
HAL Id: hal-03813000
https://hal.science/hal-03813000v1

Submitted on 13 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A New Fault-Tolerant Algorithm Based on Replication
and Preemptive Migration in Cloud Computing

Abderraziq Semmoud, Mourad Hakem, Badr Benmammar, Jean-Claude Charr

To cite this version:
Abderraziq Semmoud, Mourad Hakem, Badr Benmammar, Jean-Claude Charr. A New Fault-Tolerant
Algorithm Based on Replication and Preemptive Migration in Cloud Computing. International Jour-
nal of Cloud Applications and Computing, 2022, 12 (1), pp.14. �10.4018/IJCAC.305214�. �hal-
03813000�

https://hal.science/hal-03813000v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A New Fault-Tolerant Algorithm Based on Replication and Preemptive Migration
in Cloud Computing

Abderraziq Semmoud∗ and Badr Benmammar†

Faculty of science, Department of Computer Science,
Abou Bakr Belkaid University, Tlemcen, Algeria

Mourad Hakem‡ and Jean-Claude Charr§

DISC Laboratory, Femto-ST Institute, UMR CNRS, Université de Franche-Comté, France
(Dated: September 11, 2022)

Cloud computing is a promising paradigm that provides users higher computation advantages
in terms of cost, flexibility, and availability. Nevertheless, with potentially thousands of connected
machines, faults become more frequent. Consequently, fault-tolerant load balancing becomes neces-
sary in order to optimize resources utilization while ensuring the reliability of the system. Common
fault tolerance techniques in cloud computing have been proposed in the literature. However, they
suffer from several shortcomings: some fault tolerance techniques use checkpoint-recovery which in-
creases the average waiting time and thus the mean response time. While other models rely on task
replication which reduces the cloud’s efficiency in terms of resource utilization under variable loads.
To address these deficiencies, an efficient and adaptive fault tolerant algorithm for load balancing
is proposed. Based on the CloudSim simulator, some series of test-bed scenarios are considered to
assess the behavior of the proposed algorithm.

I. INTRODUCTION

The cloud is emerging as a wide-scale distributed com-
puting infrastructure that enables resource sharing and
coordinated problem solving in today’s world that needs
information anywhere and anytime. It provides highly
scalable, secure and efficient mechanisms for discovering
and negotiating remote access to computing resources in
a transparent manner.

System load is a measure of the amount of work that a
computer system performs. If the load on some comput-
ers is generally heavier than on others, or if some pro-
cessors execute tasks more slowly than others because of
resources heterogeneity, they will be overloaded. Load
balancing aims to ensure that all processors share the
workload over the long term. Even though load balanc-
ing is essential to ensure high availability of applications
in an increasingly critical environment, failures become
inevitable as the number of components in the cloud sys-
tem increases. Therefore, a load balancing algorithm
should have the fault tolerance capability, i.e., it should
perform uniform load balancing despite the presence of
arbitrary node or link failures. One of two approaches
can be adopted to provide fault tolerance: Proactive or
Reactive Fault Tolerant Policy. The principle of the for-
mer is to avoid failures by predicting them and proac-
tively taking preventive actions before a failure occurs.
Preemptive migration [1], software rejuvenating [2], self-
healing [3] are some proactive fault tolerant techniques.
While the reactive one follows some kind of policies and

∗ abderrazak.semmoud@univ-tlemcen.dz
† Badr.Benmammar@univ-tlemcen.dz
‡ mourad.hakem@univ-fcomte.fr
§ jean-claude.charr@univ-fcomte.fr

helps to recover from failed state when a failure occurs.
There are two classes of reactive fault tolerance tech-
niques. The first class lets the application continue the
execution until its termination even if some nodes fail.
Compensation mechanisms in the run-time environment
or in the application algorithm avoid the complete fail-
ure of the whole application [4]. This class of methods
includes Replication [5], Algorithmic-based fault toler-
ance [6], Natural Fault-tolerance [7], Rescue work-flow [8]
and Failure masking [9]. While in the second class, the
effect of failures is repaired either by continuing the exe-
cution considering that the application will recover later
a normal state or by re-executing the failing parts of the
application. Rollback-Recovery [10], Forward-Recovery
[11], Task re-submission [12], Retry [13], task migration
[14] are common techniques of this class.
In this work, we design a hybrid failure management

mechanism for load balancing in a cloud computing envi-
ronment. This mechanism is based on preemptive migra-
tion and replication to proactively take preventive actions
before a failure occurs and reactively manage the occur-
rence of failures. With this mechanism, we can effectively
reduce resource usage, costs, and network traffic in data
centers.
In the following, we summarize the contributions and

the novelties of the presented study:

1. The design of a new distributed algorithm for fault-
tolerant load balancing which is able to deal with
scalability and dynamicity of the targeted system.

2. The combination of proactive and reactive fault tol-
erance techniques in an adaptive way to cope with
unpredictable failures.

