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When a drop laden with solid particles and suspended in a liquid passes through a narrow pore, its
interface experiences strong shear and elongation, and the raft of particles may accumulate toward
the back of the drop. Using well controlled formulations of Pickering drops driven at set pressure,
we determine the two conditions for which solid particles are expelled from the oil-water interface
after a Pickering drop passes a converging-diverging pore: (i) particles accumulation at the rear of
the drop is such that surface pressure builds-up at the interface. (ii) Surface pressure relaxation by
buckling is impaired by geometrical constraints. These two conditions are rationalized using three
non dimensional numbers: the capillary number, the particle to pore size ratio, and the drop to
particle size ratio, which allow to account for the viscous shear at the interface, the stability of the
lubricating film between the pore wall and the drop, the drag on the raft of particles adsorbed at
the interface, and its mechanical behaviour.

I. INTRODUCTION

Particle-laden drops suspended in a fluid, also called
Pickering drops, bear remarkably stable interfaces :
at liquid-liquid interfaces, capillarity strongly stabilizes
solid particles of typical size ranging between 0.1 to
10 µm [1, 2]. The resulting strong adsorption makes
these drops more stable than bare drops with regards
to coalescence or shear [3, 4]. From a practical point
of view, the behavior of suspensions of particle-laden
drops in strongly sheared situations is relevant to the
understanding of filtration processes [5, 6] or oil recovery
[7, 8], where mixtures of immiscible liquids and solids are
pushed through a porous medium in order to separate the
two liquids. To gain insight in this complex situation, we
offer to describe the behavior of a single Pickering drop
flowing through a single pore, and to define the conditions
for which solid particles separate from the drop. In the
past, particles [9] or soft objects [10, 11] such as capsules
[12–17] or vesicles [18, 19], flowing through constrictions
have been studied in order to either assess their stability
[13, 15, 17], or the conditions for clogging and flow in
relation to their elasticity [10, 12, 14, 16, 18, 20–22] or to
their interactions with the walls [9, 11, 19, 23]. However,
much fewer studies [24, 25] addressed the case of Pick-
ering drops flowing through a constriction: as particle-
laden interfaces bare negligible resistance to stretching
compared to elastic membranes, while they both easily
bend, we expect specific behaviors may emerge in the
present case.

In a recent paper [26], we described the behavior of
oil-in-water drops laden with micrometer-sized silica
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particles flowing through a single convergent-divergent
axi-symmetrical pore. The drop was initially 5 times
larger than the narrowest part of the pore, so that it
strongly deformed in the pore. The particle size was 30
times smaller than the pore. We explored a range of
capillary number Ca between 3.10−3 to 3.10−2, where
Ca compares the viscous stress at the drop interface
with the capillary pressure inside the drop : Ca = ηV/γ
with η the outer phase viscosity, V the drop velocity,
and γ its interfacial tension. In such conditions, as
the drop flows through the pore, its surface expansion
leads to a particle-free front interface with particles
accumulating towards the rear drop interface. In the
explored range of relatively small capillary numbers,
we nevertheless demonstrated that the particles are
efficiently driven back from the rear to the front by a
Marangoni-like mechanism that opposed the viscous
shear. As a consequence, the drops cross the pore
without destabilization of the particle laden interface,
and the drop is unchanged after its passing through
the pore. For larger capillary numbers (10−2 to 10−1),
other studies [24] evidenced the formation of tails at the
rear of the drops, with buckling and break up for highly
confined drops.

In the present paper, we offer to determine the
conditions for which solid particles are expelled from the
oil-water interface after a Pickering drop passes a single
pore. To do so, we explore the situations where the
accumulation of solid particles at the rear of the drop
does not relax. We anticipate the flow of the particle
raft from the rear to the front may be slowed down if the
particle size increases as compared to the thickness of the
lubrication film separating the drop from the pore wall.
Following Bretherton’s law on bare drops or bubbles
flowing through a cylinder in a liquid [27], the thickness
h of this lubrication film is expected to increase with
the capillary number. Hence, we chose to vary both the
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FIG. 1. (a) Experimental setup : a glass cylindrical capillary
tube with a narrow pore at the center is filled with water. An
oil drop with radius R laden with particles of size rs is pushed
at constant pressure ∆P into the pore. Images are captured
by a microscope and a camera. (b) Geometrical parameters of
the pore and deformed drop in the pore : front and back radii
of curvature ρF and ρB , position of the drop front along the
pore zF . The lubrication film between the drop and the pore
wall has a thickness denoted h. (c,d) Pickering drops laden
with rs = 375 nm (c) and 5 µm (d) silica particles. Mean
drop radius is R = 125 ± 25 µm. Scale bar : 100 µm.

adsorbed particles mean diameter and the drop capillary
number in the low Ca range (10−4 to 10−2), and we
investigate the consequences on both the drop movement
and the flow of the particles raft adsorbed at its interface.

