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Abstract

We prove the existence and uniqueness of strong solutions to the equation wuz — uyy = f
in the vicinity of the linear shear flow, subject to perturbations of the source term and lateral
boundary conditions. Since the solutions we consider have opposite signs in the lower and
upper half of the domain, this is a quasilinear forward-backward parabolic problem, which
changes type across a critical curved line within the domain. In particular, lateral boundary
conditions can be imposed only where the characteristics are inwards.

There are several difficulties associated with this problem. First, the forward-backward ge-
ometry depends on the solution itself. This requires to be quite careful with the approximation
procedure used to construct solutions. Second, and more importantly, the linearized equations
solved at each step of the iterative scheme admit a finite number of singular solutions, of which
we provide an explicit construction. This is similar to well-known phenomena in elliptic prob-
lems in nonsmooth domains. Hence, the solutions to the equation are regular if and only if
the source terms satisfy a finite number of orthogonality conditions. A key difficulty of this
work is to cope with these orthogonality conditions during the nonlinear fixed-point scheme.
In particular, we are led to prove their stability with respect to the underlying base flow.

To tackle this deceivingly simple problem, we develop a methodology which we believe
to be both quite natural and adaptable to other situations in which one wishes to prove the
existence of regular solutions to a nonlinear problem for suitable data despite the existence of
singular solutions at the linear level.
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1 Introduction
Let ¢ < 1. We investigate the existence and uniqueness of sign-changing solutions to the equation
U0yt — Oyyu = f (1.1)

in the rectangular domain € := (xg,x1) X (—1,1), where f is an external source term.

A natural solution to (1.1) with a null source term t = 0 is the linear shear flow u(z,y) := v,
which changes sign across the horizontal line {y = 0}. We are interested in strong solutions to (1.1)
which are close (with respect to an appropriate norm) to this linear shear flow u. Our purpose is to
construct such solutions by perturbing the lateral boundary data uj,—s, (y) =y and uj,—z, (y) = ¥
or the source term f = 0.

Since such solutions will change sign across a line {4 = 0} lying within Q, a key feature of
this work is that (1.1) must be seen as a quasilinear forward-backward parabolic problem in the
horizontal direction. Thus, to ensure the existence of a solution, one must be particularly careful
as to how one enforces the lateral perturbations. More precisely, the problem is forward parabolic
in the domain above the line {u = 0}, in which « > 0, and therefore we shall prescribe a boundary
condition on Xg := {x = zo} N {u > 0}; and backward parabolic in the domain below the line
{u = 0}, and we shall prescribe a boundary condition on X1 := {x = x1} N {u < 0}.

Figure 1: Fluid domain €2 and inflow boundaries ¥ U ¥4

We will construct solutions to this problem thanks to an iterative scheme taking into account
the geometry of the problem. Because of the nonlinearity, we need to perform this scheme in a
high enough regularity space in order to have a suitable control of the derivatives. However, one
key difficulty of our work lies in the fact that, even when the source term f is smooth, say in
C§°(Q), solutions to (1.1) have singularities in general. Actually, this feature is already present at
the linear level, i.e. for the equation y0,u — 0,,u = f. We prove that if f is smooth, the associated
weak solution to the linear system inherits the regularity of f if and only if f satisfies orthogonality
conditions (i.e. the scalar products of f with some identified profiles must vanish). We also describe
the singularities that appear when these orthogonality conditions are not satisfied.

When performing the iterative scheme, we need to make sure that these orthogonality conditions
are satisfied at every step of the iteration. Another difficulty then arises: indeed, the orthogonality
conditions change at every step! Therefore, a technical but important feature of our work lies in
the analysis of the dependency of the orthogonality conditions on the underlying flow. We will
come back to this delicate and subtle matter in Section 1.4.

All the features described above (orthogonality conditions for linear forward-backward equa-
tions, description of the potential singularities, handling of orthogonality conditions within a quasi-
linear scheme) appear to be new. We believe that the strategy we use could be extended to other



nonlinear settings in which orthogonality conditions appear (elliptic equations in domains with
corners, problems in which the linearized operator is Fredholm with negative index, ...)

All these difficulties stem from the fact that our solutions change sign within the domain.
Indeed, if one had u > 0 on €, then (1.1) could merely be seen as a quasilinear parabolic problem
of the form d,u = (1/u)dy,u + f, with initial data at {zo} x (—1,1), for which a general well-
posedness theory is known (see e.g. [41, Chapter 8]). Similar well-posedness results hold even if u
is allowed to vanish on 99 (for example at z = —1), working as in [45, Chapter 2].

