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Minimal Injury Risk Motion Planning using Active Mitigation and
Sampling Model Predictive Control

Luiz Alberto SERAFIM GUARDINI1,2,3, Anne SPALANZANI1, Philippe MARTINET2,
Christian LAUGIER1, Thomas GENEVOIS1, Anh-Lam DO3

Abstract— Collision mitigation is an important element in
motion planning. Although Advanced Driver-Assistance Sys-
tems (ADAS) have a rich number of functionalities, they lack
interchangeability. There is still a gap on finding a way to
evaluate the best decision globally. This paper presents a novel
motion planning framework to generate emergency maneuvers
in complex and risky scenarios using active mitigation. The
classical Model Predictive Path Integral (MPPI) algorithm is
improved to be used in a probabilistic dynamic cost map under
limited perception range. A cost map with global probability of
injury to all road users is used as a constraint to the problem in
order to compute target selection based on the global minimum
risk considering all road users. Real experiments introduce
the use of augmented sensor data by merging simulation and
real sensor data to safely produce collision and mitigation
experiments. Results show that the proposed algorithm can
perform correctly in real time on board of the vehicle, by finding
collision-free trajectories in complex scenarios and compute
viable target selection that minimizes global injury risk when
collision is inevitable.

I. INTRODUCTION

Advanced Driver-Assistance Systems (ADAS) have been
developed to raise safety and driving comfort. Primary safety
has been addressed over the years with the advancement of
safety technologies such as Autonomous Emergency Braking
(AEB) and Advanced Evasive Steering (AES) systems.

NCAP-2025 Roadmap contemplates the development of
Autonomous Emergency Braking and Steering Systems
(AEBSS), which integrate steering and/or differential braking
by taking action autonomously, shifting from a system based
assessment to a scenario-based assessment. Its aim is to
deliver improved passenger car safety but also on how it
might assist other road users. The main objective is to make
use of new technologies to minimize human error, which are
responsible for over 90% of road accidents [1].

Many works in the literature propose motion planning
for emergency scenarios considering collision avoidance,
vehicle stability and path tracking supposing collision-free
scenarios. However, few works consider AEBSS application
for complex scenarios mitigation, such is the case in [2], [3].
These works however, limit the scope of the risk assessment
to the ego-vehicle occupants, disregarding the related risk to
all other road users.
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2Centre INRIA d’Université Côte d’Azur, ACENTAURI Team, 2004
Route des Lucioles, 06902 Valbonne, name.surmane@inria.fr

3Renault S.A.S, 1 av. du Golf, 78288 Guyancourt, France.
name.surmane@renault.com

On the other hand, works based in accidentology propose
a framework to quantify the benefits and efficiency of AEB
[4] and AEBSS [5] towards vulnerable road users. Yet, these
studies comprise a posterior analysis of the probability of
injury in the event of a collision.

To develop our AEBSS framework we rely on the MPPI
technique developed by Williams [6]. It derives from Path
Integral Control [7] which transforms the value function of
the Optimal Control Problem (OCP) into an expectation over
all possible trajectories. It is a method that allows Stochastic
Optimal Control (SOC) problems to be solved with a Monte
Carlo approximation using forward sampling of stochastic
diffusion processes [8]. Thus, MPPI uses a path integral
method to find a control sequence by minimizing the running
cost, which corresponds to the integral of each individual cost
in each step where solution to the Hamilton-Jacobi-Bellman
equation is approximated by importance sampling of these
paths using Feynman-Kac theorem and KL divergence [6].

The use of MPPI is appealing because it is a derivative-free
optimization method, which allows the use of non-linear and
non-convex models and cost functions. As MPPI has shown
good performance in aggressive driving situations, it seems
therefore particularly well adapted to emergency trajectories
in the ADAS context.

The original version of the MPPI algorithm [6] considers
an offline static cost map with previous knowledge of the
track configuration. It has been extended to environments
with dynamic obstacles in [9]. Also, a study on partially
observable scenarios for Quadrotors was introduced in [10].

The main contribution of this work is the development of
a novel motion planning technique for vehicle navigation in
a risky environment considering Active Mitigation, i.e, real
time target selection based on accidentology data.