II. EXPERIMENTAL SYSTEM

The model system we used was developed in a pre-
vious study [26]. As model pore, we used a cylindrical
tube made out of borosilicate glass with a central
converging-diverging part, as depicted in Figure 1(a,b).
The tube radius is 600 µm away from the contraction
and rcap = 25 µm at the constriction center. The length
L of the contraction is L = 3 mm and its curvature
radius is Rcap = 2 mm. The flow is driven at controlled
pressure difference across the constriction. The pressure
difference is denoted ∆P and varies between 1.2 and
5 kPa. The lower limit for ∆P is actually the pressure for
which clogging is observed when drops do not cross the
pore [26]. The dependence between pressure difference

∆P and water flowrate Qw was carefully calibrated
to measure the pore hydraulic resistance Ψ defined as
∆P = ΨQw for water : Ψ = (1.4± 0.1)× 1012 Pa.s.m−3.
When compared to a computed value based on the
shape of the capillary tube, this shows that only the
constricted part contributes to the hydraulic resistance.
The particle-laden drops are oil drops laden with silica
particles and suspended in water with a background
concentration of salt (NaCl at 10−4 mol.L−1) and a
small amount of cationic surfactant (CTAB at 10−9

mol.L−1) to finely adjust the particle hydrophobicity.
As oil, we used dodecane (viscosity ηo = 1.35 mPa.s).
The viscosity of the aqueous solution was that of pure
water η = 0.89 mPa.s, or, when noted, increased by ad-
dition of glycerol at 0.4 w:w (η = 3.12 mPa.s) or 0.5 w:w
(η = 5.63 mPa.s). The interfacial tension between oil and
aqueous phase was measured at γo/w = 38.6 mN.m−1

for pure water, and 35 mN.m−1 (resp. 33.5 mN.m−1)
for 0.4 (resp. 0.5) w:w water:glycerol solutions. As silica
particles, we used spherical beads provided by Fiber
Optic Center with a mean radius rs equal to 0.125,
0.375, 0.75, 1.5, 2.5, and 5 µm with a 7% standard
deviation. The particles are first dispersed in 10 ml
NaCl solution using an ultrasonic probe (20 000 Hz,
40% of maximum intensity). Oil is further added and
the emulsion is obtained by mixing at 18 000 rpm for 30
s. The volume of oil is adjusted so that all particles and
oil are emulsified [26]. We obtained drops with radius
R = 125 ± 25 µm and a surface coverage in particles
measured at C = 0.86±0.04. Microscopy images showing
drops laden with silica particles is shown in Fig. 1(c,d).
When adsorbed at the oil/water interface, silica particles
with radius larger than or equal to 0.75 µm scatter light
and their movement at the drop interface can be imaged,
as will be detailed below. The emulsion is diluted
with water so that single drops are pushed one by one
in the pore. Finally, observation of pressure driven
particle-laden drops through the axisymmetrical pore is
made with an inverted microscope at magnification 5x
and transmitted illumination. Images are acquired with
a high speed camera at 10 000 to 18 000 fps. Examples
of videos are available as Supplemental Material [28–30].

A typical time series of images is shown in Fig. 2a).
Initial time is taken when the drop shape starts to de-
part from a sphere. Images (ii) and (iii) clearly evidence
the surface expansion of the drop, as well as the hetero-
geneous surface coverage in particle, with a particle free
front and particle accumulation at the rear. The parti-
cle raft is clearly delimited from the front bare part and
this frontier can be tracked by image analysis. Fig. 2b
shows a space time intensity diagram along the red line
of Fig 2a-i). The bare front of the drop shows brighter,
while the particle-laden interface corresponds to lower
grey levels. This allows to measure both the front drop
velocity UF and the particle raft velocity Uraft as the
slopes of the two frontiers. These velocities are shown
by arrows in the inset of Fig. 2b in the particular case
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FIG. 2. (a) Time series of a drop of radius R = 129 µm
laden with rs = 750 nm particles driven through a pore at
∆P = 2700 Pa. (b) Space-time intensity diagram along the
red line in image (a,i). The darkest grey levels correspond to
the particle raft adsorbed at the drop interface. The brightest
area is the free-of-particles front interface. The slope of the
two frontiers allows to measure the drop front velocity UF
and the particle raft velocity Uraft as shown in inset.

where the drop front denoted zF is at the pore center
: zF = 0. Besides, the time series of images are used
to measure the flow rate of the drop Q over time, using
the axial symmetry of the pore. Because the drops are
driven at constant pressure difference ∆P across the con-
traction, we use next the classical relationship between
the flow-rate Q, applied pressure, and capillary pressures
at both the front and rear interfaces of the drop to mea-
sure the latter. To do so, three assumptions are made:
the water films around the drop do not contribute to the
flowrate; the pore curvature 1/Rcap can be neglected so
that the flow is a Poiseuille flow; the hydraulic resistance
Ψ is computed from the knowledge of the pore shape r(z)
and the location of the oil drop [26]. This writes:

∆P +
2γB
ρB
− 2γF

ρF
= ΨQ (1)

where ρF (resp. ρB) and γF (resp. γB) are the front
(resp. rear) radius of curvature and interfacial tension,
as depicted in Fig. 1b). The radii of curvature are also
measured over time by image analysis. besides, from the
typical images in Fig. 2a) we find that, as the drop flows
through the pore, the front interface is free of silica par-
ticles so that γF = γo/w, the oil/water interface tension,
at all times [26]. At the back of the drop where surface
coverage in adsorbed silica particles varies, the interfa-
cial tension γB will account for the subsequent change
in surface energy. By analogy with the inter-particulate
pressure in 3D granular systems, when the particle raft is
compressed, we offer to account for the inter-particulate
forces building up between the silica beads adsorbed at
the interface [25] by defining a 2D surface pressure de-
noted π and defined as the difference between the bare
oil/water interfacial tension and the current value of the
interfacial tension γ : π = γo/w − γ. At the interface
of the non deformed drop or at the bare front interface,
π is zero. If a raft of particles is compressed, at some
critical surface coverage, surface pressure builds up and
π becomes positive. With this notation, the surface pres-
sure at the front is πF = 0, and Eq. 1 can be rewritten
so as to provide a measure of the surface pressure at the
back πB :

πB = γo/w(1− ρB
ρF

) +
ρB
2

(∆P −ΨQ) (2)

Here, assumption is made that as long as the back of the
drop is hemispherical, its surface pressure is isotropic.
In the following, we offer to discuss the various regimes
adopted by a drop flowing through a converging-
diverging pore depending on its velocity and the silica
particle size, in terms of capillary number defined as :

Ca =
ηUF
γo/w

(3)

and surface pressure πB at the rear interface of the drop.

III. RESULTS

As introduced in Section I, when the radius of the
adsorbed silica particles compares with the thickness of
the lubrication film squeezed between the raft and the
pore wall, the movement of the raft is expected to be all
the more difficult than the particle size is closer to the
film thickness. The latter can be derived assuming that
the lubrication film has a thickness denoted h set by the
Bretherton’s law [27], which applies to particle-free drops
driven in a cylinder within a fluid. The cylinder radius
is taken at the center of the pore. This yields :

h = 1.34rcapCa
2/3 (4)
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FIG. 3. Flow regimes of the particle raft adsorbed at the drop interface depending on the capillary number Ca and particle
size rs. (a) rs=0.75 µm, Ca=10−2. (b) rs=2.5 µm, Ca=10−2. (c) rs=0.75 µm, Ca=10−4. The raft always accumulates at the
back. In (a), it relaxes towards the front and only the front apex of the drop remains naked. See also video [28]. (b) The naked
front part extends over a longer part of the drop. (c) An even longer naked front zone is observed, where oil wets the pore wall
(inset - see also [29]). Scale bar : 100µm.

With rcap = 25 µm and Ca ranging between 10−4 and
10−2, the lubricating film thickness is expected to vary
in the 0.1 to 3 µm-range. Note that more refine laws
have been derived in the literature that account for
the viscosity ratio of the outer and inner phases [31],
inertial effects [32], or adsorbed particles [33]. In the
present range of capillary number, with a viscosity ratio
of 3, the lubrication film thickness would only differ by
a factor of order one and less than 2 from Bretherton’s
model. Since both the capillary radius and the surface
coverage in particles change within the constriction, we
choose to ignore these corrections. We will see later
that Bretherton’s hypothesis is sufficient to describe the
destabilization mechanisms of the drops.
Hence, we first set the lubrication film thickness by
selecting experiments with roughly the same capillary
number, and we increase the silica particle size. Images
are shown in Figure 3a) and b) where the capillary num-
ber Ca is 10−2, which would correspond to h ∼ 1.5 µm
through Eq. 4, and particle radius increases from
0.75 µm to 2.5 µm between a) and b). Images in each
row correspond to the same drop position, and the two
rows to two subsequent times. Comparison of images
(a1) with (b1) or (a2) with (b2) shows that the particle
raft is all the more accumulated towards the rear that
the silica particles are large : the surface coverage at
the rear increases with rs at a given Ca number, and
thereby, surface pressure probably builds up. Next, we
offer to decrease the capillary number with respect to
the case shown in Fig. 3a), for the same silica particle
radius of rs = 0.75 µm. In Figure 3c), Ca=10−4. The
bare front of the drop now extends over an even larger
area, the particle raft being so confined towards the back
that the rear of the drop crumples and wrinkles appear
along the drop in Fig. 3c2). Besides, a careful analysis of
the grey levels on the inset of Image 3c2) evidences that
the bare front part of the drop is no longer separated
from the pore wall by a lubricating water film : oil
wets the wall. This is clearer on the movie available as
Supplemental Material [29]. Quantitatively, we find that

