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Linear and nonlinear parabolic forward-backward problems

Anne-Laure Dalibard*! Frédéric Marbach? Jean Rax*

July 2, 2024

Abstract

The purpose of this paper is to investigate the well-posedness of several linear and nonlinear
equations with a parabolic forward-backward structure, and to highlight the similarities and
differences between them. The epitomal linear example will be the stationary Kolmogorov
equation y9,u — dyyu = f, which we investigate in a rectangle (xo, 1) X (—1, 1), supplemented
with boundary conditions on the “parabolic boundary” of the domain: the top and lower
boundaries {y = £1}, and the lateral boundaries {zo} x (0,1) and {z1} x (—1,0). We first
prove that this equation admits a finite number of singular solutions associated with regular
data. These singular solutions, of which we provide an explicit construction, are localized in
the vicinity of the points (zo,0) and (z1,0). Hence, the solutions to the Kolmogorov equation
associated with a smooth source term f are regular if and only if f satisfies a finite number
of orthogonality conditions. This is similar to well-known phenomena in elliptic problems in
polygonal domains.

We then extend this theory to the Vlasov—Poisson-Fokker—Planck system yd,u+ E[u]dyu—
Oyyu = f, and to two quasilinear equations: the Burgers type equation u0,u — Oyyu = f in
the vicinity of the linear shear flow, and the Prandtl system in the vicinity of a recirculating
solution, close to the curve where the horizontal velocity changes sign. We therefore revisit part
of a recent work by Iyer and Masmoudi [34, 35]. For the two latter quasilinear equations, we
introduce a geometric change of variables which simplifies the analysis. In these new variables,
the linear differential operator is very close to the Kolmogorov operator y0, — 0yy. Stepping
on the linear theory, we prove existence and uniqueness of regular solutions for data within a
manifold of finite codimension, corresponding to some nonlinear orthogonality conditions.

Treating these three nonlinear problems in a unified way also allows us to compare their
structures. In particular, we show that the vorticity formulation of the Prandtl system, in an
adequate set of variables, is very similar to the Burgers one. As a consequence, solutions of
the Prandtl system are actually smoother than the ones of Burgers, which allows us to have
a theory of weak solutions of the Prandtl system close to the recirculation zone.

*Sorbonne Université, Université Paris-Diderot SPC, CNRS, Laboratoire Jacques-Louis Lions, LJLL, Paris
TEcole Normale Supérieure, Université PSL, Département de Mathématiques et applications, Paris
$Univ Rennes, CNRS, IRMAR - UMR 6625, Rennes
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1 Introduction

This manuscript is devoted to the well-posedness of linear and nonlinear equations having a
parabolic forward-backward structure. In the linear case, our main example will be the Kolmogorov
equation yd,u — dy,u = f in the rectangular domain Q := (xg,z1) X (—1,1) where z9 < z; and
f is an external source term. We will also consider nonlinear perturbations of this linear setting.
The easiest nonlinear perturbation we consider is a Vlasov—Poisson—Fokker—Planck type system of
the form yd,u + Eu]dyu — Oyyu = f, where E[u] = 8;' [udy. In this case the nonlinearity does
not perturb the geometry of the problem, which remains forward parabolic in the region y > 0,
and backward parabolic in the region y < 0.
We will also investigate the existence and uniqueness of sign-changing solutions to the Burgers
type equation
U0pu — Oyyu = f (1.1)

and to the Prandtl system

UOpu + vOyu — Oyyu = —0yD, (1.2)

Uy + vy = 0.

A natural solution to (1.1) with a null source term f = 0 is the linear shear flow u(z,y) := y, which
changes sign across the horizontal line {y = 0}. In a similar way, semi-explicit solutions (up,vp)
of the Prandtl system (1.2) such that up changes sign have been exhibited, see the discussion in
Section 1.3 below. We are interested in strong solutions to (1.1) (resp. (1.2)) which are close in
an appropriate norm to this linear shear flow u (resp. to the reference solution (up,wvp)). Our
purpose is to construct such solutions by perturbing the lateral boundary data or the source term.

Since such solutions will change sign across a curve {u = 0} lying within 2, a key feature of
this work is that (1.1) and (1.2) must be seen as quasilinear forward-backward parabolic problems
in the horizontal direction. Thus, to ensure the existence of a solution, one must be particularly
careful as to how one enforces the lateral perturbations. More precisely, the problem is forward
parabolic in the domain above the curve {u = 0}, in which u > 0, and therefore we shall prescribe
a boundary condition on Xg := {x = 29} N {u > 0}; and backward parabolic in the domain below
the curve {u = 0}, and we shall prescribe a boundary condition on X := {z = z1} N {u < 0}.

Figure 1: Fluid domain 2 and inflow boundaries g U 3

We will construct solutions to these problems thanks to an abstract implicit function theorem
taking into account the geometry of the problem. More precisely, we will first straighten the free
boundary {u = 0} by introducing as a new vertical variable z = u(x,y). A suitable change of
unknown function will then transform (1.1) and (1.2) into quasilinear equations with an easier-to-
handle nonlinearity (see Remark 4.2).



Because of the nonlinearity, we need to work in a high enough regularity space in order to
have a suitable control of the derivatives. However, one key difficulty of our work lies in the fact
that, even when the source term f is smooth, say in C§°(Q2), solutions to (1.1) and (1.2) have
singularities in general. Actually, this feature is already present at the linear level, i.e. for the
equation yO,u — Ozpu = f. We prove that if f is smooth, the associated weak solution to the
linear system inherits the regularity of f if and only if f satisfies orthogonality conditions (i.e. the
scalar products of f with some identified profiles must vanish). We also describe the singularities
that appear when these orthogonality conditions are not satisfied. At the nonlinear level, these
orthogonality conditions become a finiteness assumption on the codimension of the data manifold.

All the features described above (orthogonality conditions for linear forward-backward equa-
tions, description of the potential singularities, handling of orthogonality conditions for quasilinear
systems) appear to be new. We believe that the strategy we use could be extended to other nonlin-
ear settings in which orthogonality conditions appear (elliptic equations in domains with corners,
problems in which the linearized operator is Fredholm with negative index, ...)

1.1 Statement of the main results
1.1.1 Linear theory

Due to the forward-backward nature of the problem, we must choose the lateral perturbations and
the source term in a particular product space. We therefore introduce the vector space

Xp = {(f, 50,61) € HEH2 x H5(0,1) x H*(—1,0); flsyus, =0

_ , (1.3)

and 5,(0) = 5,((~1)") = 57(0) = 5/((~1))) = 0},
where Yo = {z} x (0,1) and 31 = {x1} x (—1,0) are the lateral boundaries on which we prescribe
boundary conditions. We endow Xp with its canonical norm

1(f5 60, 0) |25 == [ f |z ez + 100l s + (102 ]| ars- (1.4)

We establish existence and uniqueness of solutions in the following anisotropic Sobolev space
Q' := H3((x,21); L*(—1,1)) N H ((xg, x1); H?*(—1,1)). (1.5)

In particular, for solutions with such regularity, Equation (1.1) or its linear version yd,u—0y,u = f
hold in a strong sense, almost everywhere and the various boundary conditions hold in the usual
sense of traces. We first state a result concerning the well-posedness in Q' of the stationary
Kolmogorov equation (see (1.6) below), up to two orthogonality conditions (see comments below).
Although equation (1.6) has been thoroughly investigated, as we recall in Section 1.2, we could
not find this statement in the existing literature.

Theorem 1 (Orthogonality conditions for linear forward-backward parabolic equations). There
exists a vector subspace Xé-’sg C X of codimension 2 such that, for each (f,d0,01) € Xp, there
exists a solution u € Q' to the problem

YO, u — Oyyu = f,
U\Ei = 61'7 (16)
Uly=%1 = 0,



if and only if (f,00,01) € Xésg. Such a solution is unique and satisfies

l[ullgr < NI(f, b0, 1)l x5- (1.7)

We emphasize that this result implies that there exist triplets (f,do,d1) that can be chosen
arbitrarily smooth and compactly supported, and for which there are no Q! solutions to (1.6).
Furthermore, the vector space X é_,sg can be fully characterized: classically, X’ é:sg = ker £0 Nker £1,

where ¢0 and ¢! are two linear forms on Xp which we shall write explicitly. If the data do not
belong to X é‘ysg, the solution has singularities, which we can describe completely.

Theorem 2 (Decomposition of solutions as a sum of singular profiles and a smooth remainder). Let

(f,00,01) € Xp. There exists a unique solution u € Hg/gLiﬁLiHyz to equation (1.6). Furthermore,
this solution admits the following decomposition: there exists co,c1 € R, and ureg € Q', such that

_0 1
U = Colgipg + C1lging + Ureg- (1.8)

Each profile @ o 18 supported in the vicinity of (zi,0) and is smooth on Q\{(x;,0)}. Furthermore,

sin

for |z — ;| <1 and y| <1,

Tglary) = (Jo + o= 2l?) ' o ((—wy) , (1.9)

1
T — 4|3
where Ag € C*°(R) is such that Ag(—o0) =1 and Ag(+00) =0 (see Fig. 2 page 30).

The existence of a weak solution was already known, see in particular [51, 52, 22]. The novelty
of the above theorem lies in the identification of the singular profiles ﬂéing, and in the decomposition
of any weak solution. The function Ag is in fact the solution to an ODE, and can be characterized
in terms of special functions (namely confluent hypergeometric functions of the second kind, or
Tricomi’s functions). The assumptions on the data (f, dp, d1) are not optimal and can be weakened,

see Proposition 2.9 and Corollary 2.27 in Section 2 and the definition of the space Hg in (2.19).

1.1.2 A nonlinear toy model from kinetic theory

As a corollary to Theorem 1, we obtain a similar statement for a (nonlinear) Vlasov—Poisson—
Fokker—Planck system in an interval. In order not to burden the introduction, we refer to Section 3
for the presentation of the system and to Theorem 5 for the full statement. The proof of Theorem 5
is rather straightforward since the geometry of the considered problem remains the same as for (1.6),
and the nonlinearity is very weak. We nevertheless use this example to set up our nonlinear scheme
in Section 3.3 and a general abstract nonlinear existence result in Section 3.5.

1.1.3 The viscous Burgers system

We then turn towards the nonlinear problem (1.1). One of the main results of this paper is the
following nonlinear generalization of Theorem 1 for small enough perturbations®.

Theorem 3 (Existence and uniqueness of strong solutions to (1.1) under orthogonality conditions).
There ezists a Lipschitz submanifold Mp of Xp of codimension 2, containing 0 and included in

I More precisely, the norm of the perturbation must be smaller than some constant depending only on the size of
the domain and on the underlying flow, see Section 1.5.1.



a ball of radius n < 1 in Xpg, such that, for every (f,do,01) € Mp, there exists a strong solution
ue Q! to
U0pu — Oyyu = f,
us, =y +0i(y), (1.10)
Uly=+1 = +1.

More precisely, Mp is modeled on Xé_,sg and tangent to it at 0. Such solutions are unique in a
small neighborhood of u(x,y) =y in Q' and satisfy the estimate

[u—ullgr < I(f; 00, 01)]lxs- (1.11)

In the statement above, the condition that the data (f,dg,d1) belong to the manifold Mp is
the nonlinear equivalent of the orthogonality conditions from Theorem 1. We emphasize that this
is by no means a technical restriction which could be lifted, but actually a necessary condition to
solve the equation with smooth solutions, as we state in Proposition 1.1 below. A key difficulty
lies in the fact that these orthogonality conditions depend on the solution itself.

Proposition 1.1 (Necessity of the orthogonality conditions). There exists n > 0 such that the
following result holds. Let (f,380,61) € Xp with ||(f,60,01)|lxs < n. Let u € Q' be a solution
to (1.10) such that ||u — u|lgr <. Then (f,é0,01) € Mp.

Remark 1.2. By commodity, the above results are stated using the full triplet (f,do,01), and
so is the remainder of this paper. Nevertheless, it is possible to obtain similar results either by
fizing 6g = 01 = 0 and constructing a submanifold of source terms f yielding regular solutions,
or by fixing f = 0 and constructing a submanifold of boundary data (69,81). This stems from the
independence of the orthogonality conditions, which can be obtained either by Proposition 2.13 or
by Proposition 2.31.

1.1.4 The Prandtl system

We also prove analogous results for the Prandtl system, revisiting the work of Iyer and Masmoudi
in [35, 34] (we will comment more thoroughly on the differences between our results in the next
sections). Let us now present our mathematical setting; we will provide physical motivation and
background for this system in Section 1.3. We consider a reference flow (up,vp) € C*([zq, 1] X
(0, 4+00)) for some sufficiently large k (say k = 4), satisfying the Prandtl system

dap
dz’
Ozup + 8wa =0 (1.13)

upd;up + \Vpay\Vp — 8yy\Vp = — (1.12)

in the whole domain (g, z1) X (0, +00), where p is the trace of the pressure of some outer Euler flow
on the boundary {y = 0}. We assume that there exists a curve I' := {y = vp(z)}, with vp smooth
and such that inff,; ,,;yp > 0, such that up changes sign on the curve I': up(z,vp(z)) = 0, and
up(x,y) < 0 (resp up(z,y) > 0) for y < yp(z) (resp. y > yp(x)). Our purpose is to construct a
solution to the Prandtl system close to (up, vp) and in the vicinity of the curve I', by perturbing
the inflow /outflow on the lateral boundaries?.

To that end, we consider z, < 0 < z; such that there exist smooth functions 7,7, with

0 < (z) < vp(z) < ¥ (z) for all x € [zg,z1], and such that up(z,7;(x)) = z; for j € {b,t}. We

2In fact, we can perturb either the boundary conditions or the source term.



set I'; = {y =7;(z)} for j € {b,t}. We consider the Prandtl system (1.2) in a domain Qp, which
is defined by
Qp = {(z,y) € (xo,71) x Ry; () <y < ye(x)}, (1.14)

where 3, v¢ are smooth functions, which will actually be free boundaries, corresponding to level sets
of the function u. We expect these functions (which are unknowns of the problem) to be smooth
functions located in the vicinity of 7p,7. We endow system (1.2) with the following boundary
conditions, which we will discuss and comment in Section 1.2.

1. Boundary conditions on the top and bottom free boundaries: On the bottom boundary I'y, =
{y = 1(x)}, we enforce
ulr, = uply = 2,
Oyulr, = Oyuplg; + b, (1.15)
vlr, = vplg + v,
where 6§, v, are small, smooth perturbations.

Similarly, on the top boundary I'y = {y = v(x)}, we enforce

U‘Ft = Zt,
1.16
ayu‘r‘t = aylllp|ﬁ+5t7 ( )

where ; is, again, a small smooth perturbation.

Remark 1.3. Note that on the top and bottom boundary, we prescribe the trace of u and of
its normal derivative. Of course it would be impossible to prescribe simultaneously these two
boundary conditions if the boundaries T'y, Iy were fized. This is only made possible by the
fact that these two boundaries are free.

2. Lateral boundary conditions: As in the case of (1.6) and (1.10), we enforce lateral boundary
conditions on u, namely
U = up + i, 1€ {0, 1}, (1.17)

where XF = {(2i,y), (=1)'up(zi,y) > 0,y € (yp(xi),y:)} for some yo,y; such that yo >
vp(x0), y1 < yp(21). For simplicity, we assume that §;(yp(z;)) = 0, and we recall that d¢, d;
are assumed to be small in some sufficiently strong Sobolev norm. Therefore the signs of
up(z;, ) + d; and of up(x;,-) are identical in a vicinity of vp(z;).

We will in fact state two different results: one in “low regularity”, under merely one orthogo-
nality condition, and another one in higher regularity, under three orthogonality conditions. For
the sake of readability, we have stated them under the same regularity and compatibility assump-
tions on the data, although the assumptions are not optimal in the low regularity case, and the
compatibility conditions could be generalized in both cases. We will state a more general result in
Section 5 (see Proposition 5.2). Therefore, we take our data in the functional space

Xp = {(50751,5“5,,,%) cHO(SP) x HO(SF) x H2(x0,21) x H2(z0,21) x H' (20, 21),
6 € Hi(=D) },

which we endow with its natural norm.



Theorem 4. There exist numbers n > 0, zo > 0, depending only on the underlying flow (up,vp),
such that if |zp|, 2t < 20, the following results hold.

1. There exists a manifold My of codimension 1 in Xp and included in a ball of radius n in Xp,
such that for all (0, 01, 0¢, 0p, vp) € Mo, equation (1.2) endowed with the boundary conditions
(1.15)-(1.16)-(1.17) has a unique solution u such that u € L3 Hy(Qp), (x — x0)(x — x1)u €
HyH}(Qp), Oyu € L™(Qp), ud,dyu € L*(Qp), and

lu = wp 22 g + 19y (u = p) = + Il — w0)(@ — 21)(u — wp) a2 3

S (6o, 01, 8¢, 66, vb) [l -

2. There ezists a manifold My of codimension 3 in Xp and included in a ball of radius n in Xp,
such that for all (0g, 01, 0¢, 0p, vp) € M1, equation (1.2) endowed with the boundary conditions

(1.15)-(1.16)-(1.17) has a unique solution u such that u € H;;’/gHyl NHYH}(QP), and

lu = wpll /s gy + llu = wpllazm < 11(0, 01, 0, 06, v) | xe -

1.2 Comments and previous results

We start with a few comments on our main results and recall related known results.

Problem (1.6), involving the operator y0, — dy,, can be seen as a particular case of the class
of “degenerate second-order elliptic-parabolic linear equations”, also referred to as “second-order
equations with nonnegative characteristic form” (as opposed to positive definite ones), “forward-
backward” or “mixed type” problems. They date back at least to Gevrey [24].

Problem (1.6) itself, as well as these wide classes of equations, has received a lot of attention
and has been investigated under different aspects: with variable coefficients or other geometries
[22, 52|, higher-order operators [42, Ch. 3, 2.6], abstract operators [9, 53], explicit representation
formulas [23, 27] or with a focus on numerical analysis [3].

On weak solutions for the linear problem. It is well-known since the work of Fichera [22]
that weak solutions to (1.6) with L H, regularity exist. For general boundary-value problems
for elliptic-parabolic second-order equations, one owes to Fichera the systematic separation of the
boundary of the domain into three parts: a “noncharacteristic” part, where one sets either Dirichlet
or Neumann boundary conditions (here y = +1), an “inflow” part, where one sets a Dirichlet
boundary condition (here ¥y U X;) and an “outflow” part, where one cannot set a boundary
condition (here, the two sets {zo} x (—=1,0) and {z1} x (0,1)).

Baouendi and Grisvard [8] proved the uniqueness of weak solutions to (1.6) with L2H, regu-
larity, by means of a trace theorem and a Green identity (see Appendix A).

On strong solutions for the linear problem. There is an extensive literature on the regularity
of solutions to degenerate elliptic-parabolic linear equations, and whether weak solutions are strong.
We refer the reader in particular to the book [47] by Oleinik and Radkevi¢. Generally speaking,
depending on the exact setting considered, it is quite often possible to prove that the solutions to
such equations are regular far from the boundaries of the domain and/or from the regions where
the characteristic form is not positive definite. A nice example is Kohn and Nirenberg’s work [38],
which proves a very general regularity result. A key assumption of their work is that the “outflow”



part of the boundary does not meet the “noncharacteristic” and “inflow” parts (i.e. they are in
disjoint connected components of 992). Hence, it does not apply to (1.6), and hints towards a
difficulty near the points (z¢,0) and (z1,0).

In a series of papers [50, 51, 52], Pagani proved the existence of strong solutions to (1.6) (and
related equations). More precisely, Pagani proved the existence of solutions such that y9d,u and
dyyu belong to L?(£2). Moreover, he determined the exact regularity of the various traces of such
solutions (trace of u at © = x;, at y = 1 or y = 0, and trace of dyu at y = 0). These maximal
regularity results play a key role in our analysis and motivate the functional spaces we introduce
in Section 1.5.

On orthogonality conditions for higher regularity. As noted by Pyatkov in [54], for such
forward-backward problems: “as a rule, there is no existence theorems for smooth solutions with-
out some additional orthogonality-type conditions on the problem data”. Even for the linear prob-
lem (1.6), there have been very few works concerning higher regularity (than the one given by
Pagani’s framework) in the whole domain. Most of the works focused on higher regularity (such as
[54]) involve weighted estimates which entail regularity within the domain but not near the critical
points (x;,0). An attempt for global regularity is Goldstein and Mazumdar’s work [25, Theorem
4.2]; however the proof seems incomplete (see Proposition 2.9 below and its proof for more details).

A misleading aspect is that it is quite easy, assuming the existence of a smooth solution, to
prove a priori estimates at any order. Such phenomena are usual in the theory of elliptic problems
in domains with corners or mixed Dirichlet-Neumann boundary conditions (see for instance [28]).
Let us give an illustration of such a phenomenon in a close context. For a source term f € C2°(2),
consider the elliptic problem

—Au=f in Q,

u(z;,y) =0 for (—1)iy > 0,
Opu(x;,y) =0 for (—1)iy <0,
u(z,£1) =0  for x € (xg, z1).

(1.18)

It is classical that such a system has a unique weak solution u € H'(Q2). Moreover, assuming that
u is smooth enough, v := 9, u satisfies

—Av=20,f in Q,

Opv(zi,y) =0 for (—1)'y >0,
v(xs,y) =0 for (—1)%y <0,
v(z,£1) =0  for = € (xg,21).

(1.19)

For such systems, one has ||v]|g1 < ||0.f||z2. Hence ||0zzul| < [|02f]lL2, and, using the equation,
llullgz S ||f|lg1- So one has an a priori estimate. However, it is known that there exist source
terms for which the unique weak solution u € H' does not enjoy H? regularity (see [28, Chapter 4]
and Section 2.4). The key point is that, when reconstructing u from the solution v to (1.19), say by
setting u(z,y) := f;; v(a',y)da’ for y > 0 and u(z,y) := f;l v(x’,y)da’ for y < 0, there might be a
discontinuity of u or d,u across the line y = 0. Such discontinuities prevent u from solving (1.18).
Preventing these discontinuities requires that the source term satisfies appropriate orthogonality
conditions.

Let us also emphasize that if one wishes to construct solutions of (1.1) with even stronger
regularity, say u € H;jH; with k& > 1, then generically, one needs to ensure that 2k orthogonality



conditions are satisfied by the source terms (see Lemma 2.15). This situation occurs (at a nonlinear
level) in [34].

On orthogonality conditions for nonlinear problems. Of course, such orthogonality condi-
tions make it very difficult to obtain results at a nonlinear level. Generally, one tries to avoid such
difficulties when considering nonlinear problems. For instance, for elliptic problems in polygonal
domains, the classical textbook [28, Section 8.1] focuses on a nonlinear case where there is no
orthogonality condition at the linear level.

Nevertheless, some results are known in the semilinear case. For example, for semilinear
Fredholm operators with negative index, a theoretical toolbox is known (see e.g. [59, Chapter 11,
Section 4.2]) and has been implemented for some reaction-diffusion semilinear systems (see e.g.
[60, Chapter 7, Section 2.2], based on [20]).

Outside of the semilinear setting, we are not aware of nonlinear results obtained despite the
presence of orthogonality conditions at the linear level prior to our present work (we discuss the
recent preprint [34] by Sameer Iyer and Nader Masmoudi in Section 1.3).

Problem (1.1) is only quasilinear, and this makes the analysis harder. In an earlier version of
this paper, we introduced a nonlinear scheme in which the orthogonality conditions changed at
every step. Tracking the evolution of these orthogonality conditions was then a major difficulty.

Following a very helpful remark by several colleagues®, we have changed our strategy. We first
perform a change of unknown which allows us to keep the same linear operator throughout the
scheme, and to treat the nonlinearity perturbatively. This greatly simplifies the proof. In turn,
this change of variables allows us to revisit the work of Tyer and Masmoudi [35, 34] on the analysis
of the Prandtl system in the vicinity of a recirculating flow, since the equation for the vorticity
after the change of variables has a very simple structure, see Section 1.4. Let us also recall that at
the nonlinear level, the orthogonality conditions are translated in Theorem 3 (resp. Theorem 4)
as the fact that the data must lie within the manifold M (resp. M), which can be pictured as
a perturbation of the linear subspace X EJE_,Sg of data satisfying the orthogonality conditions for the
linear problem.

The proof of both of our main theorems (on Burgers and Prandtl) relies on the same abstract
result (see Theorem 6 in Section 3.5) concerning quasilinear equations in a perturbative regime.

On entropy solutions. An entirely different approach to solve (1.1) is to look directly for weak
solutions to the nonlinear problem, for example using an entropy formulation. The regularity for
such solutions is w € L%, N LiH; and they are typically obtained as limits of solutions u® to
regularized versions of (1.1), e.g. u0,u® — Jyyu® — €dyzu® = 0. Such solutions satisfy both the
equation and the lateral boundary conditions only in the weak sense of appropriate inequalities
linked with “entropy pairs”. Given dg,d; € L>°(—1, 1), the existence of an entropy solution to

UOpu — Oyyu = 0,
g, = O, (1.20)
Upy=+1 =0

was first proved in [11]. More recently, Kuznetsov proved in [39] the uniqueness of the entropy

solution to (1.20), determined in which sense the lateral boundary conditions were satisfied and
proved a stability estimate of the form

lu =@l 1) < 160 = dollLr(=1,1) + 161 = S1ll L1 (~1.0)- (1.21)

3Felix Otto, Yann Brenier, and an anonymous referee, whom we warmly thank.
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In particular, this stability estimate guarantees that one can construct sign-changing solutions in
the vicinity of the linear shear flow.

However, an important drawback of the entropy formulation is that the boundary conditions
are only satisfied in a very weak sense. Although functions in L3° N LiH; do not have classical
traces at * = x;, one can give a weak sense to the traces using the equation (see [40] for more
details). Unfortunately, it is expected that these weak traces do not coincide with the supplied
boundary data on sets of positive measure.

In contrast, since the solutions we construct in this work have (at least) H, ;LZ regularity, they

have usual traces u|s, € L?(3;) and the equalities |y, = &; hold in L?(%;), so almost everywhere.

On the choice of the linear shear flow for equation (1.1). We choose to study the well-
posedness of (1.1) in the vicinity of the linear shear flow to lighten the computations. Nonetheless,
we expect that our results and proofs can be extended to study the well-posedness of (1.1) in the
vicinity of any sufficiently regular reference flow u changing sign across a single curve {u = 0},
satisfying u, > ¢o > 0 in Q (so that (1.6) is the correct toy model) and with either ||u,|loo small
enough, or with a restriction on the size of the domain (to ensure a priori estimates). In fact, this is
precisely what we do when we study the Prandtl system around a recirculating flow: the linearized
equation for the vorticity then becomes a forward-backward equation with variable coefficients, see
(5.22) and Proposition 5.5.

Moreover, taking a step further in the modeling of recirculation problems in fluid mechanics
(see Section 1.3), we also expect that our approach could be extended to an unbounded domain of
the form (29, 71) x (0, 400), with a reference flow such that 1,—q = 0, u < 0 below some critical
curve and then u > 0 above, with u having some appropriate asymptotic behavior as y — +o0o0. In
such a setting, the Poincaré inequalities in the vertical direction that we use here should probably
be replaced with well-suited Hardy inequalities. As mentioned above, one of the issues is then to
obtain a priori estimates on the linearized system. We comment further on this point at the end
of Section 5.6.

On the conditions §y(0) = 6;(0) = 0 for fixed end-points. It is an important feature of our
work that we are able to enforce precisely the exact endpoints of the curve {u = 0} at z = xg
and z = z1. Theorem 3 and Theorem 4 are stated for perturbations which satisfy 6;(0) = 0 (see
(1.3)), so that the full boundary data u(x;,y) + §;(y) changes sign exactly at y = 0, where u = y
in Theorem 3 and u = up in Theorem 4. This choice simplifies the definition of the submanifolds
M, My and M; of boundary data for which we are able to solve the problem. Nevertheless,
given yo, y1 sufficiently close to 0 and dg, d; such that y + 0;(y) changes sign at y = y;, we expect
that similar existence results hold, provided that the perturbations are chosen in an appropriate
modification of M, with suitable modifications to the functional spaces and where, in (1.10), the
definitions of 3; are generalized by setting 3; := {(z4,); (=1)*(u(z;,y) + d:(y)) > 0}.

On the boundary conditions (1.15) and (1.16) for the Prandtl system in the recirculation
zone. The boundary conditions we choose for the Prandtl system are mostly meant to simplify
the present analysis as much as possible. As stated earlier, they are slightly unconventional since
we prescribe both the trace and the normal derivative of u, but we let the boundary remain free.
Other choices of boundary conditions are of course possible, and may lead to additional technical
difficulties. These boundary conditions are designed in order to have a nice formulation after we
have performed a change of variables in order to straighten the curve {u = 0}.
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Note also that we only consider here the Prandtl system in the vicinity of the curve {u = 0}, and
not in the whole infinite strip (zg, 1) % (0,400). The coupling with the outside regions y < ()
and y > v:(x) leads to additional difficulties, which have been treated by Iyer and Masmoudi in
[35], albeit with a different method, since conditions (1.15)-(1.16) are not considered in [35]. We
propose in Section 5.6 a possible strategy to solve the Prandtl equation in an infinite strip.

On the compatibility conditions §;((—1)") = 0 and §7(0) = 6/((—=1)?) = 0 in Theorem 3.
These conditions are classical compatibility conditions for solutions to elliptic-parabolic equations.
For example, the condition dp(1) = 0 in Theorem 3 is intended to match the condition Upy=1 =0,
and is necessary to have L2H_ regularity. The condition §7(0) = 0 comes from the equation.
Indeed, if u is a sufficiently regular solution of (1.6) with f(zo,0) = 0, the equality dy,u = yOu
at (zo,0) enforces Oyyu(zo,0) = 0, so §5(0) = 0. The condition 45 (1) = 0 stems similarly from
the equation and the fact that d,uj,—; = 0. It corresponds to a classical parabolic regularity
compatibility condition in order to have LiH; regularity. We have imposed similar conditions for
the Prandtl system by requiring §; € Hg(ZZP ). Note that in the Prandtl case, we actually require
extra cancellation assumptions. It is possible that the latter are technical, and could be removed.

On the number of orthogonality conditions for the Prandtl system. Note that the
number of orthogonality conditions in Theorem 3 and in Theorem 4 is different. The reason for
this is twofold.

Firstly, as previously noted by Iyer and Masmoudi in [35], the “good unknown” for the equation
is the vorticity dyu, which satisfies an equation which is very similar to (1.6) in a suitable set of
variables (see (1.26) and (1.28) below). Therefore, in a sense, (1.2) is smoother than (1.1): indeed,
without assuming any orthogonality condition, one can expect the vorticity dyu to belong to the

functional space HY SLZ N LiHs (see Theorem 2), and therefore the solution of the Prandtl system

belongs to Hg/ 3Hy1 N LﬁHS, in which we have gained one vertical derivative. On the contrary,
without any orthogonality condition, one cannot expect the solution w of (1.1) to have better

regularity than* Hg/ 3L§ N LiHﬁ This gain of vertical regularity allows us to have a theory
for weaker solutions of the Prandtl system, and therefore to get rid of two of the orthogonality
conditions.

Secondly, reconstructing the velocity from the vorticity in the Prandtl system gives rise to
one additional orthogonality condition, as we will explain in Section 5. Hence the number of
orthogonality conditions in Theorem 4 is odd, while it is even in Theorem 3.

1.3 Motivation from recirculation problems in fluid mechanics

Our original motivation stems from fluid mechanics. Indeed, the stationary Prandtl equation (1.2)
describes the behavior of a fluid with small viscosity in the vicinity of a wall. The pressure p(z) is
the trace of the pressure of an outer Euler flow. This equation is usually set in a 2d domain of the
form I x (0,+00), where I C R is an interval, and y = 0 is the solid wall. The equation is endowed
with the boundary conditions u = v =0 on y = 0, and limy,_, u(z,y) = ug(x), where ug(z) is
the trace of the outer Euler flow on the wall, and satisfies ugd,ug = —0,p.

As long as u remains positive, (1.2) can be seen as a nonlocal, nonlinear diffusion type equation,
the variable = being the evolution variable. Using this point of view, Oleinik (see e.g. [48, Theorem

4Note that actually, functions in H. 323

equation (1.1).

/ 3L32! N Lng do not have sufficient regularity for a fixed point argument for
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2.1.1]) proved the local well-posedness of a solution to (1.2) when the equation (1.2) is supplemented
with a boundary data u|,—g = uo, where uo(y) > 0 for y > 0 and such that uy(0) > 0. Let us
mention that such positive solutions exist globally when d,p < 0, but are only local when 9,p > 0.
More precisely, when d,p = 1 for instance, for a large class of boundary data wug, there exists
x* > 0 such that lim,_,;~ uy(z,0) = 0. Furthermore, the solution may develop a singularity at
x = z*, known as Goldstein singularity. The point z* is called the separation point: intuitively, if
the solution to Prandtl exists beyond z*, then it must have a negative sign close to the boundary
(and therefore change sign). We refer to the seminal works of Goldstein [26] and Stewartson [58]
for formal computations on this problem. A first mathematical statement describing separation
was given by Weinan E in [21] in a joint work with Luis Cafarelli, but the complete proof was
never published. The first author and Nader Masmoudi then gave a complete description of the
formation of the Goldstein singularity [17]. The work [57] indicates that this singularity holds for
a large class of initial data.

Because of this singularity, it is actually unclear that the Prandtl system is a relevant physical
model in the vicinity of the separation point x*, because the normal velocity v becomes unbounded
at © = z*. Consequently, more refined models, such as the triple deck system (see [41] for a
presentation of this model, and [36, 18] for a recent mathematical analysis of its time-dependent
version), were designed specifically to replace the Prandtl system with a more intricate boundary
layer model in the vicinity of the separation point. However, beyond the separation point, i.e.
for x > x*, it is expected that the Prandtl system becomes valid again, but with a changing sign
solution.

The well-posedness of the Prandtl system (1.2) when the solution w is allowed to change sign
has only recently been investigated. Such solutions are called “recirculating solutions”, and the
zone where u < 0 is called a recirculation bubble, the usual convention being that ug(x) > 0, so
that the flow is going forward far from the boundary. In the recent preprint [35] by Sameer Iyer
and Nader Masmoudi, the authors prove a priori estimates in high regularity norms for smooth
solutions to the Prandtl equation (1.2) in a domain of the form I x (0,+4o00), with restrictions
on the length of the interval I, in the vicinity of explicit self-similar recirculating flows, called
Falkner—Skan profiles. The latter are given by

u(z,y) = 2" f'(C), (1.22)

ooay) =~y O — By IR Q). (1.23)

where ( := (%)%yx = is the self-similarity variable, m is a real parameter and f is the solution
to the Falkner-Skan equation

U FF B (1)) =0, (1.24)

where 8 = 73—:’_11, subject to the boundary conditions f(0) = f/(0) = 0 and f’(4+00) = 1. Such
flows correspond to an outer Euler velocity field ug(xz) = ™. For some particular values of m
(or, equivalently, /3), these formulas provide physical solutions to (1.2) which exhibit recirculation
(see [12]). Obtaining high regulariry a priori estimates for recirculating solutions to the Prandtl
system (1.2) on the whole infinite strip is a difficult task. This important step was achieved by
Sameer Iyer and Nader Masmoudi in [35].