In technological requirements, our methodology fulfills
Euro NCAP 2025+ specs for an AEBSS motion planning,
going beyond scenario-based assessment, since it can be
considered a generic assessment method. Therefore, our
work’s emergency trajectories planning considers the global
injury risk for all binary collisions between the ego vehicle
and a given object in the scene by using the Probability of
Collision with Injury Risk (PCIR) [11] as a constraint to the
problem.

To the best of our knowledge, this is the first time PCIR
is integrated into motion planning, as well as the use of
MPPI considering a probabilistic dynamic cost map with
limited perception range. In other words, from a classical
navigation algorithm, our work presents a novel AEBSS



general framework that integrates Active Mitigation (by the
use of PCIR) to compute either collision-free trajectories
when available, or a mitigation trajectory that comprises a
real-time target selection based on the global probability of
injury concerning all road users.

Real testing validation was conducted by using Virtual Ob-
jects and Augmented Reality. It is possible then to overcome
the adversity of real testing collisions with pedestrians and/or
other vehicles, making it possible to conduct real experiments
in safety while considering a virtual collision with objects in
the scene.

The remainder of the paper is organized as follows.
Section II introduces the system’s architecture. Section III ex-
plains the Emergency Trajectory MPPI (ET-MPPI) method-
ology. Section IV presents testing results and discussions.
Section V provides conclusion remarks.

II. SYSTEM ARCHITECTURE

Our proposed system for the motion planning framework
is depicted in Figure 1.

Fig. 1: System Architecture.

Inputs are: the Dynamic Environment Representation,
given by Conditional Monte Carlo Dense Occupancy Tracker
(CMCDOT) [12], a generic spatial occupancy tracker that
infers dynamics of the scene through a hybrid representation
of the environment; PCIR, which provides the probability
of collision between the ego-vehicle and an object while
also considering the probability of injury as a function
of the type of object (pedestrian, cyclist, another vehicle
etc.) and the impact speed between the ego-vehicle and the
corresponding object [11]; Vehicle Status and Localization,
which refers to ego vehicle information such as position,
velocity, acceleration and steering angle. In practice, the
odometry information is obtained by combining information
from an Xsens GPS and an Inertial Measurement Unit (IMU)
present in the prototype. The odometry estimator is based on
an Extended Kalman Filter (EKF) in order to infer the pose
of the ego vehicle.

The output of the system is an optimal trajectory that
considers either a collision-free trajectory when possible or a
mitigation trajectory that minimizes the global risk of injury
considering all binary collisions between the ego-vehicle and
each object in the scene.

III. EMERGENCY TRAJECTORY MPPI (ET-MPPI)
The original MPPI algorithm was developed to perform

aggressive maneuvers while maintaining the ego vehicle
speed as constant as possible. In emergency trajectories,

besides steering angle, one also needs to change the velocity.
To deal with emergency situations, our work makes use of
a large range of control inputs and due to the characteristics
of the MPPI approach, a significant number of trajectories
would be necessary to contain all the input variation needed.

It becomes too expensive to compose the two-dimensional
set comprising the desired extent for both the steering angle
and the velocity for each cell in the grid. For instance,
let us imagine a pedestrian and the reachability set of the
vehicle. A vast number of trajectories would be needed in
order to contain all possible (combinations of steering angle
and velocity variations within the desired scope for each cell
representing an object.

A. ET-MPPI

The Emergency Trajectory MPPI (ET-MPPI) framework
for emergency scenarios is presented in Algorithm 1. The
improvements to the original MPPI algorithm [6] that allows
the use of MPPI in emergency scenarios are highlighted
in red and further explanation on the definition of the cost
function is given later in this section.

