evaporation. A vac-
uum pump connected to the extruder barrel and a cold trap with liquid nitrogen 
performed its extraction. The complete extraction of mesitylene was confirmed 
by FTIR spectroscopy. Two types of nanocomposite were produced. The first one 
with the unmodified KNG 180, with an amine:MAH molar ratio of 1:1 and a car-
bon concentration of 1, 3, 5 and 10 wt%. The second type was produced with the 
plasma treated fillers, with a concentration of 1, 3 and 5 wt%.

The crosslinked matrix and the nanocomposites were shaped into 3 mm plates 
with injection moulding (Micro 12 cc Injection Moulding Machine/DSM Xplore). 
The filler concentration was confirmed by TGA analysis.

Experimental procedure

SEM and TEM microscopy

SEM micrographs were obtained after the samples were broken by cryofracture. 
The fracture pattern was examined by an environmental Quanta FEG 650 electron 
microscope from FEI Company. The electrons were accelerated under a tension of 
4 kV, under a water vapor pressure of 100 Pa.

Fig. 1   Temperature and screw profile used for the nanocomposite’s elaboration. The mixing areas are in 
red and the conveyor element in green. The arrows indicate the introduction of the CA 100 (blue), of the 
crosslink agent/carbon nano-fillers (black) and the solvent extraction by vacuum pomp (green)
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Transmission electron microscopy, or TEM, was performed on an ARM-200F 
apparatus at an operating voltage of 200  kV. Samples were dispersed in absolute 
ethanol by sonication and were deposited on a copper grid and a holey carbon film.

Dynamic dielectric spectroscopy (DDS)

The dynamic dielectric spectroscopy experiments were carried out using a Novo-
control System based on an Alpha Analyzer and a temperature controller (Novo-
control quatro system controller BDS 1330) at the frequency range from 0.1 Hz to 
1 MHz and the temperature range from 20 to 140 °C on heating at a rate of 5 °C/
min. The sample was fixed between two additional external electrodes of 20 mm in 
diameter in the sample holder and placed in a cryostat. The measured dielectric per-
mittivity data were collected and evaluated by WinDETA impedance analysis soft-
ware. According to the planar capacitor rule, the complex dielectric function for the 
polymer is expressed as [12–16]

where �′ and �′′ are the real and imaginary parts of the complex permittivity.
The AC conductivity of all samples has been calculated from the dielectric losses 

according to the relation:

The real part of �∗
(�) is given by

where �0 is the dielectric permittivity in vacuum (8.85 × 10−12 F·m−1 ) and � is the 
angular frequency.

The complex dielectric permittivity can be written as a function of angular fre-
quency ( � = 2�f  ) in accordance with numerous possible relaxation processes 
caused by the mobility of different dipoles and charges in the systems and described 
by the Havriliak–Negami (HN) [17, 18] according to the following equation (4):

The parameters �i and �i [0 < �i; �i�i ≤ 1 ] define the symmetrical and asymmetri-
cal broadening of the distribution of relaxation times, respectively. �

HNi the char-
acteristic relaxation time and Δ�i is the relaxation strength values. 

(
−j�dc∕�0�

)
 is 

the dc conductivity term. The index i represents the different relaxations involved in 
dielectric spectra.

Two kinds of dielectric experiments were conducted: isothermal runs with fixed 
temperatures and scanning frequencies and isochronal runs with fixed frequencies 
and varying temperature. In this work, our attention is focused on isothermal runs.

(1)�
∗
(�) = �

�
(�) − j���(�) (j is the square root of − 1),

(2)�
∗
(�) = j�0��

∗
(�) = j�0�

(
�
�
− j���

)
= �0��

��

+ j�0��
�.

