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The rigidity transition occurs when, as the density of microscopic components is increased, a
disordered medium becomes able to transmit and ensure macroscopic mechanical stability, owing to
the appearance of a space-spanning rigid connected component, or cluster. As a continuous phase
transition it exhibits a scale invariant critical point, at which the rigid clusters are random fractals.
We show, using numerical analysis, that these clusters are also conformally invariant, and we use
conformal field theory to predict the form of universal finite size effects. Furthermore, although
connectivity and rigidity percolation are usually though to belong to different universality classes and
thus be of fundamentally different natures, we provide evidence of unexpected similarities between
the statistical properties of their random clusters at criticality. Our work opens a new research
avenue through the application of the powerful 2D conformal field theory tools to understand the
critical behavior of a wide range of physical and biological materials exhibiting such a mechanical
transition.

Introduction – Symmetries are the cornerstone to un-
derstand and to model physical phenomena [1], and their
identification, a powerful guiding principle for deriving
physical laws. Indeed, the compatibility between sym-
metries often results in constraints on the physical prop-
erties of the system: for example the compatibility of dis-
crete translations and rotations in crystals leads to the
crystallographic restriction theorem, which classifies all
patterns of periodic discrete lattices one can encounter
in nature [2]. But symmetries are not only deterministic:
second order phase transitions are a paradigmatic exam-
ple of systems possessing a symmetry of random nature,
where the long-range statistical fluctuations are invariant
in law under change of scale. For a host of systems ex-
hibiting critical behaviour –as diverse as linear polymers
[3], graphene membranes [4], disordered systems [5], a
larger symmetry emerges and fluctuations are also invari-
ant under local rescalings i.e. under all geometrical trans-
formations that preserve angles and rescale distances,
called conformal transformations [6]. The emergence of
this enhanced symmetry is a powerful tool: exploiting
the compatibility constraints on the physical observables
allows to understand and predict the universal features
of phase transitions [7], and even in some cases to fully
characterise the scaling limit [8]. The origin of conformal
symmetry is however still not systematically understood
[9], even in two dimensions. Indeed, while in 2d unitary
systems conformal invariance is automatically implied by
scale invariance [10, 11] this is not anymore true for non-
unitary phenomena, of which percolation is maybe the
most representative and versatile example. Still, percola-
tion in its various forms is believed (in some cases proven)
to be conformally invariant, for instance: uncorrelated
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(Bernoulli) percolation [12], the random Q−states Potts
model [13], percolation of random surfaces [4, 14], and to
our knowledge there is no equilibrium percolation model
which has been shown to be scale but not conformal in-
variant.
In this context, rigidity percolation (RP) is an ideal
model to study the possible emergence of conformal sym-
metry. On the one hand, establishing the conformal in-
variance of this phase transition, of prominent impor-
tance in soft matter, may allow to better characterise its
still poorly known universality class. On the other hand,
it is the first time that conformal invariance is studied in
a percolation phenomenon of mechanical nature (a priori
distinct from the ”connectivity percolation” (CP) mod-
els mentioned above), and this might shed some light on
which features of a percolation model make its scaling
limit conformally invariant.

Rigidity percolation in central force random springs
models provides a generic theoretical and simple frame-
work to study how a system transitions from a liquid to
a solid phase, where the underlying building blocks as-
semble into a percolating cluster that is able to transmit
stresses to the boundary and sustain external loads. It
has been successfully used to highlight the structural and
mechanical properties of many soft materials such as liv-
ing tissues [15], biopolymers networks [16, 17], molecular
glasses [18], stability of granular packings [19–21] or col-
loidal gelation [22–24]. Several critical exponents, char-
acterising the long-distance critical behaviour, have been
numerically determined, such as the correlation length
exponent ν = 1.21± 0.06 and the order parameter expo-
nent β = 0.18±0.02, defining an a priori new universality
class [25]. Hyperscaling relations also give the fractal di-
mension of the rigid cluster as df = 2−β/ν = 1.86±0.02,
a value which was confirmed by direct measurement [22].

In this article, we show that the rigidity percolation
clusters exhibit conformal invariance at the critical point
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and, interestingly, that the fine statistical properties of
the RP clusters and of the CP clusters share surpris-
ing similarities, despite belonging to distinct universality
classes.