3. Ensuring fault tolerance while maintaining the load
of the system balanced as much as possible.



2

The rest of this paper is organized as follows: Section II
describes some related works on load balancing and fault
tolerance techniques for the cloud environment. The sys-
tem modeling and the problem formulation are given in
Section III. In Section IV, the distributed fault tolerance
approach is presented. Section V focuses on the simula-
tion setup and experimental results. Finally, the article
ends with a summary of the contributions and some fu-
ture work.

II. RELATED WORKS

In this section, the relevant techniques proposed in the
literature to deal with the fault tolerance management
are reviewed.

In [15], an overlay architecture for large-scale data net-
works is presented. The architecture named Saturn is
maintained over Distributed Hash Tables (DHTs) that
processes queries in an efficient manner and ensures ac-
cess load balancing and fault-tolerance. Placing consec-
utive data values in neighboring peers speeds up query
processing. However, such a placement is very sensitive
to load imbalances. A new order-preserving multiple-
ring architecture is used by Saturn to deal with failures.
The use of a new order-preserving hash function ensures
fast processing of range requests. Replication across and
within data rings ensure query load balancing and fault
tolerance, respectively. Wang and al. [16] have proposed
a protocol called the Dual Agreement Protocol of Cloud-
Computing (DAPCC). It divides the topology into two
layers named A and B. Layer A has some nodes which
are directly related to customers and layer B has set of
nodes of the same type which are directly attached with
the nodes of layer A. DAPCC achieves agreement among
all nodes on a common value in a minimal number of
message exchanges and can tolerate a maximum number
of allowable failed components.

In [17], Chang and al. have presented a fault-tolerant
load balancing scheme for current web services. In this
work, each block within a file is replicated at least three
times depending on the access frequency. To reduce the
likelihood of data loss, each of the replicas is located on
a different server. When the control center detects that
the number of replicas of a block is less than three due
to a network problem or a hardware failure, the control
server starts immediately a new replication of the block.
Fang and al. [18] combine the fault tolerance and work-
load balancing mechanisms in the Distributed Stream
Processing Engine (DSPE) to reduce the overall resource
consumption while preserving the system’s interactivity,
high-throughput, scalability and high availability. Based
on a data level replication strategy, the proposed method
can handle a dynamic scenario of data asymmetry and
node failures. During the fluctuation of the incoming flow
distribution, the workload is rebalanced by selectively de-
activating the data in overloaded nodes and activate their
replicas on underloaded ones to minimize load’s migra-

tion within the stateful operator; when a failure occurs,
the system activates the replicas of the affected data to
ensure rapid recovery after a failed processing task while
keeping the workload balanced.

The proposed work, in [19], introduces an innovative
perspective on adopting a fault tolerant mechanism that
shades the cloud server implementation with cloud selec-
tion to avoid network congestion and health monitoring.
Since it can preserve the system data availability, the
cloud selection is induced to prevent the network traf-
fic. With the proposed framework, a proactive fault tol-
erance technique is provided and the experimental study
revealed reduced overhead and energy consumption. Nir-
mala et al. [20] propose a new fault tolerant workflow
scheduling algorithm for large scale scientific workflow
applications that learns replication heuristics in an un-
supervised manner. Authors propose a light weight syn-
chronized checkpointing method to identify failed task
and estimate replication count using heuristics. Differ-
ent machine learning algorithms were implemented to
predict failures for different type of workflow applica-
tions. In the work of Chatterjee et al. [21], a two-level
fault tolerant load balancing algorithm called GBFTLB
(Gossip-Based Fault-Tolerant Load Balancing) has been
proposed. It considers that processors are heterogeneous
and uses processor capacity to allocate the load to it. A
new communication model is designed for global com-
munication between processors in order to manage the
loss of connectivity and minimize communication costs.
GBFTLB can operate in asynchronous and synchronous
networks and can be applied to systems with arbitrary
topologies. The GBFTLB aims to optimize the number
of rounds and the number of messages required in fault
tolerant load balancing.

To achieve low fault tolerance overhead and fast fail-
ure recovery, a new approach based on replication tech-
nique for graph computation using either edge-cut or
vertex-cut is proposed in [6]. The presented technique
which is called Imitator leverages existing vertex repli-
cation to tolerate node failures, by extending existing
graph-parallel computations. It provides two recovery
techniques: Rebirth and Migration based recovery. The
experimental results showed that Imitator has good per-
formances in terms of low execution overhead, and fast
crash recovery. In [22], a proactive technique which re-
lies on the Central Processing Unit (CPU) temperature
is introduced to deal with node failures within a virtu-
alized cloud federation environment. First, the authors
formulate the studied fault tolerance problem as an In-
teger Linear Programming (ILP) multiobjective model
to optimize profit, migration cost, and resources redis-
tribution in case of faults. Then, to determine the best
cloud service providers from a reserve of existing ones,
a domination and preference relationships-based scheme
is designed. The algorithm’s performance has been evac-
uated on a real cloud dataset, and the obtained results
reveal that migration cost has a noticeable impact on the
achieved overall profit within the cloud.