(3)�
AC
(�) = �0��

��
(�),

(4)�
∗
(�) = �

∞
+

�
i

⎡
⎢⎢⎣

Δ�i�
1 +

�
j��

HNi

�
�i
��i

⎤
⎥⎥⎦
− j

�dc

�0�
.
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Dynamic mechanical analysis (DMA)

The dynamic mechanical properties of the materials were determined using DMA 
242C manufactured by Netzsch. Rectangular bar shaped samples of dimension 
20 × 4 × 3 mm3 were machined out. The complex modulus measurement were 
performed in three points bending mode at three different frequencies at 1  Hz 
from − 80 °C to 110 °C and at a constant heating rate of 2 °C min−1.

Results and discussion

Scanning and transmission electronic microscopy analysis

SEM and TEM microscopy were performed to analyse the filler dispersion inside 
the different nanocomposites. Figure 2 shows TEM and SEM micrographs for the 
CA 100 THF 100 1:1 with 1 wt% of KNG 180.

For those materials, a good dispersion of the nano-fillers inside the polymer 
matrix was observed with no aggregation of the graphite flakes. No debonding 
between the graphite and the polymer was observed even after the sample prepara-
tion (cryofracturation). This indicates a good compatibility between the polymer and 
the graphite. This was not expected due to the poor interaction between the polypro-
pylene and the graphite. The polyether diamine used to crosslink the material must 
play an important role in the improvement of this compatibility.

Fig. 2   SEM (a, b) and TEM (c, d) micrographs of the CA 100 THF 100 1:1 KNG-180 1 wt% nanocom-
posites. In a, the blue arrow indicate the injection flow direction
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Figure  3 exhibits SEM micrograph for the CA 100 THF 100 1:1 filled with 
KNG-180 at 3, 5 and 10 wt%. The nanocomposite filled at 3 wt% of KNG-180 
shows a good dispersion of the nano-filler inside the matrix. On the contrary, 
the nanocomposite at 5 wt% shows the formation of small aggregates, which are 
more important at 10 wt%. The dispersion quality and polymer/carbon compat-
ibility seem to fall for the concentration above 3 wt%.

Figure  4 exhibits SEM micrographs of the three nanocomposites filled with 
plasma treated KNG-180. Like for the nanocomposites filled with untreated 
KNG-180, the treated graphite seems to present a high adhesion to the polymer 
matrix, with no debonding. No aggregation can be observed for the nanocompos-
ite filled at 5 wt%. This is an important difference compared with the untreated 
KNG-180 which implied that the functionalization of the graphite improves the 
dispersion of the nano-fillers, hence the good polymer/carbon compatibility. This 
behavior could be investigated by dynamic dielectric spectroscopy.

Figures  5 and 6 depict the comparison of the DMA signals recorded for the 
loss factor at 1 Hz as a function of temperature for untreated and plasma treated 
nanocomposites, respectively. All nanocomposites show the polypropylene relax-
ations α, β and γ [19].

The γ-relaxation around − 40 °C related to the methyl groups motion, show low 
amplitude variation with the filler concentration. No significate variation can be 
observed with the type of filler or the carbon concentration.

Fig. 3   SEM micrograph of the CA 100 THF 100 1:1 KNG-180 nanocomposites at 3 wt% (a), 5 wt% (b) 
and 10 wt% (c)
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The β-relaxation, associated to the glass transition of the polypropylene, pre-
sents different amplitudes but also important variation of temperature. The initial 
crosslinked material, the CA 100 THF 100 1:1 exhibits a β-relaxation associated 
to the glass transition at 11 °C. The nanocomposite filled with 1wt% of KNG-180 

Fig. 4   SEM micrography of the CA 100 THF 100 1:1 KNG-180 plasma treated nanocomposites at 1 
wt% (a), 3 wt% (b) and 5 wt% (c)

Fig. 5   Evolution of the loss factor of the CA 100 THF 100 1:1 filled with the unmodified KNG-180 
between 1 and 10 wt%

218

219

220

221



UNCORRECTED PROOF

Journal : SmallExtended 289 Article No : 4171 Pages : 20 MS Code : 4171 Dispatch : 20-3-2022