Model and Methods – We perform three independent
numerical tests of conformal invariance, based on the
study of a geometrical property of the random rigid clus-
ters, their so-called n−point connectivity [26]:

p12···n(z1, · · · , zn)
def
= Prob [z1, · · · , zn ∈ RC] . (1)

zi are points in the two-dimensional space and RC de-
notes a rigid cluster. (1) gives therefore the probability
that n points are connected by paths inside the same rigid
cluster. These quantities have been very useful to un-
derstand connectivity percolation [27–31]. We make the
central assumption that, in the scaling limit, the connec-
tivities (1) can be described by a field theory, and more
precisely that they are given by correlation functions of a
scaling field that we denote Φc, of scaling dimension ∆c:

p12···n(z1, · · · , zn)
scaling→

lim.
a

(n)
0 〈Φc(z1) · · ·Φc(zn)〉 (2)

where a
(n)
0 is a non-universal constant that depends on

the microscopic details of the model.
When present, conformal symmetry constrains the

form of correlations, hence of the connectivities, in a pre-
cise way. In this work we use a lattice model of rigid-
ity percolation to measure numerically certain rigid clus-
ter connectivities on specific geometries. Using (2) gives
the corresponding CFT predictions for these probabili-
ties, which we can compare with the measurements. The

Geometr ic percolation Rigidity percolation

(a) (b)

Rigid cluster

Liquid Solid

(c)

FIG. 1. Examples of site-diluted triangular lattice configura-
tions showing connectivity percolation transition (a) at pCP

c

for which the system is macroscopically liquid. (b) Rigid clus-
ter decomposition where red particles belong to the largest
rigid cluster obtained via constraints counting analysis (peb-
ble game) and (c) macroscopic rigidity percolation transition
at pRP

c exhibiting a percolating rigid cluster in the two direc-
tions able to sustain external loads.

model is a site-diluted triangular lattice with local spatial
correlations. It has been recently introduced to model
the rigidity percolation of soft solids [22]. At each step,
particles are drawn randomly one by one to populate a
doubly-periodic triangular lattice of size L1×L2, accord-
ing to the following probability p = (1 − c)6−Nn , where

c ∈ [0, 1[ represents the degree of correlation and Nn is
the number of nearest filled sites varying between 0 to
6 for fully occupied neighboring sites. Since the filling
probability depends only on the degree of occupation of
the first neighbors, the introduced correlations are local
and in the limit of c = 0 we recover the classical uncorre-
lated random percolation where all particles has the same
filling probability. In practice, the larger c the smallest is
the critical probability threshold pRPc (equivalently crit-
ical volume fraction) which yields to macroscopic finite
elasticity. These correlations are irrelevant and the large-
scale behaviour is unaffected by the value of c, so that
the transition still belongs to the same universality class
as classical uncorrelated RP [22]. In practice we used
c = 0.3 at which pRPc (c = 0.3) ∼ 0.66.

To identify rigid clusters on a discrete lattice, we
use the so-called ’Pebble game’, a fast combinatory
algorithm[25, 32]. It is based on Laman’s theorem
for graphs’ rigidity, which uses Maxwell’s constraint
counting argument for each subgraph to detect over-
constrained clusters highlighting rigidity [33]. Figure 1
shows an example of cluster decomposition while increas-
ing p. Connectivity percolation arises at pCP

c and is
characterized by a space-spanning percolating cluster (in
blue). The system is macroscopically liquid and cannot
sustain external loads. Figure 1b and 1c show the largest
rigid cluster (in red) that percolates at pRP

c > pCP
c , lead-

ing to macroscopic elasticity.
In the following, we analyse the statistical properties of
the rigid clusters at the critical point. We first obtain
a direct measurement of the anomalous dimension expo-
nent η, then move on to test conformal invariance, using
the 3-point and 2-point connectivities. Finally we high-
light the similarities with CP in the structure of these
functions.