3

To minimize the communication cost induced by
fault tolerance and deal with dynamic distributed plat-
forms, the authors, in [23], propose a new collaborative
checkpoint-rollback recovery scheme which takes partial
snapshot of the system by using appropriate coordina-
tion among the network’s nodes. They demonstrate
throw simulations, that the proposed approach is able
to decrease the number of exchanged messages of the
coordination process. A new Fault-tolerant and real
time algorithm which is called ReadyFS is proposed in
[24] for scheduling scientific workflows in a cloud. The
proposed approach seeks to improve resource utilization
while guaranteeing fault tolerance and deadline require-
ments. Both replication and check-pointing with de-
lay execution are investigated, and the conducted com-
parison with other existing techniques using real-world
workflow applications showed the usefulness of the au-
thors’ method in terms of fault tolerance efficiency and
resources management.

In recent work [25], an adaptive approach has been pro-
posed to deal with the problem of fault tolerance in cloud
computing. In this approach, a fuzzy-based method is
used to detect failures, and a predictive approach is im-
plemented to monitor the provided system. In order to
increase fault tolerance and load balancing when failures
occur, the checkpointing method is used which reduce the
time as well as the processing cost of task migration. To
detect failures, a fuzzy system with throughput, response
time and workload as input parameters was designed.
The scalability and computational overhead of the pro-
posed approach have not been evaluated. To reduce the
effect of transient failures, the authors of [26] proposed
an aggressive fault tolerance approach in a cloud envi-
ronment to detect and recover from failures. An intel-
ligent decision agent is used by the aggressive fault de-
tection and recovery module to detect and recover from
faults. The intelligent decision agent makes decisions on
different types of software, hardware, and communica-
tion faults. It improves the performance of fault toler-
ance schemes and reduces complexity compared to other
existing techniques such as replication, resubmission, and
checkpointing techniques.

As reported above, unlike earlier works, this study
investigates the combination of proactive and reactive
fault tolerance techniques to deal with unexpected fail-
ures during the load balancing process. The objective is
to take advantage of each technique in adaptive way to
improve the overall performances in terms of system re-
liability and Quality of Service (QoS) seen by end users.
To address this, we make use of Preemptive Migration
and Replication in order to proactively take preventive
actions before a failure occurs and then reactively avoid
the impact of Virtual Machine (VM) failure. Moreover,
the replication process is performed in a balanced way
as we can use replicas to smooth fairly the load in the
system.

III. SYSTEM MODELING

Let G(t) = (VM(t), E(t)) be a dynamic graph rep-
resenting the mapping between the VMs. The graph is
dynamic in the sense that at every unit of time t, some
VMs can enter and leave the system. VM(t) is the set of
virtual machines in the system at time t. E(t) is the set of
bidirectional links between VMs such as VMi and VMj

can send messages to each other at time t if and only
if (VMj , V Mj)E(t). The system is considered failure-
prone where nodes and/or links may fail with a mean
time to failure of mttf. Ni(t) is the set of VMi’s direct
neighbors at time t. Each VMi has a set CRi of cores.
Let STi(t) be the set of tasks submitted to VMi at time
t. The overall size of the tasks SZi(t) assigned to VMi

at time t is defined as follows:

SZi(t) =
∑

task∈STi(t)

SIZE(task) (1)

Let CTik the completion time of a task Tk in VMi.
The waiting time of the task Tk is defined as a function
of its arrival time ATik at VMi and the completion time
of task Tk−1:

WTik = Max{CTi(k−1), ATik} −ATik (2)

System response time is the average time between sub-
mitting a task to the cloud and its completion.

RT = Average{WTik + ETik}, i = 1...m, k = 1...ni (3)

Makespan is the overall completion time of the tasks
in the set T . It is defined as the following:

MS = Max{CTik}, i = 1...m, k = 1...ni (4)

where ni is the number of tasks executed by VMi. Let
REPik(t) be the set of VMs receiving the replicas of task
Tk from VMi at time t. The reliability of VMi at time t
is denoted by RELi(t).
The main objective of the proposed fault-tolerant al-

gorithm is to identify the suitable replication nodes and
reduce the number of replications while maximizing both
system’s reliability and tasks’ completion rate.

IV. THE PROPOSED ALGORITHM

The presented study is essentially an extended version
of the STLB (Starvation Threshold Based Load Balanc-
ing) algorithm of [27], which was designed to tackle the
problem of load balancing in cloud computing environ-
ments. It differs from the initial version in the way that
it takes the fault tolerance requirement into account by
combining both proactive and reactive techniques in an
adaptive way. The proposed RPMFT (Replication and
Preemptive Migration based Fault Tolerance) algorithm
adds a powerful part to the initial version by mixing



4

Preemptive Migration and Replication in order to proac-
tively take preventive actions before a failure occurs and
reactively avoid the effects of VM’s failure. In addition,
the replication is done in balanced way as we can use
task replicas to balance the load in the system. The main
goal of the proposed approach is to ensure fault tolerance
while:

• Reducing the number of replications using:

– A hybridization of proactive and reactive ap-
proaches;

– A reliability factor that depends on an adap-
tive confidence index.