1.1 Statement of the main results

Due to the forward-backward nature of the problem, we must choose the lateral perturbations and
the source term in a particular product space. We therefore introduce the vector space

{(£.00.61) € C2() x C((0,1]) x C™([=1,0); 8:(0) = 8,8:(0) = 3}6:(0) = 0
1.2
and 5,((=1)") = 925;((—1)") = 0 fori:O,l} -2

and H, the Hilbert space defined as its completion with respect to the following norm (associated
with the corresponding canonical scalar product; see (1.20) for the weighted Sobolev norm s7!),

(£ 80,002 := 1 lerrey + 105 Fllz + D 18illms + 1(056:) /yll e (1.3)
1€{0,1}

We establish the existence and uniqueness of solutions in the following anisotropic Sobolev space
Q' = L*((xo,x1); H*(—1,1)) N H*?((x0, x1); L*(—1,1)). (1.4)

In particular, for solutions with such regularity, (1.1) holds in a strong sense, almost everywhere
and the various boundary conditions hold in the usual sense of traces, almost everywhere. We
first state a result concerning the well-posedness in Q! of the linear version of (1.1) around the
linear shear flow, up to two orthogonality conditions (see comments below). Although equation
(1.5) below has been thoroughly investigated, as we recall in Section 1.2 below, we could not find
this statement in the existing literature.

Theorem 1 (Orthogonality conditions for linear forward-backward parabolic equations). Let
Yo :={zo} x (0,1) and ¥ := {21} x (—1,0). There exists a vector subspace Hgy C H of codimen-
sion two such that, for each (f,80,61) € H, there exists a solution u € Q' to the problem

YOz u — Oyyu = f,
ups, = 00 (1.5)
Uly=+1 = 0,

if and only if (f,00,01) € ’HSLg. Such a solution is unique and satisfies

l[ullgr < NI(f,d0,81) - (1.6)

We emphasize that this result implies that there exist triplets (f,dg,d1) that can be chosen
arbitrarily smooth and compactly supported, and for which there are no Q* solutions to (1.5).
Furthermore, the vector space ’Hslg can be fully characterized: classically, ’Hslg = ker £9 N ker £1,

where 9 and ¢! are two linear forms on H which we shall write explicitly. If the data do not

belong to "Hslg, the solution has singularities, which we can describe completely.



Theorem 2 (Decomposition of solutions as a sum of singular profiles and a smooth remainder). Let

(f,00,01) € H. There exists a unique solution u € Hﬁ/gLiﬁLiHj to equation (1.5). Furthermore,
this solution admits the following decomposition: there exists co,c1 € R, and ueg € Q', such that

_ =0 —~1
U = CoUsging + C1Uging + Ureg-

Each profile u’, . is supported in the vicinity of (x;,0) and is smooth on Q\{(x;,0)}. Furthermore,

sing

for |z —x;| <1 and |y| < 1,

ﬂéing(xay) = (|y‘2 + |$ — $2|%) * AO ((—]_)Zy) ,

|z — 23
where Ag € C°(R) is such that Ag(—o0) =1 and Ag(+00) =0 (see Fig. 2 page 27).

The existence of a weak solution was already known, see in particular [48, 49, 21]. The novelty
of the above theorem lies in the identification of the singular profiles a;ng, and in the decomposition
of any weak solution. The function Ay is in fact the solution to an ODE, and can be characterized
in terms of special functions (namely confluent hypergeometric functions of the second kind, or
Tricomi’s functions).

We then turn towards the nonlinear problem (1.1). The main result of this paper is the following
nonlinear generalization of Theorem 1 for small enough perturbations.

Theorem 3 (Existence and uniqueness of strong solutions to (1.1) under orthogonality conditions).
There exists a Lipschitz submanifold M of H of codimension two, containing 0, such that, for every
(f,00,61) € M, there exists a strong solution u € Q" to

(y + u)0zu — Oyyu = f,
uy, = 0;, (1.7)

U|y::|:1 =0.

More precisely, M is modeled on ng and tangent to it at 0 (see Remark 6.2). Such solutions are
unique in a small neighborhood of 0 in Q' and satisfy the estimate (1.6).

In the statement above, the condition that the data (f, do, d1) belong to the manifold M is the
nonlinear equivalent of the orthogonality conditions from Theorem 1. We emphasize that this is
by no means a technical restriction which could be lifted, but actually a necessary condition to
solve the equation with smooth solutions, as we state in Proposition 1.1 below. A key difficulty
lies in the fact that these orthogonality conditions depend on the solution itself. Hence, tracking
the dependency of these conditions with respect to the unknown function u is a key part of our
result. We will comment more abundantly on these points in the following sections.