the velocity of the particle raft Uraft drops to zero as
the front passes the contraction center. In Figure 4a,
we systematically measure the variations of the particle
front velocity Uraft as a function of the drop capillary
number Ca (Eq. 3) when the drop front is at the pore
center. This position corresponds to the first row of
Figure 3. Here, the particle radius is rs = 0.75 µm. We
find that below Ca∗ = 6.10−4 - which corresponds in
this case to U∗

F = 0.025 m/s, the particle raft velocity is
zero and oil wets the pore wall. Above Ca∗, the particle
velocity is always one order of magnitude lower than the
drop velocity. We also systematically ompute the surface
pressure at the back of the drop πB through Eq. 2 as a
function of Ca in Figure 4b). As anticipated, we find
that as the particle raft velocity decreases, particles
accumulates at the back and simultaneously, surface
pressure builds up.

We chose next to explore in details the low capillary
number case, and we vary the particle radius over the
whole available range. In Figure 5, the capillary number
is set around Ca∼ 10−4 and each column corresponds
to a different particle radius : rs is 0.125 µm in Fig.5a),
and 5 µm in (b). Each row corresponds to the same drop
position, and the four rows are four subsequent times
or positions. In all cases, the particle raft is stopped,
oil wets the wall at the front of the drop - as indicated
by the contrast change in inset in Fig. 5a2) and in the
video [29] -, and particles are forced to accumulate at
the drop rear. This accumulation at the rear changes
the behavior of the rear interface of the drop depending
on rs. In Figs.5a2, longitudinal wrinkles appear at the
rear of the particle raft (see also video [29]), whereas
no wrinkles are detected in Fig.5b2. At later times,
particles do not separate from the liquid drop in a4, and
the Pickering drop, remarkably, crosses the pore with no
damage, at variance with case (b) where the particles
fully separate from the drop interface : in (b4), after
the drop has crossed the pore, its interface is naked and
silica particles are now dispersed in the aqueous phase
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FIG. 4. (a) Interfacial velocity Uraft and (b) surface pressure
at the drop back πB as a function of the capillary number Ca
defined with the front velocity UF for Pickering drops laden
with 750 nm radius silica particles. Full triangles : wetting of
oil on the pore wall is observed.

(see also video [30]).

Similar behaviors were obtained by systematically
varying the applied pressure, and thus the drop velocity,
and the particle radius rs. The results are summarized
in the rs versus Ca diagram of Figure 6.

IV. DISCUSSION

A. Movement of the particle raft at the drop
interface

In Figure 6, the wetting cases for which Uraft = 0
are shown as full symbols while the non wetting cases
are hollow symbols. We clearly find that the frontier
between wetting and non wetting corresponds to a
defined value of the capillary number, denoted Ca∗.
This was further checked by changing the aqueous phase
viscosity with glycerol addition (green and red markers)
which allows to vary Ca at constant drop velocity.
In Figure 6, a dash-dotted line marks the frontiers
between the wetting and non wetting cases, and we find

Ca∗ = 6.10−4. In the following, we discuss this value in
terms of the condition for which the water lubricating
film dewets, and the velocity at which, once nucleated,
the oil wets the pore wall. Our observations show that
oil wets the wall where the drop interface is naked. Once
nucleated, the wetting of oil propagates towards the
front part of the drop, the propagation towards the rear
being impaired by the silica particles. Therefore, we
offer to compare the critical value Ca∗ we measure to the
spontaneous wetting velocity of oil on silica and within
a submicrometer thick water film for the same system
(dodecane and CTAB with same concentration), taken
from a previous work [34]: we had found that wetting
was easily nucleated and that oil spontaneously wetted
silica in the water film at a capillary number Cas=3.10−4

which was found independent on the film thickness, but
system-dependent. Here, we find a good agreement with
the present capillary number value Ca∗. We conclude
that as soon as the drop capillary number falls below
the spontaneous oil wetting value Cas, nucleation of
oil wetting occurs and propagates faster than the drop
moves. As a consequence, the particle raft stops and
Uraft=0.

Beyond the wetting case for which silica particles
obviously accumulate towards the back of the drop
because the raft velocity drops to zero, as in Fig. 3c,
experiments at Ca>Ca∗ show that the raft velocity
decreases when the particle radius increases (see Fig. 3a-
b). In the following, we derive the mechanical balance
accounting for the particle raft movement towards the
front of the drop. We first examine the cases where
capillary numbers are larger than Ca∗ and particle are
small (typically rs = 0.75 µm), as in the video presented
in [28]. The raft movement from the rear to the front
of the drop was described in a previous work [26] to be
simply driven by the surface pressure gradient ∆π/L
between the back and front of the drop of length L,
and opposed by the viscous drag within the lubrication
water film. For a lubricating film of thickness denoted

h, the viscous drag writes η
Uraft

h .