In the present paper, we have chosen to focus on a different type of difficulty, and to consider
first the toy-model (1.1), which differs from (1.2) through the lack of the nonlinear transport term
vO,u and its associated difficulties (nonlocality, loss of derivative) and the exclusion of the zones

close to the wall and far from the wall. For the model (1.1), a priori estimates are easy to derive,
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see [55, Chapter 4]. The difficulty lies elsewhere, as explained previously. Indeed, in order to
construct a sequence of approximate solutions satisfying the a priori estimates, we need to ensure
that the orthogonality conditions are satisfied all along the sequence. For the Prandtl system (1.2),
this difficulty has recently been tackled by Sameer Iyer and Nader Masmoudi in [34], building upon
their a priori estimates of [35] and the ideas developed in the first version of our present work. We
revisit in Section 5 part of their work. Performing the different steps of the analysis (straightening
the boundary, linearizing, differentiating with respect to the horizontal or vertical variable), we
found a way to substantially simplify the analysis of the system in the vicinity of the recirculating
line, and the results that we obtain are slightly different from the ones of [35, 34]. First, we prove a
result in a rather low regularity setting, in which u,, is not even an L? function in the whole domain
Qp. This result holds under merely one orthogonality condition, whose role is rather different from
the ones of Theorem 3, for instance. Indeed, the role of this additional orthonogality condition is
not to ensure a certain regularity, but rather to allow for a reconstruction of the velocity from the
vorticity. Moreover, we use solely one change of variables, which we present in the next subsection
and which is identical to the one for the Burgers equation. Once the adequate change of variables
is identified, we retrieve the fact that the vorticity (in these new variables) is a good unknown. In
fact, in the appropriate set of variables, the equation for the vorticity becomes remarkably simple
(it is a closed, quasilinear equation). We however prescribe lateral boundary conditions on the
velocity (rather than the vorticity). Eventually, we do not require any condition on the horizontal
size of the domain (i.e. on the length x1 — 2p). Our understanding is that such conditions may
arise when the Prandtl system in the whole infinite strip is considered. They are linked to the
well-posedness of a linearized system in the whole strip. We refer to Section 5.6 for more comments
regarding this point.

1.4 Scheme of proof of nonlinear theorems and plan of the paper

The uniqueness of solutions is fairly easy to prove. For the linear problem (1.6), uniqueness already
holds at the level of weak solutions (see Proposition 2.2 and Appendix A). For the nonlinear
problems, uniqueness is straightforward since we are considering strong solutions. Therefore, the
main subject of this paper is the proof of the existence of solutions for the nonlinear problems
(1.10) and (1.2) endowed with the boundary conditions (1.15)-(1.16)-(1.17).

A first natural idea would be to prove existence thanks to a nonlinear scheme relying on
the linear problem (1.6). For example, concerning equation (1.1), one could wish to construct
a sequence of approximate solutions (u,)n,en by setting ug := 0 (or any other initial guess) and
solving

yazun+1 - 8yyun+1 = f - (un - y)arunv
(Unt1)2, = di, (1.25)
(Unt1)jy=+1 = 0.

However, this strategy fails. The key point is that the right-hand side contains a full tangential
derivative of w,, whereas the operator yd, — 9, only yields a gain of 2/3 of a derivative in
this direction (more precisely, see Proposition 1.7, Remark 1.8 and Proposition 2.4). Hence, this
nonlinear scheme would exhibit a “loss of derivative”, preventing us from proving a uniform bound
on the sequence (uy)nen-

Another drawback of this scheme is that it would not translate well to a setting where one
does not assume §;(0) = 0. Indeed, in such a case, the inflow boundaries of the problem with the
perturbed data y + J;(y) would not match the inflow boundaries of the linear problem (1.6).
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Hence, we will rather construct solutions to (1.1) through another iterative scheme. As sug-
gested to us by an anonymous referee and by other colleagues, we first straighten the curve {u = 0}
by setting as a new vertical variable z = u(x, y). Our new unknown, both for the Burgers equation
(1.1) and for the Prandtl system (1.2), is the inverse function of w, i.e. the function Y such that
u(xz,Y (z,2)) = z. In this new set of variables, the equation for Y becomes, in the case of the
Burgers equation (1.1),

20,Y — (0,Y)20%Y = —-0.Y f(x,Y), (1.26)

and in the case of the Prandtl system (1.2)
: —292 dp
20,Y — | 0,Y —(0,Y)"70Y = —3ZY% + Vel + b, (1.27)
Zp

in which the nonlocal integral term in the left-hand side stems from the transport term v0,u in
the original equation. Differentiating the above equation, we find that in the case of the Prandtl
system, the vorticity W = 0,Y satisfies

20, W + ;l—iazw + 02 (&/) =0. (1.28)
We immediately see that the linearized operator associated with (1.26) around Y(x,z) = z is
equation (1.6). In a similar fashion, the linearized operator of equation (1.28) around the flow
Yp associated with up is a forward-backward operator with variable coefficients, of the form
20, + 80, — 92(a-), where a = (0,Yp) ™2 and 8 = dp/dz. Such forward-backward operators bear
strong similarities with the canonical one 29, — 9, ., and therefore we will rely on our linear analysis
to study (1.28) (see Lemma 5.3 and Proposition 5.5).

We then construct solutions of (1.26) and (1.27) thanks to an iterative scheme®, which we now
explicit in the Burgers case, the Prandlt one being similar. We define a sequence (?n)neN such
that

0.Y, (2 —8.Y,)

2 Y 4+ (1= 0,Y,) f(x, 2 — Yy) + g™, 1.29
107, ( )( )+g (1.29)

Za:x:i;nJrl - azzi;nJrl =

where the additional term ¢"*' ensures that the orthogonality conditions are satisfied at every

step. We then prove that (?n)nEN is a Cauchy sequence in the space Q'. Passing to the limit, we
obtain a solution Y = z — lim,_, Y5, to (1.26) with an additional source term g. The manifold
M is then defined by requiring that the limit term g is zero.

Remark 1.4. In a first version of this paper [16], we had chosen a strategy which seemed only
slightly different, but which led to substantial technical difficulties. However, we believe that this
strategy is rather natural, and could be of use in other problems. Therefore we describe it here.
Let (un)nen be a sequence solving the following iterative scheme
U Oplip+1 — Oy i1 = [T,
(ns1)jz, =y + 07", (1.30)
(un+1)|y:i1 = =+1.

5In fact, we will state and use an abstract theorem, whose proof follows precisely the type of scheme.

15



For this scheme, it is possible to prove a uniform bound for u, in the space Hﬁ/BLZﬂLiHZ and the

convergence of the sequence in an interpolation space LiHZ/Q N H;/6L§. This scheme is similar to
the one used to construct solutions to quasilinear symmetric hyperbolic systems, see for instance
[7, Section 4.3].

In (1.30), the triplet (f""‘l,(?g“,é{”l) is an appropriate perturbation of the data (f,d0,d1)
tailored to satisfy the orthogonality conditions associated with the linear operator u,0y — Oyy. In
order to define these orthogonality conditions, it is necessary to straighten the curve {u,(x,y) =
0}: hence this straightening step is still necessary, but performed after the “linearization” of the
equation, rather than before.

The issue lies in the fact that the orthogonality conditions change at every step, which is a
key difficulty. In particular, in order to allow the sequence w, to converge, one must prove that
these perturbations also converge. This amounts to proving that the linear forms associated with
the operator u,, 0, — 0y, depend continuously (and even in a Lipschitz manner) on u,, for the same
topology as the one within which one proves the convergence of the sequence w,,. This continuity
estimate requires identifying quite precisely what the linear forms are.

We believe that this methodology is rather robust and could be applied to other nonlinear prob-
lems in which orthogonality conditions are present at the linearized level, in particular in contexts
where there is no nonlinear change of variables such as the one presented above allowing to treat
the nonlinearity as a perturbation. For example, the PDE u(1 + 0yu)0,u — Oyyu = f could be an
example where our previous methodology applies, but not the one exposed in the present paper.

Remark 1.5. Let us highlight some differences between the strategy of the present paper and the
one by Iyer and Masmoudi in [35]. As explained above, there are several mathematical operations
which are required to complete the proof of Theorem 4:

e Changing variables in order to straighten the free boundary;
e Linearizing the equation around some background profile;

e Differentiating the equation with respect to the vertical variable in order to obtain an equation
for the vorticity;

o Differentiating the equation with respect to the tangential variable in order to derive higher
order estimates (under compatibility conditions).

These operations more or less commute at main order, and lead to the study of the equation
20;u—0,,u = f. However their (lower order) commutators may be a source of substantial technical
difficulties. Our understanding is that the authors of [35] perform the operations in the following
order (see Section 3 of their paper): 1. Linearize; 2. Differentiate with respect to the horizontal
variable; 3. Straighten the free boundary; 4. Differentiate with respect to the vertical variable.

We believe that the computations are much simpler, and the structure is better understood,
when the straightening change of variables is performed first. This also allows us to have a more
accurate comparison between the Burgers type equation and the Prandtl one.

The plan of this work is as follows. As a preliminary, we introduce in Section 1.5 the functional
spaces we will use. First, we study the linear problem (1.6) in Section 2, leading to Theorem 1, and
prove that the two orthogonality conditions we expose are indeed nonvoid. We also construct the

singular profiles ug,,, and prove Theorem 2. In order to introduce our nonlinear scheme, we extend
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these linear results to the Vlasov—Poisson—Fokker—Planck system as an example in Section 3, where
we also set up our general nonlinear methodology. We then turn towards the proof of Theorem 3
in Section 4, and the one of Theorem 4 in Section 5. In order to prove the existence of weak
solutions of the Prandtl system (i.e. the first point of Theorem 4), we will need an interpolation
result: this rather technical step is performed in Section 6. Eventually, in Appendix A, we prove the
uniqueness of weak solutions to various linear problems, by adapting an argument due to Baouendi
and Grisvard [8]. In Appendix B, we prove various technical results of functional analysis that we
use throughout the paper. Appendix C contain the postponed proof of a lemma of Section 5.
As the paper is quite long, a list of notations is provided starting page 105.

1.5 Functional spaces and interpolation results
1.5.1 Notations

Throughout this work, an assumption of the form “A < 1”7 will mean that there exists a constant
¢ > 0, depending only on 2 such that, if A < ¢, the result holds. Similarly, a conclusion of the
form “A < B” will mean that there exists a constant C' > 0, depending only on 2 and on the
underlying flow (namely u(z,y) = y or up), such that the estimate A < CB holds. For ease of
reading, we will not keep track of the value of these constants, mostly linked with embeddings of
functional spaces. Note in particular that the sizes of these constants will depend on the length
x1 — 2. In particular, it can be checked that the constant C'p appearing implicitely in Pagani’s
estimate (2.8) in the next Section satisfies Cp < C(1+ (21 — )~ !) for some universal constant C.
We will often use the notations Q1 := QN {£z > 0}.

1.5.2 Trace spaces for the lateral boundaries

For the traces of the solutions to (1.6) or (1.10) at = z and « = 1, we will need the following
spaces, due to [51, 52]. We define .#2(—1,1) as the completion of L?(—1,1) with respect to the
following norm:

ol = ([ 11 2h?(2) dz)% (131)

and !(—1,1) as the completion of H}(—1,1) with respect to the following norm:
[Plloer = ¥llzz + 10:9]| 22 (1.32)

1.5.3 Pagani’s weighted Sobolev spaces

Let O be an open subset of R?, and let  := (zg,21) x (—1,1). In the works [51, 52] (albeit
with swapped variables with respect to our setting), Pagani introduced the space Z(O) of scalar
functions ¢ on O such that ¢, 9,¢, 0..¢ and 29,¢ belong to L?(O) (in the sense of distributions).
In this work, we will refer to this space with the notation Z°(0). It is a Banach space for the
following norm

[¢llzo == [20c@ 2 + 1022022 + [10:¢ 2 + ||| L2 (1.33)

We will also need the space Z'(0), which we define as the space of scalar functions ¢ on O such
that ¢ and 9,¢ belong to Z°(0), associated with the following norm

18]l 21 == [|8]| zo + (02|l zo- (1.34)

17



The omitted proofs of the results of this section are postponed to Appendix B. We start with a
straightforward extension result, which allows transferring results on Z°(R?) to Z%(Q).

Lemma 1.6. There exists a continuous extension operator from Z°(Q) to Z°(R?).

The following embedding is the most important result concerning the spaces Z°. Since solutions
to (20, — 0..)u = f for f € L2(Q) belong to Z°(2) (see Proposition 2.4), the following embedding
entails that such solutions belong to H?/3(Q).

Proposition 1.7. Z°(R?) is continuously embedded in Hg/?’Lz.

Remark 1.8. Proposition 1.7 can be seen as an hypoellipticity result for the operator L = 0,, — 20,
in the full space R?, which is of the form X?+ Xy, where X1 = 0., Xo = —20, and [Xo, X1] = 04,
so the Lie brackets generate the full space and L satisfies Hormander’s sufficient condition of [29]
for hypoellipticity. In fact, in the full space R?, the Hg/SLi N L2H? regularity of solutions to
Lu = f for f € L? can be derived from the general theory of quadratic operators, which makes a
link between the anisotropic gain of reqularity and the number of brackets one has to take in order
to generate a direction. For instance, this regularity follows from [1, Theorem 2.10] and more
precisely Example 2.11 therein applied with

0 0 0 1
R=0 and Q(O 1> and B<O 0>.

Lemma 1.9. Z°(R?) is continuously embedded in C’S(H;/z).

Proof. By definition, Z°(R?) — H2(L2). By Proposition 1.7, Z°(R?) — L?( 3/3). By the
“fractional trace theorem” [45, Equation (4.7), Chapter 1], Z°(R?) — CS(H;/Q). O
Lemma 1.10. Z°(Q) is continuously embedded in C°([xo,z1]; 71 (—1,1)).

Proof. This is contained in the trace result [52, Theorem 2.1]. O
Lemma 1.11. For ¢ € Z°(Q), 0.¢|.—+1 € HY*(z, x1).

Proof. Let x4 € C*°([—1,1]) such that x = 1 in a neighborhood of {z = +1} and x(z) = 0 for
z < 1/2. For ¢ € Z°(Q), x+(2)¢(x,2) € HLL2 N L2H?2. By the “fractional trace theorem” [45,
Equation (4.7), Chapter 1], (8.(x1¢))|.=+1 € HY*(x0,21). The result follows since x; = 1 near
{z = +1}. The same argument applies for the trace at z = —1. O

Remark 1.12. Although it is “almost” the case, there does not hold Z°(R?) — C°(R?).

e Pagani [51, Theorem 2.1] proves that the operator ¢ — ¢(-,0) is onto from Z°(R?) to H3(R).
But Hz (R) contains unbounded functions of x.

e Pagani [51, Theorem 2.3] proves that the operator ¢ — ¢(0,-) is onto from Z°(R?) to the space
JH(R). But this space contains unbounded functions, for evample ¥(2) := (—In|z|/2)*x(2)
for s < 1 and xy € C=°(R) with x =1 in a neighborhood of z = 0.
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1.5.4 Baouendi and Grisvard’s weak space

In [8], Baouendi and Grisvard introduce the space
B:={¢ € L*((wo, 1), Hy(—1,1)); 20,0 € L2(H;")}. (1.35)

Baouendi and Grisvard proved the uniqueness of solutions to (1.6) in B. They also proved that
functions in B have traces on {z = z;} in £2(—1,1). These results are recalled in Appendix A,
and will be used abundantly throughout the paper.

The following embedding is proved in Appendix B and used in Section 5.5.

Lemma 1.13. B is continuously embedded in H;/SLE.
Lemma 1.14. B is continuously embedded in C%([—1, 1];H;/6).

Proof. By definition, B < H!(L2). By Lemma 1.13, B < L2(H.'*). Hence, the result follows
from the “fractional trace theorem” [45, Equation (4.7), Chapter 1]. O

1.5.5 Anisotropic Sobolev spaces

We will construct solutions to (1.6), (1.10) and (1.2) in various anisotropic Sobolev spaces such
as Q' of (1.5). Within these spaces, one has heuristically the correspondence 9, ~ 93, which
corresponds to the appropriate scaling due to the degeneracy of 29, at z = 0.

Indeed, if u is a solution to z0,u — O.,u = 0 say on the whole plane R?, then the rescaled
functions wuy(x,z) = u(\w, \2) are also solutions. This is also consistent with the shape of
the singular profiles ﬁ;ing from Theorem 2, and leads to the rule of thumb “one derivative in x
equals three derivatives in z” (which is different from the usual parabolic scaling, because of the
cancellation on the line z = 0).

In particular, we will use abundantly the following embeddings from the interpolated Pagani
spaces to anisotropic Sobolev ones.

Lemma 1.15. Let o € [0,1] and Z°(Q) == [Z°(), Z1(Q)],. Then Z° — HZ** L2\ HIL2. In
particular Z1 — Q' defined in (1.5).

Proof. By Proposition 1.7, Z°(Q2) — H£/3L§ and Z1(Q) — Hg/ng. Hence
27(Q) = [HYP L2, HYPL2)o = H/7 L2 (1.36)

using e.g. [45, Equation (13.4), Chapter 1].
Moreover, by definition, Z°(Q) — L2H? and Z*(Q) < H1H?2, so Z7(Q) — HZH?2. O

Remark 1.16. The definition (1.5) of Q' does not contain the “full vertical” reqularity L2H?,
since we do not need it to close our nonlinear estimates. However, assuming sufficient reqularity
on the source terms, one can build solutions to (1.6) and (1.10) in Q' N L2HS, and this was in
fact what we did in the earlier version [16] of this work.
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2 The case of the linear shear flow

This section concerns the well-posedness of the linear system (1.6) which we restate here for
convenience and by using z as a vertical variable rather than y to prepare for the next sections.
We thus consider, in Q = (xg,21) x (—1,1), the system

20U — Oy,u = f,
us, = 0i, (2.1)
Uz=41 = 0,

where 3o = {zo} x (0,1) and X1 = {z1} x (-1,0).

First, in Section 2.1, we recall the theory of weak solutions, due to Fichera for the existence,
and to Baouendi and Grisvard for the uniqueness. Then, in Section 2.2, we recall the theory of
strong solutions with maximal regularity, due to Pagani. Our contributions regarding this problem
are contained in the following subsections. In Section 2.3, we derive orthogonality conditions which
are necessary to obtain higher tangential regularity and prove the existence result of Theorem 1.
In Section 2.4, we construct explicit singular solutions and prove the decomposition result of
Theorem 2. Eventually, in Section 2.5, we state a result concerning the well-posedness of (2.1)
with fractional tangential regularity, which will be used in Section 5 and proved in Section 6.

2.1 Existence and uniqueness of weak solutions

Definition 2.1 (Weak solution). Let f € L*((zo,z1); H 1(=1,1)) and 8,0 € L2(—1,1). We
say that u € L?((wo,z1); H(—1,1)) is a weak solution to (2.1) when, for all v € H*()) vanishing
on N\ (g UXy), the following weak formulation holds

f/zuﬁmv+/8zu82v:/fv+/ zéovf/ 2010. (2.2)
Q Q Q >o 3

Weak solutions in the above sense are known to exist since the work Fichera [22, Theorem XX]
(which concerns generalized versions of (2.1), albeit with vanishing boundary data). Uniqueness
dates back to [8, Proposition 2] by Baouendi and Grisvard.

Proposition 2.2. Let f € L?((wg,21); H 1(—=1,1)) and 69,51 € L2(—1,1). There exists a unique
weak solution u € L*((zg,21); H3(—1,1)) to (2.1). Moreover,

lullzms S NF N2 o) + 1dollz2 + 10122 (2.3)

Proof. The proof of uniqueness is postponed to Appendix A where we adapt Baouendi and Gris-
vard’s arguments to prove the uniqueness of weak solutions to all the linear problems we encounter
in this paper in Lemma A.1. It relies on the proof of a trace theorem and a Green identity for the
space B defined in (1.35).

Let us prove the existence. We introduce two Hilbert spaces ¥ < % < L?((zq,1); H}(0,1))
as follows. Let ¥ := {v € HY(Q); v = 0on Q\ (o UX1)}. Let Z be the completion of
HY(Q) N L?((wo,71); Hi (—1,1)) with respect to the scalar product

(u, v)e ::/azuazv—l—/ zuv—/ Zuv. (2.4)
Q Yo D1
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For u,v € % x ¥, let

a(u,v) == —/Qzuﬁxv—k/ﬂazuazv, (2.5)

b(v) := / fu —|—/ 20pv —/ 201. (2.6)
Q >0 31
In particular, for every v € ¥, integration by parts leads to a(v,v) = ||v||%, and
)] < (W) + Wollcz + Il zz ) ol (2.7)

Hence, b € L(¥) can be extended as a linear form over %% and existence follows from the Lax-
Milgram type existence principle Lemma B.2 in Appendix B, which also yields the energy estimate
(2.3) thanks to (2.7) and Poincaré’s inequality. O

Remark 2.3. Instead of using the weak Lax-Milgram existence principle Lemma B.2, an alternate
proof would be to reqularize equation (2.1) by vanishing viscosity, and to obtain uniform L2H}
estimates on the approximation. This approach will be used in Lemma 5.4 proved in the Appendiz,
in which we prove HLL? regularity of the weak solutions far from the lateral boundaries.

2.2 Strong solutions with maximal regularity

We now turn to strong solutions, i.e. solutions for which (2.1) holds almost everywhere. The main
result on this topic is due to Pagani.

Proposition 2.4. Let f € L?(Q) and 8o,01 € S (—1,1) such that 6o(1) = 61(—1) = 0. The
unique weak solution u to (2.1) belongs to Z°(Q)) and satisfies

[ullzo S 112 + doll ez + 100|222 (2.8)
The boundary conditions s, = 6; hold in the sense of traces in A} (3;) (see Lemma 1.10).

Proof. This is a particular case of [52, Theorem 5.2]. Pagani’s proof proceeds by localization. Far
from the critical points (zg,0) and (z1,0), the regularity is rather straightforward. Near these
critical points, the regularity stems from the regularity obtained for a similar problem set in a
half-space (0,+00) x R or R x (0,400). Pagani studies such half-space problems in [51] where
he derives explicit representation formulas for the solutions, using the Mellin transform and the
Wiener-Hopf method. We do not reproduce these arguments here for brevity. O

2.3 Orthogonality conditions for higher tangential regularity

We now investigate whether solutions to (2.1) enjoy higher regularity in the horizontal direction.
As mentioned in Section 1.2, it is quite easy to obtain a priori estimates in the space Z!(2)
(see Proposition 2.5). However, we prove in Proposition 2.9 that the weak solution enjoys such
a regularity if only if the data satisfies appropriate orthogonality conditions. Eventually, we give
statements highlighting the fact that these conditions are non-empty.

6Functions in % a priori do not have traces on %; so one could wonder how definition (2.6) makes sense when
v € % . The integrals fg, z6;v make sense precisely because % is defined as a completion with respect to (2.4). In
fact, weak solutions do have traces in a strong sense, as proved in Lemma A.2, thanks to the extra regularity in x
provided by the equation.
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Proposition 2.5. Let f € H'((zg,71); H 1(—1,1)) and 69,01 € S (—1,1) such that 5o(1) =
§1(=1) = 0 and such that Ay, Ay € L2(—1,1), where

fxi,2) + 026;(2)

z

(2.9)

If the unique weak solution u to (2.1) belongs to H'((xo,z1); Hi(—1,1)), then one has the following
weak solution estimate for Oyu:

[0zull L2 S 0efll 21y + Aol 22(me) + A1l 22, (2.10)

If, moreover, f € H'((wg,z1); L2(—1,1)), Ao, Ay € S (—1,1) and Ag(1) = Ay(—1) = 0, then
u € ZY(Q) and one has the following strong solution estimate for dyu:

10zt zo S 102 fll 2 + [ Aol + (1A []ez (2.11)

Proof. The key point is the following argument: if d,u enjoys L2H} regularity, then d,u is the
unique weak solution to

Zaa:w - azzw = a:rfa

wys, = Ay, (2.12)

Wz=41 = 0.

Then estimate (2.10) follows from (2.3) and estimate (2.11) follows from (2.8).
Hence, let us prove that, if 9,u € L2H!, then d,u is a weak solution to (2.12). Let

Y :={veC®Q); v=00n00\ (SU%),

O,v=0on {zo} x (—1,0) and {z1} x (0,1)}. (2.13)

Let v € ¥. Then 0,v is an admissible test function for Definition 2.1. Hence, since u is the weak
solution to (2.1), one has

- /Q udn(By0) + /Q 0.u0.(9y0) = /Q F(Ou0) + /E =(n0) - /E w(0a0), (2.14)

The HLH! regularity of u legitimates integrations by parts in x in the left-hand side. Thus

[— /_11 zu&w} : + /Q 2(0pu)0,v + [/_11 azuazu} : — /Q 8. (9u) 9.
— [/11 f’u]: /Qfvar/EO 260(0,v) /21 261 (9v),

which, after taking the boundary conditions into account, integrating by parts in z in the boundary
terms fil d.u0,v and recalling (2.9) yields

—/z(&zu)azv—l—/@z(azu)azv:/fw—&-/ onv—/ zAqv. (2.16)
Q Q Q Yo 3

Since ¥ is dense in the set of test functions for Definition 2.1, this proves that d,u is the weak
solution to (2.12). O

(2.15)
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We start by defining “dual profiles” which are necessary to state our orthogonality conditions.

Lemma 2.6 (Dual profiles). We define ®°, ®1 € Z°() as the unique solutions to

—20,P7 —0,. DT =0 in Oy,
@} -1,

|: |z=0 =1

8z@] — 1.,

L |z=0 =0

D790\ (sous;) = 0.

(2.17)

Proof. Uniqueness is straightforward. Given j € {0,1} and two solutions to (2.17), let ¢ denote
their difference. Then ¢ € Z°(Q4) and both ¢ and 9,¢ are continuous across the line {z = 0}.
Hence, ¢ € Z°(€2) and ¢ is the solution to a problem of the form (2.1) (with reversed tangential
direction). So ¢ = 0 since weak solutions to such problems are unique in 2°.

We prove the existence of ®0. We define ®0(x, 2) := —21,-0((2) + ¥°(x, 2), where we choose
¢ € C(R) such that ¢ = 1 in a neighborhood of z = 0 and supp¢ C (—1/2,1/2), and where
VY e L2((zo,21); HE(—1,1)) is the unique weak solution to

—20,0° — 9, ¥ = —21_.0¢(2) — 21.50¢"(2) in Q,

U0(z9,2) =0 for z € (—1,0), (2.18)
UO(z1,2) = 2((2) for z € (0,1), )
qj[\)z:il =0.

By Proposition 2.4, ¥° € Z°(Q2). Hence 9,,®% € L?(Q4) and 20,90 € L?*(y.).
The construction of the profile ®! is similar and is left to the reader. For example, one can
decompose ®! as ®1(z,2) = 1,-0((2) + V! (z, 2), where, similarly, ¥ € Z°(Q). O

Remark 2.7. The jump conditions in (2.17) prevent the dual profiles from enjoying vertical requ-
larity across the line {z = 0}. More subtly, even inside each half-domain, neither the D7 nor their
lifted version the Wi enjoy tangential reqularity. Indeed, formally, 0,®7 and 0,7 satisfy systems
of the form (2.1) (with reversed tangential direction) with zero source term and zero boundary data.
Hence, if they were sufficiently regular, they would be zero by the uniqueness results of Appendiz A,
and so would ® and VI by integration, contradicting (2.17). We will see in Corollary 2.29 that
these dual profiles indeed do contain an explicit singular part localized near the endpoints (x;,0).

We now turn to the main result of this section, which gives a necessary and sufficient condition
for the solutions to enjoy the mentioned tangential regularity. Strangely, we could not find a proof
of Proposition 2.9 in the literature, although some works mention orthogonality conditions (see
[22, Equation (4.2)] or [54]). Hence, we provide here a full proof. This strategy will be extended in
Section 5.2 to equations with smooth variable coefficients (see Proposition 5.5). We prove further
that these orthogonality conditions are not empty.

We will work with the following space of data triplets:

Hi = {(f, 80,01) € HLL? x 1 (S0) x H(21); (Ao, Ar) € S (X0) x A (21)

(2.19)
and dg(1) = 61(~1) = Ao(1) = Ay(~1) = 0},
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where A; is defined in (2.9), with the associated norm
1(F: 80,60 lase = 1 ez + D Miller + 1Al (2.20)
i€{0,1}

Lemma 2.8. For (f,080,61) € Hx, one has §; € H*(X;) with ||6:]|z2 < |1(f5 60, 01)|| 7 -
Proof. For i € {0,1}, recalling (2.9), one has

103 L2y < 07 + f @iy Mz2cs) + 11 (@i )2y S NAillzz + 11 fllmLe (2:21)
Moreover, one checks that [|0;][z2 < [|0:]|.¢2 + [|6;[|z2 (proceeding e.g. as in Lemma B.7). O
Proposition 2.9. Let (f,80,61) € Hi. The unique weak solution u to (2.1) belongs to HLH} if
and only if, for j =0 and j =1,

/hﬁ@+/z%@F/z&@é@&@f%MW (2.22)
Q Yo 1

where ® and ®1 are defined in Lemma 2.6.
Furthermore, in this case, u actually belongs to Z* () and the following estimate holds:

l[ullz < NI(F, 60, 01) 13- (2.23)

Proof. Step 1. We exhibit possible discontinuities. Let us consider the unique solution u € Z°(Q)
to (2.1). Following the strategy sketched by Goldstein and Mazumdar” [25, Theorem 4.2], we
introduce the unique strong solution w € Z°(Q) to (2.12), so that w is a good candidate for d,u.
The idea is then to introduce the function w; defined by

(2, 7) = {(50(2') + f;o w(a',z)da’  in Qy, (2.24)

61(2) = [Tt w(a/,z) da’ in Q_
so that d,u; = w almost everywhere. Furthermore, it can be easily proved that, in D’'(4),
20,u1 — Oyuy = f. (2.25)

However, this does not entail that u; is a solution to this equation in the whole domain. Indeed,
uy and J,u; may have discontinuities across the line {z = 0}. One checks that u; and d,u; are
continuous across z = 0 if and only if

/w1 w(z,0) dz = 61(0) — Jp(0),
o (2.26)
/ w.(z,0) dz = 8.5,(0) — 9.60(0).

0

The two integrals are well-defined since w, and w,, belong to L?((2).

70ddly, Goldstein and Mazumdar do not mention the orthogonality conditions (2.22). They merely state that,
“since 0,u1 = 20zu1 — f in D’(Q4) and since zu1, f € CO([zo,z1]; L2(—1,1)), consequently z0zu1 — 0>>u1 = f in
L2%(Q)”. However, these orthogonality conditions are non-empty, as we show below (see Proposition 2.13).
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Step 2. We compute the horizontal mean value of w and w, using the dual profiles. Let ¢ €
Z°(Q4) such that ¢|p0)\(syns,) = 0. Since w € Z°(1), it satisfies (2.12) almost everywhere, so
that we can multiply the equation by ¢ and integrate over 2. Hence,

fab = (Zaxw - azzw)¢7 (227)
Qy Qy

where, on the one hand,

/ 2(O,w)p = 2A1¢ — 2w0y @ (2.28)
Q+ %Y Q+
and on the other hand,
—/ (0,w)p = / (0w — wd,P)(z,0") do — / w0, . (2.29)
Q+ o Q+

Thus, performing the same computation on 2_ and summing both contributions yields

/ l(azw[d)hzzo - w[azd)]\z:O)(xa 0) do = /sz¢ +L 2009 — FZANY)

0 0 31

(2.30)
+ g /Qi w(20:¢ + 0,.0).

Hence, for j € {0,1},

/ w(z,0) dx:/meJr/ ZA()Ef/ 2B, (2.31)
i) Q 20 21

where the dual profiles ®° and ®! are defined in Lemma 2.6.

Step 3. Conclusion. Assume that the orthogonality conditions (2.22) are satisfied for j = 0
and j = 1. Then (2.26) holds, and a consequence, [ui];—9 = [0.u1]j.—0 = 0. Thus u; €
L?((z0,71); H(—1,1)) is a weak solution to (2.1). We infer from the uniqueness of weak solu-
tions that u = us, and therefore d,u = w € Z° Hence u € H'((z¢,71); H}(—1,1)). Estimate
(2.23) follows from (2.8) and (2.11).

Conversely, if u is a solution to (2.1) with H'((xo,z1); Hj(—1,1)) regularity, then d,u is a
weak solution to (2.12) (see the proof of Proposition 2.5) and u is given in terms of d,u by (2.24)
almost everywhere. Thus [u1]|.—¢0 = [0.u1]|.=0 = 0. Hence f;ol Uy (z,0) dz = 61(0) — Jp(0) and

;01 Ugz (z,0)dz = 0,61(0) — 0,60(0), and thus the orthogonality conditions (2.22) are satisfied. [

Theorem 1 follows easily from Proposition 2.9. Indeed, one easily checks from (1.3) and (2.19)
that Xp < Hz. Moreover, by Lemma 1.15, Z'(Q) < Q' (defined in (1.5)). The fact that X5,
is of codimension 2 follows from Proposition 2.13 or Proposition 2.31 below.

Definition 2.10. In the sequel, we denote by €7 the linear forms associated with the orthogonality
conditions (2.22) for the linear shear flow problem, i.e., for (f,do,01) € Hi, we set

T(f,00,61) i= 0160(0) = 0161 (0) + [ 05T + [ 28e® = [ aA. (232)
Q Eo 31
Lemma 2.11. The linear forms 03 for j € {0,1} are continuous over H.
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Proof. First, by Lemma 2.8, for (f,d,61) € Hk, d; € H?*(X;) so that §;(0) and 4/(0) depend
continuously on (f,dy,01) € Hg. Second, by Lemma 2.6, ®J € Z°(Q) so, in particular ®J €
L?(Q). Hence f + [, 0,f®7 is continuous on H1L2. Eventually, by Lemma 1.10, ®i(z;,-) €
D) = LX), so (f,60,01) — fEi 20 (2)®7 (25, z) dz is continuous on H-. O

Remark 2.12. Although this continuity result will be sufficient for most of our purpose, the linear
forms 03 are in fact continuous for weaker topologies than the one of Hy . In particular, one does
not need f € HL? (see Remark 2.50).