Algorithm 1: ET-MPPI Algorithm
1 Procedure computeMppiControl(xinit ,uinit ,∆t)
2 for k← 0 to K−1 do // For all sampled trajectories

3 Sample εk
t ∈N (0,νΣ) // Generate Gaussian noise

4 for t← 0 to T −1 do // For prediction horizon

5 vt = ut + εk
t // Adding noise to control

6 vtbrake = ut + εk
tbrake

// Emergency braking control

7 x← x+F(x,g(vt))∆t // State update
8 xbrake← xbrake +F(xbrake,g(vtbrake ))∆t
9 if collision(xk) then

10 xk ← xkbrake // Replace by braking state

11 S̃k = S̃k +q(xt,k,ut,k) // Trajectory Cost

12 S̃k = S̃k +φ(x) // State dependent terminal cost

13 ρ ←min
k
(S̃k) // Find minimum cost

14 η ←
K−1
∑

k=0
exp

(
− 1

λ
(Sk−ρ)

)
// Normalizer

15 for k← 0 to K−1 do
16 wk ← 1

η
exp

(
− 1

λ
(Sk−ρ)

)
// Probability Weight

17 for k← 0 to K−1 do

18 U←
(

U+
K−1
∑

k=0
wkεk

)
// Weighted sum control

update

19 return etmppiTrajectory(xinit ,U) // Return trajectory

To start, the algorithm requires the status and localization
of the ego vehicle at instant tinit , here defined as (xinit ,uinit ). In
our case, it comes from the Vehicle Status and Localization
block. Then, KxT random control variations are generated
using CUDA’s random number generation library (line 3).
The variance ν of the noise N can be increased to avoid
local minima by shifting the range of the trajectory cost,
which leads to even more chattered control solutions.

Perturbation is added to the initial control sequence (line
5). The Gaussian noise generated for the acceleration in the
original algorithm is replaced by the maximum deceleration



in εbrake (line 6), whereas the Gaussian noise for the steering
angle remains the same.

The next state is found for each sampled trajectory (line
7) and updated according to each timestep t. The Same is
valid for K conservative trajectories xbrake (line 8), which
always consider the maximal braking and the corresponding
random noise for the steering angle. F(·) represents the
vehicle model, in our case, a kinematic bicycle model and
g(·) the clamping function for actuators saturation.

Every trajectory xk is checked for collisions. If the kth

trajectory collides against one of the objects of the scene, it
is replaced by the conservative trajectory xkbrake (line 10).

A running cost for each sample trajectory k at a given
timestep t is then computed and added to the final cost (lines
11:12). The cost of each sampled trajectory k is converted
to a probability weight wk (line 16), taking into account the
minimum weight trajectory (line 13). The optimal control
law is then defined via the probability weight wk averaged
over all the perturbation sequences (line 18).

The final trajectory is obtained by passing the final control
sequence trough a vehicle model (line 19), a kinematic
bicycle model in our case. Since the final optimal trajectory
depends on the probability weight of each k trajectory,
it is possible to compute compute pure evasive steering
trajectories (or a composition of braking and steering),
otherwise, the ET-MPPI algorithm guarantees that the worst-
case scenario will always have the maximal braking (same as
in AEB), although with the advantage of all possible range
of steering for the collision trajectories, which allows some
maneuverability.

For the latter, since we apply PCIR as a constraint to the
system, it is possible to have a better contextualization of the
scene when dealing with mitigation scenarios and compute
a target selection considering the global minimal risk. So,
if the evaluation considers that no collision-free trajectories
can be computed, we need to compute the minimal global
risk associated with all K possible trajectories. Those criteria
are addressed by defining and tuning the cost function S̃k
coefficients as presented in the next subsection.

B. ET-MPPI Cost Functions

Our cost map takes into consideration both static and
dynamic objects given by a probabilistic grid. Furthermore,
the Probability of Collision with Injury Risk (PCIR) is used
as a novel constraint to the problem. The elements taken
into consideration in order to develop our cost map are
the vehicle’s actuators and dynamics constraints, objects
and PCIR, perception limits and the ego-vehicle predicted
trajectory.

The actuator and dynamic constraints and variance cost
are already taken into consideration in the original algorithm
presented in [13] in the form of a convex cost function.