1 3

Polymer Bulletin	

present a fall of the glass transition temperature to 1 °C. This temperature rises with 
the filler content with a maximum of 14 °C at 5 wt%, and falls to 10 °C again at 10 
wt%. The nano-fillers seem to affect the amorphous chains mobility depending on 
the carbon concentration. The first fall could be explained by a degradation of the 
crosslinking network by the carbon filler. On the opposite, the rise observed between 
1 wt% and 5 wt% of carbon filler shows that the KNG-180 impacts the polypropyl-
ene macromolecular chains mobility. These results are in with the literature on the 
nanocomposite elaboration [20, 21]. The final fall, between 5 and 10 wt%, can be 
linked to the formation of the aggregate of the filler inside the matrix and the disper-
sion then the degradation. On the opposite, the nanocomposite filled with the KNG-
180 plasma treated shows a small rise of its glass transition temperature, from 12 °C 
at 1 wt%, to 13 °C at 3 and 5 wt%. This evolution, different from the untreated fillers 
materials, can be explained by a higher compatibility between the polymer and the 
filler and a better dispersion as observed by SEM and TEM microscopy.

Finally, the α-relaxation, associated to local motions within the crystalline phase 
is located around 90 °C for the nanocomposites. The relaxation amplitudes exhibit 
an important variation that could be explained by the crystalline phase evolution and 
the possible transcristallinity on the graphite surface.

Dynamic dielectric analysis studies

CA 100 matrix

Figure 7 shows the real and imaginary parts of the complex permittivity versus fre-
quency, for the matrix isotactic polypropylene grafted with maleic anhydride CA 
100 THF 100 crosslinked in ratio 1:1 (noted CA 100 THF 100 1:1).

Fig. 6   Evolution of the loss factor of the CA 100 THF 100 1:1 filled with the KNG-180 plasma treated 
between 1 and 5 wt%
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ε′ is related to the number of dipoles which re-orient in the electric field, thus 
when the temperature is varied, the signal is changing drastically when the different 
relaxations occur in the material under study (i.e., polypropylene grafted MAH and 
crosslinked macromolecular chains).

Three relaxation phenomena can be observed. The first one appears between 103 
Hz and 1 MHz which could be ascribed to the �c relaxation related to the crystal-
line phase [22]. The PP grafted with maleic anhydride presented higher crystallin-
ity percentages than did the pure PP. The increase in the percentage of crystallin-
ity was ascribed to the reduction in molecular weight and to the rise of polarity of 
the grafted samples [23]. The second relaxation process is observed around 102 Hz 
which can be ascribed to the sub-glass transition relaxation (β-relaxation) [24], and 
is related to the presence of polar maleic anhydride/amide/imide groups present 
in the polymer [25]. These two relaxations are also observed in DMA analysis [2] 
(Figs.  5, 6). The third relaxation, the � relaxation associated with the movements 
of the methyl groups of the polypropylene chain appears only at lower temperature 
range ( around − 50◦C ) and cannot be observed here. Due to the important differ-
ence between the two experimental methods, the temperatures and amplitudes asso-
ciated to the different relaxations shows important variations, and make the com-
parison difficult. The DMA seem more appropriate to analyses the small variation of 
the relaxation temperature such as the β-relaxation associated with the glass transi-
tion, but the dielectric spectroscopy allow an analysis at high frequency. In addition, 

Fig. 7   Frequency dependence of (a) �′ , (b) �′ ′ and (c) �
ac

 for the matrix CA 100 THF 100 1:1 at the tem-
perature region [20–140 °C]
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the MWS relaxation localized at the interface between the polymer and the matrix 
that will be used to describe the nanocomposite cannot be observed by DMA.

No important differences between the electrical or dielectrical property of iso-
tactic, atactic and syndiotactic polypropylene are expected. Some differences can be 
found in the capacity of the dipoles to re-orient in the electrical filed if the poly-
mer is crystalline (isotactic and syndiotactic) compared to a more amorphous atactic 
polypropylene but these slight differences would not be seen at the interfaces with 
the graphite filler when observing the MWS relaxation.