We now prove that the orthogonality conditions (2.22) are non-empty and independent.

Proposition 2.13 (Independence of the orthogonality conditions). The linear forms (0 and %
are linearly independent over C°(Q) x {0} x {0} C Hxk.

Proof. Proceeding by contradiction, let (cg,c1) € R? such that, for every f € C2°(£2), there holds
col0(f,0,0)+c101(f,0,0) = 0. Then &€ := cq®0+c; ' satisfies [, 0, f®¢ = 0 for every f € C(1),
so 0,®¢ = 0 in D'(2y). Since ®¢(x1,2) = 0 for z € (0,1) and ®° € Z°(Q,), this implies that
®¢ = 0in Q4 (since Z° functions have traces in the usual sense, see Lemma 1.10). The same holds
in Q_. Hence [®°]|.—¢ = [0.9°]|.—¢ = 0, which implies co = ¢; = 0. O

Remark 2.14. Proposition 2.13 of course implies that €9 and (1 are linearly independent on Hp .
Although Proposition 2.13 gives a prominent role to the source term f, we will actually also prove
that €9 and ¢* are linearly independent on {0} x C°(Xg) x C° (1) C H. This property relies on
the structure of the dual profiles ®I near the points (24,0), and will be proved at the end of this
section (see Proposition 2.31).

Similarly, it can be easily checked that the control of k derivatives in = requires the cancellation
of 2k independent conditions. Although controlling a single z-derivative will be sufficient in the
sequel to obtain our nonlinear result, we establish here this short higher-regularity statement as
an illustration. More precisely, we have the following result.

Lemma 2.15. Let k > 1. Let f € C>®(Q), §; € C°(%;). Define recursively AT for 0 < n < k
and z € ¥; by

AY(2) = bi(2), (2.33)
AP() = T (7 () + 02071 (2)) (231

Assume that the following compatibility conditions are satisfied:
Vn € {0,---,k}, Ap(1)=AF(-1)=0. (2.35)

Assume furthermore that for alln € {0,--- ,k}, A" € J41(%;).
Let u be the unique solution to (1.6). Then u € HEH? if and only if the following orthogonality
conditions are satisfied

E(a;l.ﬂ gvATII) = 07 Vn € {07 e 7k - 1}7 .7 € {07 1} (236)

Furthermore, these 2k orthogonality conditions are linearly independent.
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Proof. First, notice that 0]'u satisfies formally

(20p — 0,2)00u =02 f in Q,
a;:lu\Z::l:l = 07

The first part of the statement follows easily from Proposition 2.9 and Proposition 2.5 and from
an induction argument.

Let us now check the independence of the orthogonality conditions. We extend the methodology
used in the proof of Proposition 2.13. Assume that there exist ¢/ € R,0<n <k—1,j = 0,1 such
that for all (f, do, 1) satisfying the assumptions of the lemma,

3 Z G011, 05, A7) =

7=0,1n=0

In particular, for any f € C°(),

> ch " f,0,0) =0,

§=0,1n=0
ie.
k—1 o
> [orr| X aw7) =0
n=07% j=0,1
This means that i
—1
S S -
§=0,1n=0

in the sense of distributions. Since [07®7],—o = [070,®7]|,—o = 0 for n > 1, we infer that

(630 + @7 _ [0:(c)® + 7)) =0

Once again, using the jump conditions on ®J, we deduce that cé =0, and thus

k—1
Z el anied | = 0.
§=0,1n=1
It follows that
k-1
(—1)" )0y BT = p(2)
j=0,1n=1

for some function p. Note that by parabolic regularity, the profiles ®J (and therefore the function
p) are smooth away from the line {# = 0}. Taking the trace of the above identity on {xo} x
(—1,0) U {z1} x (0,1), we find that p = 0. Arguing by induction, we infer eventually that ¢/ = 0
foral0<n<k-1,j=0,1. O
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Corollary 2.16 (Biorthogonal basis). There exist ZF = (f* 6k, 6%) € Hx for k € {0,1} such
that, for every j, k € {0,1},

G(EF) = 6(f*,06,08) = 1=k (2.37)
and such that, within H,
( B0 4+ ]REl)L = ker £9 N ker /1 (2.38)

is a vector subspace of codimension 2.

Proof. Since €9 and ¢! are continuous linear forms on Hy, by the Riesz representation theorem,
they can be written as scalar products with two given triplets, say 20, 2! € Hx which are linearly

independent thanks to Proposition 2.13. Then one looks for =k = (fF 6k, %) as ax=0 + b, E! where
ar, by € R? are such that ag(27;Z0) + by (27;E') = 1,_4. These systems can be solved since =0
and E! are free. This proves the equality (2.38). The independence of the linear forms guarantees

that (2.38) is of codimension 2 in Hg. O

2.4 Singular radial solutions in the half-plane and profile decomposition

In this subsection, we give a full description of the singularities that appear when the orthogonality
conditions are not satisfied. We start by constructing singular solutions to the homogeneous equa-
tion set in the half-plane, using separation of variables in polar-like coordinates. We then localize
these solutions near the critical points (z;,0) to obtain the decomposition result of Theorem 2.
Our approach is similar to the one developed by Grisvard in [28, Section 4.4] for elliptic problems
in polygonal domains (see in particular the singular profiles of equation (4.4.3.7) and the decom-
position result of Theorem 4.4.3.7 therein). The main difference is that we cannot use usual polar
coordinates and that the construction of the elementary singular profiles is much more technical
than, for instance, the classical solution of the form 72 sin(#/2) which is involved in the resolution
of Dirichlet-Neumann junctions as in the elliptic problem (1.18) mentioned in the introduction.

2.4.1 Construction of singular solutions in the half-plane

In this paragraph, we look for elementary singular radial solutions to the following problem without
source-term in the half-plane:

u(0,2) =0 z> 0. (2:39)

{zazuf)zzuO x>0,z €R,
Remark 2.17. In [23], Fleming considered the related problem of finding a “fairly explicit formula”
for solutions to z0,u — O,,u = 0 in a strip (0,1) X R, with prescribed boundary data at x = 0,
z>0andx =1, z < 0. His proof involves Whittaker functions, which are related to the confluent
hypergeometric functions we use below.

In [27], Gor’kov computes a representation formula for solutions to (2.39) with a non-zero
source term and boundary data, and proves uniqueness of such solutions, under a growth assump-
tion of the form |u(0,2)| < |2|7 for 0 < 0 < 1 on the line {x = 0}, for which he claims that
uniqueness holds. The threshold o = % is precisely the scaling (at which uniqueness indeed breaks)
of the first fundamental singular solution vy which we construct below.

Our setling is a little different from the works mentioned above, as we look for (non-zero)
solutions to the homogeneous equation. Similar computations were also performed in [30, 31],
albeit with different boundary conditions, and therefore with a different exponent for r, and a
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different asymptotic behavior for the profile A in Proposition 2.18. However we were not able to
find the specific expression of the profiles from Proposition 2.18 in previous works.

Near the point (0,0) which is expected to be singular, balancing the terms 29, and 0., leads
to the natural scaling z ~ 7. Thus, we introduce the following polar-like coordinates (r,t) €
[0, 4+00) x R:

= (22 + xg)% and t:=zz 3 (2.40)
The reverse change of coordinates is given by
3
t
T = 7’73 and z= Til (2.41)
(1+¢2)2 (1+¢2)2

Since it will be convenient to switch from cartesian coordinates (z, z) to the polar-like coordinates
(r,t), we compute the Jacobian

ar  Or 1 z (1+13)% t
dr 9z 3wir T 3r? (1+12)2
T(ryt) = _ _ (2.42)
ot ot _t L t1+12)% (1+12)3
Oxr 0Oz 3z g3 -

3r3 r

where we have used the equalities (2.41). In particular,

(1+2%)?
det J(’f‘, t) = T, (243)
which we will use to compute integrals using the (r,t) variables.
By (2.42), for any C! function ¢,
(14?2 t(141%)3
Opp = 32 Orp 33 dvp, (2.44)
t (1+1¢%)2
D=0 = Orp + Drp- 2.45
e ko (2.45)
In particular, if u(r,t) = r*A(t),
A2
20,u = 3 [MA(t) — (1 4+ 2)0,A(t)] (2.46)
t (1+t2)% ( A-1 ( At 2\3 >)
0z, = Or + O| | r —A) + (1 +t°)20:A(¢ 2.47
(1+1t2)2 r ! (1+1¢2)3 (t) +( )2 0:A(1) (2.47)
= A2 [(/\ —1) (WA(t) +t0 A(t)) + (141230 (/\tA(t) + (14229, A(t)ﬂ
1 + t2 t t (1 + tQ)% t .

We are now ready to construct solutions to (2.39) using these coordinates.
Proposition 2.18. For every k € Z, equation (2.39) has a solution of the form

Vg = r%+3kAk(t) (2.48)
with the variables (r,t) of (2.40) and Ay € C°(R;R) is a smooth bounded function satisfying
Ar(—o0) =1 and Ap(4+00) = 0. The profile Ay is presented in Fig. 2.
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Figure 2: Plot of ¢t — Ag(t) for t € (—7,7), highlighting the main properties: Ag is a smooth,
monotone decreasing function on R, such that Ag(—oc0) =1 and Ag(+00) =0

Proof. By separation of variables, we look for a solution to (2.39) under the form u := r*A(t)
where A € R and A : R — R is a smooth function. The boundary condition «(0,z) = 0 for
z > 0 translates to A(4+o00) = 0. From (2.46) and (2.47) above, one checks that such a u satisfies
20;u — 0,,u = 0 if and only if

12 22Xt 1t 1+ (=12
OPA() + <3 - w) A (t) + A (—3 Tt (1(+ t2)2) ) At) =0. (2.49)

To absorb the (1 + 2) factors, we perform the change of unknown A(t) =: (1 + t2)~2 H(t). Then,
A satisfies (2.49) if and only if H is a solution to

2 Mt
OPH (t) + FOH () — S H(t) = 0. (2.50)
Moreover, for t # 0, using the change of variable ¢ := —t3/9, and looking for H(t) =: W (—t3/9),
we obtain that H solves (2.50) on R\ {0} if and only if W is a solution to

2 A
i@+ (3 -¢)awi - (-3) wio =0 (2:51)
which corresponds to Kummer’s equation, with a = —% and b = % It is known (see [49, Section

13.2]) that (2.51) has a unique solution behaving like (% as { — oo. This (complex valued)
solution is usually denoted by U(a, b, {) and called confluent hypergeometric function of the second
kind, or Tricomi’s function. In general, U has a branch point at { = 0. More precisely, the
asymptotic (7 holds in the region |arg (| < 2 and the principal branch of U(a, b, () corresponds
to the principal value of (~%. Moreover, when b is not an integer, which is our case, one has (see
[49, Equation 13.2.42]),

T(-1)

M(a,b,¢) + I'a)

Ula,b,¢) = ¢ Gl CPM(a—b+1,2-b,0), (2.52)

(a—b+1)
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where M is the confluent hypergeometric function of the first kind or Kummer’s function,

M(a,b,¢) =Y (@)n ¢ (2.53)

7'7
neN (b) n 1

where (a), and (b), denote the rising factorial. In particular, M is an entire function of (.
From (2.52), we see that the singularity in Tricomi’s function U stems from the fractional power
(1=t = (¢3. When ¢ = —p (for p > 0), (3 = e%p%.

We therefore set \ 9
W () ::&t{e’?U (—3,3,4)}. (2.54)

By linearity, W is still a solution to (2.51). Moreover, by [49, Equation 13.7.3], as { — oo,

W(C) = a%{e?ga (1+0 <|é>)} (2.55)

In particular, when \ = % + 3k for k € Z (and only in this situation), as p — 400,
W(—p) = O(p~), (2.56

because R{e™/ e~ =0} = R{(—1)ke™/3eim/6pmat = (—1)kp~*R{i} = 0. Defining H(t) :=
W(—t3/9) for W as in (2.54) and recalling that A(t) = (14 2)~*2H(t) implies that A(4o00) = 0.
Indeed, as t — 400,

~

Aty = (1413730 <t3<%—1)) = 0(t™). (2.57)

Moreover, from (2.55), we obtain that A is bounded as t — —oco. Indeed, as t — —o0,

A(t) = (1+t2)‘3%{6i3ﬂ (‘i) B (HO (|t13)>} (2.58)

1 1 : 1 1
= 07T R+ E)TE T (14 01 7) = 5975 R+ 0(1 7).

Eventually, let us check that H is an entire function of ¢, which will entail that A is smooth. First,
note that M(—\/3,2/3,—t2/9) and M (—(\—1)/3,4/3, —t3/9) are real valued and entire functions

of t. Additionally,
1/3 .
5 d i3 (_t3> PN g [102 ift <0,
9 tR(e2™/3)  ift <0

1t
T T 991/3
Using (2.54) and (2.52), we obtain
1 T'(1-0b) t3 1t I'(b-1) t3
Hit)=~— "2 M )M (a—-b+1,2—b—— 2.
O =5Ta—v11 (a’b’ 9) 2913 I(a) a=b+l2=b—g), (259

so that H is entire because M is. This also entails that H solves (2.50) even across t = 0. Moreover,
(2.57) and (2.58) imply that A is bounded on R. Eventually, using (2.58), we can define Ay as
2.95 kA, which ensures that Aj(—oo) = 1. For this normalization, one deduces from (2.59) that

_gier L(1/3)
Ax(0) =9 +k1“(1/6—k)’

which will be used below. O

(2.60)
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If w is a solution to (2.39), then, formally, d,u too (the operator 20, — 0,, commutes with 9,
and the boundary condition at = 0 and z > 0 is satisfied thanks to the equation). This property
entails that the solutions vy, = r%+3kAk (t) are related by a recurrence relation on the profiles Ay.

Lemma 2.19 (Recurrence relations). Let k € Z and ¢, := % —9k%. One has
am’()k = CrVUk—1- (261)

Moreover, for every t € R,

1 (t) = % ((; + 3k> Ap(t) — (1 + t2)A;(t)> : (2.62)

or, equivalently,

AL (t) = ﬁ ((; + 3k) Ax(t) — W) . (2.63)

Proof. By (2.44), one has d,vp = r2 3¢~V H,(t), where Hy(t) is the right-hand side of (2.62).
Thus 0,vi is a solution to (2.39) of the form studied in Proposition 2.18. Since the proof of
Proposition 2.18 proceeds by equivalence, vg_1 is the only solution of the form p2t3(k=1)  This
entails that Hy(t) is proportional to Ap_1(¢) and the constant can be identified by comparing
the values at 0 using (2.60), yielding (2.62), (2.61) and (2.63) (which are all equivalent) with
Cp = L 9k2.

Aétually, these identities are linked with recurrence relations on Tricomi’s function U. Let us
give another proof of (2.63) using this approach. By the proof of Proposition 2.18,

. 3
Ap(t) = 2- 9B FF(1 4 2) -1 3%, %{e’?U <_é —k, % _tg> } . (2.64)

First, using the relation 0.U(a — 1,b,¢) = (1 — a)U(a, b+ 1,{) (see [49, Equation (13.3.22)]),

2.65
+2.95HF(1 4 ¢2)"i 3k Seelymles Ny —1—/<u-+1§—ﬁ .
t 6 9 6 39 )"

Eventually, (2.63) follows from the relation (b — a)U(a,b,¢) + U(a —1,b,{) — CU(a,b+1,{) =0
(see [49, Equation (13.3.10)]). O

Remark 2.20. We will see below that vy is linked with two solutions to (2.1) which have Z°
regqularity, but do mot belong to HIH}. Similarly, for each k > 0, vy is linked with solutions u
such that 0%u € Z°(Q) but uw ¢ HFTYHL. Conversely, for k = —1, one could expect to be able to
construct a very weak solution u based on v_y which would entail that uniqueness fails for solutions
with less than L2H} regularity.

Lemma 2.19 entails the following decay estimates, which will be useful in the sequel.

Lemma 2.21. For every k € Z, there exists Cy, > 0 such that, for every t € R,

[A(®)] + [EAL@O] + AL B + [#PAY ()] < Cr. (2.66)
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Proof. For all k € Z, the bound |A(t)| < Cj is already contained in Proposition 2.18 which claims
that Ay is bounded. Since Ai_; and Ay are uniformly bounded over R, we deduce from (2.63)
that t3A} (¢) is also bounded on R. Eventually, differentiating (2.63) with respect to ¢ leads to a
uniform bound for [t*AY(¢)| and [t°A}(t)| over R. O

Moreover, the recurrence relations of Lemma 2.19 also imply that the solutions v to (2.39) are
smooth, up to the boundary {z = 0}, except at the origin (0,0).

Lemma 2.22. For every k € Z, vy, € C*°(Py), where P, := ([0,400) x R) \ {(0,0)}.

Proof. The smoothness inside the half-plane {x > 0} follows directly from Proposition 2.18 since
Ay € C®(R) and the function r — r2 3% as well as the change of coordinates of (2.40) are smooth
inside this domain.
By Proposition 2.18, since Aj is continuous on R and has limits at ¢ = +o00, we obtain that
v = r2 T3k Ay (t) is continuous up to the boundary {z = 0}, except at the origin: v, € CO(P,).
We now turn to the continuity of derivatives. Using (2.45),

dvy, = 3tk [(; + 3l<:) (1+tt2)5Ak(t> + (142N ()] . (2.67)
Since A has limits at ¢ = 0o and since, by Lemma 2.21, t3A},(t) = O(1), we obtain that 9,vy
has limits at ¢ = +o00. Hence 9,v; € C°(P,).

Eventually, the C*°(P,) regularity follows from an induction argument. Indeed, by (2.61),
Oy = CrUL_1, 80 Opvp € CO(P,) because vy_1 € C°(P,). And, similarly, in the vertical direction,
using (2.39), 0..v, = 20,1, = zcpvp_1 50 O, € C°(P,). Tterating the argument concludes the
proof. O

2.4.2 Localization and decomposition

%

We now introduce singular profiles ug,,, for ¢ = 0, 1, localized in the vicinity of (x4,0) and based

on the singular profiles of the previous paragraph. Let x; € C () be a cut-off function such that
xi = 1 in a neighborhood of (z;,0), and supp x C B((x;,0), R) for some R < min(1, 21 — x)/2.

These localized profiles are the ones involved in the main decomposition result of Theorem 2.

Definition 2.23. Fori € {0,1}, let

uéing<xaz) = Ti%Ao(ti)Xi(%Z), (2.68)

where Ag is constructed in Proposition 2.18 and

1

Ty = (22 + |z — xz\%)i and t; = (—1)"z|z — xi|7%. (2.69)

Lemma 2.24. Fori € {0,1}, there exists f; € C*(Q), with f; = 0 in neighborhoods of (z;,0) and
{z = +1}, such that @, , is the unique solution with Z°(Q) regularity to

sing
Zaﬂfﬁéing - aZZI_L’SL-ing = ﬁ’
ﬂéing\ZoUXh =0, (270)
ﬁ;ing‘z:il == 0
Moreover, ul;,, € C=(Q\ {(x;,0)}) but ul,, ¢ HyH!.
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Proof. By symmetry, we only prove the statement for f, and usmg In order to alleviate the
notation, we drop the index 0 in rg, tg and xo. We introduce positive numbers 0 < r_ < ry
such that x =1 for r < r_ and x =0 for » > r;. In particular, all derivatives of x are smooth,
bounded, and supported in 1,_ <<, -

Straightforward computations lead to (2.70), provided that one defines

fo = T%Ao(t) (200X — Oz2X) — 282(7“%A0(t))8zx = vg (20X — O22X) — 20,000, X. (2.71)

Since the derivatives of x are supported away from the point (zg,0), the C°°(Q) regularity of fo
follows directly from the smoothness of vy away from the origin proved in Lemma 2.22. Since
al(z,2) = vo(z, 2)x(x, 2), the C(Q\ {(x;,0)}) regularity of usm follows from Lemma 2.22.

sing

Therefore, to prove the lemma, there remains to prove that @l . 0,,4% _ and 20,42 _ are in

sing’ sing sing
L?(Q) but 9,0 ﬂglng ¢ L?(2). We will use the change of coordinates from cartesian to polar-like
ones of Jacobian given by (2.43), so that, for ¢ : @ — R,

lell72) = / / ey 2907“ t)? dt dr. (2.72)

In particular, we have the following integrability criterion. Assume that ¢ is of the form r*H (t)1)
where H(t) = O;—100(|t]) and supp®) C 1,cp, . If p > —2 or suppt C 1,_,, then p € L*(2).

Step 1. Preliminary estimates. Let 1 such that suppy C 1,,,. By the previous integrability
criterion, since Ag(t) = O(1), 72 Ag(t)y € L2(K2). Using (2.45),

9. (T%Ao(t)> =% {MAO(@ +(1+ t2)5Ag(t)] . (2.73)

By Lemma 2.21, [t|A}(t) = O(|t|~2). Thus, 8. (rzAo(t))y € L%(Q). Using (2.45) again,

e (r00(0) = 54 s | Sy ) + 0 P340 -
_3 241 t 21 A .
+r2(1417)20, {2(1_‘_752)%/\0@)"'(14‘15 ) Ao(t)]'
Using (2.44),
o (T%Ao(t)) =3 %Ao(ﬂ - W%(ﬂ} : (2.75)

By Lemma 2.21, Aj(t) = O(|t|=3). Hence, |t|Ag(t) = O(Jt]) and [t|*AL(t) = O(|t|) so, assuming
additionally that suppt C 1,_ <<, , one concludes that ax(r%Ao(t))w € L*(Q).
Eventually, using (2.45),

&Cz(r%Ao(t)) =73 (—tAo(t) - éA’( )(1+t2)(1 + 3t%) — %(1 + t2)2A6’(t)) . (2.76)

belong to L?(Q). Since z0,u%, , =

Step 2. Z° estimates on usmg By Step 1, ugmg sing =
€ Z°(Q).

Jo+ 021, and fo € L*(Q), we infer that 20, u

and 0.0,
€ L*(Q). Hence @,

alng smg
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Step 3. Lack of HLH! estimate for u, .. Recalling (2.76),

sing*
0,010y = 1 2h(t)x + 0y (2 Ao (£))Dox + (12 Ao (£)D, ), (2.77)

where, by (2.76), the function h is given by
t 1 4
h(t) = = Ao(t) = cA(D)(1+ ) (1 + 3t%) — 31+ 2)2AG(¢).
Using (2.63) together with the relation Ay(—oc) =975 %/2, we find that as t — —oo,

b c
Ao(t) =a+ ztat o),

2b 3¢ _
Ap(t) = — PRy +O0(t7?),
6b 12c _

and the coefficients a, b, ¢ are defined by a = Ag(—o0), —2b = a/2, and —3c = 3¢pA_1(—00). We
infer that as t —+ —oo,

3 12 5
h(t) =5 — == +0(t™) ~ 2coA_1(—00) # 0.
2 3 2
Hence h # 0.
The last two terms in the right-hand side of (2.77) belong to L?*(§2) according to the previous
computations. Since h # 0, the L? norm of the first term is bounded from below by

c/ T dr = +o0. (2.78)
0

and thus 9,0,4%, ., ¢ L*(Q). O

sing

Actually, we have the following regularity on the profiles ., _, which is slightly better than Z°.

sing’

. 240 240 o
Lemma 2.25. For allo < §, uly,, € Hy® L2NLZHZ™ — H,° L2NH; H? and this is optimal.

) 5 1

More precisely, ul,, ¢ HE L2 N HE HZ.

Proof. The proof follows from an easy scaling argument. We start with the z derivative and focus
on ﬂging. Dropping the index 0 in rg and ¢y as in the previous proof, we have, using (2.40) and

Definition 2.23, and setting x(z, z) := xo(xo + 2, 2),

1 z
el +2,9) = b (7 ) x(o.2).
where o(t) = (1 + 2)3 Ag(t). Therefore,
020l g (20 + 2, 2) = 272" (i) X + 2275 <ZI> Xo + a5 (i) Xos- (2.79)
xs3 €T3 €T3
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We focus on the regularity of the first term, which is the most singular. We have, for any o > 0,
2

2
-1 z 1 1 " z " 2 ’
507 (2 x(a o — Z) - (5)) dedzae,
T 2@ <$é)X(x 2) Lng—/x|z_Z/1+2g <90 <$é> ® (xé rdzdz

Changing variables in the above integral, we get

z" " ('zl) x(z, z)
T3

The integral in the right-hand side is finite if and only if o < 5. Moreover, [|¢" |30 &) < 9”171 )-
From the definition of ¢ and the decay bounds of Lemma 2.21, we infer that ¢” € H'(R). This
shows that @}, € L2ZH21 for o < 3.

The bound in Hg% Lg is obtained similarly and left to the reader.

Conversely, if one had ﬂ;ing € HE L?nN ché H?, by the fractional trace theorem [42, Equation
(4.7), Chapter 1], one would have . img(0) € H?3(zo,31).
But, in a neighborhood of & = 0, @l (zo + =,0) = Ag(0)zs with Ag(0) # 0. One checks that

2

2 T1—To 2 20
S e 0w |z[73 7% da.
(R)
L2H? 0

tng € CO(HZ?). In particular, i
sing

@ x6 € H%(0,1) if and only if s < 2/3, which completes the proof. O

Eventually, we introduce the following 2 x 2 nonsingular matrix which translates the fact that

O . and ﬂ;ing are indeed independent elementary solutions related with the non-satisfaction of

sing _ —
the orthogonality constraints associated with £0 and ¢1. We will use this reference matrix multiple
times in the sequel for perturbations of this shear flow situation.

U

Lemma 2.26. Let fo, f1 as in Lemma 2.24 and ®9, ®1 as in Lemma 2.6. The matriz

M = < / Ouf; <I>i> € My (R) (2.80)
Q 0<4,5<1

18 invertible.

Proof. Let ¢ € R? such that Mc = 0. Then, for j = 0,1,
/ du(cofo + c1f1)®7 =0.
Q

Thus, the source term for the function coﬂging +clﬂ;ing satisfies the orthogonality conditions (2.22)
(note that in this case, the boundary data are null). It then follows from Proposition 2.9 that
coﬁging + Clﬁi‘ing € H!H!. Localizing in the vicinity of (z;,0), we infer that ciﬂi‘ing € HIH!,
which, since @}y, ¢ HiH! (by Lemma 2.24), implies that ¢; = 0. Therefore, ¢ = 0 and M is
invertible. O

Corollary 2.27 (Decomposition into singular profiles). Let (f,d0,61) € Hx and u € Z°(2) be the

unique solution to (2.1). Then there exists two real constants co,c1 and a function uyeg € Z'(S2),
as defined in (1.34), such that
U= coﬂging + clﬂiing + Ureg - (2.81)
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Proof. We recall the definition of the matrix M from Lemma 2.26. Since M is invertible, we may

define ¢ = (¢g, ¢1) such that
Te— (£2(f:00,01)
Mec = (ﬁl(f, o) (2.82)

Let fo and f; as in Lemma 2.24. By construction, the triplet (f — cofo — c1.f1,00,01) satisfies the
orthogonality conditions from Proposition 2.9. It follows that the solution wycg to

Zazureg - 6zzureg = f — Co% — Clﬁ in €,

Ureg|z; = 5ia (283)

Ureg|z=41 = 0

satisfies ureg € HL(H}). Thus, estimate (2.11) of Proposition 2.5 ensures that 9, ues € Z°(0), i.e.
Ureg € Z'. Now, u and Ureg + CoUdp,g + €114, both belong to Z°(Q) and satisfy system (2.1). By
the uniqueness result of Proposition 2.2, the result follows. O

Theorem 2 follows easily from Corollary 2.27. Indeed, one easily checks from (1.3) and (2.19)
that X — Hx. Moreover, by Proposition 1.7, Z° — H;f/dLg N L2H? and, by Lemma 1.15,
Z' — Q' (defined in (1.5)). The rest of the conclusions on @’ , are derived in Lemma 2.24.

sing
Remark 2.28. The constants cg, c1 from Corollary 2.27 depend (linearly) on u, but do not depend

on the choice of the truncation functions x;. Indeed, if x(, X} is another truncation, associated
with constants c{, ¢y, then applying Corollary 2.27 twice yields
Coling + C1Udng — €0 (Ughng) — €1 (Uding)' € Z". (2.84)

sing sing
Therefore, in a small neighborhood Vi = x; *({1}) N (x})~*({1}) of (z:,0), we obtain
(ci — ¢)rZ Ao(ti) € HEHL(V;), (2.85)
and therefore ¢; = c}.

As already claimed in Remark 2.7, we can also prove a related decomposition result for the
dual profiles ®J defined in Lemma 2.6. Here, the decomposition always involves a singular part.

Corollary 2.29. Let (co,c1) € R*\{0}. There exists (dy,d1) € R*\ {0} and ®req € Z*, as defined
in (1.34), such that

co®0 4 ;B = (—coz + ¢1)1,50((2) + dolidy, g (T, —2) + d1Ugig (2, —2) + Preg, (2.86)
where ¢ is a smooth cut-off function, equal to 1 near z =0 and compactly supported in (—1,1).

Proof. Using the same decomposition as in Lemma 2.6, set
U= ¢g®0 4 ¢, — (—coz + ¢1)1.50C(2). (2.87)

Then \fIl\E(x, z) := U¢(z, —2) is the solution to

z&t\I/JVC — 8ZZ\I//VC = 9. in Q,

Ue(zg,2) =0 for z € (0,1), (2.88)
We(zy,2) = (—coz — c1)((—%) for z € (—1,0),

\Ilrz::tl = 0’
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where g. = (c1¢"(—2) — 2¢o(’(—2) + c02¢"(=2))1.<o. Thus, (2.86) follows from Corollary 2.27,
applied with f = g. € C®(Q), 09 = Ag = 0 and 61(2) = (—coz — ¢1){(—2) and A; = 0.
It remains to prove that (do,d1) # (0,0). By Proposition 2.9, ¥¢ € HIH! if and only if

03(g.,0,01) =0 for j = 0,1. By Definition 2.10, since d,g. =0 and Ag = Ay =0,
03(ge,0,01) = 0 <= 0150(0) — 9261 (0) = 0. (2.89)
Since 6 = 0 and 6,(0) = —¢; and &, (0) = —cq, (do,dy) = (0,0) if and only if ¥¢ € HH!, if and

z)

only if (¢g,c1) = 0. O

9

Remark 2.30. Using Corollary 2.29 and the regularity result Lemma 2.25 on g,
f— E(ﬁ0,0) = fQ Dy f®7 is not only continuous on HLL? but also on HIL? for every o > é.
We will encounter a related threshold of tangential reqularity in Proposition 2.33.

we see that

Using the decomposition of the dual profiles, we can show that the orthogonality conditions
are also independent when considering only variations of the inflow boundary data.

Proposition 2.31. The linear forms (9 and €' are independent on {0} x C°(8g) x C=(%;).
Proof. By contradiction, let (co, c1) € R?\ {0} such that, for every 6y € C>°(%g) and 6, € C°(%1),
CoE(O, do, (51) + Clﬁ(o, 6o, 51) =0. (290)

Let (do,d1) € R?\ {0} and ®,ee € Z' be given by Corollary 2.29. By symmetry, assume that
do # 0. Then, by Definition 2.10, for every dy € C°(%y), defining Ag(z) := §j(2)/2

0 = ¢cl°(0, 6o, 0) + ¢1£1(0, &g, 0)
= ZAO [(—COZ + CI)C(Z> + doﬂgin (xo, —Z) + (I)reg(an Z)]
. ‘ (291)
= /Z 6(1)/ [(_COZ + CI)C(Z) + doﬂging(wov —Z) + (I)reg(xm Z)] .
sing(x()? _Z) = Z%AO(_OO) = Z%

(see Definition 2.23 and Proposition 2.18). Since Z' < HIHZ, @05, € H*(Zo). If suppdy C
(0, 2) for z > 0, integrating by parts yields

Let z > 0 small enough, one can ensure that ( = 1 on (0,2) and u!,

0= dy /O 1 [—iz—i + @(z)} 5o(2), (2.92)

where ¢(2) 1= 0, Preq (w0, 2) € L*(Xy). Since z — 2% does not belong to L?(0, 2) but ¢ does, one
easily deduces that there exists dyp € C2°((0, 2)) such that the right-hand side is non-zero, reaching
a contradiction. O

Let us conclude this section with an easy consequence of the decomposition result from Corol-
lary 2.27, which will be used in Section 5.2.

Corollary 2.32 (Single orthogonality condition for localized solutions). There exists a couple
(ag,a1) € R?\ {(0,0)} such that the following result holds.

Let (f,00,01) € Hy and let u € Z°(2) be the unique solution to (2.1). Assume that there exists
0 < r < min(z; — z0,1) such that suppu C B((z1,0),7)¢. Then u € Z1(Q) if and only if

(CL()F) + a1ﬁ> (f, do, 51) =0. (293)
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Proof. Let us choose the cut-off function y; from Definition 2.23 such that suppu N supp x1 = 0.
According to Corollary 2.27, there exists (co,c1) € R? and ueg € Z1(2) such that u = coﬂging +
clﬂ;ing + Ureg. Multiplying this identity by x1, we infer that clﬂgingm = —Uegx1 € Z1(Q).
Lemma 2.24 then entails that ¢; = 0.

Therefore u € Z1(Q) if and only if ¢g = 0. We then recall (2.82), and we denote by (ag, a1) the

two coefficients in the first line of M_l. The result follows. O

2.5 Interpolation and fractional regularity

For further purposes, we will also need some fractional regularity results. Their proof relies on
interpolation arguments, and therefore on the explicit expressions of the singular profiles. Due to
a subtle technical difficulty, the proof of these results are postponed to Section 6.

Proposition 2.33. Let o € (0,1)\ {1/6,1/2}. Let f € HIL?, 6o € H*(X), 61 € H*(31) such
that 50(1) = 51(—1) =0.

e If o > 1/6, assume that £9(f,8,01) = L1(f,80,061) = 0.
e Ifo > 1/2, assume also that A; € (%) and A1(—1) = Ag(1) =0 (recall (2.9)).
The unique strong solution u € Z°(Q) to (2.1) satisfies u € Z°(Q) := [Z°(Q), Z* ()], with

lullze S 1 lmgrz + Idollme + 101 2 + Los1y2 (1A0llzr + A1) - (2.94)

Remark 2.34. The case o = 1/6 is not covered in the above result. This critical level of regularity
corresponds to the mazimal continuity of the orthogonality conditions. Such critical levels are
excluded from the abstract interpolation results on which we rely (see Lemma 6.1). In this case,
one would expect a similar result to hold, but with a supplementary norm on the data, in the spirit
of [5, 6]. The case o = 1/2 is also excluded, but it would be possible to include it provided one
ntroduces an appropriate additional norm.

Remark 2.35. The regularity assumptions on the §;’s are not optimal and could be weakened.
We also obtain the following analogue of Corollary 2.32 in fractional regularity.