In the present paper, we assume that the lubrication
film has a thickness set by Bretherton’s law Eq. 4, so that
increasing the particle size at constant Ca or decreasing
Ca could result in an additional drag on the raft arising
when the particle size becomes as large as the lubrica-
tion film thickness. To test this hypothesis, we define
the additional drag ∆σ acting on the particle raft as the
difference between the driving term ∆π/L and the vis-
cous drag. With our notations where πF and πB are the
surface pressures at the front and back of the drop re-
spectively, we have ∆π = πB − πF and πF = 0, so that
the additional drag writes:

∆σ =
πB
L
− ηUraft

h
(5)

This additional drag is a force per unit surface acting on
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FIG. 5. Effect of the particle radius at low capillary number on the interface compression and relaxation : Ca∼10−4. (a)
rs=0.125 µm, (b) rs=5 µm. Each column presents 4 subsequent images as a drop passes through the pore. Each line
corresponds to the same position of the drop. The oil in the drop wets the pore wall at the front (inset) where the oil/water
interface is naked. At the back, where the raft is adsorbed at the interface, the lubrication water film persists. (a) Wrinkling
in a2. No particle expulsion. (b) No wrinkling. Full particle expulsion (b4). Scale bars : 100 µm.

the particle raft which was systematically measured for
drops with varied silica particle sizes and varied drop ve-
locities, and the result is plotted in Figure 7 as a function
of the ratio between the silica particle size rs and the
Bretherton’s thickness h. We find that h/rs=1 clearly
marks the limit between the case where the compressed
raft freely relaxes under the combined effects of the sur-
face pressure gradient and the viscous drag (∆σ = 0),
and the cases where ∆σ is non zero. This observation
confirms the onset of an additional drag when the lubri-
cation film thickness, as computed from Bretherton’s law,
compares with the particle size. This additional drag can
be thought of as a friction term of the silica particles slid-
ing against the pore wall as soon as h < rs. This result
allows to refine the diagram in Figure 6 : experiments
for which ∆σ = 0 are plotted as circles, and ∆σ 6= 0 as
squares. The line corresponds to the frontier set by the
condition h = rs which writes, through Equation 4 :

rs = 1.34rcapCa
2/3 (6)

As a first result, we rationalize the existence of a
region of the rs versus Ca diagram where the particle
accumulation at the back of the drop relaxes through the
sole dissipative effect of the viscous drag : this region is
delimited at low Ca by Ca∗ given by the spontaneous
wetting velocity of oil on silica in water, and at large
radius of particles by the water film thickness as calcu-
lated by Bretherton’s law. It corresponds to the hollow
circle markers in Fig. 6.
Outside this region, particles adsorbed at the drop
interface accumulate at the back of the drop and surface
pressure builds up. In the following, we examine the
consequence of an excess of surface pressure in the re-
gions where either friction or wetting impair the surface
pressure relaxation. These regions are marked in Fig. 6
as triangles, squares and diamonds. In particular, we
will link the surface pressure excess to both the wrinkles
and the particle expulsion we observed in Fig. 5).
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FIG. 6. Flow regimes for a Pickering drop covered with par-
ticles of radius rs flowing through a pore at capillary num-
ber Ca. Aqueous phase: black symbols: water; red: wa-
ter/glycerol 0.4 w:w; green: 0.5 w:w. Hollow symbols: a
lubricating water film separates the oil drop from the pore
wall. Full symbols: the lubricating water film dewets and
oil wets the wall. Blue dash-dotted line: frontier Ca=Ca∗.
Squares: drag ∆σ > 0 (see Eq. 5). Triangles: no drag,
∆σ = 0, no wrinkles, no expulsion. Green line: rs = h
(Eq.6). Circles: wrinkles observed at the drop back. Dia-
monds: no wrinkles, full particles expulsion. Red dotted line:
rs = rmaxs = R/A = 4 µm.
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FIG. 7. Additional drag acting on the particle raft as defined
by Equation 5 as a function of the lubrication film thickness
h over particle radius rs ratio for all the experiments of Fig. 6
(same symbols). Thickness h computed from Eq. 4. ∆σ de-
creases to zero for h/rs ∼ 1. Aqueous phase: black: water;
red: water/glycerol 0.4 w:w; green: 0.5 w:w.