Another special feature, ascribed to the electrode polarization (EP), can be 
detected from Fig. 7 by a large dispersion of �′ ( Δ𝜀 ≫ 1 ) in low frequency region. 
Such mechanism is detected again on the variation of the electrical conductivity �

ac
 

versus frequency (see Fig.  7c) by a significant decrease of �
ac

 in low frequencies 
below the plateau region which, therefore, tends to be superimposed on the dc bulk 
conductivity ( �

dc
 ) [4].

Nanocomposites with untreated KNG180

The addition of GNPs into CA 100 THF 100 1:1 matrix increases the dielectric 
losses and generates other relaxation processes, directly related to the fillers, accord-
ing to Fig. 8.

The crystalline peak �
c
 is found to be at about the same temperature with a higher 

intensity and correspondingly larger area. Moreover, an additional process appears 
at higher temperature and is ascribed to the interfacial polarization known as the 
Maxwell–Wagner–Sillars (MWS) effect. This relaxation arises from the accumula-
tion of charge carriers at the interfaces between the GNPs and CA 100 THF 100 1:1 
matrix deriving a more or less conductive material depending on the nature, size and 
the volume fraction of the filler.

Table  1 presents the interfacial dielectric increments or polarization intensities 
Δ�

MWS
 , defined by Δ�

MWS
= �s − �

∞
 [26, 27] and deduced by fitting curves using 

the following Havriliak–Negami (HN) function:

One example of the fitting procedure with a separation of overlapping relaxation 
regions via the deconvolution of �′′ at 130  °C and between 0.1 Hz and 104 Hz is 
shown in Fig. 9 for all nanocomposites.
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Fig. 8   Frequency dependence of �′ and  �′ ′ for the nanocomposites KNG-180 a 1%, b 3%, c 5% and d 
10% at the temperature region [20–140 °C]
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It is clear, from Table 1, that Δ�
MWS

 increased with the temperature. This phe-
nomenon is due to the greatest number of free charges, which can migrate and then 
block towards the GNPs/CA 100 THF 100 1:1 matrix interfaces. In general, it is 
noted that a rise in the temperature leads to an increase in the relaxation accompa-
nied with shift of the maximum towards the high frequencies suggesting that the 
aptitude of the charge carriers to be polarized at the interface is more important at 
high temperatures [4, 28].

Furthermore, the variation of the interfacial polarization intensities gives us 
an idea about both types of interactions filler–filler and filler–matrix [29]. As it 
can be seen, the interfacial polarization intensities Δ�

MWS
 showed a threshold 

Table 1   MWS polarization dielectric increments for all unmodified nanocomposites

Δ�
MWS

(1801m%) Δ�
MWS

(1803m%) Δ�
MWS

(1805m%) Δ�
MWS

(18010m%)

100 °C
110 °C
120 °C
130 °C
140 °C

0.24
0.27
0.28
0.35
0.40

0.18
0.19
0.26
0.34
0.39

0.26
0.29
0.32
0.39
0.43

0.27
0.32
0.35
0.42
0.54

Fig. 9   Imaginary part of �′′ versus frequency for nanocomposites a KNG-180 1%, b KNG-180 3%, c 
KNG-180 5% and d KNG-180 10% at 130 °C and between 0.1  and 10