• Choose the suitable replication nodes based on
neighbor’s load.

A. Preemptive Migration

The feedback loop control mechanism is an essential
component of proactive fault tolerance using preemp-
tive migration (Figure 1), where application is constantly
monitored and analyzed as preventative actions can be
taken to avoid imminent application failure by preemp-
tively migrating parts of an application (process, task, or
virtual machine) away from nodes that may fail.

Resource Manager / 

Run!me Environment

Monitor / Filter / Analysis

Task

Alloca!on

VM

Health

Task

Realloca!on

FIG. 1: Feedback-loop control.

The feedback loop (Figure 1) consists of continuous
application health monitoring and reallocation of appli-
cation parts. Application health monitoring encompasses
hardware and software monitoring. The reliability factor
RELi(t) represents the health status of VMi. As shown
in Figure 2.(b), once it is detected that the reliability
factor does not meet an adaptive threshold called con-
fidence index CIi(t), the VM’s tasks are reallocated to
other VMs. Reallocation evicts tasks from one or more
nodes and excludes them from further use, thereby re-
ducing the number of replicated tasks and thus resource
utilization. Tasks are migrated to the most underloaded
neighbor to balance the load among the nodes in the sys-
tem.

B. Replication

Replication based technique is one of the popular ap-
proaches to ensure fault tolerance. Two major classes of

Network

Replicate

Task A

Migrate

All tasks

Send

Task A

Network

(a) Task replica!on (b) Preemp!ve migra!on

FIG. 2: The RPMFT architecture.

replication techniques exist: active and passive replica-
tion. In the case of active replication, all replicas play the
same role: there is no centralized control and all replicas
start in the same initial state and execute the same oper-
ations in the same order. Each will replica will perform
the same work and produce the same output. Active
replication is failure transparent. However, it requires
many processing resources. The second type called pas-
sive replication uses one replica, called the primary, for
a special role: all operations requested by clients are di-
rected to it. The primary is also responsible to execute
the operations, update the other replicas and respond
to the client. In this work, a hybrid-based approach is
designed by involving characteristics of both active and
passive replication. In this technique, one replica pro-
cesses the requests received from clients. However, an-
other replica handles the client request when the VM
containing the primary replica becomes unreliable.

C. The fault tolerant algorithm

The proposed model handles faults that may occur in
all available virtual machines. It tolerates faults based
on reliability and load assessment to reschedule tasks to
the most reliable virtual machines while preserving load
balancing. As described in Algorithm 1, once a new task
is received, it is replicated to the least loaded neighboring
node (Figure 2.(a)) that meets the following condition:

1. (VMj ∈ Ni(T )) ∧ (FLj(t) = 1)
∧ (Lj(t) ≤ min(Lm(t)|VMm ∈ Ni(t)))

In order to have at least two replicas on reliable VMs,
the reliability factor is evaluated and a second replication
is performed if the receiving VM is not reliable. More-
over, to take preventive actions before a failure occurs.
The health of the VM is continuously monitored and ana-
lyzed. Recall that, as defined above, the reliability factor
RELi(t) represents the health state of VMi as a func-
tion of fan speed, processor temperature, and average
processor utilization. Once it is detected that the re-
liability factor does not meet the confidence index, the
VM’s tasks are replicated to other VMs.
When we deal with fault tolerance, a policy must be

defined to identify when to take actions (proactively or



5

Algorithm 1 RPMFT

1: while running do
2: if receive new task Tk then
3: REPik(t) = ∅
4: Replicate Tk on VMj satisfying condition 1
5: REPik(t) = REPik(t) ∪ VMj

6: end if
7: if RELi(t) < CIi(t) then
8: for Tm ∈ VMi tasks set do
9: if |REPim(t)| = 0 then

10: Migrate Tm on VMj satisfying condition 1
11: end if
12: end for
13: end if
14: end while

reactively) to ensure the system’s reliability and scala-
bility. In this work, a reliability factor RELi(t) is used
to achieve this goal. This factor is calculated based on
hardware and software satus as well as the history of the
machine state. Indeed, a VM relocates tasks to its neigh-
bors only if its reliability factor is lower than a confidence
index threshold CIi(t).

V. PERFORMANCE EVALUATION

To evaluate the performance of the proposed algo-
rithm, series of experiments were conducted on CloudSim
[28] which is a cloud simulator. The study is performed
on sixteen data centers located in different geographic
regions. Every data center consisted of five physical ma-
chines. Tasks arrive randomly on each data center with
service times exponentially distributed. For each simula-
tion setup, we generated twenty different task distribu-
tions. The physical machines and the virtual machines
configurations of all scenarios are stated in Table I.