B. Mechanical destabilization of the particle raft at
large surface pressure

We first examine the wrinkling of the particle-laden
interface at the back of the drop. Such phenomenon was
reported in the past for capsules in a pore [13] or shear
particle-laden drops [25], although its onset condition
was not characterized in the latter case. Figure 8a
displays a series of images of a drop advancing through
a pore in a wetting case where the particle raft stops
: Uraft = 0, and the particle-laden interface wrinkles
as shown in the inset of Fig. 8a-iii) which corresponds
to the time when wrinkles appear. The wrinkles are
aligned with the longitudinal direction, and develop
where the interface is squeezed by the converging shape
of the pore. At this location, the decrease of the pore
section is assumed to result in an anisotropy of the
surface pressure with a longitudinal component denoted
πzz and an orthoradial component denoted πφφ. This
assumption is supported by previous works [35] in which
rafts of particles adsorbed at liquid/liquid interfaces
were shown to exhibit an elasto-plastic behavior due to
both cohesion between particles and friction between
contacting particles when surface concentration becomes
large enough. As depicted in Fig. 8c), we first assume a
continuity of the longitudinal component of the surface
pressure between the hemispherical cap of the drop back
and the converging part where the wrinkles appear, so
that πzz = πB at the frontier between the wrinkled part
and the cap. In Figure 8b), we measure the surface
pressure of the cap at the back of the drop, πB , as a
function of the position of the drop when it flows though
the pore. The data correspond to the image series in
Fig. 8a). Note that at times later than image iii, the
drop back is no longer hemispherical, and the hypothesis
of an isotropic pressure at the back fails so that we
no longer compute values for the surface pressure.
Wrinkling onsets in Image iii for which the longitudinal
pressure is denoted πwzz. Its averaged value over all our
experiments is measured at πwzz = (2.4 ± 0.1)γo/w, far
larger than the expected threshold for buckling found in
the literature to be γo/w [36, 37]. We also observe that
the wrinkles develop along the longitudinal direction.
From these two observations, we understand that (i) the
build-up of the orthoradial component of the surface
pressure πφφ is the only component responsible for the
mechanical buckling of the particle-laden interface as
depicted in Figure 8d), and (ii) the compressed raft
adopts an elastoplastic behavior: large strains caused by
the section reduction plasticize the raft. Assumption is
further made that the wrinkling involves small enough
strains to be described within the elastic framework,
which is supported by noting that buckling releases
the stress and does not lead any additional plastic
deformation.

Hence, following past studies on the buckling of parti-
cle rafts at liquid-fluid interfaces [38, 39], we explore the



8

FIG. 8. (a) Time series of images of a drop laden with rs = 750nm particle entering the pore at Ca= 2.10−4. zF = (i) 0;
(ii) 100 µm; (iii) 465 µm; (iv) 550 µm. Inset in (iii) shows the onset of longitudinal wrinkles of wavelength λ = 35 µm. (b)
Normalized surface pressure πB at the back of the drop versus drop front position zF . The onset of wrinkles corresponds to
πB = 2.4γo/w. (c) Schematic of the surface pressures at the drop interface at the onset on wrinkling : at the frontier between
the back spherical cap and the wrinkled interface (red dotted line), an orthoradial component of surface pressure φφφ builds
up due to the section reduction. (d) Schematical views of the drop cross section separated from the pore by a lubricating film
of thickness h : increasing the orthoradial surface pressure πφφ causes the buckling of the interface. Cylindrical coordinates (r,
φ). Curvilinear coordinate s = rφ/2π.

onset of such a buckling instability within the framework
of a plate with bending modulus B supported by a thin
viscous film of thickness h and viscosity η. This situ-
ation is depicted in Figure 9a). While the compressive
stress πφφ drives the development of the interface defor-
mation with amplitude δh and wavelength λ, the viscous
dissipation within the lubricating film prevents its devel-
opment.
The modeling of the buckling of the particle laden in-
terface supported by a thin viscous film is detailed in
Appendix A. It allows for the prediction of the wrin-
kling wavelength λ (Eq. A7) that depends linearly on
the particle radius rs through λ = A.rs where A de-
pends on the orthoradial pressure πφφ through A =

4π
[
8(1− C)(1 + ν)(πφφ/γo/w − 1)

]−1/2
.