4 Hz. Solid lines indicate the fit by 
Havriliak–Negami model (Eq. 4) and dashed lines indicate the deconvolution of �′′ according to different 
processes
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value of 3% in weight of KNG-180. Variations were explained with attractive 
and repulsive GNPs–GNPs and GNPs-CA 100 THF 100 1:1 matrix interaction. 
A decrease in MWS polarization intensity with the increase of the reinforcement 
(from 1 wt% to 3 wt% of KNG-180) (see Table 1) can be noted. This is explained 
by a better adhesion between the reinforcement and the matrix indicating a rigidi-
fication of the GNPs-CA 100 THF 100 1:1 matrix interfacial region which in turn 
reduced the ability of dipole to relax. This result is in good agreement with DMA 
analysis. Incorporating higher KNG-180 content (5  wt% and 10  wt% of GNPs) 
leads to reduce their mutual distances and interactions between GNPs start to 
occur, in good coherence with SEM and TEM, which enhances the formation of 
small aggregates. These interactions become stronger than those of GNPs–matrix 
(see Fig.  4). In fact, increases in the polarization intensity are interpreted with 
repulsive interactions between the CA 100 THF 100 1:1 matrix and GNPs. How-
ever, decreases in the polarization intensity are explained with high attractive 
GNPs–GNPs interactions and predominately GNPs–matrix interactions. In this 
case, the better distribution of the GNPs reduces agglomeration and increases the 
reinforcement effect of GNPs (see Fig. 10).

In view of that, the properties of polymer nanocomposites largely depend on the 
dispersion and distribution of nanofillers within the matrix, the filler–polymer com-
patibility and their interfacial interaction, the nanofiller content should be, therefore, 
carefully chosen to have better properties. In this case, it can be concluded that the 
nanocomposite with 3% of GNPs (KNG 180 3%) has the best rigidity given their 
low value of Δ�

MWS
 compared to other nanocomposites. The same result is shown 

by the mechanical study. Thus, the addition of a high reinforcement rate (3% of 
KNG-180) does not seem to be a solution to have the good reinforcement–matrix 
adhesion. To overcome this problem, plasma treatment of GNPs was intended.

Fig. 10   Schematic illustration of GNPs/GNPs and GNPs/matrix interactions
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In general, oxygen plasma treatment was employed to conduct the surface func-
tionalization of GNPs by grafting the considerable oxygen-functional groups but 
without noticeably damaging the structure of graphene. In [30] authors found that 
the plasma-treated GNPs exhibited an enhanced electrostatic affinity with Cu pow-
der, resulting in the P-GNP/Cu composite with a uniform GNPs distribution and 
a good interfacial bonding. Therefore, they concluded that this treatment provides 
a general and effective strategy to improve graphene distribution and mechanical 
properties of graphene/metal composites compared with the untreated composites.

The next section describes the dielectric results obtained for plasma-treated 
KNG180.

Nanocomposites with plasma‑treated KNG‑180

Most previous studies were focused on fiber–surface treatment methods and the 
resultant effects on the physical, dielectric, and mechanical properties of different 
fiber–matrix composite systems. The improvement of dielectric properties as well as 
mechanical study of composites mainly depends on (i) size effect and (ii) charge dis-
tribution between the inclusions and the matrix, (iii) the large surface area of inclu-
sions, which creates large interaction with the matrix and (iv) changing the polymer 
morphology due to the surface of inclusions [31]. In this section, as said before, this 
paper described the study of the relationship between surface modification of GNPs 
via plasma treatment and the GNPs/matrix interactions.

Figure 11 shows the real and imaginary parts of the complex permittivity versus 
frequency, for the nanocomposites KNG-180 1% with plasma-treated GNPs. Like-
wise, to untreated KNG-180, the dielectric analyses of treated KNG-180 shows the 
presence of the �

c
 relaxation related to the crystalline phase, the sub-glass transi-

tion relaxation (β-relaxation), the MWS interfacial polarization and the electrode 
polarization.

From Fig. 12, the impact of plasma treatment on the dielectric responses of the 
KNG-180 (from 1 to 5%) nanocomposites is manifested.