Corollary 2.36 (Single orthogonality condition for localized solutions in fractional regularity). Let
(ag,a1) € R?\ {(0,0)} be the couple from Corollary 2.32. Let o € (1/6,1)\ {1/2}. Let f € HJL?,
S0 € H%(Zo) such that 5o(1) = 0. For o > 1/2, assume also that Ay € 51 () and Ag(1) = 0.
Let u € Z°(Q) be the unique solution to (2.1) associated with (f,do,0).

Assume that there exists 0 < r < min(x; — xg,1) such that suppu C B((x1,0),r)¢. Then
u € Z7() if and only if

(aOFO + alﬁ) (f,50,0) = 0, (2.95)

and in this case
ullze SN fllazz2 + 100l B2 (20) + Los1/2ll Dol (0)- (2.96)

Proof. The proof follows the same structure as the Z' case.

Using Proposition 2.33, we first prove an analogue of the decomposition result Corollary 2.27
for source terms f € HZL? with o € (1/6,1), where the conclusion is that uyes € Z°.

The conclusion then stems from the fact that 4%, ¢ Z°. Indeed, by Lemma 1.15, for o > 1/6,

sing

Z° < H L2 N HF H?. But, from Lemma 2.25, @’ ¢ Hi L? N HE H2. O

sing
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3 A first nonlinear example in kinetic theory

In this section, we explain how the linear theory of Section 2 can be used in a simple nonlinear
context. Before moving on to nonlinear examples from fluid mechanics in Sections 4 and 5 (which
involve additional difficulties), we encourage the reader to start by reading this section where we
set up the basics of our method to construct perturbative solutions to semilinear or quasilinear
problems despite orthogonality conditions. In particular, we formulate a black-box abstract result
in Section 3.5 which we will use in the sequel.

3.1 Description of the model and main result

As an example, we will show how one can build regular solutions to a stationary nonlinear system
of Vlasov—Poisson—Fokker—Planck type, set on a bounded interval. For the sake of readability, we
will focus on the following system:

uim, = 61 (3.1)
Ulz=41 = 07

where E[u] is an electric force deriving from a potential V[u] satisfying a Poisson equation:

OV (z) = f_ll u(x,z)dz  for x € (zg, 1),

3.2
0:Vig=e, = 0. (3:2)

E =0,V where {

In this toy model, the term E[u]0.u corresponds to a semilinear contribution, which is easily
estimated since explicit integration of (3.2) and the Cauchy—Schwarz inequality yield

IE[ulll Lo @o,20) S NEUlll 1 @o,00) S [0l 22(0)- (3-3)

Remark 3.1. Our toy kinetic model (3.1)-(3.2) departs from classical kinetic models such as the
one studied in [32] in the following ways:

o As mentioned before, the variable z is more commonly denoted by v and represents the velocity
of the particles. We keep the notation z by consistency with the remainder of the paper.

o Usually, even if the position variable x lives in a bounded domain, the velocity variable z lives
in R so that particles can take arbitrary speeds. Since our motivation is to understand what
happens near the critical line {z = 0} we focus here on the region z € [—1,1]. We expect that
our techniques can be applied to the unbounded case to obtain similar results, provided that
one works in the appropriate functional spaces to encode decay as |z| — oo.

e One could also enforce a non-zero Neumann boundary condition for the potential V at the
left endpoint 0;V|yz—z, = go € R as in [32]. This is a straightforward adaptation of the results
presented below.

The goal of the next paragraphs is to prove the following counterparts of Proposition 2.4 and
Proposition 2.9 concerning the linear model (2.1) for our nonlinear toy model. We will work with
the following spaces of data triplets:

Hpp = {(f, (50,(51) € Hg; (5;(2)/2 S %1(21) and (5;((—1)2) =0forie {0, 1}} (34)
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with the norm

1(£, 00, 0) I3 = (£ 60, 01)l9esc + 190(2)/ 2l oer + 1161(2)/ 2]l 5222, (3.5)

where we recall that the space 77! is defined in (1.32). We also define
Hip e = {(£,00.01) € Hepy  10(f,00,61) = £1(f,60,81) = O} (3:6)

Theorem 5. There exists a constant n > 0, and a Lipschitz submanifold Mpp of Hrpp of codi-
mension 2, containing 0 and included in the ball of radius n in Hpp, modeled on 'prﬁg and
tangent to it at 0 (see Remark 3.12), such that the following statements hold:

1. For all (f,60,01) € L?(2) x A (o) x H1(31) with 5o(1) = §1(—1) = 0 such that

1f1lz2 4+ 1160lloer + 1011l <, (3.7)

system (3.1)-(3.2) has a solution u € Z°(Q) satisfying

[ullzo S [1f1lz2 + 00l + 1101l (3.8)
and which is unique in a neighborhood of 0 in Z°(Q).
2. For all (f,00,01) € Hpp such that

||(f760a61)||7'lpp S B (39)

the locally unique solution u € Z°(Q) to (3.1)-(3.2) enjoys Z'(Q) regularity if and only if
(f,00,61) € Mpp, which corresponds to two nonlinear orthogonality conditions.

For such data, one has
||’U’HZ1 S H(f7 60751)”?'[1:'19' (3.10)

Remark 3.2. The nonlinearity of the Vlasov—Poisson—Fokker—Planck system (3.1) is sufficiently
mild to allow for a theory of weak solutions, leading to the first statement of Theorem 5. The
Prandtl system in the vicinity of the recirculation zone enjoys the same feature, accounting for the
first part of Theorem 4. However, the nonlinearity in the Burgers system (1.1) is stronger, and
prevents us from proving the analogue of the first statement of the above theorem.

3.2 Well-posedness theory with low regularity

We prove in this subsection Item 1 of Theorem 5, which corresponds to the well-posedness theory
at regularity Z9, and is therefore a nonlinear counterpart of Proposition 2.4.

There exists n > 0 such that, for any

Lemma 3.3 (Existence of Z° solutions of (3.1)-(3.2)).
= 01(—1) = 0 satisfying (3.7), there exists a

(f,00,01) € L*(Q) x s (30) x A (31) with (1)
solution u € Z°(Q) to (3.1)-(3.2) with (3.8).

Proof. Let (f,00,01) € L?(2) x s (X0) x (1) with §o(1) = 6;(—1) = 0 satisfying (3.7) for
some 1 > 0 small enough to be chosen later.
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e Definition of the sequence. We construct a sequence by setting ug := 0 and, for alln € N,
we define u, 1 € Z°(Q) by induction as the solution to

Zaﬁun—&-l - 8zzun-',-l = f - Enazu'm
(Un+1)|zi = d;, (3~11)
(Uny1))=+1 = 0,

where E,, := E[u,]. At each step, by (3.3), E, € L*(zq,71). Hence, since u, € Z°(),
f— E,0.u, € L*(Q), so the existence of u, ;1 € Z°(Q) follows from Proposition 2.4.

e Uniform bound in Z°. Let us prove by induction that |ju,|z0 < 2Cpn for all n € N,
where C'p is the constant in Pagani’s estimate (2.8), provided that »n is small enough. The
statement is true for n = 0. For n > 0, by (3.3), || Enlle S ||unllzz < 7. As a consequence,
it follows from Proposition 2.4 that

[untillzo < Cp(llfllce + doller + 181lls + | Enllocl|Oztnllr2) < Cpy+Cn?, (3.12)
for some C' depending only on 2. Therefore, if Cn < Cp, the bound propagates by induction.

e Convergence. Now, let w,, := up+1 — Uy. Then, for n > 1, w, is a solution to

Zaan - azzwn = _(En - Enfl)azunfl - Enaz(un - unfl)a
(wn)s, =0, (3.13)

(wn)\z:il =0.
By (3.3), [En—En-1llL= < llun—tn—1]z2 and ||En| L= < [lunllz2. Hence, by Proposition 2.4,
|wnllzo S N(En = En—1)0zun—1z2 + | En0z(un — un—1)llz2 S nllwn—1|lzo (3.14)

and thus (uy, )nen is a Cauchy sequence in Z°(Q) provided that 7 is small enough. Passing to
the limit as n — oo, we obtain a strong solution u € Z° with |jul|z0 < 2Cpn to (3.1)-(3.2).

Eventually, the uniform bound propagated on the sequence also passes to the limit and
implies (3.8). O

Lemma 3.4 (Uniqueness of Z° solutions of (3.1)-(3.2)). There exists 1 > 0 such that, for any
(f,00,01) € L2(Q) x (o) x 1 (X1), (3.1)-(3.2) has at most one solution u € Z°(Y) such that
[ul| 70 <.

Proof. Let (f,00,01) € L2(2) x 51 (30) x #1(31) and u,u’ € Z°(Q) be two solutions to (3.1)-
(3.2). Then w :=u —u' € Z°(f) is a solution to

20, w — 0w = (E[u'] — Eu])d,u' — E[u]d,w,
wjs, =0, (315)
Wz=41 = 0.

Multiplying (3.15) by w, integrating by parts and using the boundary conditions and 9, E[u] = 0,
we obtain

/Q (w)? < /Q (B[] — E[u])d-u'w] . (3.16)
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By (3.3), |[E[u] = Elu]||L=~ < ||w|/z2. Hence, since w).—+, = 0, Poincaré’s inequality entails that
lwllZe S 10:wll7e S B[] = Elu]]| L 1020 2l wll 22 S 110:0'l| 2| |wl]|7. (3.17)

Hence, there exists C; > 0 (depending only on ) such that
lwlZ> < C1l|dza| 2 w2 (3.18)

If C1 0,4/ || 12 < 1, (3.18) implies w = 0, so uniqueness holds in the ball of radius 1/Cy of Z°(Q). O

3.3 Nonlinear orthogonality conditions for higher regularity

We now prove Item 2 of Theorem 5, which corresponds to the well-posedness theory at regular-
ity Z', under orthogonality conditions, and is therefore a nonlinear counterpart of Proposition 2.9.

Lemma 3.5. There exists (f*,65,0F) € Hpp such that, for j,k € {0,1}, (3(f*,55,6F) = 1j—.
Proof. As Corollary 2.16, this follows from Proposition 2.13. O

Proposition 3.6. There exist n > 0 and maps Upp : B, — Z'(Q) and (V%p,vhp) : By, — R?,
where By, is the ball of radius 1 in Hpp such that, for any (f,00,01) € By, u = Upp(f,d0,01) €
ZY(Y) and v7 := v p(f,80,01) obey the equation

20,u+ Eu]0,u — 0,,u = f+10f0 + vl fl

us, = 0; + 007 + 1o}, (3.19)

Ulz=+1 = 0

where the triplets (f*,05,0%) for k € {0,1} are defined in Lemma 3.5. Furthermore, u and v satisfy
the estimate

lullze + ]+ 11 S (S, 60, 61 l3err (3.20)

and the orthogonality conditions
v = —0li(f — Elu]d.u,dy,01) forj e {0,1}. (3.21)

Proof. Let (f,d0,01) € Hpp with ||(f,00,01)||1ppr < 1 small enough to be chosen later on. We
modify our iterative scheme to construct Z' solutions using Proposition 2.9 and accommodate for
the two orthogonality conditions at each step.

e Definition of the sequence. More precisely, we take ug := 0 and, for n € N, given
up € ZH(Q), we define u, 41 € Z'(Q2) as the solution to

zamun+1 - azz’U/nJrl = f - Enazun + V2+1f0 + V7lz+1f17
(u7l+1)|2i =0, + V2+15? + V711+162'17 (3‘22)
(Unt1)jz=+1 =0,

where E,, := E[u,], the triplets (f*,55,6%) for k € {0,1} are defined in Lemma 3.5 and

V) oy = —0(f — Enditun, 80, 01). (3.23)
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This choice ensures that the two orthogonality conditions
O (f = EnOztin + v 1 fO 4+ v 1 1 00 + V00100 + V54160, 01 + V0100 + v 4161) = 0 (3.24)

are satisfied.

We now verify that the data of (3.22) satisfy the assumptions of Proposition 2.9. This mostly
follows from the inclusion Hpp C Hg. It only remains to check that (—E,0,u,,0,0) € Hg,
Le. that —F,0,u, € HyL2, (—=En0zun/2)s, € (%) and (=En0;u,/2)(xi, (1)) = 0.

x z)

We estimate these norms in the next item. The condition d,u, (z;, (—1)") = 0 is guaranteed by
the constraint §7((—1)*) = 0 contained in definition (3.4) which also entails (6¥)'((—1)%) = 0.
By Proposition 2.9, we conclude that u, 1 € Z1(Q).

Uniform bound in Z!. Let us prove by induction that there exists a constant C; > 0 such
that, if ) is small enough, then, for all n € N,

Un = llunllzr + D 0:un(@i,2)/ 2l 1 () < 2C1n. (3.25)
1€{0,1}

This holds for n = 0. For n € N, it follows from (2.23) that

[tns1llze S I(F5 00,60 30 + | + | Enetinllmirz + D (Endetn)ls, /2l 2
ie{0,1}
(3.26)
Moreover, from the lateral boundary conditions, we derive that

10:wnr1(wis2) 2l es(my S N61(2) 2 lloeacmy + D Wil - 16F) (2)/ 2l
ke{0,1} (3.27)

S (280,00 laerp + npal + [l

We obtain from (3.23) and Lemma 2.11 that

‘V:I?;,+1| S ||(f7 50761)”7'[}( + HEnazun”Ha}Lﬁ + Z ||(Enazuﬂ)|2i/z||9fz1(2i)' (3'28)
i€{0,1}

First, using (3.3),
1EnOztnllmire S 1EnllallOztnllperz + 1 Enlliee [0zunllarre < llunllz2lunllze (3:29)
Second, for i € {0, 1}, since E,, does not depend on z,
[ En(2:)Ostun (w4, 2) /2] o2 (21) < (| EnllLee||0sun (4, 2)/2]| 2 (5)- (3.30)
Hence, there exists C7 > 0 (depending only on ) such that
Un+1 < C1 (I[(f, 00, 00)l345p + Us) - (3.31)

Thus, if n < 1/(4C%), then the bound U,, < 2C1n propagates by induction.
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e Convergence. As in the low regularity case, we let w,, := u,+1 — uy. Then, for n > 1, w,
is now a solution to:

Zaacwn - azzwn = - (En - En—l)azun—l - Enaz(un - un—l)

+ (V2+1 - Vg)fo + (1/711_‘_1 - V717,)f1a

(wa)is, = (241 = V)00 + (vhyy — v, (332
(wn)|z=i1 =0.
Using the same type of proof as above, we derive from (3.23) and Definition 2.10 that
V1 = Vil S nllwna |z (3.33)
Therefore, estimate (2.23) of Proposition 2.9 entails that
[wallzr S nllwn-1]l 21 (3.34)

Thus (un)nen and (v)),en are Cauchy sequences. Passing to the limit, we deduce that there
exist u € Z1(Q2) and (19, v!) € R? satisfying (3.19), (3.20) and (3.21). O

Definition 3.7. For n > 0 small enough, we define Mpp as

Mrp = {(f,00,61) € Hrp; |[(f:00,01)|l1ppr <n and vrp(f,do,01) = (0,0)}. (3.35)

By definition, for any (f,d80,01) € Mpp, there exists a solution u € Z*(Q) to (3.1) (since (3.19)
is satisfied with v° = v* = 0), which satisfies (3.10) thanks to (3.20).

Proposition 3.8. There exists n > 0 such that, for any (f,0,61) € Hrp and u € Z1(Q) solution
to (3.1)-(3.2) satisfying ||(f,00,01)|#rpr < n and ||l z2 < n, one has (f,00,01) € Mpp.

Proof. Let (f,80,61) € Hrp and u € Z1(Q) be a solution to (3.1)-(3.2) satisfying ||( £, do, 01)||xpp <
n and ||ul|z2 < n for some n > 0 small enough to be chosen later.

Since u € Z*(2), one has —E[u]0,u € H}L? Thus, viewing (3.1) as a linear equation with
source term f — E[u]d.u, Proposition 2.9 implies that

0i(f — Elu)d,u, do,6,) = 0. (3.36)

Now, let (@,2°,v') € Z*(Q) x R? be the solution to (3.19) constructed from (f,dy, 1) in Proposi-
tion 3.6. By (3.21), o
Vi = —T(f — E[a]0., 60, 01)- (3.37)

Combining both equalities leads to
WO+ [ S (lullze + llallz)llu — @l 2. (3.38)

Therefore, writing the system satisfied by w := u—w and applying estimate (1.7) of Proposition 2.9
leads to
[wll 21 < nllwll 2. (3.39)

If > 0 is small enough, this implies that w = 0, so v° = v* =0, and (f, 6y, 1) € Mpp. O
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Remark 3.9 (An alternative approach). Another potential proof of Item 2 of Theorem 5 could be
the following. Consider the map

V%‘P : (f, (50,(51) € Hpp — —E(f, o, (51) + [J(E[u]azu, 0, 0) S RQ, (340)

where u € Z° is the unique solution to system (3.1)-(3.2), provided by Lemma 3.3.
Since u € Z°, E[u]d,u € HI/SL2 and therefore vy is well-defined thanks to Remark 2.30.

We then set Mpp = {(f,00,01) € Hrp; vip(f,d0,01) = 0}. Then for all (f,d0,01) € Hrp, u is
a solution to an equation of the type z0, — 0, u = g, where the right-hand side g belongs to Hl/?’L2
and satisfies orthogonality conditions. It follows from the interpolation result Proposition 2.33 and
Lemma 1.15 that u € Z'/% — HLL? N H;/SHZQ, and therefore E[u]0,u € Hg/?’Lz. Bootstrapping
twice the same argument, we eventually infer that u € Z1.

Howewver this argument is based on the existence of Z° solutions of the nonlinear problem without
any orthogonality condition. For the Burgers equation, the nonlinearity is too strong for such a
theory of weak solutions to be available. Therefore, in order to unify the presentation, we have
chosen to present a different proof, based on a modification of the iterative scheme.

3.4 Regularity and tangent space of the manifold

We now give another description of the set M pp defined in (3.35), which we use to prove that it is
indeed a Lipschitz submanifold of Hpp of codimension 2, modeled on H psg> and we describe its
tangent space at the origin. Throughout this paragraph, we denote by Z = (f, ¢, d1) an element
of HFP. o

We recall that there exist Z°,=! € Hpp such that ¢/(E¥) = 1, (see Lemma 3.5), and
such that Hip, = ker® Nkerf' N Hpp = (RE® + RE')L. For every Z € Hpp, one has the
decomposition

== EJ' + <:7 :0>HFP:O + <Ea El>HFPE:L7 (341)

where 2+ € Hip sg and the linear maps = — E+ and = — (ZF; E) are continuous.

) &
Lemma 3.10. For n > 0 small enough, the set Mpp defined in (3.35) is equal to

Mpp = {E e Hrp;  |Ellapr <7 and (E;57) = vl ,(EY) for j € {0, 1}} (3.42)

Proof. We proceed by double inclusion. N
e Let = € Mpp. Consider the solution (u,2%,v') € Z1(Q2) x R? constructed for the data =+
in Propomtlon 3.6. Then u € Z'(Q) is a solutlon to (3.1)-(3.2) with data Z+ + 19 ,(E4)=0 +
y},P (E4)EL. Since Z € Mpp, we infer from (3.41) that u € Z1(Q) is actually a solution with data
. Thus, Proposition 3.8 implies that = € Mpgp.
e Let 2 € Mpp. We introduce

=2 1l (EHE 4 vl p(ED)E, (3.43)

[

which can be thought of as a good projection of = on MFP since =4 = 24 and = € Mpp. Let
u,u € Z*(Q) denote the solutions constructed in Proposition 3.6 from = and =Z+. For k € {0,1},
we also introduce the coefficients p* := vk, (E+) — (Z;EF)4,.,, which characterize how far Z is

from Mpp. Then w := & — u belongs to Z(Q) with

ol S (3.44)
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and is a solution to

20,w — O,.w = Eu|0,u — E[0]0,1 + u° O + pt f1,
wpe, = HO90 + o) (3.45)

Wiz=41 = 0.

By Proposition 2.9, since w € Z1(2), the following orthogonality conditions are satisfied for j =
0,1:

0= 6i(Blud.u — Ela]d.a+ p°f° + p' f1, 1068 + ' 66, n°67 + p'61)

_ , (3.46)
= I (E[u)d,u — E[u)0,a,0,0) 4+ u’.
Moreover, since

| E[u]0:u — Ela]0,u| iz S nllwll 2 (3.47)

we infer from (3.46) that _
W] < mllwl 21 (3.48)

Applying estimate (1.7) to (3.45), we obtain
[wllze S nllwllze + 1] + 1] < nllwll 20 (3.49)
For n > 0 small enough, this entails that w = 0 and x° = p! = 0, so that = € Mpp. O

Lemma 3.11. The maps Upp and vpp of Proposition 3.6 are Lipschitz-continuous.

Proof. Taking two triplets 2, =’ € Hrp, one can consider the constructed sequences u,,, u,, € Z()
and vy, v), € R? from (3.22). Then, for n > 1, w,, := u,, — u/, is the solution to

Zaa:wn - 8zzwn = (f - f/) - E[wnfl]azunfl - E[Ufnfl]azwnfl
+ (vn =)+ (v — VD,

(s, = (5~ 89 + 08 )30+ (v — )3, 320
(wn)|z=+1 = 0,
where, from (3.23) and Definition 2.10,
vn = vl S llwn—allz1. (3.51)
Thus, we obtain from Proposition 2.9 that
lwnllze SNIE = Ellater + nllwn-1ll 2 (3.52)
For n small enough, we obtain at the limit that
lu =l + 100 =2+ ot = 2] S IE = Z s (3.53)
which concludes the proof. 0

Remark 3.12. Since we only proved Lipschitz reqularity for the map vpp, (3.35) (and equivalently
(3.42)) a priori only defines a Lipschitz manifold. Hence, it is difficult to define tangent spaces to
Mpp. Nevertheless, one can say that ’HI%P’Sg is tangent to Mpp at 0 in the following weak senses:
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o For=Z e MFP; d(EvH#ng) 5 ”E‘H’QHFP
o For every 2t € ’H#P’Sg, for e € R small enough, d(eE+, Mpp) < €2

Both facts are straightforward consequences of the equivalent definitions (3.35) and (3.42) and of

the estimate ' o
W (Z) + 0 (E)| S EIR,, (3.54)

which follows from (3.21) and (3.20).

Remark 3.13. It is likely that similar techniques can be used to prove that Mpp has in fact
more regularity (say C* for example) and characterize its tangent spaces in a neighborhood of the
origin by computing the orthogonality conditions associated with the linearized problems around
small enough solutions u € Z1(Q), but this is not our focus here.

3.5 A general formalization

The construction deployed in Section 3.3 can be seen as a particular case (see Remark 3.16) of a
more general approach to construct solutions to semilinear or quasilinear equations in the presence
of orthogonality conditions, in a perturbative regime. We give here a statement in an abstract
framework which we will use in the following sections for the Burgers and Prandtl systems.

Our abstract result is related with general results for semilinear problems associated with Fred-
holm operators with negative index, such as the ones of [59, Chapter 11, Section 4.2.3]. However,
the approach in this reference consists in modifying parameters in the nonlinearity to ensure the
orthogonality conditions, while we focus on constructing a submanifold of data for which the
nonlinear problem has a regular solution.

We intend to construct solutions to problems of the form Lu = N(E,u), where u € Z (the
space of solutions), 2 € X (the space of data for the nonlinear problem), N : X x Z — H is the
nonlinearity, with values in H (the space of source terms © € H for the linear problem Lu = 0).

To avoid investigating the C'' dependency of the solutions to our nonlinear systems on the data,
we use a version of the implicit function theorem for functions which are not C' but only “strongly
Fréchet-differentiable at a point”. We refer the reader to [56, Chapter 25].

Definition 3.14. Let E, F' be Banach spaces, f : E — F and z* € E. We say that f is strongly
Fréchet-differentiable at x* when there exists a continuous linear map L : E — F such that

[f(x1) = f(z2) = L(w1 —x2)[[r = o (21— m2|r). (3.55)

T1,Toa—T*
The following implicit function theorem is proved in [56, Paragraph 25.13].

Lemma 3.15. Let Ey, E2, F be Banach spaces and f : Ey X Ea — F such that f(0,0) = 0.
Assume that f is strongly Fréchet-differentiable at (0,0) and that O5f(0,0) : Eo — F is a linear
isomorphism. Then there exists a Lipschitz-continous map g defined in a neighborhood of 0 € F;
such that, for every (x,y) in a neighborhood of (0,0) € Ey x Es, f(x,y) = 0 if and only if y = g(x).
Moreover, g is strongly Fréchet-differentiable at 0 and Dg(0) = —(d2£(0,0))~101 £(0,0).

Theorem 6. Let H,X,Z be Banach spaces and d € N. Let { : H — R% and L : Z — H be
continuous linear maps. Let N be a (nonlinear) map from X x Z to H such that N(0,0) = 0.
Assume that
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1) for all © € H, the equation Lu = © has a unique solution u € Z if and only if © € ker/,
which moreover satisfies ||ul|z < ||1©]w;

it) N is strongly Fréchet-differentiable at (0,0) and 9,N(0,0) =0, i.e. there exists a continuous
linear map 0=N(0,0) : X — H such that, as 2,2 € X and u,v’ € Z go to 0,

IN(Z,u) = N(E ) = (9=N(0,0))(E = )l = o(IE = F'llx + u — ]| 2); (3.56)

i) £y = €0 d=N(0,0) is onto from X to R

Then there exists a local Lipschitz submanifold M of X, modeled on ker{xn (of codimension d)
and tangent to it at 0, such that, for any E € X small enough, the equation Lu = N(Z,u) has a
solution w € Z if and only if E € M. Such a solution satisfies ||ullz < ||Z]|x and is unique.

~

Proof. Using Item iii), we fix Z',...,29 € X such that ffv(Ek) = 1,4, and we set OF :=
0=N(0,0)ZF. We could then mimic the iterative scheme of Section 3.3 by defining sequences
up € Z and v, € R? such that

Lt = NE+Y vk 5 u,).
k

Instead, we provide a shorter proof directly relying on the bundled result Lemma 3.15.
Let = — =% be the linear continuous projection from & to kerfy parallel to the space
span (E,...,29) ie. Et =2 — Z‘;:l ()9, Let f:kerly x (£ x RY) — H defined by

fE*, (u,a) := Lu— N(E* + a1Z' + - + a42% ). (3.57)

By Item ii) and continuity of L on Z, f is strongly Fréchet-differentiable at (0,0). Moreover,
D2£(0,0) : (u,a) = Lu — a;0' — - — a40% is a linear isomorphism from Z x R? to H by Item i)
and continuity of £ on H. Indeed, given h € H, setting a” := —£(h) and u" € Z the solution to
Lu" = h +ah©' + .-+ aO?, one has 92 £(0,0)(u",a") = h and |lup|lz < R, |a”] < ||R]|%-

Hence, the implicit function theorem of Lemma 3.15 yields the existence of Lipschitz-continuous
functions (U, i) : ker {5 — Z x R? such that, for every =+ € kerfy, u € Z and a € R? small
enough,

Lu=NE! + a2 4 - + a2 u)

if and only if @ = u(=+) and uw = U(Z1). From there, we infer that for all = € X and u € Z small
enough, Lu = N(Z,u) if and only if /5(Z) = u(Z+) and u = U(E+). Thus the conclusions of the
theorem hold provided that we set

M:={EeX; |El|x<nand(y(E)=uE"}, (3.58)

where Indeed, (3.58) corresponds to the graph characterization of a local Lipschitz submanifold of
X containing 0 and modeled on ker /; therefore of codimension d by Item iii). Eventually, pu is
strongly Fréchet-differentiable at 0 and, since Dg(0) = —(82£(0,0))~10; £(0,0) with the notation
of Lemma 3.15, we obtain that Du(0) = —¢ 0 9=N(0,0) = —¢x so Du(0) = 0 on ker £y, which
justifies the claim that M is tangent to ker / at 0. O

Remark 3.16. Item 2 of Theorem 5 can be recovered as a particular case of Theorem 6 with the
following setting:
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X =H =Hpp defined in (3.4),

the solution space
Z .= {u € ZM); wup—g1 =0, (Owu(wi,2))/z € HH(S), Oulzi, (—1)") = 0}7 (3.59)

with

lullz == [lullzs + D (@-ulwi, 2))/z] e (3.60)
1€{0,1}

L:Z — X defined by Lu := (20,u — 0..u,ujs,, us, ), for which one easily checks that the
assumption Item i) of Theorem 6 is satisfied thanks to Proposition 2.9.

N : X x Z — H defined by N(Z,u) := (f,d0,01) — (E[u]0,u,0,0). In particular, one has
0=N(0,0) = Id. To check that N takes values in H = Hpp C Hi, we must check that
Elu)(x;)0,u(x;, (—1)") = 0, which follows from the fact that, for u € Z, d,u(z;, (—1)) = 0.
We now check that N satisfies Item ii) of Theorem 6.

First, for u,u’ € Z*(Q), by (3.3),

| Eluld.u — Bl |12z < I|Efu — w0.ull iz + | B0 (u — o) s 2
Sl =l 9ullmszs + Iz 10u(u =)l rce (361)

S (lullze + W] z0)lu — || 22
Second, one similarly checks that
I(E[u]o:u — Blw]0:u') (i, 2)/ 2l 52 5y S (lullz + vl 2)]u — |2 (3.62)
Hence, we conclude that

I(Euld:u — Ew']0:u",0,0) |3, = |(E[u]dzu — E[u]0:4,0,0)||2

(3.63)
S (ullz + [[w'[2)llu — 'l

so that estimate (3.56) is satisfied.

d=2,¢:= ({0, ﬁ)‘HFP defined in Definition 2.10, continuous on Hpp by Lemma 2.11 and
Hrp — Hri, satisfying {n(X) = (X) = R? by Lemma 3.5 and 0=N(0,0) = 1d.
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4 A viscous Burgers equation

In this section, we consider the following nonlinear parabolic forward-backward system, which can
be envisioned as a kind of stationary Burgers equation with transverse viscosity:

uOpu — Oyyu = f,
ups, = Uy, + 0, (4.1)

Uly=+1 = Ujy=+1-

As detailed in the introduction, the perturbation (f,dg,d1) is small and we look for solutions u
which are close to the shear flow u(z,y) := y, which corresponds to (f,dg, 1) = (0,0,0). Thanks
to the nonlinear change of variables described in the Introduction and detailed in Section 4.1, the

local well-posedness of (4.1) can be proved using the formalism of Section 3.5 (see Sections 4.2
and 4.3).

4.1 A nonlinear change of variables

As is classical for problems with free boundaries, we perform a change of variables which straightens
the critical curve {u = 0}. Heuristically, we swap the roles of the vertical coordinate y and the
unknown wu, the latter becoming the vertical coordinate, and the former the unknown of the new
PDE. Keeping in mind that we are looking for perturbative solutions with u close enough to u (in
particular ||uy — 1|z < 1), we change the vertical coordinate y into z, defined as

2(2,y) = u(z,y). (4.2)
The new unknown Y (z, z) is defined by the implicit relation
u(z,Y(z,2)) = 2. (4.3)

In particular, thanks to the boundary conditions w,—+; = uj,—+; = £1, one checks that the
domain (z,y) € Q = [xo, z1] x[~1, 1] is indeed mapped to (z, z) € 2, and one still has Y|._,; = £1.
Similarly, if 6;(0) = 0 and &;((—1)%) = 0, the inflow boundary regions X; are also left invariant by
this change of variable.

Remark 4.1. More rigorously, given u defined on Q and close enough to u (for evample in H}H?>
topology), for each x € [xg,x1], the map y — u(x,y) is a C* monotone increasing bijection from
[—1,1] to itself, and the implicit definition (4.3) is equivalent to setting

Y (z,2) := (u(z,-) "' (2). (4.4)

From (4.3), we successively derive the relations

Oyu(z,Y (x,2)) = m,
Ou(z,Y (x,2)) = —0,Y (z, 2)0yu(z, Y (z, 2)) = —m, (4.5)

0,.Y (z,2)

Oyyu(z,Y (z,2)) = O )
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These identities lead to the following PDE for Y:
20,Y — (0,Y)720,.Y = —0.Y f(x,Y). (4.6)

Moreover, by (4.4), denoting by (- + 6;(-))~! the functional inverse of the function z — z + &;(2)
and letting
T[6:](2) =2 = (- +6:(-)) (), (4.7)
and using §;(0) = 0 and §;((—1)") = 0, we have Y (z,2) = z — Y[§;](2) for (z,2) € 5.
Therefore, we obtain the system

20,Y — (0.Y)"20..Y = —0.Y f(2,Y),
Yis, = = — T[5)(2), (1.9)
}/\z::l:l = =1

Eventually, to make the perturbative nature of this system explicit, we write Y (2, 2) = z — Y (x, 2),
which leads to the system

20,Y — 0..Y = Np(f,Y),

Vis, = TI51, (4.9)
Yv|z::|:1 =0
where the nonlinearity is given by
~ 9.Y(2-08Y), - - -
Np(f,Y)=————20.. Y+ (1 -0.Y)f(x,z—-Y). 4.10
B(FV) = S (- 0.7)f(x.z~ ) (4.10)

We prove the well-posedness of (4.9) in Section 4.2 and use it to prove Theorem 3 in Section 4.3.

Remark 4.2. The initial PDE uOyu — Oyyu = f is quasilinear. After the change of variables
described in this paragraph, we obtain system (4.8), which is still a quasilinear one (since the
viscosity in front of 82237 depends on )N/) However, we know from Section 2 that, for the linear
problem z0,u — O,,u = f, there is no loss of derivative in the vertical direction. This key point
allows us to apprehend (4.8) under the form (4.9), treating this nonlinearity perturbatively as the
first term of Np in (4.10). The fact that there is no loss of vertical derivative explains why we will
be able to prove in the following paragraph that the nonlinearity Np satisfies the mild estimates of
Theorem 6. This would not have been possible in the initial form uOyu — Oyyu = f, since the linear
theory involves a loss of % derivative in the horizontal direction.

4.2 Well-posedness in the new variables

We now prove the following well-posedness result with Z1(Q2) regularity under two orthogonality
conditions for system (4.9). Let

Hp = {(ﬁ 30,01) € Hi; 5;'(2)/2 € %1(21% 52/((*1)i) = O}’ (4.11)
XB = {(f7 60,(51) S HB; f S H;Hz?? f‘Ez = Ov 6i € H5(ZZ)? 6l(0> = 6;/(0) = O} ’ (412)

with the norms

1(£: 60, 00125 = (£ 60, 61) |2 + 1165 (2)/2lloer + 1107 (2)/ 2l ez (4.13)
1(£5 00, 01) |5 == [1(f5 00, 00) 1205 + 1 f | 2222 + [190l| 5 + ([0 | 225 (4.14)
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The restriction that f|sz;, = 0 lightens the exposition but could be partially relaxed. The space X
of (4.12) is the same as the one defined in (1.3) in the introduction.