Parameter Values
Length of tasks 104 - 8× 104 MI
Total number of tasks 200Scenario 1
Number of VMs 100
Length of tasks 104 - 8× 104 MI
Total number of tasks 1200Scenario 2
Number of VMs 100
Length of tasks 8× 104 MI
Total number of tasks 200Scenario 3
Number of VMs 100
Length of tasks 8× 104 MI
Total number of tasks 1200Scenario 4
Number of VMs 100

TABLE I: Simulation parameters.

The metrics which characterize the performance of the
algorithms are the Overhead, the Completion Rate, and
the Average CPU Utilization. The fault tolerance over-
head is computed as follows:

OverheadRPMFT =
LRPMFT

LFFLB
(5)

where LRPMFT is the latency achieved by the fault toler-
ant algorithm, and LFFLB denotes the latency achieved
by the fault-free version of the algorithm.
The Completion Rate is the number of completed tasks

divided by the total number of tasks received by the sys-
tem, while the Average CPU Utilization is the third met-
ric used to assess the algorithm’s performances which is
defined as:

ACU =

∑
Tk∈RT CUTk

|RT |
(6)

where RT is the set of received tasks and CUTk
is the

amount of CPU usage when processing a task Tk.
The time-to-failure of the machines is represented with

a mathematical model that describes the probability of
failures occurring over time which is called Weibull distri-
bution. It is also known as the Probability Density Func-
tion (PDF) which is a general purpose reliability distri-
bution used to model material strength, time-to-failure
of electronic and mechanical components, equipment or
systems. The Weibull failure rate function, λ(x), is given
by:

λ(t) =
β

η

(
t− γ

η

)β−1

, t ≥ γ ≥ 0, β > 0, η > 0 (7)

where β and η are known as the shape and the scale
parameters respectively, and γ is known as the location
parameter.
For our experiments, we assume that the failures in-

crease over time. For this reason, the shape parameter
β is fixed to 3. The location parameter γ is set to 0 in
order to trigger failures without delay and the scale η is
set to 100.
The RPMFT algorithm is simulated to explore its per-

formance to achieve more completion rate and less over-
head and average CPU utilization. The proposed algo-
rithm was compared to the replication fault tolerance
(RFT) approach in terms of completion rate.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  50  100  150  200  250  300

A
C
F
 
(
a
r
r
i
v
a
l
 
p
r
o
c
e
s
s
)

Lag

 0

 50000

 100000

 150000

 200000

 0  100  200  300  400  500  600

A
v
e
r
a
g
e
 
R
e
q
u
e
s
t
 
s
i
z
e

Monitoring window (every 600 requests)

(a) ACF for tasks arrival process (b) Average request size.

FIG. 3: ACF for arrival process used in the simulation
(a), and (b) Average request size for every 600 requests

for tasks with random length.

Throughout this paper, we use the Autocorrelation
Function (ACF) as a metric of the dependence structure
of request arrivals. The ACF’s decay rate determines if
the tasks arrival process exhibits weak or strong corre-
lation. Figure 3.(a) presents the ACF of tasks arrival.



6

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  10  20  30  40  50  60  70  80  90

C
o
m
p
l
e
t
i
o
n
 
R
a
t
e

Failure Rate

Without FT
RFT

FTSTLB
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60  70  80  90

A
v
e
r
a
g
e
 
C
P
U
 
U
t
i
l
i
z
a
t
i
o
n

Failure Rate

Without FT
FTSTLB

(a) Completion rate versus failure rate. (b) Average CPU utilization versus failure rate.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  10  20  30  40  50  60  70  80  90

O
v
e
r
h
e
a
d

Failure Rate

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

20 30 40 50 60 70 80 90

C
o
m
p
l
e
t
i
o
n
 
R
a
t
e

Failure Rate

Original tasks Replicats

(c) Overhead versus failure rate. (d) Completed tasks origin versus failure rate.

FIG. 4: Completion rate (a), Average CPU utilization (b), Overhead (c) vs. failure rate, and (d) Completed tasks
origin vs. failure rate for a set of 200 tasks with random length.

 0

 200

 400

 600

 800

 1000

 1200

 0  10  20  30  40  50  60  70  80  90

C
o
m
p
l
e
t
i
o
n
 
R
a
t
e

Failure Rate

Without FT
RFT

FTSTLB

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60  70  80  90

A
v
e
r
a
g
e
 
C
P
U
 
U
t
i
l
i
z
a
t
i
o
n

Failure Rate

Without FT
FTSTLB

(a) Completion rate versus failure rate. (b) Average CPU utilization versus failure rate.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  10  20  30  40  50  60  70  80  90

O
v
e
r
h
e
a
d

Failure Rate

 0

 200

 400

 600

 800

 1000

 1200

20 30 40 50 60 70 80 90

C
o
m
p
l
e
t
i
o
n
 
R
a
t
e

Failure Rate

Original tasks Replicats

(c) Overhead versus failure rate. (d) Completed tasks origin versus failure rate.