Anomalous dimension – We measure the 2-point con-
nectivity p12(r, θ) on the lattice, ie the probability that
points (i, j) and (i + r cos(θ + π/3), j + r sin(θ + π/3))
are in the same rigid cluster. θ is the angle wrt the
short cycle of the doubly-periodic lattice, and r the dis-
tance between the two points. We use translation in-
variance to average over the L1 × L2 positions (i, j), as
well as symmetry by reflection about θ = 0, so that p12

is an average over 2L1L2N measurements with N the
number of samples (N = 1200 for the largest sizes).
The inset in figure 3 shows the data points in log-log
scale which follow a power law in the scaling region
1 � r � L2/2. This is expected from scale invari-
ance, namely that for points separation 1 � z12 � L2,
the 2-point connectivity decays as p12(z1, z2) ∼ |z12|−η,
where η is the so-called anomalous dimension, satisfy-
ing the hyperscaling relations η = 2β/ν = 4 − 2df [34].

Using assumption (2) and that 〈Φc(z1)Φc(z2)〉 = z−2∆c
12

[35], gives the scaling dimension of Φc as ∆c = η/2.
Expected deviations in the region r ∼ L2/2 are due
to universal finite size effects coming from the doubly-
periodic boundary conditions. Fitting the data points
corresponding to the angle that minimises such effects
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(θ = arccos(2/
√

(7))) we obtain the value of the non-

universal constant a
(2)
0 = 0.448±0.002, and of the anoma-

lous dimension η = 0.307± 0.002, in agreement with the
values of the critical exponents in the literature [25] via
hyperscaling.
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FIG. 2. 3-point connectivity measured on the six inequiva-
lent triangles shown in the inset, on a L2 × 3L2 lattice with
L2 = 27.

Global conformal invariance – In two dimensions, con-
formal transformations are all the analytic maps on the
Riemann sphere (complex plane plus point at infinity).
They can be distinguished into a finite set of globally
defined (everywhere invertible) transformations (transla-
tion, rotation, scaling, special conformal transformation),
and an infinite set of local transformations (see eg. [35]).
It is a standard result that imposing invariance under
the global tranformations fixes completely the form of
3-point correlations, so that, using (2) one expects the
3-point connectivity of globally invariant clusters to be
[35]:

p123(z1, z2, z3) = a
(3)
0

CΦc
ΦcΦc

|z12z23z13|η/2
(3)

where CΦc
ΦcΦc

is an universal constant called operator
product expansion (OPE) coefficients (see eg [36]). Note
that for a scale but not conformal invariant system we
expect instead

p123(z1, z2, z3) =
a

(3)
0

|z12z23z13|η/2
∑

a+b+c=0

C
(abc)
ΦcΦcΦc

|z12|a |z23|b |z13|c

+ perm. [1↔ 2, 1↔ 3, 2↔ 3] .
(4)

In Figure 2 we show p123 measured on 6 inequivalent con-
figurations of points, plotted as a function of z12z13z23.
A clear collapse is seen in the scaling region 1 � zij �
L2/2, showing the validity of (3), while (4) cannot hold.

Microscopic and configuration-dependent finite-size ef-
fects dominate at small and large separation respectively.
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√
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√
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√
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FIG. 3. Rescaled 2-point connectivity measured in the cylin-
der limit L1 = 6L2, L2 = 96 along different angles, in semilog
scale. The black curves are the CFT prediction (5). Inset: the
same data points, not rescaled, in log-log scale. The black line
has slope η = 0.307.

Local conformal invariance – We now use the uni-
versal finite-size effects induced by the torus geometry
(doubly-periodic bc) to probe the local conformal invari-
ance. In particular, we put the system on a cylinder,
conformally equivalent to the plane through the map
z → iL2/2π log z. For a CFT, the expression of a 2-point
correlation function on this geometry is a well-known re-
sult [35], which in terms of the 2-point connectivity and
in polar coordinates reads:

p12(r, θ) =
a

(2)
0 (2π/L2)

η[
2 cosh( 2π

L2
r cos θ)− 2 cos( 2π

L2
r sin θ)

]η/2 (5)

This prediction is drawn in figure 3 for different angles

θ, using the values of η and a
(2)
0 found previously, along

with the corresponding numerical data points measured
on a torus with large aspect ratio L1/L2 = 6 to reproduce
the cylinder limit. The remarkable agreement confirms
that the 2-point connectivity of rigid clusters transforms
correctly under this local conformal transformation. In
more technical terms, the data is consistent with the con-
nectivity field Φc being a Virasoro primary, so that one
can expect all connectivities to be conformally invariant
as well.