Proposition 4.3. There exists n > 0 and a local Lipschitz submanifold Mp of Xp included in the
ball of radius n, modeled on Xg Nker(£0,£1) (of codimension 2) and tangent to it at 0 such that,
for every (f,60,01) € Xg such that ||(f,00,61))|lx, < 7, (4.9) has a solution Y € ZY(Q) if and
only if (f,00,61) € Mp. Such solutions are unique and satisfy |[Y || 22 < |(f:00,61) ||y -

Proof. Our strategy is to apply the same nonlinear argument as for our kinetic theory toy model
(see Section 3). Before moving on to the formal proof using the abstract Theorem 6, let us give
an heuristic overview of the corresponding concrete nonlinear scheme.

Heuristic overview of the nonlinear scheme. We follow the scheme described in Sec-
tion 3.3. Let (f,d0,01) € Xp with ||(f,do,01)]|x; < 7 small enough to be chosen later on. We

construct a sequence Y, of Z1(Q) functions using Proposition 2.9, accommodating for the two
orthogonality conditions at each step. We take Yy := 0 and, for n € N, given Y,, € Z}(Q), we
define Y,, 11 € Z*(2) as the solution to

Z?zi;nJrl - azzi;7z+1 = NB(f7 ?n) + V2+1f0 + V,,llJrlfl,
(Yor1)im = T0] + vp 167 4+ vpp16), (4.15)

(Y41)z=+1 =0,

where the triplets (f*,85,6F) € Xp for k € {0,1} are such that €/(f* 6§, 6F) = 1, and are
constructed as in Corollary 2.16 and

vy = =0 (Np(f,Ys), Y[6), Y[01]). (4.16)
This choice ensures that the two orthogonality conditions
E(NB(fv f/n) +0 O fh
Y[6o] + v 4160 + V4165, (4.17)
Y[61] 4+ vy 167 + vpy161) =0

are satisfied. One checks that Proposition 2.9 can be applied, yielding }anﬂ € Z'(Q). One can

then prove that (Y;,)nen is uniformly bounded by Cn and is a Cauchy sequence in Z1(2).

Proof using our abstract toolbox. More precisely, this result follows from Theorem 6,
applied with the following setting: Hp defined in (4.11) and X5 defined in (4.12),

e the solution space
Zp = {u € Zl(Q); Ulz=41 = 0, azzu(xivz)/z € %1(21')7 azzu(zia (_1)1) = 0}7 (418)

with
lullz = llullze + > [10:2u(@i, 2)/ 2l 2 (25 (4.19)
i€{0,1}

e d=2/(:= (E,ﬁ)‘HB defined in Definition 2.10, continuous on Hp by Lemma 2.11 and
Hp — My, satisfying £(X5) = R? by Proposition 2.13 since C°(Q) x {0} x {0} C Xp;
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o L : Zp — Hp defined by Lu := (20,u — 0..u,u|5,,u)xs, ), for which one easily checks that
the assumption Item i) of Theorem 6 is satisfied thanks to Proposition 2.9;

o N:Xpx Zp — Hp defined by N(Z,Y) := (Np(f,Y), Y[0o], Y[61]). To prove that N takes
values in Hp C Hg, we must check that:

a) Np(f,Y) e HL?: this follows from Lemma 4.6 and Lemma 4.9 below;

b) (Np(f,Y)/2)|s, € #1(%;): this follows from Corollary 4.13 below;
¢) Np(f,Y)(zi, (—1)") = 0: this property follows from the fact that, for = € Xz, fiz, =0
and, for Y € Zp, 8..Y (x;, (—1)) = 0.

Eventually, we claim that N is strongly Fréchet-differentiable at (0,0) in the sense of Def-
inition 3.14 with 0, N(0,0) = 0 and 0=N(0,0) = Id, which corresponds to the following
estimate, as 2,2’ € Xg and Y,Y’ € Zg go to 0,

I(NB(f,Y), Y[80], Y61]) — (N (f', Y), YI5], Y[57)) = (E = =)o

o -, (4.20)
=0 (IE=Zllas + IV = V|2 -

This follows from Corollary 4.10 for the H!L? estimate of the force, and from Corollary 4.13
and Corollary 4.16 for the estimate of the boundary terms. O

The next subsections are dedicated to the proof of Item a) and Item b) and of estimate (4.20)
above. We will repeatedly use the following classical result:

Lemma 4.4. The pointwise product is (bilinearly) continuous from HXH} x HLL? to H}L?.

4.2.1 Forcing term

We first derive estimates for the main forcing term (1 — 8,Y)f(z,z — Y (z,z)). We start with an
easy one-dimensional lemma:

Lemma 4.5. For ¢,v € (H?> N H})(=1,1) small enough (so that the changes of variables z
2 — ¢(2) and z — z — P(2) are well-defined on [—1,1]) and f € H*(—1,1), one has

1f(z = o(z)llL2 < I f]lz2, (4.21)
1f(z = &(2)) = f(z = ()2 SN0 fllz2 ]l = Pll e (4.22)

Proof. First, (4.21) is straight-forward since the Jacobian of the change of variables z — z — ¢(z)
is bounded from below and from above for ¢ small enough in (H? N Hy)(—1,1).
Second, for z € [—1, 1], we write

fz=¢(2) = f(z = 4(2) = (¥(2) — ¢(Z))/O 0:f(z = s¢(2) — (1 = 5)Y(2)) ds. (4.23)

Hence, by Cauchy—Schwarz,

1
1£(z = ¢(2)) = f(z = (T2 S o — Vi /0 10 f (2 = (s6(2) + (1 = 8)1(2))) |7 ds (4.24)

so that (4.22) follows from (4.21) applied to 0, f and s¢ + (1 — s)1. O
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Lemma 4.6. For ¢,v € HX(H? N H}) small enough and f € HLH?, one has
1A —=0:0)f(z,2 = O)lmrrz S I fllHpmz,
[f(z,2 — ¢z, 2) — flz, 2 = (@, 2))mire SN fllmrazllo — ¥llmime.
Proof. First, we observe that 0,¢,0,1% € L*, and 0, f € L. Since

aﬁ(f(xaz - (rb)) = 8mf(’JJ,Z - (b) - afd)aZf(‘T,Z - ¢’)

we infer that f(x,z — ¢) € HLL2. From there, we easily deduce the first estimate.
We then turn towards the second estimate. By the chain rule and the triangular inequality,
one has

1f(z,2—=¢) = f(z,2 = ¥)llmiez S 1f(@,2 = @) — fz,2 = ¥)llL2 L2
+10:f(x,2 = ¢) = 0uf (2,2 = V)2 12
+110:f(x,2 = ¢) = 0. f(#,2 = ¥)) bl 212
+ 101 (2,2 = ) (¢ — a)ll L2 L2

By (4.22), the first two terms are bounded by ||0, f|r2]|¢ — ¥||L and ||Oz. fllr2]|¢ — Y| Lee-
For the third term, using (4.22),

10:f(z,2 —¢) — 0= f(x, 2 — ¢))¢IHL§L§
<|0:f(z,2 — ¢) = 0:f (2,2 — V) |Leo 12 ||| L2 L (4.27)
S HaZZfHLg°L§ ||¢ - 1/’||L°° ||¢r||L§LgC

For the fourth term, using (4.21),

1021 (2,2 = ) (P2 — a)llLzrz < 10:f (2,2 = D)2l @2 — PallLzre

(4.25)

(4.26)

(4.28)
5 ||azf||L;°L§||¢z - ww“LiLgo
Gathering these inequalities concludes the proof using usual Sobolev embeddings. O
Lemma 4.7. For ¢1,¢2 € HL(H? N H}) small enough and fi, fo € HIH?Z,
(1= 0:01) fi(z, 2 — ¢1) = (1 = 0z02) fa(w, 2 — d2) — (f1 — fo)l a2 (4.29)
S (Millarmz + 1 follazmz + o1l armz + ¢2llaimz) (161 — dallmimz + 111 = follmamz)-
Proof. First, we write
i,z = 1) = fal@, 2 — ¢2) = (fr = fo) = (fr = fo)(@,2 = 61) — (f1 — f2) (2,2 = 0) (4.30)
+ fz(.’E,Z - ¢1) - fg(x,Z - ¢2)
Applying Lemma 4.6 to both lines, we have
[ fi(z,2 — ¢1) — fa(z,2 — ¢2) — (f1 — fo)llmrL2 (4.31)
S = fellmiazllér — Ollaaz + | f2llaaaz |61 — dallmrmz2,
which allows to conclude the proof thanks to Lemma 4.4. O
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4.2.2 Nonlinear viscous term

.Y (2-8,Y o
CTEE0.Y

We derive estimates for the main nonlinear viscous term (1-5.7)
— Uz

Lemma 4.8. Let g : R — R be a C® function in a neighborhood of 0 with g(0) = 0. Then the
map G : HLH? — HIH! given by G(¢) := g(¢.) is well-defined and Lipschitz-continuous in a
neighborhood of 0, and satisfies G(0) =

Proof. First, for ¢,v € H:H? small enough,

19(¢2) = 9(¥) L= < 1g'[[Lllds — Vel S P2 — sl (4.32)
Second, for ¢ € HH? small enough,
0wz (9(¢2)) = §'(02) P2z + 9" (02) Pz (4.33)

Hence, for ¢,1 € HLH? small enough, using that ¢ € C® and decomposing the difference, one
obtains

102 (9(¢2) — 9(¥2)) [l S 16 — Yl a2 a2, (4.34)
which concludes the proof. O

Lemma 4.9. For ¢,v» € H:H? small enough, one has

(1-0.9) (1 - zd) Os
Proof. Since 0., is Lipschitz-continuous from H!H? to H!L?, by Lemma 4.4, the result follows

x Tz

from the Lipschitz continuity of ¢ — 0.¢(2 — 9,¢)(1 — 9,¢)~2 from HIH? to HIH}, which is a

z

consequence of Lemma 4.8 with g(s) := s(2 — s)(1 — s)~2. O

0220 — S (Igllzme + 10l mimz) 16 — Yllaipe.  (4.35)

)

H1L2

Gathering Lemma 4.7 (for the part involving f) and Lemma 4.9 (for the quadratic part involving
Y only), we obtain

Corollary 4.10. For = = (f,d9,01), &' = (f',0(,01) € Xp and Y.,Y' € Zg small enough,
INB(f,Y) = No(f', V) = (f = Mllzez =0 (12 = F s + 1V = V)12, ) - (4.36)

4.2.3 Boundary contribution of the nonlinearity

We now derive estimates concerning the #1(%;) contribution of Ng(f,Y).
Lemma 4.11. For 1 € #(0,1), one has zip € L>(0,1) with [|z| = S |9 5.
Proof. Let ¢ € 51(0,1). First, ¢» € H'(1/2,1) and one has |¢(1)| < ||4]|»:. Thus, for 2 € (0,1),

¥ (20)] < |+/ [a] < [ (D)) + 20l 2 2= 20,1) S 12072 [t (4.37)

which proves that |z|%7,/1 € L*°, so that, in particular, z¢ € L. O
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Lemma 4.12. Let g : R — R be a C? function in a neighborhood of 0 with g(0) = 0. Let
E = {y € L3(0,1); ,./2 € 1} with the associated canomnical norm. There exists n > 0 small
enough such that, for ¢, € € with ||d|le <n and ||¢Y]e <,

9(02)b22 g(¥2)2z
z z

S (elle + 11wl — Ylle- (4.38)
A}

Proof. First, & — H? — W1 and, thanks to Lemma 4.11, £ — W%, We write

200 _ S0ees _ (4(5,) — ) 22 4 () 222022, (4:39

For the first term, we have

P22

z

(606 at0:)

» S ¢z = Yellpoe 922/ 2l 2 + 1922/ 2 221102 (9(¢2) — 9(¥2))l L (4.40)

where

0-(9(¢=) — g(¥2))l[z~ < ||(gl(¢z) - g/(wz>)¢zZ||L°° + Hg/((bZ)((bzz —2) |l

4.41
S H(bz - wz||L°°||¢zz||L°° + H¢z||L°°||¢zz - 1/)ZZHLOC ( )

For the second term,

“g(¢z)¢zz - 1;[}22

z

» S 9@l (fz2 —tz2) /2l ser + (22 —122) /21| 22l (W2 ) 2z Lo . (4.42)

Hence, the claimed estimate follows from the embedding & < W2, O

Corollary 4.13. For Z = (f,00,61), E = (f',6,,01) € Xp and Y,Y' € Zp small enough,
27 INB(f,Y)|s, € HH(S:) and 2" Ng(f',Y")|s, € 521(3%;) and

:o(||57_?’||33). (4.43)
HH(Zi)

HNB(fi) — Np(f,Y")
z

Proof. Since E € Xp, f|s, =0. Thus

Np(f,Y)ls, = 9(0:Y]5,)0:.Y |5, with g(a) = (4.44)

The result follows from Lemma 4.12, noting that, for YezZ B, Y

y; € € of Lemma 4.12. O

4.2.4 Contribution of the inversion of the boundary data

We now move on to estimates concerning the Fréchet-differentiability of the map T of (4.7).

Lemma 4.14. For ¢ € H?(0,1) such that ¢(0) = 0,

l¢(2)/ 2l S M@l a2 (4.45)
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Proof. Writing a second-order Taylor expansion, one has

z
6(:) =200+ [ (=90 (5)ds, (4.46)

0

Thus d /6(2) L
z /!

— | —) == d 4.47
dz(z) z2/08¢(s) % (4.47)
from which the conclusion follows by the Hardy inequality of Lemma B.8. O

Lemma 4.15. Consider the spaces

£ = {0 € #0,1); "(2)/z € A(0,1), 5(0) = 8(1) = 6"(0) = 5" (1) = 0}, (4.48)
£ = {6 € H3(0,1); 5(0) = 6(1) = 5"(0) = 8"(1) = 0} (4.49)

Then the map Y[6](z) = 2z — (- + 6(-)) "1 (2) as in (4.7) is well-defined for & small enough and
strongly Fréchet-differentiable at O from E; to £1. More precisely, for 6,n € E small enough,

(0] = X[n) = (6 = m)llex < (ISlle> + lInllex) 16 = nlle- (4.50)

Proof. Step 1. We first check that T is well-defined. Since E; — W1, 5= T[4] is well-defined
in a neighborhood for § € & small enough, and the boundary conditions §(0) = 6(1) = 0 of &
entail that §(0) = 0(1) = 0.

Moreover, one has

0(z) =6(z —0(2)). (4.51)
From this relation, we derive that

m(z —4(2)) (4.52)

6/ 6//

:1+6,(z—5(z)) and 6"(z) =

5(2)

which ensures that 6”(0) = 6”(1) = 0 since 6”(0) = 6”(1) = 0.

Step 2. We prove the strong Fréchet-differentiability at 0. To control the & norm, it suffices to
control the L? norm and the ! norm of the quotient 9,.(-)/z. For 6,1 € & by (4.51),

(6 —(z) = (6 —n)(z =) + (n(z — &) — (= — M) (4.53)

Hence N ~
16 = llzee <10 = nllLee + 1021l Lo ]16 — 7 oo (4.54)

In particular, for 5 small enough in &,
16 =l <208 =il (4.55)
Thus, applying estimate (4.22) to (4.53), we obtain
1 =) = @ =m)llee <G =m0 =) = (E=m))lzz + lIn(- = 6) = n(- = W) 2
< 10:6 =)z 18] + 191 2118 — 7l .~ (4.56)

S10:6 = mliz2l16llzee + 10l £2]16 =l Lo~
S (6l + NIl ) [16 = 0l
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We now move to the estimate of the /! norm of the quotient 9,.(-)/z. By Lemma 4.14 (which
even yields an H' estimate, not only #2!), since all our functions have null second derivative at 0,
it suffices to obtain an H* estimate. Differentiating (4.52) twice, we obtain

~ 4 ~
926(2) = (1—??955)5(2 — 6(z)) + lower order terms. (4.57)

Decomposing the difference in a similar manner as in (4.56) and applying (4.22), one can prove
1G =) = (6= mllars = (815 + Inllzrs) 15 = ll - (4.58)
Together with Lemma 4.14, this concludes the proof of (4.50). O
Corollary 4.16. For = = (f,d0,01), 2/ = (f',04,01) € Xp small enough,
1100, T[do], Y[61]) — (0, T[], Y[61]) — (0,00 — 6, 61 — 1)ll3es = 0 (IE — Ellxz) - (4.59)

Proof. Recalling that, for = = (f, g, 01) € Xp, f|s, = 0, thisis a direct consequence of Lemma 4.15
and the definitions (4.11) and (4.12) of Hp and Xp. O

4.3 Reverse change of variables

Proofs of Theorem 3 and Proposition 1.1. It only remains to prove that the change of variables of
Section 4.1 is justified in both directions.

First, given (f,d0,61) € Mg, let Y € Z! be the solution to (4.9) given by Proposition 4.3
and let Y(z,2) := z — Y(x, 2) the associated solution to (4.6). By Proposition 4.3, ||Y]|;: <
1+ ||(f,00,01)|lxs- By Lemma 1.15, ||V gr < 14 ||(f,00,01)|lxs- Since Y is a solution to (4.6),
we have

0..Y = (0,Y)%(20,Y) — (0.Y) f(z,Y (z, 2)). (4.60)

We check that the right-hand side is L2 H!, from which we deduce that %Y € L2. Repeating this
argument, we find that the right-hand side of the above equation is in fact L2 H? and that

102Y N[z SNV llz2 + [ fll 22 a2 (4.61)
Thus, Y € Q' N L2H?} and
1Y (2, 2) = zllgr + Y (2, 2) = 2l 212 SIS0, 01) | 25 - (4.62)
By Corollary B.6, (4.3) defines a u € Q' N L2 H,, such that
lu(z,y) —yllor + llu(z,y) = yllLzas S 1(f:00,61) x5 - (4.63)

In particular, since both d,u and 0.Y are continuous functions on Q with [|0yu — 1|z~ < 1 and
10.Y — 1]|z~ < 1, the computations of Section 4.1 hold. Thus, we have constructed a u € Q*
solution to (4.1). This proves the existence claim of Theorem 3.

Reciprocally, to prove the claim of Theorem 3 concerning the uniqueness of the solution to (4.1)
and the one of Proposition 1.1 concerning the necessity of the nonlinear orthogonality conditions
(f,00,01) € Mp, we must perform the reasoning in the other direction. Let (f,do,01) € Xp small
enough, and let u € Q' be a solution to (1.10) such that ||uf g1 < 1. Writing the PDE as

aju =ulyu— f (4.64)
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we obtain that u € Q' N L2H,. By Corollary B.6, (4.3) defines a function Y € Q' N L2H? such
that

1Y (z,2) = zllgr + 1Y (2,2) = 2ll2m2 S llulz,y) = yllor + lulz, y) —yllezms < 1. (4.65)

In particular, since both d,u and 0,Y are continuous functions on 2 with ||0yu — 1|z~ < 1 and
|0.Y — 1||p~ < 1, the computations of Section 4.1 hold. Thus, Y is a solution to (4.6). Since
Y € Q' N L2HY, we have Y € HLHZ. From the equation (4.6), we recover that 20,(9,Y) € L%

Thus Y € Z'(Q). Hence, the conclusions of Proposition 4.3 apply: Y is unique and (f,do,d1) €
Mp. O
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5 The Prandtl system in the recirculation zone

Let us now continue our analysis of nonlinear parabolic forward-backward systems by considering
the Prandtl equation in the vicinity of a recirculating flow (up,vp), revisiting the results of Iyer
and Masmoudi from [34, 35]. Throughout this section, the index t stands for ‘top’ and the index b
for ‘bottom’. We refer to Section 1.1.4 of the introduction for the assumptions on (up, vp).
We consider the system
uum+vuy7uyy:—%+f in Qp, (5.1)
Uy +v, =0 in Qp, '

where the pressure gradient dp/dx is the one associated with (up,vp), and where we recall that
the domain Qp is defined by

Qp = {(z,y) € (xo,21) X Ry mw(x) <y < y(x)}. (5.2)

This system is endowed with the boundary conditions (1.15)-(1.16)-(1.17), which we now recall for
the reader’s convenience:

Uly=ry, = 2b,  OyU|y=r, = OyUp|y=my + 0, Uly=y, = Vp|y=5z + v»  (bottom BC),
Uly—y, = 2t,  Oyuly—y, = Oyuply—x; + 0, (top BC), (5.3)
u|lsr = up|sr + 0 (lateral BC).

We recall that the lines {y = v;(x)} for j € {¢,b}, which are level sets of the function u, are free
boundaries which are expected to lie in the vicinity of the level sets {y = 7;(z)} of the function up.
We refer to the introduction for further comments on these boundary conditions.

The source term f in (5.1) is a small regular perturbation of the pressure term. From the
physical point of view, it is relevant to consider perturbations which depend only on z, since the
right-hand side in the Prandtl system is the trace of the pressure gradient of some outer Euler flow
on the boundary. However, the analysis is essentially unchanged if we allow f to depend on the
vertical variable y, and therefore in the following f will be a smooth function depending on both
x and y, for the sake of generality.

Our analysis in this section follows the one from Section 4. We first perform in Section 5.1 a
nonlinear change of variables in order to straighten the free boundary {(z,v); u(z,y) = 0}. The
whole analysis then takes place in these new variables. One remarkable point lies in the fact that
the linear problem associated with the Prandtl system is similar to, but slightly different from the
one for the Burgers equation. In fact, the linear problem associated with the vorticity studied in
Section 5.2 has the same structure as (1.6). Retrieving the velocity from the vorticity in Section 5.3
gives rise to an additional orthogonality condition. Moreover, since the vorticity plays the same
role as the function u from Section 4, it turns out that the Prandtl system is actually more reqular
than the Burgers equation (1.1): indeed, there is a gain of one vertical derivative (corresponding to
a vertical integration of the velocity) between Burgers and Prandtl. This will allow us to construct
solutions with a minimal requirement of regularity, and just one orthogonality condition. We
construct solutions to the nonlinear problem in the new variables in Section 5.4, and conclude the
proof of Theorem 4 in Section 5.5.

We recall that we focus here on the behavior of the system in the vicinity of the curve {u = 0}.
When studying the system in the whole infinite strip (zo,z1) X Ry, special care must be taken
to “glue together” the different zones. As explained in [35], information flows from bottom to
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top. The analysis of the system in the vicinity of the lower boundary and for large values of y
requires specific tools, which go beyond the scope of the present paper. We refer the interested
reader to [34, 35] for the study of the Prandtl system in the whole domain, and for a description
of the difficulties associated with the interplay between the different zones. We also present in
Section 5.6 a potential strategy to construct a solution to the Prandtl system in the whole infinite
strip, stepping on the analysis of the present paper. In particular, we explain why the analysis of
the system in an infinite vertical domain may call for an assumption on the horizontal size of the
domain 7 — xp: in [35], the well-posedness of the system holds when |z1 — x¢| is either small, or
outside a countable set (corresponding to the zeros of an analytic function). No such assumption
is required when the Prandtl system is studied in the recirculation zone only, see Theorem 4 or
Proposition 5.2 below. Let us also recall that our purpose here is merely to present, in a unified
framework, different forward-backward problems. Therefore we will put an emphasis on the specific
features associated with the Prandtl system in the recirculation zone Q2p, and on the similarities
and differences with the Burgers type system (1.1) studied in Section 4.

5.1 Nonlinear change of variables

At this stage, we assume that a smooth solution to (5.1) exists in order to write the equation in a
form that is more amenable to mathematical analysis. We will come back on the justification of
the computations below in Section 5.5.

As in Section 4.1, we change variables by setting (x, z) = (z,u(z,y)), where u is the unknown
tangential velocity. ThlS maps the unknown domain Qp = {y(2) < y < v(z)} depending on the
solution w (since the lines 7, and -y, are defined by wu(x,~,(x)) = z; for j € {b,t}) to the fixed
rectangular domain (xg,z1) X (2s, 2¢).

We denote by (x,Y(x, z)) the diffecomorphism such that u(z,Y (z,2)) = z. As a consequence,
we have the same relations (4.5) between the derivatives of u and Y as for the Burgers case. The
top and bottom boundary conditions become Y (z, z;) = v;(z) for j € {b,t}.

Furthermore, integrating the divergence-free condition and using (1.15),

Y (z,z)

v(z,Y(z,2)) =vlp, —/ Opu(x,y') dy’
o ()

# (31} (x, Z/) ’ ’
78 Y VA dz 54
Zp 623 (LU»Z/) : (x’ ) ( )

= vplg +op + / 0.Y (z,2") dz’.
2p

:Wp‘ﬂ—‘r’l)b—F

Replacing this expression and (4.5) into (5.1) and evaluating the equation at y = Y (z, ), we find
that

1
0,Y

20y = [0 vl - 0| 4 Y = 0t f@ Y @) (55)

Let us now denote by Yp the function such that up(x,Yp(z,2)) = 2. Following the same
computations as above, this function satisfies

1 i 2 _
_aZYP |:26$Yp — /Zb 6$Yp — Wp|Fb:| (a Y ) 8 YP = —0OgP.- (56)
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Let Y := Yp — Y. Then
1

(azYP)2

1 1 1
QY _ 2Y =0, — — ——
0:Yr (azY)2az 9 (azy agn;)

- - (5.7)
B 8.V (8.Y)?2
o () <o (2T

We obtain eventually the following very simple equation

20,Y — /Z 0,Y (x,2') dz’ — 9,pd.Y — 0, (&;) =g(z,2) (5.8)
where ~
- 2
62, 2) = £, Y (2, 2)8-(Yp — ¥) — vy() + . <m> . (5.9)

The top and bottom boundary conditions (1.16) and (1.15) become, for j € {¢, b},

8237(x, zj) = 0, Yp(x,z;) — 0,Y (z, ;)

1 1 T915,](x) (5.10)
= — — — =: ().
Oyup(z,7j(x))  Gyup(z,7;(x)) + 6;(2) i
The unknown function «y; can be retrieved from Y by
Pyj(x) =Y (z, zj) = Yp(z, Zj) - }7(1‘7 Zj) = W(CE) - ?(SE, Zj)- (5.11)

We still denote by Xy and ¥ the lateral boundaries, i.e. £g = {zo} x (0, 2¢), ¥1 = {z1} X (2, 0).
The lateral boundary conditions (1.17) are given by the implicit equation

z=up(z;, Y (2, 2)) +6:;(Y(zi,2)) on X, (5.12)
which becomes, after noticing that up (;, -)+6; is strictly increasing on X’ and therefore invertible,

Y (2i,2) = Yp(z) — (up(zs,-) + 6) " (2) =: Th[5]. (5.13)

For further purposes, we note that the function Y%[d;] (resp. Y%[d;]) has the same regularity and
size as 0; (resp. ;).

Remark 5.1. When up(z,y) =y (linear shear flow), (5.8) simply becomes, at main order
20,Y +V —9%Y =g, (5.14)

where V = — f; d,Y . Differentiating this equation with respect to z, and setting W := d,Y (W is
the vorticity in our new variables) we find

20, W — O*W = 0.g4. (5.15)

Therefore, when we consider the Prandtl equation in the wvicinity of the linear shear flow, the
equation for the vorticity in the new variables is (1.6). We retrieve here the following fact, which
was already identified by Iyer and Masmoudi in [35]: the Prandtl system in vorticity form is very
close to (1.6). This will also be central in our analysis below.
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Let us now state our main result on system (5.8). Since we will state two results within
different regularity frameworks, we will work with two different functional spaces for the data.
Note that since the boundaries =, ; are free, we allow the function f the be defined on a domain
that is possibly larger, in the vertical direction, than the reference domain {(z,y) € (xo,z1) X
(0, 4+00), Fp(x) < y < F(x)}. Hence, in order to simplify the statements, we assume that f is
defined in the whole infinite strip (zg,z1) X (0, +00).

e In the low regularity setting, we choose an index o € (0,1/6). Our functional space will be
7 ={(f,00,01,61, 8, v0) € HTHE x HY(S) x HA(SF) x H2(20,01)? x H (29, 31),

1 ag
FELHPNHEZT"H N LPW2™, (2 — 20)(x — 21)0,0.f € L?,

Yh[0¢](x0) = D-TR[60] (1), Th[dp](z1) = 3ZT15[51](%)}
(5.16)
which we endow with its canonical norm.

e In the high regularity setting, our functional space will be

v ::{(ﬁ 805 61, 01, 8y, v8) € HyH? x HO(Xg) x HO(S7) x H?(x0,x1) x H'(x0,21),
flor =0, 8%6;(0) =0 Vk € {0,---3},
YL 5 (0) = 8. [60](20), Th65](21) = DT 5[51] (),
Ao(2z) = 0:Th[0:)(20), Ar(zp) = 31Tl13[5b](x1)}7

(5.17)
where

i [5.1)\2
Ai - 18 (8ZTP[5Z])

2
_ La 9:Tp 03] BT
= Zaz L%YP(%, Z)(azYP(mi, ) _ aZTi)[(le ﬂ( 1)TP[51]:|

+ a(wi, )0 Tp[0:] — Blai) Y [0:]

Once again, we endow X! with its canonical norm. The assumptions on f, dy and &; could
be relaxed slightly: in particular, it is not compulsory to assume that 6y and é; vanish up to
order three near z = 0, or that f vanishes on the lateral boundary. However this simplifies
the formulation of some compatibility conditions.

Our result is the following:

Proposition 5.2. Let (up,vp) be a smooth solution to (5.1) on (zg,x1) x (0,400) such that
Oyup > 0 on {p(z) <y < ¥(z), « € [xo,21]}. Let o € (0,1/6). There exists n > 0 and zy > 0
such that if |z|, 2zt < 2o, the following result holds.

o There exists a manifold M, C X7, of codimension 1 within the ball of radius n in X7, such
2 (e . .
that (5.8)-(5.13)-(5.10) has a solution in HET HINHZH? if and only if (f, 50, 61,0, 0¢,vp) €
M.

This solution, if it exists, is unique.
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e There exists a manifold My C X', of codimension 3 within the ball of radius n in X', such
that (5.8)-(5.13)-(5.10) has a solution in Hg/?’Hz1 NHLIH? if and only if (f, 50, 61,0, 0¢,vp) €
M;.

The proof of Proposition 5.2 is similar to the one of Theorem 3. We construct a solution
to (5.8) thanks to an iterative scheme (or equivalently, thanks to the abstract Theorem 6), relying
on several important observations:

e First, the left-hand side of (5.8) depends linearly on Y, and the right-hand side depends
smoothly on Y. This nice feature stems directly from our change of variables. Note also that
our choice of boundary conditions (1.15)-(1.16), which are slightly unusual when we formulate
them on the unknown function u, are in fact designed so that they become classical boundary
conditions in the variable Y. Indeed, the top and bottom boundaries in the z variable are
now fixed (and flat), and the boundary condition for ¥ on these boundaries is merely a

Neumann condition (so a Dirichlet condition for the vorticity GZ}N’).

e Second, as mentioned above, the vorticity [“)ZIN/ satisfies an equation with a very nice structure.
More precisely, setting

1
@Yo )2 (5.18)

5(.%) = _a:rp7
and differentiating (5.8) with respect to z, we find that W := d.Y is a solution to

oz, z) =

20, W + BOW — 0?(aW) = 0.9 in (zg,x1) X (2p, 2¢),
w 2, = azTi:,[él] fori € {O, 1}, (519)
Wl.zoy = 5[5 for j € {t,b}.

The coefficients « and S8 are smooth and depend only on the underlying flow (up,vp). Fur-
thermore, inf @ > 0 in (xg, 1) X (2p, 2:) by assumption. Hence the structure of system (5.19)
is very similar to the one of (1.6), albeit with variable coefficients. The smallness condition
on zp and z; ensures that we have nice a priori estimates for (5.19) (see Lemma 5.3 below).

e Eventually, we observe that, from (5.9),
azg :ayf(xa Y)(azYP - W)2 + f(xa Y)(a,zYP - aZW)

, W2 (5.20)
+@(@%¥@%~WJ

In order to design a convergent iterative scheme for (5.19), it is necessary to work in a
functional space controlling the L> norm of W (for example to ensure that the denominator
does not vanish, or that the application W s §%(W?) € L? is Lipschitz continous). Having
W € Z9 is not sufficient as we barely miss the embedding in L™ (see Remark 1.12). However,

the functional space W € H§+0L§ N HZH?, with o strictly positive and small, will be
suitable for our purposes. This is in sharp contrast with the nonlinear scheme for the Burgers
system, for which we also needed that 0.Y = W € L but for which the function Y
(rather than 0,Y = W) was a solution to (1.6). Therefore, having W € L required Y €

2
HZ +UL§ N HZH? for some o > 1/3. Such a regularity requires two orthogonality conditions
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(see Proposition 2.33). This gain of one derivative in the vertical variable (corresponding
to a gain of 1/3 of derivative in the horizontal variable) allows us to get rid of two of the
orthogonality conditions, leading to the first statement of Proposition 5.2.

5.2 The linearized vorticity equation

This section is devoted to the analysis of system (5.19), for a given source term d,g € L?().
Adapting and stepping on the analysis of Section 2, we prove the existence and uniqueness of
solutions in Z%(€). We also exhibit necessary and sufficient conditions for higher regularity.

For the sake of simplicity, within this section, we denote by 2 the rectangle (zq,z1) X (2s, 2¢),
which is a slight abuse of notation since (zp, 2;) # (—1,1). We still denote by ¢ = {z} x (0, 2)
and X1 = {21} X (2, 0) the lateral boundaries.

Lemma 5.3 (Well-posedness of the linear vorticity equation). Let a« € C?*(Q2) and 3 € L*(xq,x1).
Assume that there exists A > 0 such that
1

Q
V(z,2) € Q, :

<a(z,z) <A (5.21)

There exists zg > 0, depending only on «, such that if |zp|, 2t < 2o, the following result holds.

Let h € L*(Q), ws,wy, € H*(x0,21), and w; € A (X;). Assume that the compatibility
conditions we(xg) = wo(zt), wp(x1) = wi(zp) are satisfied.