FIG. 5: Completion rate (a), Average CPU utilization (b), Overhead (c) vs. failure rate, and (d) Completed tasks
origin vs. failure rate for a set of 1200 tasks with random length.

Figure 3.(b) shows the requests size window every 600
requests for Scenario 1 and Scenario 2. While Figure
7.(b) shows the requests size window for Scenario 3 and
Scenario 4.

The results presented in Figure 4 were obtained us-
ing 100 VMs and a set of 200 tasks with random sizes
(104 MI - 8 × 104 MI). Figures 4(a) shows a significant
improvement in completion rate. However, the perfor-

mance of all algorithms converge to the same completion
rate when the failure rate is close to 100%. On average,
there are 18% improvement in terms of completion rate
compared with the RFT algorithm. The Average CPU
utilization of RPMFT algorithm is higher as shown in
Figure 4(b) which is not surprising since we need more
resources for task replications.

Figure 4(c) represents the fault tolerance overhead



7

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  10  20  30  40  50  60  70  80  90

C
o
m
p
l
e
t
i
o
n
 
R
a
t
e

Failure Rate

Without FT
RFT

FTSTLB
 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60  70  80  90

A
v
e
r
a
g
e
 
C
P
U
 
U
t
i
l
i
z
a
t
i
o
n

Failure Rate

Without FT
FTSTLB

(a) Completion rate versus failure rate. (b) Average CPU utilization versus failure rate.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  10  20  30  40  50  60  70  80  90

O
v
e
r
h
e
a
d

Failure Rate

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

20 30 40 50 60 70 80 90

C
o
m
p
l
e
t
i
o
n
 
R
a
t
e

Failure Rate

Original tasks Replicats

(c) Overhead versus failure rate. (d) Completed tasks origin versus failure rate.

FIG. 6: Completion rate (a), Average CPU utilization (b), Overhead (c) vs. failure rate, and (d) Completed tasks
origin vs. failure rate for a set of 200 tasks with same length.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  50  100  150  200  250  300

A
C
F
 
(
a
r
r
i
v
a
l
 
p
r
o
c
e
s
s
)

Lag

 0

 50000

 100000

 150000

 200000

 0  100  200  300  400  500  600

A
v
e
r
a
g
e
 
R
e
q
u
e
s
t
 
s
i
z
e

Monitoring window (every 600 requests)

(a) ACF for arrival process (b) Average request size.

FIG. 7: ACF for arrival process used in the simulation
(a), and (b) Average request size for every 600 requests

for tasks with the same length.

when failures occur. We readily observe from this fig-
ure that the overhead decreases slightly together with
the number of failures. This is due to the fact that the
fault tolerance overhead is already absorbed by the in-
crease of failure rate, which leads to a decrease in the
number of completed tasks and thus to a decrease of the
induced overhead. Figure 4(d) reveals that the RPMFT
algorithm reported significant number of completed tasks
using replicas, especially for failure rates equal to 60%,
70% and 80%.

In the second scenario plotted in Figure 5, as the fail-
ure rate increases, the completion rate decreases notably
for the RFT approach that uses replication as the unique
criterion for fault tolerance. The performance of our pro-
posal is significantly better. For instance, Figure 5(a)
shows that the completion rate has been improved by
17%, and Figure 5(d) reveals also good performances in
terms of the number of completed tasks. This can be ex-
plained by the use of preemptive migration for fault tol-

erance only if the reliability of VMs is near a prescribed
level of confidence index.

As outlined in Figure 6, the results obtained using a
set of 200 tasks with the same sizes (8× 104 MI) did not
significantly change compared to the ones of scenario 1.
Figures 6(a) depicts a significant improvement in com-
pletion rate. On average, there are 17% improvement in
terms of completion rate compared with the replication
algorithm. The Average CPU utilization of RPMFT al-
gorithm is 100% bigger as shown in Figure 6(b). Figure
6(c) represents the fault tolerance overhead when failures
occur. It is not surprising that the overhead decreases
slightly together with the number of failures because it
is already absorbed by the increase of failure rate, which
leads to a decrease in the number of tasks completed and
therefore to a reduction in the induced overhead. Finally,
Figure 6(d) reveals that the RPMFT algorithm highlights
significant number of completed tasks using replicas, es-
pecially for failure rates equal to 60%, 70% and 80%.

In the last scenario reported in Figure 8, it can be
seen that as the failure rate increases, the completion
rate decreases mainly for the RFT approach that uses
replication as the unique criterion for fault tolerance.
This can be attributed to the fact that RPMFT algo-
rithm uses preemptive migration for fault tolerance only
if the reliability of VMs is near a prescribed level of con-
fidence index. Other observations indicate that the com-
pletion rate has been improved by 17% as shown in Fig-
ure 8(a) and significant number of completed tasks are
task-replica as highlighted in Figure 8(d).