Finite-size corrections and comparison with CP On a
doubly-periodic system of finite aspect ratio, one can
write generically a so-called OPE expansion, for r � L2,
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FIG. 4. Blue points correspond to measurements on a lattice
of size L2 = 256. The black line gives the best fit, done in
the range 1� r � L2, and yields ν = 1.19± 0.01. The gray
area corresponds to ν in the confidence interval of ref.[25] ,
ν ∈ [1.15, 1.27].

of the 2-point connectivity as [37]:

p12(r, θ) =
a

(2)
0

rη

(
1+

∑
Φα

CΦα
ΦcΦc
〈Φα〉q (2− δsα,0) cos(sαθ)

(
r

L2

)∆α
)
(6)

The sum is a (potentially infinite) sum over an a priori
unknown set of fields Φα with dimension ∆α and spin
sα ≥ 0. Each field contribution gives a r/L2 correction of
order ∆α to the plane limit, and depends on the elliptic
nome of the torus q = e−2πL1/L2 sinπ/3e2πiL1/L2 cosπ/3

through the expectation value of φ on the torus, and on
θ for non-scalar fields (of non-zero spin). Note that on
a square torus (L1 = L2) p12 is independent of θ and
the expectation of non-scalar fields must vanish. We find
that, for RP, the first terms in expansion (6) are the
following:

rη

a
(2)
0

p12(r, θ) = 1 + CΦν
ΦcΦc
〈Φν〉q

(
r

L2

)2−1/ν

+ 2CTΦcΦc〈T 〉q cos(2θ)

(
r

L2

)2

+ · · ·
(7)

Namely, the dominant finite-size correction is given by
the (scalar) ”thermal” field Φν whose dimension is ∆ν =
2−1/ν, and the first non-scalar contribution comes from
the so-called stress-energy tensor T . This latter field is
the tensor of conserved currents arising from translation
invariance, and from dimensional analysis have dimen-
sion 2 and spin 2. The dots account for the higher order,
unknown contributions.

In figure 4 we show the dominant finite-size correction:
by measuring p12 on a square torus we eliminate the
non-scalar contributions to (7), so that the quantity

rηp12−a(2)
0 is directly proportional to the dominant scalar

contribution, up to subleading corrections. The grey area

corresponds to a term ∼ (r/L2)
2−1/ν

with ν in the con-
fidence interval of ref [25], ν = 1.21± 0.06, showing that
the data is consistent with ∆dominant = 2 − 1/ν = ∆ν .
Fitting in the range 1� r � L2/2 gives ν = 1.19± 0.01.
The dominant non-scalar field contribution is instead ob-
tained by getting rid of the scalar terms in (7), which is
achieved by measuring p12 in two directions θ1, θ2, and
is consistent with an order 2 term, namely:

rη
[
p12(r, θ1)− p12(r, θ2)

]
=

a
(2)
0 2CTΦcΦc 〈T 〉q [cos(2θ1)− cos(2θ2)]︸ ︷︷ ︸

≡c2(q;θ1,θ2)

(
r

L2

)2

+ · · ·

(8)
We extracted the order 2 coefficients c2(q; θ1, θ2) of
rη [p12(r, θ1)− p12(r, θ2)], measured for different aspect
ratios and different angles, and plotted them in the inset
of figure 5 as a function of cos(2θ1)− cos(2θ2). The nice
straight lines confirm that we are indeed measuring the
contribution of a dimension 2 and spin 2 field, ie of T .