Our path cost q(x) is defined as:

q(x) = cpcir + cwhiteline + climits + cre f erence (1)

cpcir penalizes collision while considering injury risk:

cpcir = wpcir(PCIR) (2)

where wpcir is the weight and PCIR is computed according
to the impact speed and the type of object in the scene [11].
To avoid collisions as much as possible, wpcir gets a high
value, and if mitigation is needed, the value of PCIR will
become predominant over all other costs, which sets the
target selection.

cwhiteline assigns for ego-vehicle trajectory to remain on the
right side of the road. Trajectories surpassing the boundaries
are penalized as defined in equation (3).

cwhiteline = wwhiteline (3)

Where wwhiteline corresponds to the correct road lane cost. It
is set as a soft constraint to appease an emergency eviction
maneuver that requires crossing the middle lane to avoid
a collision. This is achieved by setting the corresponding
weight to a value that is between Reference and PCIR costs.

climits, defined in Equation (4) is used to ensure that the
ego-vehicle will not cross undesired areas, such as sidewalks,
which can lead to loss of control. In cases where a behavior
planning is used, this constraint can be replaced by the ones
issued by the behavior planner.

climits = wlimits (4)

Where wlimits corresponds to the road limit cost and its value
shall surpass wPCIR to assure that even in mitigation cases
the constraint will be respected.

Figure 2 shows a diagram to exemplify cwhiteline and climits.
Trajectories which are generated and which remain in the
green zone (trajectory 3) are not penalized by either costs.
Trajectories that go beyond the green zone to the yellow zone
(trajectory 2) are penalized with cwhiteline. Trajectories which
are in the red zone (trajectories 1 and 4) are penalized with
climits.

Fig. 2: Road Boundaries and Limits.

cre f erence is used for having the evasive trajectory closer to
the projected real trajectory of the vehicle. It is defined as:

cre f erence = (x−xre f )
T wre f (x−xre f ) (5)

Where wre f corresponds to a positive define weight matrix
and xre f are the reference states in a three seconds horizon
trajectory prediction from a kinematic bicycle model and the
initial states provided by an odometry estimator based on an
Extended Kalman Filter (EKF).

IV. EXPERIMENTS AND TESTING

The ET-MPPI algorithm has been tested both in simulation
and real experiments. Table I presents the corresponding
parameters for the testing.



TABLE I: ET-MPPI Parameters Values

K 4000 T 45
λ 0.004 α 0.7
wwhiteline 5000 wPCIR 1.6E5
ν Diag(1.0, 1.2) wre f Diag(0, 400, 0, 0)
ΣCx Diag(1.0, 2.0) ΣCy Diag(1.0, 22.0)
Rterminal Diag(0, 2.5, 0, 400)

A. Experimentation Scenarios

We propose a pedestrian crossing scenario, shown in Fig-
ure 3, for our analysis. Scenario complexity grows from (a) to
(c) to evaluate ET-MPPI algorithm performance in generating
either collision free or mitigation optimal trajectories.

Scenario (a) Scenario (b) Scenario (c)

Fig. 3: Pedestrian Crossing Scenarios

The ego vehicle (white), has its field of view occluded
by the truck on its right. Therefore, the pedestrian (coming
from the right of the ego vehicle) perception happens for
Time-to-Collision (TTC) between 0.5 and 2 seconds.

B. Metrics

Two metrics are considered. The first is related to vehicle
controllability. Two different control constraints based on the
definition of controllability given by ISO 26262 standard [14]
had been chosen. Cx (simply controllable) and Cy (difficult to
control or uncontrollable), whose parameters for the steering
angle δ , the steering rate δ̇ and the acceleration a are
presented in Table II. These parameters are inserted in line
3 of Algorithm 1 in order to generate the noise εk

t that
will be added to the control input and thus influence the
variance importance sampling. The control input perturbation
along with the clamping function g(·) compose the vehicle
reachable set.

TABLE II: Control Constraints Cx and Cy

Constraint δ [degrees] δ̇ [degrees/s] a [m/s2]
Cx [-3 3] [-3 3] [-3 3]
Cy [-30 30] [-30 30] [-9 3]

The second metric is a performance comparison between
AEB systems, Cx and Cy in terms of collision eviction and/or
mitigation.