Additional tests were performed to analyse how the
RPMFT algorithm deals with replication when the num-
ber of failures goes up. The results are plotted in Fig-



8

 0

 200

 400

 600

 800

 1000

 1200

 0  10  20  30  40  50  60  70  80  90

C
o
m
p
l
e
t
i
o
n
 
R
a
t
e

Failure Rate

Without FT
RFT

FTSTLB
 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60  70  80  90

A
v
e
r
a
g
e
 
C
P
U
 
U
t
i
l
i
z
a
t
i
o
n

Failure Rate

Without FT
FTSTLB

(a) Completion rate versus failure rate. (b) Average CPU utilization versus failure rate.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  10  20  30  40  50  60  70  80  90

O
v
e
r
h
e
a
d

Failure Rate

 0

 200

 400

 600

 800

 1000

 1200

20 30 40 50 60 70 80 90

C
o
m
p
l
e
t
i
o
n
 
R
a
t
e

Failure Rate

Original tasks Replicats

(c) Overhead versus failure rate. (d) Completed tasks origin versus failure rate.

FIG. 8: Completion rate (a), Average CPU utilization (b), Overhead (c) vs. failure rate, and (d) Completed tasks
origin vs. failure rate for a set of 1200 tasks with same length.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

20 30 40 50 60 70 80 90

N
u
m
b
e
r
 
o
f
 
r
e
p
l
i
c
a
t
i
o
n

Failure Rate

One replication
Two replications

Three replications
Four replications

 0

 200

 400

 600

 800

 1000

 1200

20 30 40 50 60 70 80 90

N
u
m
b
e
r
 
o
f
 
r
e
p
l
i
c
a
t
i
o
n

Failure Rate

One replication
Two replications

Three replications
Four replications

FIG. 9: Number of replication for completed tasks vs. failure rate for a set of 200 (a), and 1200 (b) tasks with
random length.

ure 9. We can observe from this figure that the number of
task-replicas for the same task increases together with the
failure rate. For instance, for a failure rate of 20%, 81%
of completed tasks were replicated one time and the re-
maining 19% were replicated two times. However, when
the failure rate is equal to 90%, we can notice that 2%,
18%, 35%, and 45% of the completed tasks were repli-
cated 1, 2, 3, and 4 times, respectively. Indeed, if we have
a low failure rate, the reliability factor for the majority
of VMs will be greater than the confidence index, which
limits the number of task-replicas for the same task. On
the other hand, if the failure rate increases, the number
of replicas of a task also increases because the reliability
factor will be lower than the confidence index for more
VMs. This feature allows the RPMFT algorithm to react
dynamically to failures that occur in the system, result-
ing in high completion rate while minimizing resources
utilization.

VI. CONCLUSION

In this article, we have proposed a new fault tolerant
algorithm for load balancing in cloud computing envi-
ronments. Our proposal is made upon a combination of
proactive and reactive fault tolerance techniques in an
adaptive way. It aims to minimize the number of repli-
cations while maintaining system reliability. To this end,
a reliability factor is used to decide when the migration
of task-replicas should be done. Based on CloudSim sim-
ulator, it was shown that, when dealing with fault tol-
erance and load balancing, our algorithm exhibits better
performances than its direct competitor RFT in all the
tested scenarios. In future works, it would be useful to
evaluate the behavior of the RPMFT algorithm in a real
world cloud computing environment. Another interest-
ing research direction is to add an artificial intelligence
technique to improve the decision made when predicting
failures and choosing the suitable nodes for task replica-



9

tion.

[1] C. Engelmann, G. R. Vallee, T. Naughton, and S. L.
Scott, Proactive fault tolerance using preemptive migra-
tion, in 2009 17th Euromicro International Conference
on Parallel, Distributed and Network-based Processing
(IEEE, 2009) pp. 252–257.

[2] M. Pokharel and J. S. Park, Increasing system fault toler-
ance with software rejuvenation in e-government systems,
IJCSNC, International Journal of Computer Science &
Network Security 10, 160 (2010).

[3] E. Dijkstra, ªself-stabilizing systems in spite of dis-
tributed control, º comm (1974).

[4] F. Cappello, Fault tolerance in petascale/exascale sys-
tems: Current knowledge, challenges and research op-
portunities, International Journal of High Performance
Computing Applications 23, 212 (2009).

[5] K. K. Agarwal and H. Kotakula, Replication based fault
tolerance approach for cloud, in International Confer-
ence on Distributed Computing and Internet Technology
(Springer, 2022) pp. 163–169.

[6] J. Chen, X. Liang, and Z. Chen, Online algorithm-based
fault tolerance for cholesky decomposition on hetero-
geneous systems with gpus, in Parallel and Distributed
Processing Symposium, 2016 IEEE International (IEEE,
2016) pp. 993–1002.

[7] S. Ibrahim, B. Boulifa, S. Elloumi, A. Jaoua, M. Saleh,
L. Van Den Broeke, and I. Abu-Reesh, Natural fault tol-
erance in the context of a goal oriented software design,
in Software Engineering and Service Science (ICSESS),
2013 4th IEEE International Conference on (IEEE,
2013) pp. 279–282.