Consider the system

20, W + BOW — 0?(aW) =h in Q,
W|Zi = w; fO’f’i € {07 1}7 (522)
Wl.—., = wj for j € {t,b}.
Then (5.22) has a unique solution W € Z°(Q), which moreover satisfies
IWllzo < C (I1RllLz + [lwell s + llwsllrsra + llwoller mo) + lwilloers1y) - (5.23)
where the constant C depends only on X, ||B]leo and ||0,¢|co-

Proof. According to [52, Theorem 2.1] it is sufficient to prove the result when w; = w, = wy =
wy = 0, since one could lift these boundary conditions for the given regularity.
In this case, we note that since 9,8 = 0, we have the L2 H] energy estimate

/ a(0:W)* < [Pl 2 [W Iz + 0l Lo Wl 210 W] 2. (5.24)
Q

obtain [[W|r2g: S ||hl[z2. From there, following the same arguments as in Proposition 2.2, we
infer that there exists a solution W € B to (5.22) satisfying [|[W||g < ||h]lz2- The uniqueness of
this solution is proved in Appendix A. Eventually, we see W € B as the solution to

If |z], 2 < 20, then [|[W|r2q) < 20/|0:W | 12(q). As a consequence, if zo < 1/(2M][0.0|), we

20, W — 0,(ad, W) = h — SO, W + 0,(0,aW) (5.25)

where the right-hand side belongs to L%(Q) since 8 € L™ and o € C?(Q). Since a € C?(9Q),
applying Pagani’s result [52, Theorem 5.1] to the operator 29, — 9,(ad,-) which is in conservative
form, we obtain that W € Z% and [|[W||zo < ||h]|z2 + [|W]|5- O

66



We now rely on the analysis of Section 2 in order to identify two necessary and sufficient orthog-
onality conditions for higher regularity. Let us first remark that the only potential singular points
are (z9,0) and (z1,0). Indeed, we recall that 20, W € L?(£2), and therefore W € HIL?({|z| > 20})
for all zg > 0. Regularity away from the lateral boundaries is ensured by the following lemma.

Lemma 5.4. Let a € C3(Q) satisfying (5.21) and 8 € C*([xo,x1]). There exists zo > 0, depending
only on «, such that if |zp|, 2t < 20, the following result holds.

Let h € L?(Q2) such that (x — xo)(z — 21)d:h € L?. Let wy,wy, € H*(z0,71) and w; € H*(X;)
such that the compatibility conditions wi(xg) = wo(zt), wp(x1) = w1(2p) are satisfied.

Let W € Z° be the unique solution to (5.22). Then (z — xq)(x — x1)0,W € Z°.

The proof is postponed to Appendix C, in order not to burden this section. We are now ready to
state our orthogonality conditions for system (5.22). To that end, for a € C*(2), B € C?(|xo, 1)),
o € (0,1), we introduce the space

75 = { (hwo,wn wewy) € HIL2 x H?(S0) x H*(21) x H2(x0,21)?,
(x —x0)(x — 21)0.h € L, wi(x0) = wo(zt), wy(w1) = wi(2p),
and A; € H(S) if 0 > 1/2, (5.26)
and Ag(zy) = Opwi(xo), A1(zp) = Opwp(z1) if 0 > 1/2,

1

= (b, ) + 02 (i, Jwi) = B)0.w,) }.

where A; :=

We now state a proposition extending the results of Section 2 to equations with smooth variable
coefficients:

Proposition 5.5. Let a € C*(Q) satisfying (5.21) and B € CY([wg,x1]). There exist two linear

forms KAO, EAl, continuous on Hg, 5 for all o € (1/6, 1], such that the following result holds.

o Let 0 € (0,1/6), and let (h,wo, w1, ws, wp) € HT 5. Let W € Z° be the unique solution
to (5.22).
Then W € 2° = [29, 2], < HiTL2 1 HOH? < L™(Q), and
Wllze S Bllagez + 1z — 20) (@ — 20)0uhllz + Y willm2@oen + Y lwillazs,)-

je{b,t} i€{0,1}
(5.27)

o Leto € (1/6,1)\{1/2}, and let (h, wo, w1, ws, wy) € HY, 5. Let W € Z° be the unique solution
to (5.22). Then W € Z° if and only if

~ o~

O(h,wo, wy, we, wp) = L (A, we, wp, wo, wy) = 0, (5.28)
and in that case
Wllze SlIhlagrz + (= zo) (@ — 21)05h|| 2

+ 3 Nwillazeey + > lwillrze + 1AL - (5.29)
jE{b,t} 1€{0,1}
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Proof. We start with the first statement, and we take o € (0,1/6) fixed.

Step 1. Lifting the top and bottom boundary conditions. In order to use the theory from Section 2,
which is stated with homogeneous Dirichlet boundary conditions at the top and bottom, we first
lift the latter. We change W into W — p(z — z¢)wy — p(z — 2p)wsp, where p € C°(R) is such that
p =1 in a neighbourhood of zero, and supp p C (—r,r) for some r < min(|z|, z;)/2. This changes
the source term h into

h= Y (20.w;p(z — 2;) + Bwip (2 — 2) — w; 2 (ap(z — 2y)),
je{t.b}
which belongs to HZL?, and the boundary condition wg (resp. wi) into wo — wo(z¢)n(z — 2¢)
(resp. wy — w1 (2p)n(2 — 2)), which belongs to H?(X) (resp. H?(X;)). With a slight abuse of
notation, we still denote by W the unknown function, and by (h, wq, w1, 0,0) the data. Note that
this operation does not affect the compatibility conditions in the corners.

Step 2. Localization in the vicinity of the singular points. We then localize horizontally the
solution in the vicinity of xg and x1. We only treat the localization in the vicinity of x( since the
other boundary is identical. Let xo € C°(R) be such that xo = 1 in a neighborhood of z(, and
supp xo C B(zo,r) for some small 0 < r < (x1 — xg)/2. Then Wy := Wxo(z) is a solution to

20, Wy + BO.Wy — 02(aWy) = hxo + 2W Dz xo0- (5.30)

Since W € Z2° W ¢ H§/3L§, so the right-hand side belongs to HZL2?. We then localize the
coefficient a. Let ag(z) := a(xo, z). Then
20, Wo — 82 (o (2)Wo) = hxo + 2Wdaxo — 9. Wxo

— 92((ap — )W), (531

On the support of xg, there exists a constant C' such that |ag—a| < Clz—zp| and (@ —ap)/(z—x0)
is a C? function of (x,z). According to Lemma 5.4, (ag — )92Wy € HLL2. Hence, the right-hand
side of (5.31) belongs to HJL2. Note furthermore that Wy vanishes on {z = 2} and {z = 2}
thanks to the first step.

Step 3. Vertical change of variables to work with constant coefficients. In order to use the theory
from Section 2, we now change the vertical coordinate so that the equation in the new variables is
formulated thanks to the Kolmogorov operator. More precisely, we set Wy(z, z) = wo(x, () where ¢
is a function of z such that (0) = 0. We have

83(0(0W0) = ao(C/)Qa?wo + (OzoCN + 282040@")85% + (8?0[0)&)0. (532)
We first choose the function ¢ so that ¢(0) =0 and

z z

an(2)(('(2))? a0(z)¢(2)’

Explicit resolution for z > 0 yields (with a similar formula for z < 0):

2/3
3 [* t
() = (2 /0 o dt) . (5.34)
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It can be easily checked that the function ¢ thus defined has the same regularity as ag on (zp, 2;)
and that C~1 < ¢/ < C for some positive constant C. Moreover, (ag(0))2((2) ~ z as z — 0.
The function wg then solves
(Opwo — 8?w0 = so(z, () (5.35)
where so € HZL?. Furthermore, wy is supported in the vicinity of (x(,0). We denote by po the
lateral boundary condition on X in the new vertical variable, i.e. 119(((2)) = xo(xo, 2)wo(z). Note
that p and wp enjoy the same regularity, so that uo € H?(3).

Step 4. Small fractional regularity. We now consider (5.35), whose right-hand side belongs to
HZ L?. The equation is endowed with homogeneous data on {z = 2z }U{z = 2,} U¥;, and with H?>
data on Xy satisfying a compatibility condition at (zg, z¢). Using Proposition 2.33 and Lemma 1.15,
we infer that wg € Z7 — HQQ%—HTLE N HgHCQ, and thus Wy enjoys the same regularity. Performing a
similar change of variables near (x1,0), we deduce that W € Z°. This completes the proof of the
first statement from Proposition 5.5.

Step 5. Identification of the orthogonality conditions. Let us now assume that o € (1/6,1/3] and
h € HZL?. The right-hand side of (5.35) now belongs to HZ L?. Furthermore, in a neighborhood
of ( =0,

s0(0,C) = : 3 [h(xo, 2) = Blwo)wh(2) + (awl” + 200¢")(2)0¢ 10 (C) + o (2) 1o (C)]

ao(2)(¢"(2))
where the primes always denote derivatives with respect to z. Using this equality together with

the identity d¢po(¢) = w((2)/¢'(2), we find, after some tedious but straightforward computations,
and for ¢ in a neighborhood of zero,

z
O20lQ) + sofo, ) = *F g 2) (5.36)
Hence (3?u0 + so(xo,+))/C € %”CI(ZO). Note also that the compatibility conditions in the corners
are satisfied. We then apply Corollary 2.36 to (5.35) whose right-hand side is in HZ Lg. We infer
that if o o
(aOEO + alél)(so, Ho, 0) = O, (537)

then wy € 29 — Hg;%—HTLg N H;"HC2 by Lemma 1.15. Similarly, w; € Z7,so W € Z°.

For ¢ > 1/3 and o # 1/2, we use a bootstrap argument. Going back to (5.30), we now know
that the right-hand side is in H;nin(g’wg)Lﬁ, so that we can apply Corollary 2.36 to (5.35) whose
right-hand side belongs to H;nin(a’z/g)Lg. This implies that W € Z™in(#:2/3)  We then repeat this
procedure one last time if o > 2/3.

Setting

lfb(h7 wo, w1, ws, wy) = (agld + ar1f1)(Awo + so, o, 0), (5.38)

and defining in a similar fashion the linear form /1 associated with the regularity in the vicinity of
(21,0), we obtain the desired result.

Eventually, it follows from the definition of 0 in (5.38) and from Remark 2.30 that the linear
forms ¢7 are continuous on Hf, 5 for all o > 1/6. O

Lemma 5.6. The two linear forms KAO,KAl : H}l,a — R defined in Proposition 5.5 are independent.
Furthermore, there exists ¢°, gt € C°(Q) such that

0i(g%,0,0,0,0) =6, ; Vi,j € {0,1}.
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Proof. We begin with the following remark. Following the notations of the proof of Proposition 5.5
above, we set «;(z) := a(x;, z),. With the same change of variables as in Step 3 of the proof (see
(5.34)), we define

Uo(xa Z) = aging(xv CO)
Then o
ZaIUO + BaZUO - 8§(a0U0) = a0(<6)2f0 + )‘Oﬂ(s)ing(xﬂ CO) + ’yOaCOaging(x7 40)
for some smooth functions Ay, 79 depending on § and «. The right-hand side therefore belongs to
HY*L2 N HL2((x — 20)2(x — 21)?). Furthermore U° vanishes on So U, U {z = 2} U {z = z}.
Of course we may perform the same procedure around (z1,0), and we define a function U (x, 2),

localized in a neighborhood of (z1,0) and with the same regularity as ﬂ;ing, such that

20,U" + BOUY — 8*(oqU') € HYBLA.
Note that U® and U vanish on $o U¥; U{z = 2,} U {2z = 2:}. Now, for i = 0,1, let
ht = 20,U" 4+ B0 U — 9%(aU").

By construction, h; and U; are localized in the vicinity of (x;,0), and h’ € H;/?’Lg, (x — o) (x —
x1)0:h; € L?. Furthermore h;|s,us;, = 0. As a consequence, recalling the definition of £9 and ¢
(see (5.38) together with Corollary 2.36), we infer that

~ ~

¢0(h1,0,0,0,0) = £1(ho,0,0,0,0) = 0.
Now, assume that COEAO +clﬁ = 0 for some (cg, ¢;) € R%2. We deduce from the above equalities that
(coho + 1h1,0,0,0,0) = cofO(hg, 0,0,0,0) = (cof® + ¢1£1)(hg,0,0,0,0) = 0,

and similarly EAl(coho + ¢1h1,0,0,0,0) = 0. Using Proposition 5.5, we infer that coU° + c;U! €
ZV3 — HIL?N H;/ng. Since U’ has the regularity of ﬁiing and is localized in the vicinity of
(24,0), it follows from Lemma 2.25 that ¢y = ¢; = 0.

Note that the above argument also ensures that Zi(hi,0,0,0,0) # 0. Hence, up to a multi-
plication by a constant, we may always assume that EAﬂ(hl, 0,0,0,0) = d; ;. Let us now take, for
e > 0 small, h2 € C°(Q) such that |k — hz”HiﬁLg <eand ||[(x —zo)(z —x1)0z(h" — hL) |12 <e.

Then, since the linear forms {3 are continuous on ’Hyg, we obtain |€Aﬂ(hé7 0,0,0,0) — 6, ;| Se. As
a consequence, there exists a’,al,b?, bl such that
0(alh? + alh!,0,0,0,0) = £ (20 + bLRL,0,0,0,0) = 1,

O@B2h +bLht,0,0,0,0) = 01(a’h® + alhl,0,0,0,0) = 0,

and |al — 1|, bt — 1| < e, |al],|b2] < e. The result follows, taking ¢° = a%h + alhl and ¢! =

b2RO + bLhL. 0
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5.3 Reconstructing the velocity from the vorticity

Let (g,00,01) € L2H! x H3(30) x H3(31), we, wy, € H2 (20, 21). Assume that 9,61 (z) = wy(z1),
.60(2) = wi(x0). According to Lemma 5.3, there exists a unique solution W € Z° to (5.22) with
h=0,9 and w; = 6zgi. The purpose of this subsection is to construct a solution to the system
20,Y — I 0.Y + B0,Y —0.(0d.Y) =g inQ,
Yi|s, =6 for ¢ € {0,1}, (5.39)
0.Y |.—., = wj for j € {t,b}.

We therefore set, for (z,z) € 2,

V(2 2) = o(z) + / Wz, ') a2, (5.40)

where the function -, solves the differential equation
207 + (B — O:a(:, z))wp — a(z, 2) 0. W (2, 2) = g(z, 2),
Tolwr) = 01(2).

Since W € Z°, the trace 9, W (-, z,) belongs to H'/*(z¢, 1) by Lemma 1.11. Thus 3, € H'(zo, z1),

and Y € HZPH' N L2H3 c CO(9).
By construction, we have

(5.41)

0. [zamf/ - / 0,Y (x,2') A2’ + B.Y — 0.(ad.Y) —g| =0 inQ, (5.42)
2p
and therefore there exists a function G depending only on z such that

20,Y — / 0,Y (z,2) d’ + BO.Y — a@fff =g(z, z) + G(x). (5.43)

The choice of the function J; (see (5.41)) then ensures that G = 0. By definition of ¥, we have
0.Y .=z, = W|.—., = w; for j € {t,b}.
Let us now investigate the lateral boundary conditions. On ¥;, we have

8.Y (4, 2) = W (xs, 2) = 8.6;(2). (5.44)

Hence, in order to ensure that Yl|g, = 0;, it suffices to check that Y(z;,2) = 6;(z) for some
(24,2;) € X;. From there, we treat separately (and differently) the two boundaries ¥y and %;.

e On X, we note that ?(xl, 2p) = gl (2p) by definition of v;. Therefore 17|g1 = gl.

e On X, the situation is different, since }7(:00, 0) # 50(0) a priori. Indeed,

0
Y (20,0) = Y5 (x0) —l—/ W (zo,2") dz’
= 1 (_ /QE1 (9(x, zp) + (O, 2p) — B(x))wp(x) + a(x, 25)0. W (2, 25)) dx)

Zy o

0
+ / W (xg,2") dz’ + 61 (2p).
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The right-hand side of the above equality is a linear form in (975(],51710,5,101,), which leads to
the following definition.

Definition 5.7 (Additional linear form for the solvability of the Prandtl system). Let (g, goﬁl) €
L2H! x H3(Xg) x H3(31), we,wy € H?(xg, 1) such that wy(wg) = 0.60(2), wy(x1) = 0,01 (2p).
Let W € Z° be the unique solution to (5.22) with h = 0.g and w; = 9,9;.
The linear form €% is defined by
~ o~ 1 Z1
2 (9,00, 00, wiwp) 1= —— [ (9(w,2) + (0:a(w, 2) = Bla))wp(x) + a(z, 2)0.W (2, %)) da

Zp Zo
O o~ ~
+ / W(x, #') A2’ + 81 (2) — 80(0).
2p
(5.45)

The above computations lead to the following result.

Lemma 5.8. Let (g,go,gl) € L2H! x H3(Xo) x H3(21), wy,wy € H(wg,21) such that wy(zo) =
az(S()(Zt), wb(xl) = azél(zb) _ )
Then system (5.39) has a solution Y € HZ*H! N L2H? if and only if

62 (ga (§v07 (ia Wt, wb) =0.
This solution is given by (5.40), and satisfies the estimate
Y1 g2ra gy + 1Y 2z + 102Y Ml 22 12 (g2 <22y S N9llLz s + 16ill s + w5l 2 (20.00)

where we implicitely sum over i € {0,1} and j € {t,b} in the right-hand side.

Proof. First, assume that (5.39) has a solution Y € H2/*H! N L2H3. Then, W = 0,Y is an L2H]!
solution to (5.22) with h = 0.9 and w; = 9,6;. By uniqueness arguments such as in Lemma A.1,
it is equal to the unique Z° solution to (5.22) constructed in Lemma 5.3. Furthermore, for z # 0,

z 893}7 _ .
Z2az (‘fzbz> =g+ 0,(ad.Y) - p0.Y € LGQEHzl
J5, 0=

z

It follows that 8Z< ) € L2H!({z < 2/2}), and thus 8,Y € L2H}({z < z/2}). In

particular, 8,Y |.—., € L2(zo,1).
Taking the trace of (5.39) at z = 2, we infer that

zbﬁmff\zzzb + (B — O.a(x, 2p))wp — a0, W (x, 2p) = g(x,2p) and 57(371, 2p) = (5~1(zb).

Therefore Y|.—., = 9, where 7, is defined by (5.41). Since Y (20,0) = 00(0), we then deduce that
0
Y (zo, 2) —|—/ W (z,z) dz = 0¢(0),
Zb

which is precisely the condition £3(g, 80,01, W, wp) = 0.
Conversely, the above computations ensure that if £2(g, &g, 91, ws, wp) = 0, the function defined
by (5.40) is a solution to (5.39). O
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Assume that E%g,(%,(i,u}t,wb) =0, and let Y € H§/3H; N L2H? be the unique solution to
(5.39). For further purposes, we define the function 4; by

Yie(z) =Y (x, 2zt).
Since Y € C°(Q), we have 5;(z0) = 0o (2¢).

Remark 5.9. As we already mentioned, the nonlocal term vOyu in the Prandtl equation (which
becomes — fZZb 0. Y in our new variables) creates a flow of information upwards, therefore inducing
an assymetry between z and —z. Because of the forward-backward nature of the equation, this
results in an asymmetry between the lateral boundaries ¥o and 1. Iyer and Masmoudi [35] deal
with this issue by letting the left extremity of the curve {(z,y);u(x,y) = 0} as a free parameter, and
enforcing data on the vorticity. We choose a different point of view here, introducing an additional
orthogonality condition and enforcing data on the inflow velocity.

In order to simplify the future discussion, it will be useful to modify slightly the definition of
the linear forms ¢¢ for i € {0,1}, so that they are defined on the same space as the linear form ¢2.

Definition 5.10. We denote by ¢ for i € {0,1} the linear forms defined by
Zi(g, (%a 5v1a W, wb) = @(azga 82(%7 8zé’vla W, wb)-

Remark 5.11. In spite of their similar appearance, the purpose of the orthogonality conditions
(g, 80,01, ws, wy) = £1(g, 0,1, ws, wy) = 0 on the one hand, and (*(g,do, 51, ws, wy) = 0 on the
other hand is quite different. The former are necessary and sufficient conditions for the existence
of smooth solutions to the vorticity equation (5.22), while the latter is a necessary and sufficient
condition for the solvability of system (5.39) at a lower level of regularity, corresponding to Z°
solutions of the vorticity equation (5.22). In other words, the condition £*> = 0 is a necessary and

sufficient condition to reconstruct Y from the vorticity.

Lemma 5.12. The linear forms (°, 1, ¢% are linearly independent on C°°(2)x C°(5g) x C° (1) x
C°(wg,21)%. There exist Z°, 21, =2 such that, fori,j € {0,1,2},

C(E) =0;5, E€C®Q)xCX(So) x C2(1) x C(z0,21)°.
One may choose 7 = (f7,0,0,0,0), with f7 € C=(Q) such that f?|s,us, = 0.
Proof. Assume that there exists (co, c1,c2) € R3 such that
col® 4 c10t + 0% = 0.

Let W € C2°(Q) such that supp W C [zg, z¢ + ] x [—J, —5/2] for some small § > 0 such that § <
(x1—mg)/2 and § < |zp|/2. We further assume that fzob W (z9,2)dz = 1 and fz(l 20, W (zg, z)dz = 0.
We set wt:wb:0,<%:5~120, and
Az, 2) = / (20, W (2, 2") + B(z)0. W (z,2') — 92 (v, 2 )W (2, 7)) d'.
zp

Then by definition, W is a solution to (5.22) with h = 9, f?, and with homogeneous boundary data.

Note also that f2(z0,0) = fzob 20, W (x0,2) dz = 0. Therefore f2|s,us, = 0. The compatibility

conditions from Proposition 5.5 are satisfied. Since W is smooth, according to Proposition 5.5,

(0, £2,0,0,0,0) = £1(3.£2,0,0,0,0) = 0.
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Hence
c2*(£2,0,0,0,0) = 0.

Now, by definition of ¢2 and f2, since W and f? are identically zero for z < —§,
0
7%(£%,0,0,0,0) :/ W =1.
Zb

We infer that c; = 0. The result then follows from Lemma 5.6, taking fi = foz g'fori=0,1. O
Gathering the results of Proposition 5.5 and Lemma 5.8, we obtain the following statement:

Corollary 5.13. Let a € C*(Q) satisfying (5.21) and B € C*(zq,x1).
e Let o € (0,1/6), and let g € HIH! such that (8Zg,8zgo,8zgl,wt,wb) € H7 5 defined in
(5.26).
Then (5.39) has a solution Y € Hm%ﬂerl NHSH3 if and only if (2(g, 8o, 01, ws, w) = 0, and

this solution, if it exists, is unique and satisfies the estimate

H?H + H(x - xo)(x - xl)&,;@g?HLz + Hawaz?‘lﬂ((:ro’xl)X(Zh’sz/2))

HEYT I AH e
< =NHZH (5.46)

S lgllag s + (@ = @o)(w — 21)020:9l 12 + [lw;ll 2 + 116i] 2 (5,) -

e Let g€ HIH!, and assume that (329,8250,8251,11)75,10;,) € Hé’ﬁ defined in (5.26).

~ o~ ~ 2
Assume that (?(g, 00,01, w, wy) = 0, and let Y € HZH! N L2H? be the unique solution
to (5.39).

ThenY € H;Z’/SHZI N HLH3 if and only if 13 (g,00,01,ws, ws) = 0 for j € {0,1}, and in this

case Y satisfies the estimate

VMl ggsro gy + Y [ m2mz S lgllaay + 110929, 0200, 0201, wi, wy) |l - (5.47)

Remark 5.14. The regularity assumptions on g in the first (resp. second) statement of the above
corollary can be relazed into 0,9 € HIL?, (z — xo)(z — 71)0,0,9 € L? and g|.—., € L*(zo,71)
(resp. 0,9 € HAL? and g|.—., € H?*/3(xg,21)), but we have kept the above assumptions for the
sake of simplicity.

5.4 Local nonlinear well-posedness in the new variables

We are now ready to prove Proposition 5.2. The spirit of the proof is very similar to the one of
Section 4. In order to avoid repetition, we do not write the iterative scheme, and we rather apply
Theorem 6 directly. We will work with two different settings:
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1. Low regularity setting: for o € (0,1/6) fixed, we take

27 ={y € HF ""H! N HIH?, (x — z0)(x — 21)0,0°Y € LX(Q),
8,0.Y € L((x0,21) X (2, 2/2)),
Yls, € H¥(S;), 0.Y .=, € H*(x0,71)},
"o :{(f, S0, 81, e, wy) € HIHY x H3 (o) x H3(S1) x H2 (w0, 21) x H (20, 21),
(x — 20)(x — 21)0,0. f € L?,
wi(wo) = 8.00(24), wilwo) = O:do(=1) |

and our space of data is the space X7 defined in (5.16). Furthermore, in the low regularity
setting, d = 1 and the linear form /¢ coincides with the linear form ¢? defined in Definition 5.7.

2. High regularity setting: we take

2V Y e HIH N HH?, Y|y, € H3(S,), .Y |oe., € H(z0,21)},

H' ={(£,50, 81, wi, wn) € HEHY x H(So) x H(S1) x H(o,1) x H? (w0, 21),
955,(0) =0 Vke{0,---,3}, 2710 f (i, 2) € HM(Ey),
wi(wo) = 9200(2¢), wi(wo) = 8200 (1),
Ao (2) = Oywi(wo), A1(zp) = Dpws[dp)(x1), }

where 1
Ai(2) = 20 |f(zi,2) + D.(al@, 2)0.0,) — Bla):31] -
Note that

(f,go,gl,wt,wb) cH' = (8zf; 625078z517wt>wb) € Hi}[%

where the space H7, ;5 for o € (0,1] is defined in (5.26). Our space of data is the space Xt
defined in (5.17). In the high regularity setting, we take d = 3 and £ = (£°, ¢!, ¢?) defined in
Definition 5.10 and Definition 5.7.

Remark 5.15. As in the previous sections, in X', we could also consider source terms f which

do not vanish on X up to additional technical complications.

In both settings, the linear operator L is defined as
LY = (zax? — [ 07+ 50.Y — 0.(00.9), V54 V15, 0.7 o amzzzb) |
Zb

and the nonlinearity N is defined as

N(Z,Y) :<f(a:,Yp —Y)0.(Yp —Y) — vy + 0., (

(9-Y)? )
(6ZYP)2(8ZYP - azi}) , (548)

TR30l, Thoi], ThI], Th[5]).

where the operators Yk, T4 for i € {0,1}, j € {t,b} are defined in (5.13) and (5.10) respectively.
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Let us now check that the assumptions of Theorem 6 are satisfied in the two settings. The
continuity of L from Z7 to H for o € (0,1/6) U {1} is a consequence of the definition of the
spaces Z7. Item i) follows from Corollary 5.13. Furthermore,

N(E,0) = (f(z,Yp)d:Yp — b, Tp[00], Tp[01], TH[0:], TB[6]) -

Hence it is easily checked that N(-,0) is differentiable at £ = 0, and its (partial) differential is
given by

8EN<0, 0)(5) = (f(.’l?, Yp)azYP — Up, asz(xo, Z)(SQ(YP(CL‘(), Z)), asz(xh Z)(Sl (Yp(&?l, Z)),
(0 Y (w, 2))%01(x), (9: Y (2, 2)) 0 @) ).

As a consequence, the first component of N(Z,Y) — N(Z/,Y’) — 8=N(0,0)(E — Z') is

0:Yp (£ Ye V) = f(, Yp)) = (/. Yo = V) = F/(,Yp))] (5.49)

—0.Y(f(.Yp—-Y) = f/(-,Yp = Y") = 8.(Y =Y f'(,Yp - Y (5.50)

+ 0. < (0-Y)" — ) -0, ( (0:Y")" — ) . (5.51)
(0.Yp)2(8.Yp — 8.Y) (8.Yp)2(0.Yp — 8.Y")

We therefore turn towards the verification of Item ii) and Item iii) from Theorem 6.

Verification of Item ii) in the low regularity setting. For o € (0,1/6), let 2,2’ € X, and
Y,Y’ € Z° small enough. We need to estimate (5.49)-(5.51) in HS HNHLHL ((z — x0)2(x — 21)2).

In order not to burden the proof, we only estimate some of the norms above, and leave the
other estimates to the reader. We focus for instance on

Jo-xeo. [(s6 30 =)= 56 ¥0) = (730 =T = )],

Using Lemma B.3 in the Appendix, we bound this term by

10:-Yp)?l (H%*"> (||5y(f — )@, Yo =Y) = 0,(f = /)@, Vo)l g1z (5.52)

(10, £/ (2, Yp — V) — 8, ' (x, Yp — ?')HH;@) (5.53)
F10:XeD Y 1o 10,(F = )@ Yo = V)lliz 12 (5.54)
+ ||8ZYP325~/HLOC(H%+0)||8yf’(x,Yp —Y) = 0y f' (. Yp = V)|l o L2 (5.55)
F10:Ye (@Y =0 ave 1008 @ Yo =¥z 12 (5.56)

Using the fractional trace theorem [42, Equation (4.7), Chapter 1], Z7 < C’Zl(Hz%+a). Furthermore,
1 s .
since LY (lﬁfiJr ) is an algebra,
9.Ypd,Y 1 < |Ylze,
0.¥e0. 71, e S V2
v V! Ve Va4
10:Yp(0.Y — 0.Y )”L?(H%Jra SIY =Yz
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There remains to estimate the norms involving f and f’. Using Lemma B.4 in the Appendix, we
infer that

~ 1 ~
10,(f = 1)(& Yo — ¥) — 8,(f — )@, Yo)ll g 12 = HY / 2(f — f)(a, Yo — ¥)dr

HZLZ
S I¥ Nz (1027 = P )largnz +103(F = F)zarz)
SIYlzol1E = lx-.
(5.57)
In a similar fashion,
10, f' (@, Yo = Y")l gz SIE|x-,
10y f" (2, Yp = Y) = 0y f' (2, Yp = Y')lmgrz SIY = Y|z [E]| x--
The other terms are evaluated in a similar way. For instance, using again Lemma B.3 and the
lio
embedding Z% < CH(HZ ™),
S o 9.Y
Y -Y) -
(0.Yp)20,.(Yp —Y)

oY
(8.Yp)20.(Yp — Y)

SIOY = Y")|mg 1z

1i,
Hg L2 L HZ2

o .
SIY = Pzl e

SIY =Yz |[Y]| -,

and, using once again Lemma B.4,

SNO2Y || r1g e

O2Y (f(,Yp —Y) - f(a, Yp — Y

HZLZ

(f(l’,Yp _Y) - f(l’,Yp _Y/)

1
i+
H2'7L2

(10071, 31e,, + 102712 )

The estimate on the H!H} ((z — z0)?(z — 21)?) norm follows from similar arguments and is left
to the reader.
We then turn towards the estimation of the boundary terms.

e For i € {0,1} and &;,m; € H*(XF), we obtain that

1TB[6:] = Thlni] — 0:Ye(wi, 2)(8: — m:) (Yo (i, 2))|| o, = © (||5z' - 77i||H4(z;°)) . (5.58)

The proof is similar to the one of Lemma 4.15 for the Burgers case, although slightly less
technical because we only need a standard Sobolev estimate here, and slightly more technical
because the reference flow is now up instead of the linear shear flow.

SN2Y o |Y — Y|

1
3+
HZ'7H]

e For j € {t,b} and d;,n; € H*(xo,x1), we obtain that

|thi6:) = Thlms] - (@ Ve (2, 20265 - n)(@) = 010 = il m2ep.0) - (5:59)

H2(xq,x1)

The proof is immediate because the maps T{, defined in (5.10) are in fact of the form
Y4 [67](z) = hj(0;(z)) where h; : R — R is a smooth function with h;(0) = 0.
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Eventually, we conclude that

INGE¥) = NE,7") = 0=N(0,0)E = )l =0 (|2~ e + IV = V'lz) . (5.60)

Verification of Item ii) in the high regularity setting. The estimates in this case are
similar to the low regularity setting and left to the reader. They are actually slightly easier since
H'(zg,21) is an algebra, and close to the ones performed for the Burgers system.

The only new estimate bears on the boundary term. More precisely, taking two data tuples
E = (f,00,01,0:,0p,vp) and Z' = (f',m0, 71,1, M, v}, ), and denoting by N; the first component of
the nonlinearity N defined in (5.48), we need to bound in 2! (3;) the quantity

21 [8Z(N1(E, V) — Ni(2,Y") — 9=N,(0,0)(2 — )]s,
+(0%(0lai, 2)) — B(r)0.) 0. (TR — Thln] - 0-Ve(wi, 2)(6: —m)) |

We recall that f|xr = f'|gr = 0, so that the terms stemming from f and f’ in N; vanish on the
boundary. Let us focus for instance on

|7 0-[ @ (atwi 2)) — B@o:) (X151 = Yhind — 0-X e 26— m) (Vo) ||, o

(5.61)
Since 9%;(0) = 0 for k € {0,---, 3}, we have 9¥Y5[5;](2 = 0) = 0. We also note that there exists
a constant C' such that

(Yp —Y)(wi, 2)

ct< <C  Vze(z,2)\ {0}

As a consequence,

(5.61) S (10l srocs,) + Imll oo ) Imi = 8illmogs,)- (5.62)
The other term is treated in a similar fashion, and we obtain

INGEY) = NE,¥) = 0=N0,00E - =0 (IE-Flar + IV = Vlz2)  (563)

Verification of Item iii) in the low regularity setting. We just need to check that the
application £2 0 9= N (0,0) is not identically zero. This is actually trivial: take = = (0,0,0,0,0, vp).
Then the solution to the vorticity equation is zero, and recalling Definition 5.7,
1 [
?00=N(0,0) = —— vp(z) de.

Zp Zo

Therefore it suffices to choose v, such that the above integral is non-zero.

Verification of Item iii) in the high regularity setting. Using Lemma 5.12, we take e =
(f7,0,0,0,0) such that ¢/(©7) = §; ; for 0 < i,j < 2, with f* € C*°(Q) such that f|s,us, =0. We
then set =7 := (¢7,0,0,0,0,0), where

g’ (w,y) = Oyup(z,y) f (z, up(z,y)).

Then, by design, =N (0,0)(Z/) = ©7, so that # o 9=N(0,0)(Z7) = §; ;. Furthermore =7/ € X!
The result follows.
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Conclusion. We have checked the assumptions of Theorem 6 both in the low regularity case
o € (0,1/6) and in the high regularity case ¢ = 1. Proposition 5.2 is now a straightforward
consequence of our abstract framework.

5.5 Well-posedness of the Prandtl system

We conclude this section with the proof of Theorem 4, which follows from Proposition 5.2.

High regularity case. The proof of Theorem 4 in the high regularity case corresponding to
(f, 00,01, 0¢,0p,v5) € M is very similar to the proof for Burgers carried out in Section 4.3. We
leave it to the reader. As in the Burgers case, one uses the equations satisfied by u and Y to check
that they actually also enjoy LiHS regularity and one can prove a lemma similar to Corollary B.6
to prove that the formula u(x,Y (x, z)) = z allows to transfer such a regularity back and forth.