Each scenario was simulated twenty times for each control
constraint. A small offset was added to each of the objects’
initial position to observe the robustness of the method with

respect to avoidance/mitigation and provide a comparison
with the full longitudinal braking AEB system.

C. Simulation Experiments

Simulations take into consideration noisy localization sen-
sors, such as GPS and IMU. Besides, the uncertainty in the
perception is also taken into consideration. All simulation re-
sults were obtained with the following specs: Intel® Core™
i9-9880H CPU @ 2.30GHz x 16 with NVIDIA Quadro RTX
3000/PCIe/SSE2 GPU under Ubuntu 18.04 ROS Melodic
[15] and Gazebo 9 [16].

1) Simulation Results: The graph in Figure 4 presents the
percentage of collision-free (blue) and mitigation trajectories
(red) for the AEB case and control constraints Cx and Cy,
considering an ego-vehicle longitudinal velocity of 50 km/h
.

Fig. 4: Percentage of collision-free or mitigation cases for 20
simulation runs for the given scenarios for AEB system and
ET-MPPI control constraints Cx and Cy.

Control constraint Cy showed a better performance in
avoiding objects in the scene when compared to the other
control constraint Cx and the AEB system. This is due to the
fact that Cy presents a larger reachability set and an eviction
maneuver is possible in many more cases. In most of the
cases, configuration Cx does as good as the AEB system,
since its output usually corresponds to braking, since its
reachable set is much more limited.

Another outcome is that an increase in scenario com-
plexity will lead to situations where collision might become
inevitable, and consequently, mitigation is needed.

Next, we discuss and present the output of the ET-MPPI
algorithm compared to the AEB for a collision-free trajectory
for scenario (a), and a mitigation case for scenario (c), both
considering the control constraint Cy at 50 km/h ego-vehicle
speed. Scenario (b) will not be discussed since its outcomes
tend to one of the presented results.

Scenario (a) is shown in Figure 5 on the left. The system
perception and output for the ET-MPPI generated trajectory
for Scenario (a) is shown in Figure 5 on the right. The AEB
trajectory is represented by the black band and the ET-MPPI
trajectory by the yellow band.

Although the given scenario is not complex, it is possible
to observe that the AEB system will only be able to mitigate
the collision, whereas an eviction trajectory (yellow band
with footprint of the ego-vehicle) was generated by the ET-
MPPI algorithm. Besides the point of avoiding the obstacle,



Fig. 5: Scenario (a): On the left the gazebo simulation, on the
right, perception, object prediction and ET-MPPI generated
trajectory

the ET-MPPI trajectory might also avoid a rear collision to a
tailing vehicle, increasing the road safety. For the simulation
we consider that the pedestrian will cross the road at constant
speed. However, if the pedestrian reacts to the incoming
vehicle, the emergency trajectory is replanned (iteration time
of 0.05 seconds) and a new emergency trajectory is computed
in order to cope with the new changes.

Scenario (c) is depicted in Figure 6, where the scene
is shown on the left and the output with the elements of
the scene are displayed on the right. The truck on the
right, which is occluding the field of perception is pushed
closer to the pedestrian passing to decrease even further the
reaction time. The goal is to analyse a mitigation scenario
by observing how the algorithm generates the ET-MPPI
trajectory according to the injury risk associated with each
of the objects.

Fig. 6: Scenario (c): On the left the gazebo simulation, on the
right, perception, object prediction and ET-MPPI mitigation
trajectory

The ET-MPPI trajectory for this case is displayed in red,
since a mitigation trajectory is considered for the scene. Both
AEB and ET-MPPI trajectories will result in a collision,
however, for the latter, a target is selected through the
cost function parameter cpcir, resulting in a trajectory that
minimizes the global injury risk.

Figure 7 displays the corresponding PCIR cost map based
on the type of object and the prediction. This cost map
gives us an indication of the global probability of injury with
respect to the highest probability of injury in the scene. For
instance, the pedestrian presents the reference PCIR of 1

Fig. 7: Scenario (c): PCIR cost map generated from ET-MPPI
trajectory cost

(or 100%), meaning that it is the most vulnerable road user.
The vehicles on the top (blue vehicle) present a very low
probability of collision with injury risk (close to white) if
compared to the pedestrian. The stationary vehicle on the
bottom presents a PCIR close to 40%. It takes precedence
over the blue vehicle but does not take precedence over the
pedestrian, but since the path to the blue vehicle is blocked
by the pedestrian prediction, target selection goes towards
the parked truck on the right.