Proposition 1.1 (Necessity of the orthogonality conditions). There exists n > 0 such that the
following result holds. Let (f,d0,61) € H with ||(f,50,01)|lx <n. Let u € Q' be a solution to (1.7)
such that ||ullgr < n. Then (f,do,01) € M.

Remark 1.2. By commodity, the above results are stated using the full triplet (f,dq,61), and so
is the remainder of this paper. Nevertheless, it is possible to obtain similar results either by fizing
0o = 61 = 0 and constructing a submanifold of source terms f yielding reqular solutions, or by
fizing f = 0 and constructing a submanifold of boundary data (d9,01), see Remark 6.4.



1.2 Comments and previous results

We start with a few comments on our main results and recall related known results.

Problem (1.5), involving the operator y0, — dy,, can be seen as a particular case of the class
of “degenerate second-order elliptic-parabolic linear equations”, also referred to as “second-order
equations with nonnegative characteristic form” (as opposed to positive definite ones), “forward-
backward” or “mixed type” problems. They date back at least to Gevrey [23].

Problem (1.5) itself, as well as these wide classes of equations, has received a lot of attention
and has been investigated under different aspects: with variable coefficients or other geometries
[21, 49], higher-order operators [38, Ch. 3, 2.6], abstract operators [10, 50], explicit representation
formulas [22, 26] or with a focus on numerical analysis [4].

On weak solutions for the linear problem. It is well-known since the work of Fichera [21]
that weak solutions to (1.5) with LiH; regularity exist. For general boundary-value problems
for elliptic-parabolic second-order equations, one owes to Fichera the systematic separation of the
boundary of the domain into three parts: a “noncharacteristic” part, where one sets either Dirichlet
or Neumann boundary conditions (here y = +1), an “inflow” part, where one sets a Dirichlet
boundary condition (here ¥y U X;) and an “outflow” part, where one cannot set a boundary
condition (here, the two sets {zo} x (—1,0) and {z1} x (0,1)).

Baouendi and Grisvard [9] proved the uniqueness of weak solutions to (1.5) with L2 H,, regu-
larity, by means of a trace theorem and a Green identity (see Appendix A).

On strong solutions for the linear problem. There is an extensive literature on the regularity
of solutions to degenerate elliptic-parabolic linear equations, and whether weak solutions are strong.
We refer the reader in particular to the book [44] by Olemik and Radkevi¢. Generally speaking,
depending on the exact setting considered, it is quite often possible to prove that the solutions to
such equations are regular far from the boundaries of the domain and/or from the regions where
the characteristic form is not positive definite. A nice example is Kohn and Nirenberg’s work [34],
which proves a very general regularity result. A key assumption of their work is that the “outflow”
part of the boundary does not meet the “noncharacteristic” and “inflow” parts (i.e. they are in
disjoint connected components of 992). Hence, it does not apply to (1.5), and hints towards a
difficulty near the points (x,0) and (x1,0).

In a series of papers [47, 48, 49], Pagani proved the existence of strong solutions to (1.5) (and
related equations). More precisely, Pagani proved the existence of solutions such that y9d,u and
dyyu belong to L?(£2). Moreover, he determined the exact regularity of the various traces of such
solutions (trace of u at x = x;, at y = £1 or y = 0, and trace of dyu at y = 0). These maximal
regularity results play a key role in our analysis and motivate the functional spaces we introduce
in Section 1.5.

On orthogonality conditions for higher regularity. As noted by Pyatkov in [51], for such
forward-backward problems: “as a rule, there is no existence theorems for smooth solutions with-
out some additional orthogonality-type conditions on the problem data”. Even for the linear prob-
lem (1.5), there have been very few works concerning higher regularity (than the one given by
Pagani’s framework) in the whole domain. Most of the works focused on higher regularity (such as
[51]) involve weighted estimates which entail regularity within the domain but not near the critical



points (z;,0). An attempt for global regularity is Goldstein and Mazumdar’s work [24, Theorem
4.2] albeit the proof seems incomplete (see Proposition 2.8 below and its proofs for more details).

A misleading aspect is that it is quite easy, assuming the existence of a smooth solution, to prove
a priori estimates at any order. Such phenomenons are usual in the theory of elliptic problems
in domains with corners or mixed Dirichlet-Neumann boundary conditions (see for instance [27]).
Let us give an illustration of such a phenomenon in a close context. For a source term f € C°(Q),
consider the elliptic problem

—Au=f in Q,

u(zi,y) =0 for (—1)'y > 0,
Opu(ziyy) =0 for (—1)ty <0,
u(z,£1) =0  for z € (xg,x1).