This prediction Eq. A7 is compared with our data in
Figure 9b), where the wavelength λ of the wrinkles at
birth is measured by image analysis as shown in Fig-
ure 8a). The results are plotted in Figure 9b) as a func-
tion of rs. We find that the wavelength increases linearly
with the particle size as predicted : λ = A.rs. From
the slope of this line measured at A ∼ 30, we mea-
sure the surface pressure πwφφ at the onset of wrinkling:

πwφφ ∼ (1.1 ± 0.1)γo/w using C = 0.86 as measured in

Section II and ν = 1/
√

3 [38]. At this stage, two com-
ments can be made on this threshold value of surface
pressure. First, it is of the order but larger than γo/w, in
agreement with buckling experiments on particle-laden

interfaces [36, 37]. Second, at onset of wrinkling, the
compressed particle-laden interface can be regarded as a
two dimensional cohesive granular material. Following
the path of previous works on both cohesive wet gran-
ular media [40] and elasto-plasticity of compressed rafts
[35], we derive in Appendix B a relationship between the
two components of the surface pressure when the plastic-
ity threshold is reached using a Mohr-Coulomb criterion
that writes :

πzz
1− sin δ

1 + sin δ
− πφφ = 2c

cos δ

1 + sin δ
(7)

where δ is the friction angle between silica particles and
c the cohesion of the raft. From the literature on silica
particles sliding against glass at pH=6, δ = 20o. At the
onset of wrinkling, πwφφ = 1.1γo/w and πwzz = 2.4γo/w,
so that Eq.7 provides an estimate of the cohesion:
c = (0.07 ± 0.02)γo/w. Hence, we find a non-zero
value for the cohesion, which is in agreement with our
observations that particles tend to self-assemble into
rafts. Our particles are small enough for gravity to be
neglected, so that cohesion is likely to originate from
capillary attractions due to the pinning of the oil/water
contact line on the silica particles [41]. This pinning
has been thought to induce non circular contact lines
which generate multipolar capillary interactions between
particles. The magnitude of these capillary interactions
are expected to be of the order of the interfacial tension,
and are found here to be around one tenth of it. In
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FIG. 9. (a) Schematic representation of the interface buck-
ling driven by compressive stress πφφ. Curvilinear abscissa s
defined in Fig. 8. The deformation with wavelength λ and am-
plitude δh induces flows in the water film of mean thickness h
with velocity field v which are limited by viscous dissipation.
(b) Experimental wavelength λ of the wrinkles at the onset
of buckling as a function of particle radius rs for drops of ra-
dius R = 125 µm entering the pore at varied low Ca. Black
line : λ = R. Dotted line : Equation A7 with fitted prefactor
A = 30. Grey zone : no wrinkles are observed experimentally.

Apendix B, we further derive a relationship between the
cohesion c and a geometrical parameter ε characterizing
the non-circularity of the oil/water/particles contact
lines that we evaluate.

From this, the following picture emerges : at the
wrinkling threshold, the stress state of the 2D cohesive
granular medium is set by large deformations arising
from the squeezing of the drop section within the
converging pore, and the plasticity threshold is reached
in which frictional contacts build up between particles.
Nevertheless, the strains at stake in the development of
the instability are small and can therefore be described
within the elastic approximation.

C. Particle expulsion from the drop interface after
crossing the pore

From this description of the stress relaxation at
the drop interface through wrinkling, we show next
how to predict the conditions for drops destabilization
and particle expulsion. In Figure 9b), we indicate
as a grey zone the experimental conditions for which
no wrinkles are observed when the drop enters the
convergent part of the pore, which also corresponds to
situations where full particle expulsion from the drop is
observed at the pore exit. First, these two observations
can be linked by noting that no wrinkling leads to no
release of the compressive stress within the particle raft,
until particle expulsion occurs. Second, the threshold
between wrinkling and no wrinkling can be thought of
as the limit where the buckling wavelength becomes
larger than the drop radius. This writes : λ = R or
equivalently A.rs = R which sets a particle size limit
over which expulsion from the drop interface occurs :
rmaxs = R/A ∼ 4 µm in our experimental conditions.
The condition λ = R has been reported as a line in
Figure 9b) and r = rmaxs as a dotted line in the regime
diagram of Figure 6. We find that this prediction agrees
with our experimental observation of full particle expul-
sion. Altogether, we demonstrate that the drop interface
destabilization proceeds through the combination of two
effects : (i) Surface pressure build-up at the back of the
drop by particle accumulation in the raft; (ii) No release
of surface pressure through either particle movement
towards the front or buckling of the interface.

V. CONCLUSION

We demonstrate that particle expulsion from the
rear interface of particle-laden drops flowing through a
converging-diverging pore happens when two conditions
are simultaneously met : (i) particles accumulation at
the rear of the drop is such that surface pressure builds-
up at the interface. (ii) Surface pressure relaxation by
buckling is impaired by geometrical constraints.
Quantitatively, we find that condition (i) amounts to
a constraint on the capillary number and the particle
to pore size ratio : Condition (i) is indeed met when
the lubrication water film squeezed between the oil drop
and the pore wall is thinner than the particle size or
breaks up. In terms of capillary numbers, this writes:
Ca< ( rs

rcap
)3/2 or Ca<Ca∗ where Ca∗ characterizes the

spontaneous wetting velocity of the inner phase (oil)
on the pore wall within a water film and is system-
dependent.
Condition (ii) constrains the drop to particle size ratio
and writes : R/rs < A where A ∼ 30 and decreases if
the initial surface coverage in particles initially adsorbed
at the interface decreases.
In line with past studies where the single pore case was
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extended to porous media [7, 9, 22, 42], we anticipate
our results could efficiently be applied to the control of
processes where Pickering emulsions flow through porous
media, such as filtering of mixtures of immiscible liquids
and solids.