Low regularity case. We focus on the case when (f,dg, 1,0, 0, vs) € M, with o € (0,1/6),
and we consider the unique solution Y € Z° of (5.8). Let Qp = {(z,y) € (z0,21) X R, y(z) <
y < v(x)}, where v;(x) = Y(x, 2;). For almost every = € (zo,21), 2 — Yp(z,2) + Y(z,z) is an
H3 diffeomorphism. We note that there exists a constant A > 0 such that A1 <9,Y < Xin Q.
Let us define the reverse change of variables u such that u(z, (Yp +Y)(x, 2)) = z. Classical results
ensure that for a.e. z, u(x,-) € HS Furthermore, differentiating the formula (4.5), we obtain

8§Y($7 2) (aQY(Z, Z))2
@.Y(z,2) " °

3 —
Oyu(z,Y (v,2)) = —
which ensures that dju € L*(Qp). Since

1
yulw,y) = .Y (z,u(z,y))’
we also infer that d,u € L*> and A< Oyu < A for some A > 0.

Additionally, since (z—z)(z—x1)Y € H}H2, we also infer that (z—x0)(z—z1)0ku(z,Y (z,2)) €
HyL2(Qp) for 0 < k < 3. From there, we deduce that (z — zo)(z — 21)0,05u € L*(Qp) for
0 < k < 3. Furthermore, since 20,0,Y € L?, we also deduce that ud,0,u € L?. Tracing back the
computations at the beginning of Section 5.1, and noticing that v € H} H; (w) for all w € Qp as
well as in the vicinity of T'y, we infer that u is a weak solution to the Prandtl system (5.1). This
proves the existence of a solution to (5.1)-(5.3).

Let us now prove the uniqueness of this solution within the regularity class

uwe L2H)(Qp), Oyue L™, (x—xo)(x—x1)uc HiH)(Qp), udy0yuc L*(Qp),

and assuming that u is close to up in the associated norm. Note that this implies in particular that
dyu is bounded pointwise from above and below. The associated function Y is such that Y € L2H3,
0,Y € L, (x—xg)(z—x1)Y € H;H;’, and 20,0,Y € L?. In particular, 8,Y € Z°. This regularity
is sufficient to justify the computations of Section 5.1, and thus Y = Y —Yp is a solution to (5.8) in
the sense of distributions. It follows that .Y is a solution to (5.19), and 9,Y is bounded pointwise
from above and below by positive constants. From there, we deduce that 0,Y € Z°. Applying the
first statement of Proposition 5.2, we deduce that (f, dg, d1,0p, 0z, vp) € M.

79



Now, let u1,us be two solutions of (5.1) within the above regularity class, corresponding to
solutions Y7, Y5 of (5.8). Let

e . Y0Y — _@:¥2
gi ‘= f(z’}/l)azy; Up + 8z ((@YPVQ;YZ .

Then W := 8.(Y; — Y3) € Z° is a solution to (5.22) with homogeneous boundary data and with a
source term h = 0,91 — 0,g2. Therefore, multiplying the equation by W and integrating by parts,
we obtain

/ Al W < Cllgr — gallZs + [W]22),

where the constant C' depends only on the underlying flow up. As in the proof of Lemma 5.3, for
|2p], 2t < z0, we infer that

IWlrzm: < llor — g2llre-

From there, using equation (5.22), we obtain

IWlls < llgr — g2llr2

Using the formula for g; above, we deduce that

g1 = gallzs SN0y Flloe ¥ = Yall 22 10-Yi oo + 11 llocll 0= (V2 = ¥2) |2
10T lacllOZ (Vi = Va)llza + 100 = ¥a)ll - 22 102 T e

Setting

and using the embeddings Z° — L? RTARREN L3(LS), B — CS([zb,zt];H;/G) — L°(L3) (see
Lemma 1.14), we infer
lgr = g2llL2 S nllW||s.

Hence we obtain [|W/||g < n]|W||s, and provided 7 is small enough, W = 0.

Remark 5.16. Note that in the case o € (0,1/6), we are not able to transfer completely the

fractional horizontal regularity from Y to w. Indeed, one can easily check from the formulas in
3=k

(4.5) that Ofu(x,Y (x,2)) € Hy® L2 HOH3F for k € {1,---,3}. Then, one may try to get

some reqularity on u by computing

x,y) —u(a’, y)|*
||6 UH2 2_*_(7 = ||<9 U||L2 +/ / /1(;1;’1/ GQP ,y)GQP| ( ) (+2U )| dx dl‘l dy.

o —a’|$

It is quite natural to change variables in the second integral in the right-hand side by setting
y =Y (x, z), the associated jacobian being bounded from above and below, and to split the resulting
integral into

2t — ! ! 2
/ / / 10yu(z, Y (2, 2)) — dyu(z’, Y (2, 2))| dx dz’ dz

|x_xl‘%+2a

2t / _ / 2
zo o zp T —

£L'/|%+20
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The first integral above is bounded by ||0,u(z,Y (z, z))||?{2/3+gL2. As for the second integral, if Oyu

were Lipschitz continuous with respect to y (or even Hélder continuous with some suitable expo-
nent), we would bound this integral by HYH?{z/swLQ- But unfortunately, this Lipschitz reqularity

does not hold in general. However, thanks to the régularz'ty result far from the lateral boundaries
from Lemma 5.4, we have sufficient regqularity on u to ensure uniqueness.

5.6 Potential strategy in a whole infinite strip

In this paragraph, we sketch a potential strategy to solve the Prandtl equation (5.1) in the whole
infinite strip (xg,x1) X (0,+00), based on the previous analysis. To that end, we first propose a
scheme to solve a system with a modified source term (and without any orthogonality condition).
Once the solvability of this modified system is understood, the solvability of the original system
follows for data within a finite codimensional manifold.

As above, we start from a smooth solution (up,vp) of (5.1) such that up(x,vp(z)) = 0 for
some smooth function ~p, and up(z,y) < 0 (resp. up(x,y) > 0) for y € (0,vp(x)) (resp. for
y > vp(z)). We also have the boundary conditions up|y—¢ = vp|y=o = 0, and up(z,y) = v ()
as y — 0o, where usu., = —dp/dx. As before, we fix two small numbers 2z, < 0 < z;, such
that there exist smooth lines {y = 7;(z)} with up(z,7;(z)) = z;. We consider perturbations
O := (g, 61, f) € H*(0,400) x H*(0, +00) x H*((x0,21) x (0,+00)) for some sufficiently large k,
and for simplicity, we also assume that J; vanishes at yp(x;). We then define an application
A (0;9,0t) — (7, 9;) in the following way:

1. We solve the Prandtl system in the domain {(z,y) € (xo,21) x (0,400), y < Jp(z)} in the
vicinity of the flow (up,vp), with source term —dp/dx + f and boundary data

u|z:x1 :UP|JE:$1 + 61,
uly=o = vly=0 =0,

uly=5i(2) =%-

In (interior of) this domain, up < 0, and therefore the system is backward parabolic. Hence
we expect that it is solvable (see [48]). A possible way to solve it could be to introduce the
“von Mise type good unknown” from [35].

Assuming that the above system is solvable, we set v, 1= v|,=5 — Wp|y:,yp(z)7 and dp :=
Oyut|y=5, — Oyup|y=5,. Note that there are typically compatibility conditions which are nec-
essary to ensure the existence of smooth solutions of this system. We leave this issue aside
in the present discussion. The compatibility conditions are automatically ensured if f is
supported in (zg + 0,21 — d,) for |0,] < 1, and if g (resp. d1) is compactly supported in
(0, 3(20)) (resp. (F(z0), 0)).

2. We then consider the Prandtl system in the recirculating zone. More precisely, using the
analysis of the previous subsections, we construct a solution to

dp
UUg + ’Uuy — 81]7/’11/ = —g + f - (Vofo + Vlfl + V2f2) (x,u(x,y))ayu(x,y)

Uy + vy = 0,
together with the boundary conditions (1.15), (1.16), (1.17), in which the bottom data vy, dp
are provided by the first step. Note that the free boundary {y = v, (x)} is different from the
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boundary {y = ,(x)} a priori. The coefficients (v°,v!,1?) are Lipschitz functions of the

data (f,do,01) and ensure that the associated solution u belongs to Hg/BH; N H;Hg’ Note
that the structure of the right-hand side is designed so that the equation in the variables
(z,2) is

# 1 dp
20,Y — /Zb 0.Y — (azY)283Y = (dm — f(z, Y)) 0.Y 4+ vp|y=; +vp + WO 22
We denote by V(f, do, d1; 7, 0¢) the quantity v|,—., (z), where v¢(z) = Y'(x, 2;). The boundary
{y = v(z)} will be the lower boundary of the upper domain considered in the next step, but
is not a variable of the implicit function argument.

3. Eventually, we solve the Prandtl system in {(z,y) € (zo,21) X (0,400), y > v (z)} in the
vicinity of the flow (up, vp), with source term —dp/dx + f and boundary data

u‘a::wo :UP|w:;E0 + 50;
u‘y:%(m) =2t

Vly=r,(2) =V(f, 00,615V, wt),
lim u(x,y) =us ().
Y—>00

This system is now forward parabolic. It can be solved with the tools of [48]. Note that
inf up > 0 in the upper domain, so that the system is in fact non degenerate after a suitable
change of variables. We then define w; = 9yu|y—, (z)-

Eventually, we set A(©; 4, wt) = (7, w;), where 7, is the lower free boundary in the recirculating
zone, and w; is the vertical derivative of the velocity on the upper free boundary {y = v:(z)}. The
first question which needs to be solved is the following:
For every © € H*(0,+00) x H*(0,4+00) x H*((xg,z1) x (0,+00)) such that ||O] <6,
Find (b, we) such that A(Z; Y, we) = (Y, we)-

For © = 0, by definition of the application A, one has A(0; 7y, Oyup|y=5;) = Vo, Oyup|y=7)-
Hence a possible strategy could be to apply an implicit function theorem, in the spirit of [15] or
Lemma 3.15. This requires to prove the invertibility of the function d(g; .,,).A(0; ¥, Oyup |y==;) —1d.
In turn, this requires to prove the well-posedness of a linearized type Prandtl system (or of three
coupled linearized Prandtl systems) in the infinite strip (zg,z1) % (0,+00). Such a result may
typically involve restrictions on the size of the domain, as the following toy example demonstrates.
Let a € L ((zg,x1) X R). Consider the forward-backward system

20;u — O,u—au =0 in (zp,z1) X R,
u(xg,2) =0 for z > 0,
u(z1,2) =0 for z < 0.

Let us assume that there exists a solution with high enough decay for |z| > 1; our purpose is
to prove that such a solution is identically zero. To that end, we multiply the above system by
uoxp( (x — xz)z/(x1 — x0)), and perform integrations by parts. We obtain

/ /zuexp( $x02> dxdz+/ /(azu)Qexp<xsz) dz dz
.’131—5[}0 xr1 — T T1 — To
/ /au exp( )dxdz—i— / /(x—az ) u2exp(—x_x0z> dz dz.
T — Zo xr1 — X9 1 — o
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For |z| > 2(||al|c + 1)Y/?(z1 — 20)'/2, the two terms in the right-hand side can be absorbed in the
left-hand side. On the other hand, for |z| < 2(||aljec + 1)*/?(z1 — z0)'/? and |z; — 2| < 1, the

;;“;JO z) is bounded from above and below. We then use the inequality

weight exp (—

16llzz < lIz0llz + 10:-0llz2

for any ¢ € H'(R) such that z¢ € L?(R). The proof of the inequality follows from arguments
similar to the ones of Lemma B.7 and is left to the reader. We infer that for z1 — o small enough,
the only decaying solution to the above system is ¢ = 0. For ;1 — x¢ large, the situation is not so
clear. These considerations could be seen as a toy example of why Iyer and Masmoudi in [35] need
to exclude a “resonant set” of lengths x1 — z¢ for which non trivial solutions of a system similar
to the one above may exist.
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6 Interpolation estimate for the linear shear flow problem

This section is devoted to the proof of Proposition 2.33, which is used in particular in the con-
struction of weak solutions for the Prandtl system (see Proposition 5.5). The idea is to interpolate
between the Z° estimate from Proposition 2.4, and the Z' estimate from Proposition 2.9. However,
because of the orthogonality conditions, justifying that the interpolate space for the source terms
is the expected one turns out to be quite complicated.

We introduce the following spaces for the source terms

Vo= {f € LX), (6.1)
V= {f S H;L; f\EnUzl = O}

endowed with their usual norms and

i = {f € 3 P(£.0,0) = 7(,0,0) = 0] (6.3)

endowed with the norm of ));, where £0 and £ are defined in Definition 2.10. Since 0 and ¢! are

continuous for the H, L? norm, ylz is a closed subspace of Y.

We wish to interpolate between ), and yf. Using classical interpolation theory, one can
determine YV, := [Vo, M1], quite easily (see Lemma 6.4 below). Nevertheless, there is a difficulty in

the determination of the space [V, Yf],. This corresponds to the well-known problem of “subspace
interpolation”, for which we give a short survey in Section 6.1. o

The proof of Proposition 2.33 relies on a careful analysis of the dual profiles ®J, and in particular
on a decomposition of the latter into an explicit singular part and a regular part. This decompo-
sition allows us to have quantitative upper and lower bounds on the functions 7 +— I(7, £7), which
play a paramount role in interpolation theory (see [43] and Section 6.1.2 below).

The organization of this section is as follows. We start by introducing the theory of subspace
interpolation, and associated notations in Section 6.1. We then turn towards the proof of Proposi-
tion 2.33 in Section 6.2, illustrating how the general theory can be applied for our problem, thanks
to the knowledge of the singular profiles of Section 2.4.

6.1 A primer on subspace interpolation

Using interpolation theory in a context where constraints are enforced on the data comes with a
specific difficulty, known as “subspace interpolation”. In this subsection, we give a short introduc-
tion and set up notations and a lemma that will be used in the next subsections.

6.1.1 An introduction to subspace interpolation

Let us start by a short introduction to the topic of subspace interpolation and the associated
difficulty. This difficulty is not linked with the difference between complex and real interpolation
methods. Indeed, it occurs even in the case of “quadratic” interpolation between separable Hilbert
spaces, for which all methods construct the same interpolation spaces (see [13, Remark 3.6] and
[14, Section 3.3, item (4)] based on the initial geometric argument of [46]).

Setting of the problem Let ) and ); denote two Banach spaces with a dense continuous
embedding Yy — Y. Let YV, := Do, V1]o, for o € (0,1), say for the complex method to fix
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ideas. Let ¢ be a continuous linear form on ), which is however unbounded on ),®, and define
its kernel J{ := {f € V1; £(f) = 0}, which is a closed subspace of J;. The question of “subspace
interpolation” consists in determining the relation between ), and [yo,yf]g. This question of
course admits a straightforward generalization to the case of a finite number of orthogonality
conditions.

Generally, one checks that the closure of [Vy, Y], in ), is either a subspace of codimension 1,
when £ is continuous on )., or the whole of ), when £ is unbounded on ). In the former case,
there is no guarantee that [Vy, V], itself is closed in ), (or, equivalently, that the associated norms
are equivalent on [Vy, V{],). The first systematic occurrence of this question seems to date back
to [45, Problem 18.5, Chapter 1], which claims that a major difficulty to use interpolation theory
is that “linterpolé de sous-espaces fermés n’est pas nécessairement un sous-espace fermé dans
Uinterpolé” (the interpolation space between closed subspaces is not necessarily a closed subspace
in the interpolation space), and asks for sufficient conditions for [}y, yf]g to be closed in ).

Some examples The best known and most simple example of such a phenomenon, intro-
duced in [45, Theorem 11.7, Chapter 1] concerns the construction of the space Hééz(o,l) =
[L2(0,1), H5(0,1)]1 2. It is known that Héé2(0, 1) is not closed in H'/2(0,1) and that the as-
sociated norm involves a non-equivalent “additional term”.

In [61], using real interpolation between L' and L, Wallstén constructed examples illustrating
that this pathological behavior is not limited to exceptional values of the interpolation parameter,
since there exist constraints for which it occurs for every o € (0,1).

Short survey of known results Precising earlier results of Lofstrom [43, 44], Ivanov and Kalton
proved in [33] that, in the general case, there exist two thresholds 0 < o¢g < o7 < 1 such that:

e when 0 < o < 09, [Vo,V{]s = V,, with equivalent norms,
e when op < o < 01, the norm on [), J/f]o is not equivalent to the one on ),
e when oy <o <1, D, yf][, is a closed subspace of codimension 1 in ), .

In the first case, £ is unbounded on ), (the constraint does not make sense). In the second and third
cases, ¢ admits a continuous extension to ), and the closure of [V, yf][, in ), is of codimension 1.

This classification has generalizations to the case of multiple constraints (see [2]), potentially
involving multiple pathological intervals, associated with each constraint.

In the difficult regime oy < o < o1, more precise results [5, 6] allow the computation of the
“additional norm” stemming from the presence of the constraints.

The recent work [62] considers a kind of dual problem, by computing interpolation spaces
between ) and Y; @ Rw, where w is a singular function of Y \ Y1, whose singularity is expressed
in polar coordinates. In this work, o9 = o1. This is also our case below, and our dual profiles also
involve singular parts which are expressed in radial-like coordinates, as constructed in Section 2.4.

6.1.2 A variant of a criterium due to Lofstrom

To prove Proposition 2.33, we will rely on an abstract interpolation result proved by Lofstrom
in [43]. Let )Yy and Y; denote two Hilbert spaces with a dense continuous embedding Y < ).

8When £ is continuous for the topology of Vo, there is no difficulty. Indeed, one checks that, for every o € (0,1),
D}O,yﬂo = {f € Ys; £(f) = 0}, endowed with the topology of )V, for which ¢ is continuous (see e.g. the related
result [45, Theorem 13.3, Chapter 1]).
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For f € Y1 and 7 € (0, 1), let

IFIZ = 115, + 2113, - (6.4)

This notation is actually inspired by [33], as [43] uses instead the quantity max (|| f|ly,, 7|l fll3)-
Since || f|l-/v2 < max (|| fllvo, TIlfl,) < |If]l+, both can be used equivalently.
Given a linear form ¢ on ), one defines, for 7 € (0,1),

I(r,£) := sup £0f) . (6.5)
revivgoy I1fll-

As 7 — 0, upper bounds on I(7,¢) are linked with the boundedness of ¢ on intermediate spaces
between Yy and Yy, while lower bounds on I(7,¢) are linked with the non-degeneracy of £ on these
spaces. In particular, one has the following result, which is a reformulation of [43, Theorem 2] in
the particular case of two constraints having the same “order”.

Lemma 6.1. Let Yy and Y, denote two Hilbert spaces with a dense continuous embedding Y1 — Vp.
Let (9, ¢ be two linear forms on Y. Assume that there exists C1 > 0 and ¢ € (0,1) such that,
for every (co,c1) € St and every T € (0,1),

C_ 177 <I(1,cof’ + 1) <Cy77°. (6.6)
As in Section 6.1.1, let Vi := {f € V1; £°(f) = £2(f) = 0} and, for o € (0,1), Vy = [Vo, Vi]o»

for the complex interpolation method. Then,
e for every o € (0,5), [Vo, Vilo = Vo, with equivalent norms,

e for every o € (7,1), the linear forms £° and (' have continuous extensions to YV, and
Vo, Vio = {f € Vo; €O(f) = £1(f) = 0}, endowed with the norm of V.

Remark 6.2. Lemma 6.1 does not say anything on [Vo, Yi], for the critical value o = &. In fact,
with the notations of [33] mentioned above, one has oo = 01 = &, so the norm of [Vo, Y] is not
equivalent to the norm of V5.

Remark 6.3. In assumption (6.6), it is important to consider arbitrary linear combinations of
the two linear forms ° and ¢*. It would not be sufficient to assume (6.6) with (co,c1) = (1,0)
and (co,c1) = (0,1). Indeed, the lower bound of this condition ensures that the two linear forms
remain sufficiently independent on the intermediate spaces. We state here a formulation giving a
symmetrical Tole to (° and ¢, whereas [43] uses a hierarchical formulation. We prove below that
our formulation indeed implies Lofstrom’s one.

Proof of Lemma 6.1. This is an application of [43, Theorem 2]. By (6.6) with (co,c1) = (1,0) and
(co,c1) = (0,1), both £° and ¢* have “order” & in Lofstrom’s vocabulary. Therefore, there only
remains to check that they form a “strongly independent basis”, i.e. that there exists C' > 0 such
that, for every 7 € (0,1),

I(1,0Y) < Cly(7, 1Y), (6.7)

where

Io(7,¢%) := sup {ﬁfgﬁ?

Let 7 € (0,1). Denote by (-,-), the scalar product associated with the norm | - |, on Y;. By
the Riesz representation theorem, there exists g2, g1 € ) such that ¢ = (¢Z,-),. In particular

; fei\ {0} and £°(f) :0}. (6.8)
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I(1,07) = ||gZ|;. Moreover, by (6.8), Io(,£') is the supremum of ¢! on the intersection of ker ¢°
with the unit ball in )y for the norm || - ||,. Thus, a natural candidate to bound Io(7,¢') from
below is the orthogonal projection of gl/||gl|| on ker ¢°, namely,

1 0 1 0
e Ir R, where R, := <gT Ir > . (6.9)

T gl T g2 lgzll=" g2l -
In particular || f1]|, = (1 — R2)z and £°(f}) = (g%, f}) = 0. Thus

<f7}7 g*11'>7'

AL (1= R2)? g} = (1= R2)2 I(r, ). (6.10)

Io(T, 61) Z

Thus, to prove (6.7), it is sufficient to prove that the ratio R? is bounded away from 1. By (6.6),
for every (co,c1) € St, . i
C_ 777 < |lcog® + crgt|ls < Co77°. (6.11)
In particular, . 4 )
Cr7 < |lghls < Oy (6.12)

By homogeneity, from (6.11), for every (co,c1) € R?,
C2r72(cj + ) < cillgr 17 + cHllgzlI7 + 2c0e1{g?, g7)r < CLT727(cf + ). (6.13)
Substituting ¢; < ¢;/||g2|» and using (6.12) leads to the fact that, for every (co,c1) € R?,
pA(ca+c3) <+l + 2R coer < p 2k + ), (6.14)

where p := C_/C,. In particular, using (co,c1) = (1,1) and (1,—1) yields p?> < 1 + R, and
p? <1— R,. Hence, (6.10) proves that

Io(r, %) > p2I(r, ("), (6.15)

which implies (6.7) with C' = p~2. So Y and ¢! form a “strongly independent basis” and Lemma 6.1
follows from [43, Theorem 2]. O

6.2 Interpolated theory in the case of the linear shear flow

In this subsection, we consider the problem (2.1) at the linear shear flow, with vanishing boundary
data. We proved in Section 2.2 (see Proposition 2.4) that, when f € L2L2, the solutions to this
problem have Z° regularity, and in Section 2.3 (see Proposition 2.9) that they have Z' regularity
when f € HLL? and the two orthogonality conditions (2.22) are satisfied. Here, we establish an
interpolated theory for the problem (2.1) with source terms f € HIL?, o € (0,1), see Proposi-
tion 2.33. This interpolated theory involves the difficulty exposed in Section 6.1. We define ),
V) and Y by (6.1), (6.2) and (6.3) respectively, endowed with their usual norms. For o € (0,1),
let YV, := [V, 1]o. The identification of the space Y, is classical and provided by the following

lemma:
Lemma 6.4. Let o € (0,1). Let Yy := [Vo, V1]o, for the complex interpolation method.
o When o€ (0,1/2), YV, = HgLf}.
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o When o = 1/2, recalling that Qy = QN {xy > 0}
2 2
2 2 f (‘T7y) f (‘T7y)
R~ ——dxd —— dx dy. 6.16
1713 HfHH;/QL?/ +/Q+ EEE y—i—/@i o —a| Y (6.16)

o Wheno € (1/2,1), Yo ={f € HJL}; fis,us,=0}, with the usual norm.

Proof. This follows from classical interpolation theory for intersections (see [45, Theorem 13.1

and Equation (13.4), Chapter 1]), and from (one-sided versions of) the equality H&éQ(zo,xl) =
[H&(xo,xl),LQ(xo,ml)]% (see [45, Theorem 11.7, Chapter 1]) . O

In order to extend the theory of Section 2 to fractional tangential regularity, we start by
identifying the spaces [V, V{],. More precisely, we prove the following characterization.

Lemma 6.5. Let Vo, V1 and V! be given by (6.1), (6.2) and (6.3) respectively. Then,

e For every o € (0,1/6), [Vo,V!]s = Vs with equivalent norms.

e For every o € (1/6,1), the linear forms (0 and (1 admit continuous extensions to Y, and

D0 Vilo = { € Yas ©0(£,0,0) = 77(£,0,0) = 0}, (6.17)
endowed with the norm of V.

Remark 6.6. The threshold at o = 1/6 is consistent with the observation of Remark 2.30 that the
maps 07(-,0,0) are bounded on HSL? for every o > 1/6.

For 7 € (0,1), we use the notations of the previous paragraph, in particular the norm || - ||,
of (6.4) and the function I(7,-) of (6.5), with Vy and Y; defined as above.

To derive the estimates required to apply Lemma 6.1, two strategies would be possible. Both
rely on the explicit knowledge of the singular radial solutions constructed in Section 2.4, which
are involved in the orthogonality conditions. First, one could impose periodic boundary conditions
on f, compute a 2D Fourier-series representation of (an extension by parity of) the singular profiles
and estimate the functions I working in the Fourier space. Such a frequency-domain approach is
carried out in [5], assuming some appropriate asymptotic decay of the Fourier transform of the
profile defining the orthogonality condition. We choose a second strategy, which stays in the
spatial domain, and involves estimates using cut-off functions whose space-scale are linked with
the parameter 7. This strategy is related to the one used in [62] and inspired by the links between
the K functional of real interpolation theory and the notions of modulus of continuity and modulus
of smoothness of functions (see e.g. [37]).

To prove Lemma 6.5, we intend to apply Lemma 6.1. Hence, we need to bound from below
and from above the functions I(7,£7). By Definition 2.10, (f,0,0) = [, 9, f®7. As highlighted
in Corollary 2.29, the profiles ® can be decomposed as the sum of a singular radial part, an
z-independent part, and a regular part. The singular radial part is the one that will be dominating
the behavior of the orthogonality conditions. Thus, we start by two lemmas concerning estimates
from above and from below for integrals of the form fQ (0=f)u before moving to the general
case.

%
sing?
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Lemma 6.7. Let h € H:L? such that h =0 on Yo UX;. Then, for 7 € (0,1),

/Q (Ouh(a, 2)) g (. —2) dz dz| < 770 (B2 + 7]0uh] 12) (6.18)

where @, s defined in Definition 2.23.

sing

Proof. By symmetry, it is sufficient to prove the result with ¢ = 0, which we assume from now
on, and we drop the indexes ¢ = 0 on 7; and ¢; involved in Definition 2.23. We also let x(z,z) :=
Xi(x, —z) of Definition 2.23 and A(t) := A¢(—t), where Ay is defined in Proposition 2.18. With
these notations

Wing (7, —2) = T2 M(E)x(2, 2), (6.19)
In particular, since Ag(4o00) = 0, umg(xo, —z) = 0 for z € (—1,0). We split the integral to be

estimated depending on whether » < 7% or r > 7%, where a > 0 is to be chosen later. Let
n € C*(R;[0,1]) such that n(s) =1 for s <1 and 7(s) =0 for s > 2.
Step 1. Estimate in the region: r < 7%. By Cauchy—Schwarz,

1

2

< Il 1Al 92 ] 2 ( / 7’772(7“/7“)) | (6.20)

/ deh - A - (1))
Q

Using the polar-like change of coordinates of (2.40) and (2.43), one has

/m (r/7%) / / 1+t2 2(r /) dr dt < (7). (6.21)

Hence, in this region,

(7)%/2||0,h 2. (6.22)

/ Ouh - TN - n(r/T)| <
Q

Step 2. FEstimate in the region: r > 7%. We intend to integrate by parts in x. At x = 1,

ugmg(x —z)=0for z € (—1,1) because x = 0. At x = ¢, when z > 0, h = 0 by assumption, and,

when z <0, usmg(a: —z) = 0 as recalled above. Hence, there is no boundary term and

Ouh -2 A(t)x - (1= n(r/T%)) = — | 1s (-2 a®@ = (/7). (6.23)

Q

First, one easily bounds

hdux - rEA()(1 - 77(7“/70‘))‘ < |IAllz2 | Alloo |0l L2 mgXT% S 1Al gz (6.24)
Q

For the second term, when 0, hits on the function expressed in (r,t) coordinates, we use the
derivative formula (2.44):

% — n(r/T¢ w
[ e (rAA (/7)) = | g

25
/h +t
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We bound both terms using the Cauchy—Schwarz inequality and the polar-like change of coordinates
(2.40) with Jacobian determinant (2.43). In particular, on the one hand,

/Q LEEn2) (o, (0= nie/r)) )

B /OOO /R (1?;)2 19t4t2 A? (5r (T%(l - 77(7“/7‘“))))2 dt dr

4 (6.26)
— (e} « (0% T
< /0 (F (L= n(r/7)? (0 (r/7))? /(7)) -
-1 [ 2 ’ 2y ds ay—1
= (%) 1 (57 (1 =n()* + 50 ())°) — S (+*) 7
On the other hand,
t2(1+¢2)3 N
J R A KA
Q T
°° 33 2(1417)° 2
= 1-— N2 (A (t)* dt d
| [ arm e 0o e
<1
< (/ t2(1 4 %) (0, A(t))? dt> / ﬁ(l —n(r/7%))dr
R 0
<)
by the integrability property ¢39;A(t) = O(1) of Lemma 2.21.
Thus, gathering the estimates in this region proves that
[k rEa- (= ate/r )| S )l (6.29)
Gathering the estimates in both regions and choosing o = 1/3 concludes the proof. O

Lemma 6.8. There exists a family (hi)fe(o,l) of non-zero, smooth, compactly supported functions
on  such that, as T — 0,

/Q (Duh (@, )ik (@, —2) e dz| 2 775 (|| 2 + T9ahE ] 12) (6.29)

and fQ O hial. =0 for j #1i, where . is defined in Definition 2.25.

T Ysing sing

Proof. As in the previous lemma, by symmetry, it is sufficient to prove the result with ¢ = 0, which
we assume from now on, and we drop the indexes ¢ = 0 on r; and ¢; involved in Definition 2.23.
We also let x(z,2) := xi(z, —z) of Definition 2.23 and A(t) := A¢(—t), where Ag is defined in
Proposition 2.18. With these notations, one has (6.19).
Let @ > 0. Let H € C°(R; [—1,1]) and n € C°(R; [—1,1]) such that suppn C (1/2,3/2). For
7 € (0,1), we define
hy :==n(r/T)H(t). (6.30)

By the support properties of H and 7, one checks that h. is both smooth and compactly supported
in Q. Moreover, it is non-zero if H # 0 and n # 0.
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Let 7 > 0 be sufficiently small such that the support of h, is included in the region where
x = 1. Note that with this choice, we also have [, 9k, 0k, = 0. Then, using the formula (2.44)
for 0, and the determinant (2.43),

sing

/8 hyUsing (2, —2) do dz

21 212 -3
/ /r EA(t ( LD oyt ey~ LR n(r/r“)H’(t)) 7(1?’”2)2 dt dr

7’2A L . , .
/0 / (1+2) % (r(r®) = (r /) H(t) — t(L+¢*)n(r/r*)H'(t)) dt dr

— (70)3/2 (H)A() B2 () ds — (72)3/2 tH'(t)A?) 0031/2 <) ds
— (=) /(IHQ)gdt/o f(o)ds— oyt [ EEES at [t s
Note that since n € C°((0,400)),

/ s/2/(s) ds = —§/ sY/2n(s) ds.
0 2 Jo

We claim that we may choose  and H such that

T 26 ds = 2 AQ) 4 tH'(OA()
/0 n(s)d 2/(1+t2)3 +/R(1+t2)5 =1

The claim for 7 is obvious. As for H, we assume that supp H C (0, +00) and we write the sum of

integrals as
o[ - ()] o

> d tA(t) _
- _ H /2(1 2)3/4 ) 43/2(1 2y-3/4 4¢.
/0 (t)dt((1+t2)1/2t (1+1t9) )t (I+¢5)7%/"dt

(6.31)

Since A(t) # CtY/?(1 +t?)~'/* on R, the claim for H follows.
The above choice of n and H ensures that

/ Ouhy - 12 A(t)x = —(7%)%/2. (6.32)
Q

Using once again the formula (2.44) for 9, and the change of coordinates of Jacobian (2.43), one
obtains that ||h,||z2 < (79)? and ||0.h, ||z < 1/7. Similarly, using (2.45) to compute 92h, and

~

the same technique, ||03h, ||z < 1/7%. Thus, choosing o = 1/3 leads to
Ihrllze + Tll0hr Lz + T02hr L2 S ()2, (6.33)
which concludes the proof. O

We are now ready to prove Lemma 6.5.
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Proof of Lemma 6.5. This is an application of Lemma 6.1 with ¢ = 1/6. Therefore, we need to
find constants Cy. > 0 such that, for every 7 € (0,1) and (cg,c;) € S,

C_77 Y6 < I(7,col0 4 ¢10Y) < C 7~ 1/6, (6.34)

Let (co,c1) € St and f € V1. By Definition 2.10,
0(£,0,0) = / Dz f P, (6.35)
Q

where ®J is the solution to (2.17).
By Corollary 2.29, there exists (do,d;1) € R?\ {0} such that

COET)(fv 07 O) + Clﬁ(.ﬂ 07 0) = / azf(doﬂging(xv _Z) + dla;ing(x7 _Z))
@ (6.36)
+ ,/Q a:r:f (q)reg + (Cl - ZCO)X(Z)]-Z>O) )

where @, € Z'. By linearity, do, di and e are uniformly bounded for (cg,c1) € St. The
first term corresponds to the one studied in Lemma 6.7 and Lemma 6.8. We want to integrate
by parts in the second term. Since f € Vi, fis,us, = 0. At 2 = 29 and z € (—1,0), &/ = 0 by
(2.17). Moreover, a;,, (20, —z) = 0 because Ag(400) = 0 and @k, (0, —2) = 0 because ul,, is
compactly supported near (x1,0). Hence, ®req(z0,2) + (c1 — 2¢0)x(2)1250 = 0 on (—1,0). The
same conclusion holds at = z; and z € (0,1). Thus, we can integrate by parts with no boundary
term and the second term is estimated as

/Q(‘?mf (Preg + (c1 = 2c0)x(2)1z50) | < [If[|z2 /102 Pregll2- (6.37)

Step 1. Bound from above. For 7 € (0, 1), using Lemma 6.7 and (6.37),

|COE(f7070) + Clﬁ(‘f’ Oa 0)| 5 T_1/6 (Hf||L2 + THf”Jh) . (638)

Step 2. Bound from below. For T € (0,1), let f. := h,, where h, is constructed in Lemma 6.8,
which ensures that f. is compactly supported in §2 so satisfies (f;)|s,us, = 0. Substituting in (6.36)
and integrating by parts yields

col®(f7,0,0) + c101(f;,0,0) = — / Py Oy ®reg + Z d; / (Ouhy) iy, (2, —2). (6.39)
Q iefo,1} 79

By Corollary 2.29 and linearity, min(|do|, |d1|) is uniformly bounded from below. We choose h. as
either h? or hl of Lemma 6.8 accordingly. Thus, by Lemma 6.8, as 7 — 0,

ol (fr,0,0) + 1 5(f7,0,0)| Z 77 ¢ (sl 2 + 7l rlly,) = Cllbr | 22 [10s Pregl 2

2 7V (lhe e + 7l e 3, (6.40)
=7 Y5 frllee + 7l llv)
for 7 > 0 sufficiently small. This concludes the proof. O
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To conclude this section, we turn towards the proof of Proposition 2.33.