From (8) their slopes correspond to a
(2)
0 2CTΦcΦc 〈T 〉q, and

are plotted as function of the elliptic nome q in figure 5.
Fitting these points we find that

〈T 〉q→0 − 〈T 〉q ∼ |q|∆0 , ∆0 ∼ 0.11. (9)

First, this form is consistent with CFT, which gives 〈T 〉q
as [35]

〈T 〉q = −(2π)2q∂q logZ(q). (10)

Z(q) is the so-called partition function on the torus,
Z(q) ≡ ∑

Φα
nαq

(∆α+sα)/2−c/24q̄(∆α−sα)/2−c/24, with c
the so-called central charge –an important parameter
characterising a CFT, and nα the multiplicity of field
Φα. Expanding (10) for small q gives

〈T 〉q q�1
= (2π)2

[ c
24

−
∑
Φα

nα
∆α + sα

2
q

∆α+sα
2 q̄

∆α−sα
2 + · · ·

] (11)

The constant term corresponds to the cylinder limit
〈T 〉q→0 = (2π)2c/24. Equation (10) is actually one of
the most direct consequences, at the level of observables,
of conformal invariance, coming from the holomorphicity
of T ie ∂̄T = 0.
Secondly, from (9) the value of the smallest dimension in
the sum (11), denoted ∆0, is compatible with the scal-
ing dimension of Φc, ∆c = η/2 = 0.15 ± 0.02, and so
compatible with the connectivity field Φc being the field
with smallest non-zero scaling dimension in the theory.
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FIG. 5. Behaviour of the 1-point function of the stress-
energy tensor with q. The black line corresponds to the fit
∼ |q|0.11. Inset: order 2 coefficients c2 for different aspect
ratio. The grey lines are the best fits, whose slopes give the
points of the main plot.

Namely

〈Tq〉 = (2π)2
[ c

24
− ncη |q|η/2 + · · ·

]
. (12)

It has been established that the expansion (7) of the torus
2-point connectivity is valid for CP models, in [37] for the
Q−state Potts model and in [14] for percolation of ran-
dom surfaces, two families of correlated percolation mod-
els which include uncorrelated CP as a limiting case and
span a continuum of universality classes. Namely it was
found that the dominant terms in the Φc × Φc OPE are
the conformal families of the identity and thermal fields.
For these models it was also found that the field with
smallest scaling dimension entering the partition func-
tion is the connectivity field. Therefore, our results indi-
cate that –within our numerical range, the structures of
the 2-point connectivity and of the torus partition func-
tion are identical in RP and in CP. In other words, at
the level of the geometry of random clusters there is not
more difference between RP and CP than between two
different CP universality classes. In this respect it would
be useful to characterise more precisely the CFT of RP
clusters, by determining in particular its central charge

c. This data is not accessible in our study as it cancels
in (8), given that CTΦcΦc = ∆c/c (see eg. [38]).
Conclusion – In this work, we have investigated the

rigidity percolation transition. Through a series of three
original and independent tests, we have shown – for the
first time – that the statistical properties of the random
fractal clusters, encoded in the connectivity functions,
are conformally invariant at the critical point. Given that
RP exhibits highly non-local interactions –where the re-
moval of a single bond might destroy the rigidity of an
arbitrary large region– it is quite remarkable that invari-
ance under local rescalings holds, and that one can pre-
dict the cluster connectivity properties using correlations
of local fields.
Surprisingly, we found that the structure of the connec-
tivity functions is identical to what we expect for con-
nectivity percolation, albeit with a priori different val-
ues of the universal data (critical exponents and OPE
coefficients). Therefore, although it is widely believed
that the rigidity and the connectivity percolation phe-
nomena are of fundamentally different natures, our work
provides evidences on the similarity of their clusters at
criticality. These findings support the suggestion of [39],
that the geometrical properties of rigidity might be phys-
ically independent from the elastic properties. Recent
work on the RP for granular media near jamming transi-
tion [40] also points towards a possible superuniversality
of some RP and CP critical exponents. Many questions
remain thus open, it would be interesting to extend our
approach to probe the signature of conformal invariance
in the mechanical behaviour of RP, by studying eg. the
stress transmission at the verge of rigidity. Indeed while
recent field theories have been very successful in predict-
ing the elastic response in disordered amorphous materi-
als [41, 42] away from the critical point, the vicinity of
the transition is much less understood. In this respect,
our approach of using conformal field theory may open
a new avenue of thinking to build a unified framework
to describe the mechanical properties of a wide range of
materials close to their rigidity transition.
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