Fig. 11   Frequency dependence of �′ and  �′′ for the plasma-treated nanocomposites KNG-180 1% at the 
temperature region [20–140 °C]
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As observed, an increase in �′ is much more significant for the untreated nano-
composites compared to the treated ones. It is possible to explain such behaviour 
by evaluating the interfacial polarization intensities Δ�

MWS
 for both untreated and 

treated nanocomposites (see Table 2).
Similar to untreated nanocomposites, an increase of Δ�MWS can be noted with 

the temperature for all the treated nanocomposites for the same reason [4, 28].
In addition, a difference in the value of Δ�

MWS
 between untreated and treated 

nanocomposites can be noticed. In fact, untreated nanocomposites show the high-
est values of Δ�

MWS
 for 1% and 3% of GNPs and the lowest values for 5% of 

GNPs compared to treated nanocomposites.
The plasma treatment of GNPs was performed to exfoliate, functionalized the 

graphite structure and have good bonding between GNP and matrix GNPs–matrix 
and, therefore, getting a composite with good mechanical performance. Those 
result found in the case of plasma treated KNG180 5% is not expected. The 
increase of Δ�MWS indicates not only the significant degradation of GNPs–matrix 
interactions, but also a significant increase in GNPs–GNPs interactions. As the 
obtained ATG and DRX results, as well as the SEM and TEM observations, 
did not show any degradation in the dispersion of GNPs between 3 and 5% of 
GNPs, it is more consistent to associate this evolution with the greatest inter-
action between GNPs. This can be explained by the fact that the plasma treat-
ment has reduced the thickness of the GNPs, they can be distributed more evenly 
within the matrix, reducing the distance between the GNPs and increasing their 
interaction.

However, a decrease of Δ�
MWS

 is detected for the treated KNG180 1% and 
KNG180 3%. The plasma treatment leads to these nanocomposites showing signifi-
cantly improved interfacial bonding as compared to untreated ones. Those results 
were in good agreement with the DMA analysis. On the contrary to Wenying Zhou 
et al. [32] this system is not a percolative polymer nanocomposite and this system 
is not concerned with intra-particle polarization but only inter-particle polarization 
and interaction between the macromolecular chain of the matrix and the graphite 
nanofillers.

Fig. 12   Frequency dependence of �′ and  �′′ for the untreated and the plasma-treated nanocomposites 
KNG-180 1%, KNG-180 3% and KNG-180 5% at 100 °C
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Conclusions

In this work, a new plasma treatment [10] was used to modify a graphite nano-
filler to produce two types of nanocomposites. The two fillers exhibit variations 
of thickness and surface functionalization as shown before. The polymer matrix 
used was a PP-g-MAH crosslinked with polyether amine molecules. Both nano-
composites were produced by twin-screw reactive extrusion [6]. The nanocom-
posite characterization exhibits important variation of the fillers dispersion inside 
the crosslinked polymer depending of the fillers concentration and functionali-
zation, with a rise of the dispersion quality with the plasma treatment and the 
absence of aggregation at 5 wt%.

The nanocomposite characterization by DMA shows the polypropylene classic 
relaxational phenomena (α-, β- and γ-relaxations) but the temperature associated 
to those relaxations remains close for the different fillers and carbon concentra-
tions [2, 6]. In addition, as no information can be obtained by DMA on the graph-
ite/polymer interphase; it was thus necessary to analyze the fillers/polymer inter-
actions with dynamical dielectric spectroscopy.

In this paper, it was shown that Dynamical dielectric spectroscopy results exhibit 
an additional process, the interfacial polarization known as the Maxwell–Wag-
ner–Sillars (MWS) effect that can be used to characterize the polymer/filler inter-
phases. The interfacial polarization increments Δ�MWS calculated from the MWS 
relaxation can be correlated with the fillers dispersion observed by SEM and TEM 
microscopies. This can be used as a new way to analyse the Graphite/polymer and 
Graphite/graphite interaction inside the nanocomposite. The 5 wt% treated graphite 
nanocomposite shows an interesting evolution. This nanocomposite exhibits a good 
dispersion of the nano-fillers but also a high value of Δ�

MWS
 , which is an indication 

of high graphite/graphite interaction. This evolution could indicate that this material 
can be close to the formation of an electrical percolation network.
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