[8] E. Sindrilaru, A. Costan, and V. Cristea, Fault tolerance
and recovery in grid workflow management systems, in
2010 international conference on complex, intelligent and
software intensive systems (IEEE, 2010) pp. 475–480.

[9] M. Gamell, K. Teranishi, M. A. Heroux, J. Mayo,
H. Kolla, J. Chen, and M. Parashar, Local recovery and
failure masking for stencil-based applications at extreme
scales, in SC’15: Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis (IEEE, 2015) pp. 1–12.

[10] H. Mansouri, N. Badache, M. Aliouat, and A.-S. K.
Pathan, Checkpointing distributed application running
on mobile ad hoc networks, International Journal of High
Performance Computing and Networking 11, 95 (2018).

[11] M. R. Malekpour, A byzantine-fault tolerant self-
stabilizing protocol for distributed clock synchroniza-
tion systems, in Symposium on Self-Stabilizing Systems
(Springer, 2006) pp. 411–427.

[12] K. Plankensteiner, R. Prodan, and T. Fahringer, A
new fault tolerance heuristic for scientific workflows in
highly distributed environments based on resubmission
impact, in 2009 Fifth IEEE International Conference on
e-Science (IEEE, 2009) pp. 313–320.

[13] A. Lakhan and X. Li, Transient fault aware application
partitioning computational offloading algorithm in mi-
croservices based mobile cloudlet networks, Computing ,
1 (2019).

[14] S. Chakravorty, C. L. Mendes, and L. V. Kalé, Proactive
fault tolerance in mpi applications via task migration, in
International Conference on High-Performance Comput-
ing (Springer, 2006) pp. 485–496.

[15] T. Pitoura, N. Ntarmos, and P. Triantafillou, Saturn:
range queries, load balancing and fault tolerance in dht
data systems, IEEE Transactions on Knowledge and
Data Engineering 24, 1313 (2010).

[16] S.-S. Wang, K.-Q. Yan, and S.-C. Wang, Achieving ef-
ficient agreement within a dual-failure cloud-computing
environment, Expert Systems with Applications 38, 906
(2011).

[17] H.-T. Chang, Y.-M. Chang, and S.-Y. Hsiao, Scalable
network file systems with load balancing and fault toler-
ance for web services, Journal of Systems and Software
93, 102 (2014).

[18] J. Fang, P. Chao, R. Zhang, and X. Zhou, Integrating
workload balancing and fault tolerance in distributed
stream processing system, World Wide Web 22, 2471
(2019).

[19] T. Tamilvizhi and B. Parvathavarthini, A novel method
for adaptive fault tolerance during load balancing in
cloud computing, Cluster Computing 22, 10425 (2019).

[20] A. R. Setlur, S. J. Nirmala, H. S. Singh, and S. Khoriya,
An efficient fault tolerant workflow scheduling approach
using replication heuristics and checkpointing in the
cloud, Journal of Parallel and Distributed Computing
136, 14 (2020).

[21] M. Chatterjee, A. Mitra, S. K. Setua, and S. Roy, Gossip-
based fault-tolerant load balancing algorithm with low
communication overhead, Computers & Electrical Engi-
neering 81, 106517 (2020).

[22] B. Ray, A. Saha, S. Khatua, and S. Roy, Proactive fault-
tolerance technique to enhance reliability of cloud service
in cloud federation environment, IEEE Transactions on
Cloud Computing , 1 (2020).

[23] J. Nakamura, Y. Kim, Y. Katayama, and T. Masuzawa,
A cooperative partial snapshot algorithm for checkpoint-
rollback recovery of large-scale and dynamic distributed
systems and experimental evaluations, Concurrency and
Computation: Practice and Experience 33, e5647 (2021).

[24] Z. Li, V. Chang, H. Hu, H. Hu, C. Li, and J. Ge, Real-
time and dynamic fault-tolerant scheduling for scientific
workflows in clouds, Information Sciences 568, 13 (2021).

[25] A. Rezaeipanah, M. Mojarad, and A. Fakhari, Providing
a new approach to increase fault tolerance in cloud com-
puting using fuzzy logic, International Journal of Com-
puters and Applications 44, 139 (2022).

[26] M. Rahman, M. A. Rouf, et al., Aggressive fault toler-
ance in cloud computing using smart decision agent, in
Proceedings of the International Conference on Big Data,
IoT, and Machine Learning (Springer, 2022) pp. 329–
344.

[27] A. Semmoud, M. Hakem, B. Benmammar, and J.-C.
Charr, Load balancing in cloud computing environments
based on adaptive starvation threshold, Concurrency and
Computation: Practice and Experience 32, e5652 (2020).



10

[28] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A.
De Rose, and R. Buyya, Cloudsim: a toolkit for model-
ing and simulation of cloud computing environments and

evaluation of resource provisioning algorithms, Software:
Practice and experience 41, 23 (2011).