Proof of Proposition 2.33. Step 1. Case 6y = 01 = 0 and 1,51/2fjs, = 0. By Proposition 2.4,
for every f € L?(Q), there exists a unique solution u € Z°(Q) to (2.1) with §o = §; = 0 and
|ullzo < ||f]lz2- By Proposition 2.9 and Proposition 2.5, for every f € H}L?2 such that fis,us, =0
(so that Ag = A; = 0) and £9(f,0,0) = £1(f,0,0) = 0, this solution satisfies v € Z'(Q) with
lullz, S IIfllgipz. Hence, by interpolation, the mapping f + wu is bounded from Vo, YY), to

Z7(2). Moreover, by Lemma 6.4 and Lemma 6.5, when o € (0,1) \ {1/6,1/2}, [Vo, V{]o = HIL?
(with null boundary conditions on ¥y U ¥; when ¢ > 1/2, and null linear forms constraints when
o > 1/6). This proves estimate (2.94) in the case of vanishing boundary data.

Step 2. Arbitrary boundary data. When 6y and §; are arbitrary, we extend them to (—1,1) in
such a way that the extension belongs to HZ(—1,1). We then lift the boundary data by setting
uy(z, z) = x(x — x0)dp + x(x — x1)d1, with x € C°(R), supported in B(0, (z1 — x0)/2), and equal
to 1 in a neighborhood of zero. This introduces a source term f; = z0,u; — 9,,u; € H;Lf in the
equation, whose trace on ¥; is —6}, so that the trace of f — f; on ¥; is zA;. When o < 1/2, we
immediately obtain the desired result thanks to the previous step.

For o > 1/2, we first note that, since u,u; € Z'(Q), by Proposition 2.9,

bi(f — £,0,0)=0. (6.41)

We further decompose f — f; into f — fi = zAgx(x — x0) + 2zA1x(x — x1) + g1, where g; € HIL?
is such that g;s,us, = 0. Using Proposition 2.13 we construct h; € C2°(£2) such that

Il S 1Aoller o) + 1ALler (=) (6.42)

and
03 (z00x(x — x0) + 201 x(z — 21) + hy,0,0) = €3 (g; — hy,0,0) = 0. (6.43)

We then apply the result of the first step to the system with source term g; — h; (which vanishes
on Yo U X) and homogeneous boundary data, and the result of Proposition 2.9 to the system
with source term zAgx(z — xo) + 2A1x(x — x1) + h; and homogeneous boundary data, using the
conditions Ag(1) = Aj(—1) = 0. This concludes the proof. O
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A Uniqueness of weak solutions for linear problems

The purpose of this section is to prove the following uniqueness result, which is a slight general-
ization to the case of variable coefficients of the uniqueness result of [8, Section 5] for (2.1).

Lemma A.1. Let Q = (z0,71) X (25, 2¢), where zg < 21 and 2z, < 0 < 2. Let o € C%(Q) such
that inf a« > 0 and 8 € L>=(Q). Assume that one of the two following conditions is satisfied:

o cither ||Blloc < 1 and |00 00 < 1,
o or |z, 2 < 2o, for some small constant zy depending only on .
Letge L2H Y, 5o € L2(30), 01 € L2(21). There exists at most one weak solution U € L2H} to
20,U + BO,U — 0,,(aU) = g,
Uls, = do,

U|21 = 617
U|z:zt = U|z:zb =0.

(A1)

The proof follows the arguments of Baouendi and Grisvard in [8], which concern the case of the
model equation (2.1). For the reader’s convenience, we recall the main steps of the proof here, and
adapt them to the present (slightly different) context. The proof involves the spaces B defined in
(1.35) and A := BN H(Q).

Note that if U € L?((wo,21), H} (2, 2¢)) is a weak solution to (A.1), then U € B. Indeed, it
follows from the weak formulation that for any V € H{ (),

(20,U, V>L2(H*1),L2(Hé) = —/Qﬁz(aU)GzV - /QﬂazUV + (g, V>L2(H*1),L2(H§) : (A.2)

By density, this formula still holds for V' € L2(H}), and therefore 20, U € L2(H1).
We then recall the following result from [8]:

Lemma A.2. The set A is dense in B. Furthermore, there exists a constant C depending only
on 2, such that for i € {0, 1},

Vv € A, / ' 2| [v(zi, y)|? dy < C|lv]|3. (A.3)
E

As a consequence, the applications
VE A Vjyey, € L2 (2, 21) (A.4)
can be uniquely extended into continuous applications on B.

As a consequence, Baouendi and Grisvard [8] obtain the following corollary:

Corollary A.3. For all u,v € B,

( (
<Zazu,’U>L2(H—l)’L2(Hé)+<ZBIU7U>L2(H71)’L2(H(%):/ zt(zuv)\z:zl—/ 2t (2u0)|p=g,-  (A.5)

2b Zb
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Proof. Thanks to Lemma A.2, it suffices to prove the identity when u,v € A. In that case, the
left-hand side is simply

/ 20;uv + zudyv = [ Ox(zuv). (A.6)
Q Q

The result follows by integration. O

Proof of Lemma A.1. Let U € L2(H}) be a weak solution to (A.1) with g = 0 and §; = 0. As
mentioned above, U € B. According to Corollary A.3, for any V' € B such that V' = 0 on
o0 \ (ZO @] 21)7

—<z<9xV, U>L2(H*1),L2(Hé) + / (582(]‘/ + o, U0,V + aBZUGZV) =0. (A?)
Q

Now, let h € C2°(Q) be arbitrary, and let V € L?(H}) be a weak solution to

{_zamv — 0.(BV) — 0d..V = h, (A8)

Viean(sous:) = 0.

(The existence of weak solutions for this adjoint problem is proved in the same way as existence
for the direct problem in Proposition 2.2 in the case ||8]|cc < 1, |@:|lcoc < 1, and Lemma 5.3 in
the case |zp|, z; small).

Then V € B, and choosing U as a test function in the variational formulation for V', we obtain

hU = 0. (A.9)
Q

Thus U = 0. Uniqueness of weak solutions to (A.1) follows. O

B Proofs of functional analysis results

B.1 An abstract existence principle

As Fichera in [22], we use the following abstract existence principle (see [19, Theorem 1]), which
allows skipping a viscous regularization scheme.

Lemma B.1. Let 54, % and F be three Hilbert spaces. Let F; € L(6;7) for i € {1,2}.
Then the following statements are equivalent:

e range F) C range Fj,
o There exists a constant C > 0 such that

Vhe A, ||F bl < CIIF5 - (B.1)

o There exists G € L(IA; H3) such that F1 = F>G.

Moreover, when these hold, there exists a unique G € L(I4;5) such that ker G = ker Fi,
range G C (range Fy)* and ||G|| = inf{C > 0; (B.1) holds}.

Indeed, this yields the following weak Lax-Migram result, where the linear right-hand side is
assumed to be continuous for the weaker norm.
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Lemma B.2. Let % and V" be two Hilbert spaces with ¥ continuously embedded in % . Let a be
a continuous bilinear form on % X ¥ and b be a continuous linear form on % . Assume that there
exists a constant ¢ > 0 such that, for every v € ¥,

a(v,v) > cllv||%,. (B.2)
Then, there exists w € % such that |[ullz < L||bllza) and, for every v € ¥, a(u,v) = b(v).

Proof. Set 7 := L(V), 74 = L(%), Fy :=1d (from L(%) to L(V)), #% = U and Fy : U —
L(?) defined by Fou := a(u,-). Then Fy =1d (from ¥ to %) and Fjv = a(-,v). Moreover

15l 2oy 2 lalv,v)l/[|vlle = ellolla = el Fi vl (B.3)
So (B.1) holds with C' = 1/c and Lemma B.1 yields the existence of G € L(L(% ); %) such that
Fy = F,G and ||G|| < L. The conclusions follow by setting u := Gb. O

B.2 Product and composition rules in Sobolev spaces
Lemma B.3 (Pointwise multiplication). Pointwise multiplication is a continuous bilinear map
o from H3?(—1,1) x H¥?(—1,1) to H3?(—1,1),
e from H'Y?(xg,21) x H*(xg,21) to HY?(20,21) for any s > 1/2,
o from HY2(xq,x1) x H* (20, 1) to H¥ (x9,21) for any s’ < min(s,1/2).
o from H*(xg, 1) X Hs/(xo,xl) to Hs/(xo,xl) forany s >1/2, s > 5.
Proof. These are particular cases of [10, Theorem 7.4]. O

Lemma B.4 (Composition of H? functions). Let o € (0,1/6), and let Q, = (x¢,21) X R, Q, =

x0,21) X (2, 2¢). For f € HHHNLAHL(Q,) and Y € Hw% THL(Q, , such that X < 0,Y < 71
Tty Ty Yy z —
for some positive constant \,

1Y @ gz < Cowy (1Flmzzs + 1 Flzemy ) (B.4)

and
I1f (2, Y (2, 2)) | Loo (2,20 ) HO (20,21)) S Cly | (||fHHgH; + ||f|\Lg,H;> : (B.5)

140
In a similar way, if f € HZ" L2 N LYW, >(Q,),

[ f(z, Y (z,2))]l Clyy| (|f|| +7 s + ||f||L;°W§’°°> :

HEYT L2 (0. )
Proof. First, using the classical definition of fractional Sobolev spaces, for all z € (2, 2¢),

x1 Y /Y / 2
G Y G o gy = 1Y 2D gy / /| e e ) - Je VL g

(B.6)
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We start with the HZL? estimate. Integrating with respect to z, the norm of the first term is
bounded by the square of the L? norm of f after a change of variable with bounded jacobian. We
then decompose the second integral into

[ [ eXea) iz vea) I [ @YD

LL' _ x/|l+2o’ il' _ x/‘l+2o’

Once again, the first integral is bounded by || f||%, . after vertical integration. As for the second

one, using the embedding H'(—1,1) < C/2, we have
(@'Y (2,2)) = f(2', Y (@', ) SN0y f (2, )22 ]Y (2, 2) = Y (2, 2)].

Since Y € Hi TOHL,
Y (2,2) =Y (2, 2)|
/ / 10y f(z HL2 PRI dxdz’

1/2
<y, (/ / 19, £ (', YLz o — o5 Sdedx)

SIYl

H§+UH;Hf||LgH;-

The first estimate follows. The other ones go along the same lines and are left to the reader. [

Lemma B.5 (Composition with a Q' function). Let ¢ € Q*(Q) such that ¢(z,£1) = £1. Assume
that there exists m > 0 such that 0,¢(x,2) € [m~*,m]. Let o € [0,1]. There exists C(m,o) such
that, for any g € HJL2 N L2Z(W1),

late. 6w Dllazze < C (lgllagee + 1+ 1015l gzs) - (B.7)

Proof. Throughout the proof, we set G(z, z) := g(z, ¢(x, 2)). First, note that, since the Jacobian
of the change of variable z — ¢(z, z) is bounded from below, for any p, q € [1, 0],

1
Gl Lere < mallgllppre. (B.8)

In particular ||G|| 2 < m2|g|| 2. Furthermore, for o = 1,

Hence,
10:Gll L2 < [1(029) © dllL2 + [|0:¢ L5 £a]1(Byg) © Pl 214 (B.10)
By the “fractional trace theorem” [45, Equation (4.7), Chapter 1],
1020l e g1z S 100l g2ra s + 100l L2z S M9l Q1 (B.11)

Hence, we obtain from (B.8) and (B.10) that

102Gz < 102912 + 8l 9]l 2wy (B.12)

Now, note that the application g — G is linear. By interpolation, we obtain, for any o € (0, 1),
1Gll g2 S lgllmgrz + A+ 11815019l 2 (wesy (B.13)
which concludes the proof. O
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Corollary B.6. Let ¢ € Q' N L2H? such that ¢(x, £1) = £1 and ||¢ — zllgr + [|¢ — 2|22 < 1.
Let ¢(x,y) be such that (x,d(x,z)) = z for all (x,z) € Q. Then ¢ € Q' N L2H, and

1Y =yllor + 1V —yll2ms S ¢ — 2llor + ¢ — 2l L2 ms- (B.14)

Proof. In this statement and this proof, we use the variable y as second argument for ¢ and z as
second argument for ¢. First, observe that 9y (x,y) = 1/(0,¢(x,¥(x,y))), so that ||0,9 — 1| p~ <
|0:¢—1|| L. In particular the associated changes of vertical variables are well-defined and bounded
so that estimates such as (B.8) hold and will be used abundantly.

Step 1. Vertical reqularity of 1. By the “fractional trace theorem” [45, Equation (4.7), Chapter 1],
for g € Q'NL2HY ¢ € HLH?2NL2H? — CY(H2). In particular §2¢ € L. Differentiating the
definition ¢ (z, ¢(z, z)) = z, we obtain the following relations and estimates. First, we already said
that 9,1 € L. Second, 821 € L? since

—(0:9)%050 0 ¢ = (D 0 ) (0:.9). (B.15)
—— ——
L Lo
Third, 85’1/1 € L? since
—(8:9)°051p 0 p =301 0 ¢ D002+ Dy o ¢ D¢ . (B.16)
L2 Lo Lo \L;-/

Fourth, omitting the composition with ¢ in every occurence of ¢ in order to alleviate the notation,

—(0:0)" 0y = 6 Oy (0:0)°026+ Oy (3(020)° +4.(9:9) (929) ) + Oy 929 . (B.17)
~—— —— —— —— —~ =~
L2 Lee L2H] Lo L~ [LeeL2 L> L2
Remembering that 1/(9,¢) € L, we conclude that
(2, y) —yllrzms S (2, 2) = 2llgr + )2, 2) — 2l L2 s (B.18)

Step 2. Integer horizontal regularity of 1. This step uses that 9,¢ € L:°L? which follows from
o € H£/3L3. Note however that, even for ¢ € Q' N LiH;, one does not have 0,¢ € L. We
proceed similarly for the integer horizontal regularity. First,
—0zp0p =0y 0o¢d 0. (B.19)
—_——
Le L2
Second,

—(0.0)0uyth 0 b = a;w 0P 0. Opdp +0y1p 000 (B.20)
—_——— N N —_——
LiH; L LgoLg Lo L2

Third,
—(0:0)Oayyth 0 ¢ = 20200 0 ¢ .00 Dped + h (B.21)

where, omitting once again the composition with ¢ in the derivatives of ¢,

h= O 0,6 (0:0)° + 00y 020 + 020 Dp6 070+ 0.0 Dinsh. (B.22)
~ NN N N N N
L?cH; LeL2 Lo® L2 Le° Linll L L2 L L= L2
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From (B.21) and h € L?, we obtain that

10zyy¥lle S IRl + 10229l L2 1 |0yl Loo 12

(B.23)
< Al + 1962, 2) — 2l el 00yl + 10y c2)
Hence, using the smallness of |¢(z, z) — z||g1 2, we conclude that
||’(/J(‘/L'7y) - yHH}PHE S ||(]5(.T,Z) - zHQl + H(b(LIT,Z) - ZHL%H;‘ (B24)

Step 3. Fractional horizontal regularity of 1. Eventually, to obtain the Hg/ 3L121 regularity, we
write

ij(x b(z.y)) (B.25)

and we apply Lemma B.5 with o = 2/3. Let us first assume that ¢ is smooth (so that ¢ is smooth
as well by usual results) and then argue by density. Estimate (B.7) yields

8901/1(17, y) =

[all 2o o S 1020/ 020l y2ropy + (1 + 11102/ 2 12 (B.26)

Since we already know that 1) can be estimated in H} H;, we can use (the Peter-Paul version) of
Young’s inequality to obtain

[Well s 5 S 10a8/D:l 205 s + 11006/ 00| L2z + 1926/ D: 8] 7 (B.27)

Moreover, one easily proves, using standard product rules, that

1020/ 020l 275 12 + 1026/ 0:0l 212 S (|6, 2) = zllgr + |¢(2, 2) — 2] L2 s < 1. (B.28)
Hence we obtain

[all 2o s S N0(2,2) = 2llQr +lIé(2, 2) = 2ll 2 (B.29)

when ¢ is smooth and [[¢(z, 2) — 2[[g1 + [|¢(2, 2) — 2||L2 s < 1. We conclude by density. O

B.3 Extension operators

We start with Lemma 1.6, which allows extending functions from Z°(2) to Z°(R?).

Proof of Lemma 1.6. Up to translation and rescaling, we can assume that (zg,z1) = (0, 1).

We start by constructing a continuous horizontal extension operator P, from Z°((0,1)x (—1,1))
to Z°(R x (—1,1)). Let x € C*°(R;[0,1]) such that xy = 1 on (0,1) and suppx C (—1,2). Let
¢ e Z°(0,1) x (=1,1)). For z € (—1,2) and z € (—1,1), let

o(—z,2) if x € (—1,0)

(Qu)(x, 2) =< P(x, 2) if z € (0,1), (B.30)
p(2—u,2) ifze(l,2),

(Pad)(z, 2) := x(2)(Qud) (z, 2). (B.31)
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First, | P[22 12 . < 3. Moreover, 0¥(P,¢) = P,0%¢ for k € {1,2}. Hence || Py |2 g2 22 < 3.
Eventually, [|20,(Qz®) |l 12((—1,2)x (—1,1) < 3[12020]| £2((0,1)x (1,1), 0 that

120 (Ped)|| L2 < 3[1202¢] L2 + 2/X/ [l [|8]] 2-

Thus P, defines a continuous extension operator from Z°((0,1) x (=1,1)) to Z°(R x (—1,1)).
We now construct a continuous upwards vertical extension operator P, from Z°(R x (—1,1))

to Z°%(R x (—1,+00)). We proceed, as classical (see e.g. [4]), by considering a weighted linear

combination of rescaled reflections. For ¢ € Z°(R x (—1,1)), z € R and 2 € (—1,00), let

) ol 2) if z € (—1,1),
(Q+9)(z,2) := {3¢(x, 2 2) — 20(x,3— 22) if z € (1,2), (B-32)
(Pyo)(, 2) = x+(2)(Q+9)(x, 2), (B.33)

where x4 € C*(R;[0,1]) is such that x4 =1 on (—1,1) and supp x4 C (—2,1+ ). The chosen
coefficients ensure that both Q¢ and 9,(Q. ¢) are continuous at z = 1. Hence P, ¢ € L2H? and

P+ ollLz ®m2(~1,400) = 1P+ @l Lz ®mz(—1,1)) + 1P+ @llz iz +00)) < Cl@llLzrz,  (B.34)
for some constant C;. depending only on ||x4 [y2.. Moreover, using that x(z) =0 for z > 1+ 1,

Hzax(P-Mb)HL%(R;L2(17+OO)) = Hzax(P'i‘(b)||L§(]R;L2(1,1+%))
S 19201 22 (w22 (2 1)) (B.35)

S ||Zaw¢||L§(R;L2(%71))'

Hence P, is a continuous extension operator from Z°(R x (—1,1)) to Z°(R x (-1, +0o0)).
The extension for z < —1 is performed in a similar fashion and left to the reader. O

B.4 Embeddings

We collect in this paragraph various embedding results used throughout the paper.

B.4.1 Embedding of the Pagani space Z° in Hi/SLﬁ
We start with an easy one dimensional inequality.

Lemma B.7. For ¢ € C°(R),

[¥llz> S N2tllp2 + 1929l 2 (B.36)

Proof. On the one hand, for |z| > 1,
| <l (B.37
[z[>1

On the other hand, for every (zg, 2) € (—2,2),

|5z¢(2)| < |5z¢(20)| + 2”8,221/]”[12' (B38)
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Moreover, by classical Sobolev embeddings,
1991 221,2) S Wllz2a,2) + 10220l 2 1,2) < 129l L2 (m) + 110229 || 2 (w) -
Thus, integrating (B.38) for zy € (1,2),
000l L0 (—2,2) S 129l L2(m) + 10229l L2(R)-
Now, writing ¥ (z) = ¥(z0) + f; ¥ and integrating for z € (1,2) yields
¥l L2-1,1) S 1ll2q,2) + 12002y + 0=l 2@) S l2ll2w) + 10220l 2Ry,
which concludes the proof.

We then turn towards the proof of the key result Z°(R?) — H§/3L§ (R?).

Proof of Proposition 1.7. Let ¢ € C2°(R). By Lemma B.7, one has

¥l > S Izl L2 + 110229 L2

(B.39)

(B.40)

(B.41)

(B.42)

Using standard dimensional analysis arguments (e.g. by introducing the rescaled function ¢ : 2z —

¥(Az) for A > 0 and optimizing the choice of \), one deduces from (B.42) that

2 1
[¥llze S N2l 72110229117

(B.43)

Let ¢ € C°(R2). Let (£, z) denote the Fourier-transform of ¢ in the horizontal direction. Then

using (B.43) and Holder’s inequality,
612, = [ 1+ IEH1(E 2)P de =
x z RQ
S 1ol + [l =00, 25 10-.6. 21 ae

< lglz= + ( /R JeP2%10(8,2)1 ds) 3 ( /R 10=20(¢, 2)* dz d£>3

4 2
S 6122 + 1120:011 7 10:2l1 72

Hence [|¢| ,2/3,, < ||¢llzo. This concludes the proof, by density of C2°(R?) in Z°(R?).

P

B.4.2 Embedding of the Baouendi—Grisvard space B in H;/SLE

Once again, we start with a one-dimensional inequality of Hardy type.

Lemma B.8. For ¢ € L?(0,1),

1 1 z 2 4
/0 (ZQ/O sgb(s)ds) dzﬁgH(bHQLz.
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Proof. For z € (0,1), by the Cauchy—Schwarz inequality

([ o' s ([ s ([ 4023 ([ oa). s

Hence, by Fubini,

(B.47)
2 [* ()5t (2054 — 1)) d
=5 | st (271 =) as
4 [ .
=_ [ ¢*(s)(1 —s2)ds,
5 Jo
which implies (B.45). O

We then turn towards the proof of the embedding.

Proof of Lemma 1.13. Step 1. Extension to a compactly supported function in (xg,x1) X R.
Let u € L%((wo,z1), Hi(—1,1)) such that 20,u € L?((z¢, 1)), H *(—1,1)). We first extend u
to (zg,x1) x (—3,3) by setting, for all x € (z¢,x1) and 2’ € (0,2),

wz,1+2)= —u(z,1-2"),
wlx,—1—-2")= —u(z,—1+2").

It is clear that the above extension belongs to L*((xo,z1), H}(—3,3)), and we further extend u by
zero on (zg,x1) X {z € R,|z| > 3}. We then take x € C°(R) such that supp x C (—3/2,3/2), and
x =1 on (—1,1), and we prove that uy € B((xg,z1) X R). Using a partition of unity, we write
X = X-1+ Xo + x1, where supp x+1 C (£1/2,£3/2), and supp xo C (—3/4,3/4). It is clear that
Xou € B((xg,x1) X R), and therefore by symmetry is is sufficient to prove the result for x;u.

Let us take ¢ € H}((zo,71) x R) be arbitrary, and compute

_/' /ZX1uax¢~
xo R

By definition of u on (zq, 1)

/ / 2X1UOL @ =

zu(z, 2)x1(2)0z0(x, 2) da dz

1
zu(z, 2)x1(2)0z¢(x, 2) da dz

/
/ Yu(z,1 — 2y (1 + 2)0a(w, 1+ ) da d2’
|

(=)

+

/
o/,
[
X

1
/ . z’ (1 —2Nu(z, 1 —2")x1(1 + 2)0pd(x, 1 + 2') dx d2’.

o
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Since z0,u € L?((zo,71), H"1(—1,1)), we may write 20,u = f + 0.g, with f,g € L*((zo,z1) x
(=1,1)). Then

— / / 2X1u0z @
xo R

[ (4 0.9)(@.2) a()o(o,2) -

2—z

. xX1(2 —2)¢(z,2 — 2)| dzd=.

The assumptions on supp 1 ensure that the function in brackets belongs to L?((xg,z1), H}(0,1)).
We conclude that for all ¢ € Hg((xo,z1) X R),

‘/ / ZXlua:cd)
o R

It follows that zx10,u € L?((wg,21), H'(R)), and

S Nl Be(zo,e1) x (0,0 1@l 2 1 -

IxullB((o,21)x®) S NUllB((20,1)x (0,1))-

Step 2. The vertical anti-derivative of xu belongs to Z°.

We now work with the extension of the previous step, and we set U := — f:o xu. Let us prove
that U € Z°((zo,71) x Ry). Since U = 9,(xu) € L?((wo,z1) x Ry), it suffices to prove that
20, U € L*((wg,71) x Ry). Hence we take ¢ € L?((zo,z1) x Ry ) arbitrary, and we compute, after
observing that U is supported in {z < 3/2},

1 0o T 0o 3/2
/ / $0,U(z, 8)p(x,s) de ds = —/ / s ( Orxu(z, 2) dz) o(z,s) ds dz
xo 0 xo 0 s

Z1 [e'e] 1 z
=— / / 2 (/ 510<s<3/2¢(1'7 s) ds> 20 xu(z, 2) dz dz.
zo 0 0

1 z
||88WU||L2((900,901)><R+) S lixulls  sup H (/ slo<s<s/2d(, s) dS)
¢€L2, z 0
¢l L2 <1

Therefore

L2((z0,21),H (0,400)) .

The claim therefore follows from the following result, which is postponed to the third and last step:

Lemma B.9. For all 2o > 0, there exists a constant C., such that for all ¢ € L*(R),

% (/0 510<s<zow(s) d8>‘

From there, we infer that U € Z°((xg,2z1) x Ry), and ||U]|z0 < ||ul|g. Using the embedding
7% < HY3H!, we deduce that .U = yu € HY*L2((zg,z1) x R.). Since x = 1 on (—1,1), we

obtain the desired result.

Step 8. Proof of (B.48).
First, note that for all s € (0, +00),

< Coollll 2 (w)- (B.48)
H; (0,+00)

/ $1ocscz®(s) ds| < O, inf(s3/2,1)||9)]| L2
0
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Thus we only need to prove that

z0 1 z 2
/0 < / sw<s>ds) dz < Ol

This is a rescaling of inequality (B.45) of Lemma B.8. O

C Unconditional regularity away from lateral boundaries

Proof of Lemma 5.4. We proceed by (horizontal) viscous regularization to obtain uniform esti-
mates which pass to the limit.

Let us extend the functions wg,w; into H? functions on the whole interval (zy, z;), such that
wo(2zp) = wp(zo) and wy(z¢) = we(z1). For € > 0, consider the solution to the elliptic equation

—e02We — 02(aW?®) + 20, W< + B0, W< = h,
W8|£I/’:$i = Wy, (Cl)

W6|Z:zj = wy.

Let us recall that |zp|, 2: < 2o for some small constant zg depending only on «. Classical results
on elliptic equations ensure that if zg is small enough, (C.1) has a unique solution in H*(f2) for all
€ > 0, which satisfies the energy estimate

Vel We L2 + 10:WF| L2 S hllze + lwollaz + lwillmz + lwell 2 + llwsl 2. (C.2)

Hence W* is uniformly bounded in L2H}. It follows that W¢ — W in L2H}, where W € ZY is
the unique solution to (5.22).

Furthermore, since h € L?(Q), the compatibility conditions in the corners of the domain and
the fact that Q is a rectangle ensure that W¢ € H?(Q) (see [28, Chapter 4]). Hence 9,W¢ € H(Q)
is a weak solution to

—£020,W¢ — 02(a0,We) + 202W¢ + B, 0, W*® = O,h + 02(0,aW*®) — 0,50, W=. (C.3)

Without loss of generality, we assume from now on that w; = wp = 0 in order to simplify the
computations. This condition can always be satisfied up to a lift of the boundary conditions. Let
p(z) == (z — x0)(z1 — ). We multiply (C.3) by p?0,W¢, integrate by parts and obtain

5/ pz(aiWE)z—i—/ ap? (0, W*e)? gs/am(pﬁwp)(@WE)Q—/pzaiwe(zagEWE)

Q Q Q Q
+ (lp0hll L2 + [|p0z BO-W= | L2) [|p0: W= L2 (C.4)
+ 11p02 (020 W) || 2| p0z - W= || L2
+ 100l p0e W[ L2902 W 2

The first integral in the right-hand side is uniformly bounded thanks to (C.2). Let us focus
momentarily on the second integral in the right-hand side. Using the equation satisfied by W¢, we
infer

/ PRORWE(20,W°) = / PO [h— BOWE + 02(aW°) + W] . (C.5)
Q Q
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We then perform integration by parts in the right-hand side, which is equal to
5/ P2 (O2We)? + / pPa(0y, WE)?
Q Q
— 2/pazpaxW€(h — BO.WE) — /p2amW€8I(h — BO.W®) (C.6)
+ 2/p81p8sz58Z(aW8) + //JQBMW6 (0,(0,aW¢) 4+ 0,00, W*).
Since 0,6 = 0 and w; = wp = 0, we have
/ P20, WeB0,. W = 0. (C.7)

We also recall that ||[p0,W¢||pz < z0]|p0z0.W¢| 2. Therefore, provided that z is small enough,
there exists C' > 0 such that

/ PRORWE (20, WF) >e / PO2WE)? + X / P2 (0,. )2
Q Q 2 Jo

(C.8)
= C (IRl3e + Ve 32 1z + llpDuhllzz )

Gathering all the terms and using the L2 H]! estimate on W¢ of (C.2), for 2o small enough,
[ @ [ apt @0 W S bR+ o0kl 3 Tl + 3 sl (©9)
Q Q 1€{0,1} je{t,b}

Hence p0,,W¢ is uniformly bounded in L?. Passing to the limit, we obtain

100 Wz < Whllze + Bl + 3 Nwdlme + 3 lwglle. (C.10)
ie{0,1} JjE{t,b}
It follows that pd, W is a weak L2H} solution to
205 (PO W) + BO.(pO. W) — 02 (apd, W) = g,

0, Wls,, = 0, (C.11)
paa:W|z:zj = pazw]

where
g := pOzh — p0,LO.W 4 p0..(0,aW) + (xg + x1 — 2x) 20, W. (C.12)

Since a € C3(Q) and W € Z°, g € L?. Hence, according to Lemma 5.3, we obtain pd,W € Z°. O

List of notations
Functional spaces
B Baouendi—Grisvard solution space of (1.35), used in Appendix A, p. 19

AL Weighted H! space for boundary data with norm (1.32), p. 17

z
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Hp
Hrp

Hi

Hes

Ql
Xp
XO'

Xl

Q4

Hilbert space of data triplets for the solvability of the linearized Burgers system, p. 52

Hilbert space with norm (3.5) of data triplets (f,dg,d1) for the Vlasov—Poisson—Fokker—
Planck toy model, p. 40

Hilbert space with norm (2.20) of data triplets (f, dp, d1) for the shear flow problem, p. 23
Space of data tuples (5.26) for the vorticity equation (5.22) at regularity o, p. 67

Weighted L? space for boundary data with norm (1.31), p. 17

Solution space H. 5

/372 2 172
L2NL2HZ, p. 4
Hilbert space with norm (1.4) of data triplets (f,do, 1) for nonlinear Burgers, p. 4

Banach space of data (f, do, 01, d¢, 0, vp) with low regularity for the Prandtl problem, de-
fined in (5.16), p. 64

Banach space of data (f,dg,d1,d¢, 0p, vp) with higher regularity for the Prandtl problem,
defined in (5.17), p. 64

Notation for L?(€) during discussions on interpolation, p. 84

Notation for H;L?J with f5,us, = 0 during discussions on interpolation, p. 84
Pagani solution space such that u, z0,u and 9,,u are L?, with norm (1.33), p. 17
Solution space such that u,d,u € Z°, with norm (1.34), p. 17

Solution space for the Burgers system, p. 53

Interpolation space [Z°, Z1] for fractional Pagani regularity, p. 39

Boundary data at the inflow boundary ¥;, p. 4

Boundary data for d,u, given by A; = (f 4 0/)/z, see (2.9), p. 22

Angular profile of the k-th explicit singular solution in the half-plane, p. 29

Shorthand for a data triplet = = (f, dg,1)., p. 46

Left inflow boundary {xo} x (0,1), see Fig. 1, p. 8

Right inflow boundary {z;} x (—1,0), see Fig. 1, p. 8

Lateral inflow boundaries for the Prandtl system, p. 7

Dual profiles of Lemma 2.6 involved in orthogonality conditions for the shear flow, p. 23
Cut-off function localized near (z;,0), p. 33

Physical rectangular domain (zg, 1) x (—1,1), see Fig. 1, p. 3

Upper and lower halves of the domain Q, p. 17
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Qp Physical domain for the resolution of the Prandtl system, p. 7

dp,0; Boundary data for the vorticity on the bottom and top boundaries of Qp, p. 7
.7t Level sets of the function up, p. 6

vb,7: Level sets of the unknown solution w of the Prandtl system, p. 7

fi Smooth source term associated with the singular solution ﬂéing, p. 33

¢, ¢'  Linear orthogonality conditions of Definition 5.10 for the solvability of Prandtl at high
regularity, p. 73

2] Linear forms on Hg giving the orthogonality conditions for the shear flow, p. 25

02 Additional linear form of Definition 5.7 to reconstruct the velocity from the vorticity, p. 72
M Invertible matrix relating the singular solutions ﬂ;ing with the dual profiles ®J, p. 36

r Radial-like variable given by r = (22 + 23)2, p. 29

r; Radial-like variable near (z;,0) given by r; = (22 + & — ;|3)2, p. 33

t Angular-like variable given by ¢ = zx’%, p. 29

t; Angular-like variable near (z;,0), given by t; = (—1)iz|z — 2|~ 3, p. 33

Ug,, Reference singular solution localized near (z;,0), p. 33

Vg k-th explicit singular solution in the half plane, v, = rz T3k A, (t), p. 29

Np Nonlinearity associated with the Burgers-type system, p. 52

up Reference recirculationg flow for the Prandtl system, p. 6
U Boundary datum for the vertical velocity on the bottom boundary of Qp, p. 7
Yp Inverse function of the reference flow up, p. 62

T[6;] Lateral boundary data for the Burgers system after the change of variables, p. 52
T4[5;] Boundary data on X; for the Prandtl system in the new variables, p. 63
T%[5,] Boundary data at the bottom for the Prandtl system in the new variables, p. 63

TL[6:] Boundary data at the top for the Prandtl system in the new variables, p. 63
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