In short, AEB trajectory will result in an ego-to-pedestrian
collision, which to the corresponding impact speed and
assumptions brings a higher probability of injury (around
80% probability of slight and 20% severe injury) to the
pedestrian. ET-MPPI algorithm had a better performance in
mitigating the collision due to the target selection based on
PCIR. For the given scenario, instead of colliding with the
pedestrian our algorithm selects the truck on the right, which
brings a less than 2% probability of injury to the occupants
of the vehicles.

D. Real Experiments

Experiments have been conducted on a dedicated test
vehicle, a Renault Zoe equipped with a Velodyne HDL64
LiDAR on the top, 3 Ibeo Lux on the front and 1 on the
back, which provides dense 3D point clouds of threshold
measurement. Besides, a Xsens GPS, an IMU and a SP90
RTK GPS system provide accurate position and orientation.
Same as in simulation, perception relies on the CMCDOT
spatial occupancy tracker [12]. The localization is based on
the fusion of the odometry and the RTK GPS to obtain a
coherent position, orientation and speed estimation.

The experimental validation of this work demands com-
plex test scenarios, where collision with pedestrians and
vehicles must be contemplated. For safety reasons, such tests
cannot be realized in real conditions and a new augmented
reality framework [17] has been used.

The results for real experiments are shown in Figure 8. On
the left, the augmented reality provides augmented sensor
data to the vehicle camera and on the right the virtual and
real objects perception and PCIR. The red band represents
the ET-MPPI mitigation trajectory. As in simulation, target
selection presents the pedestrian as the most vulnerable road
user and a collision with the parked truck on the right brings
the least global injury risk.



Fig. 8: Scenario (c) real testing. On the left, camera view with
objects in Augmented Reality. on the right, perception, PCIR
for object prediction and ET-MPPI mitigation trajectory

The augmented reality setup allowed real testing consid-
ering collision while keeping driver security and prototype
integrity. Terrain noise affected the result due to false-
positive detection. However, due to replanning we noticed
that once the perception grid filters the noise a new trajectory
is promptly generated.

Another remark is related to object prediction. We have
noticed a small delay that might be the result of GPU usage
for perception, virtual object simulation and MPPI algorithm
combined.

Considering all challenges of real time experiments, the
ET-MPPI algorithm has produced results consistent with
simulation for generating collision-free trajectories when
possible or mitigating the global probability of injury for
a collision in mitigation scenarios.

V. CONCLUSIONS

The present work presents a novel motion planning tech-
nique for vehicle navigation on risky environments consid-
ering active mitigation. Trajectory planning is based on the
classical MPPI framework, which is significantly improved
to contemplate a probabilistic dynamic cost map and global
probability of injury constraints.

Results show that trajectory generation complies with Euro
NCAP 2025+ requirements by providing an AEBSS scenario
based framework which generates collision-free trajectories
when possible or computes active mitigation target selection
based on preexisting accidentology data.

Virtual objects are introduced in our work as an alternative
to conduct safe real experiments. By merging virtual sensor
data to actual real data to virtually present objects in the
scene, which allowed us to carry out real experiments without
putting in risk the driver or menacing prototype integrity.

One limitation of the study is the use of constant ve-
locity objects in simulation. A suggestion for improvement
includes a more liable simulation scenario with non-constant
velocities objects and pedestrians with random trajectories.
Also, for prototype experiments, false-positives on detection
interfered with the algorithm output, although the replanning
made it possible to correct it once filtering removed the noise.

Future development includes dealing with the mentioned
limitation on object tracking to improve object prediction,
and noise filtering to improve trajectory planning output
stability. It also includes the use of the generated trajecto-
ries as set points for a motion controller to be used in a

feedback loop in order to observe its feasibility in prototype
applications.
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