Appendix A: Modeling the buckling of a particle
laden interface supported by a thin viscous film

In the following, we model the growth of a sinusoidal
deformation h̃(s, t) = h + δheωt+2iπqs of growth rate ω
and wave vector q = 2π/λ of the particle-laden interface.
First, the compressive and bending moduli are taken
from the literature [38] on the elasticity of interfacial
particle rafts: E ∼ 1−ν

1−C
γo/w
2rs

and B = 2
3(1−ν2)Er

3
s where

ν = 1/
√

3 [38] is the Poisson ratio.

Second, the pressure field in the lubricating film is de-
rived as a function of the curvilinear distance s along the
orthoradial direction. The pressure P (s, t) obeys both
a mechanical balance at the interface and the Navier-
Stokes equation within the lubricating film. The fluid
velocity in the orthoradial direction that develops as
the interface deforms is denoted v(s, t). It is averaged
over the thickness of the film and varies with space and
time with the same wavelength and growth rate as h̃ :
v = δveωt+2iπqs. With these notations, the mechanical
and hydrodynamical balance equations write:

P = (πφφ − γo/w)
∂2h̃

∂s2
+B

∂4h̃

∂s4
(A1)

∂P

∂s
+ ηw

∂2v

∂r2
= 0 (A2)

The two equations A2 are combined into :

(πφφ − γ)
∂3h̃

∂s3
+B

∂5h̃

∂s5
= ηe

v

h2
(A3)

(A4)

These mechanical equations are supplemented with a
volume conservation equation in the fluid :

∂h̃

∂t
+
∂vh̃

∂s
= 0 (A5)

For the particular case of a sinusoidal deformation of
the interface, the problem reduces to :

ω =
h3

ηe
q4 ∗ (πφφ − γo/w −Bq2) (A6)

Following classical descriptions of instability growth, the
selected wavelength is that with the maximum growth
rate and is thus given by dω

dq = 0. This condition leads to

a sine deformation of the drop interface of wavelength λ
that depends on the orthoradial pressure πφφ according
to:

λ = 4π
[
8(1− C)(1 + ν)(πφφ/γo/w − 1)

]−1/2
rs (A7)

Appendix B: Mohr-Coulomb criterion for 2D
cohesive and frictional granular materials

The Mohr Coulomb criterion for plasticity was derived
in the past for 3D granular media [40]. Here, it is recast
in a two-dimensional geometry and writes

(σ1 − σ2)2 = sin2 δ

(
σ1 + σ2 +

2c

tan δ

)2

(B1)

where c is the cohesion and δ is the friction angle be-
tween two particles. At the wrinkling threshold, we find
πzz > πφφ so that we identify σ1,2 as follows: σ1 = πzz
and σ2 = πφφ. Equation B1 becomes Equation 7.

In the following, we offer a physical description of the
cohesive term c we measure. In granular materials, the
cohesion c is related to the friction coefficient between
particles tan δ and the internal stress arising from the
attractive interactions between particles through :

c = tan δσc (B2)

where σc is the radial component of the Irwing Kirkwood
tensor, or the contact stress. The purpose here is to
link the contact stress to the attractive capillary forces
between particles. The general equation for σc writes:

σc =
1

S
Σ 〈fxbx〉 (B3)

where x is an arbitrary axis within the interface plane,
fx the projection along x of the force acting between
two particles, and bx the projection along x of the vec-
tor joining the centers of the two considered particles.
Sum is made over the N pairs of particles interacting on
the surface S. From microscopy images in Fig. 1, the
number of neighbors is approximately 6 per particle so
that the number of contacts per particle is 3. Using the

surface density of particles C =
πr2s
S as defined in Sec-

tion II, the average number of contacts per unit surface
writes N/S = 3 C

πr2s
. The average distance between the

center of two contacting particles is of order 2rs so that
〈fxbx〉 ∼ rsfr where fr is the mean attractive force be-
tween particles. Following models from the literature [41]
accounting for capillary attractive forces arising from the
pinning of contact lines at the particle interfaces, we offer
to derive the interparticulate force according to:

fr ' εγo/wπrs (B4)

where ε is a numerical factor characterizing the non cir-
cularity of the oil/water contact line at the particle in-
terface. Equations B2, B3, and B4 allow to relate the
cohesion c that we measure to the geometrical parameter
ε:

c = tan δCεγo/w (B5)

Taking c = 0.07γo/w from Section IV B, C = 0.86 and
δ = 20o [43], we find ε ' 0.4.
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