(1.8)

It is classical that such a system has a unique weak solution u € H'(£). Moreover, assuming that
u is smooth enough, v := 0, u satisfies

—Av=20,f in €,

Opv(xi,y) =0 for (—1)'y > 0,
v(x;,y) =0 for (—1)%y <0,
v(z,£1) =0 for = € (xg,21).

(1.9)

For such systems, one has ||v]| g1 < ||0xf|r2. Hence ||0zzul| S 110xf|L2, and, using the equation,
lullzrz < |If|lz- So one has an a priori estimate. However, it is known that there exist source
terms for which the unique weak solution u € H' does not enjoy H? regularity (see [27, Chapter 4]
and Section 2.5). The key point is that, when reconstructing u from the solution v to (1.9), say by
setting u(z,y) := f;o v(z',y) da’ for y > 0 and u(z,y) = f; v(z’,y) da’ for y < 0, there might be
a discontinuity of u or dyu across the line y = 0. Such discontinuities prevent u from solving (1.8).
Preventing these discontinuities requires that the source term satisfies appropriate orthogonality

conditions.

On orthogonality conditions for nonlinear problems. Of course, such orthogonality condi-
tions make it very difficult to obtain results at a nonlinear level. Generally, one tries to avoid such
difficulties when considering nonlinear problems. For instance, for elliptic problems in polygonal
domains, the classical textbook [27, Section 8.1] focuses on a nonlinear case where there is no
orthogonality condition at the linear level.

Nevertheless, some results are known in the semilinear case. For example, for semilinear
Fredholm operators with negative index, a theoretical toolbox is known (see e.g. [56, Chapter 11,
Section 4.2]) and has been implemented for some reaction-diffusion semilinear systems (see e.g.
[57, Chapter 7, Section 2.2], based on [19]).

Outside of the semilinear setting, we are not aware of nonlinear results obtained despite the
presence of orthogonality conditions at the linear level prior to our present work (we discuss the
very recent preprint [30] by Sameer Iyer and Nader Masmoudi in Section 1.3).

Problem (1.1) is only quasilinear, and this makes the analysis harder. In particular, tracking the
evolution of the orthogonality conditions during the nonlinear scheme is one of the main difficulties
of this work (see Sections 4 and 6.2). At the nonlinear level, these orthogonality conditions are
translated in Theorem 3 as the fact that the data must lie within the manifold M, which can be



pictured as a perturbation of the linear subspace ng of data satisfying the orthogonality conditions
for the linear problem.

Let us also emphasize that if one wishes to construct solutions with even stronger regularity,
say u € H;“H; with k£ > 1, then generically, one needs to ensure that 2k orthogonality conditions
are satisfied by the source terms (see Lemma 2.12). This situation occurs in [30], which concerns
the Prandtl problem described below in Section 1.3.

On entropy solutions. An entirely different approach to solve (1.1) is to look directly for weak
solutions to the nonlinear problem, for example using an entropy formulation. The regularity for
such solutions is w € Lg% N LiHyl and they are typically obtained as limits of solutions u® to
regularized versions of (1.1), e.g. u0,u® — Jyyu® — €0yzu® = 0. Such solutions satisfy both the
equation and the lateral boundary conditions only in the weak sense of appropriate inequalities
linked with “entropy pairs”. Given dg,d1; € L>°(—1, 1), the existence of an entropy solution to

UOpu — Oyyu = 0,
Ujy—+1 =0

was first proved in [12]. More recently, Kuznetsov proved in [35] the uniqueness of the entropy
solution to (1.10), determined in which sense the lateral boundary conditions were satisfied and
proved a stability estimate of the form

lu =@l Lr () S 160 = dollLr(—1.0) + 161 = &1l L1 (~1.0)- (1.11)

In particular, this stability estimate guarantees that one can construct sign-changing solutions in
the vicinity of the linear shear flow.

However, an important drawback of the entropy formulation is that the boundary conditions
are only satisfied in a very weak sense. Although functions in Lg% N LiHy1 do not have classical
traces at © = x;, one can give a weak sense to the traces using the equation (see [36] for more
details). Unfortunately, it is expected that these weak traces do not coincide with the supplied
boundary data on sets of positive measure.

In contrast, since the solutions we construct in this work have (at least) H, ;Lz regularity, they

have usual traces s, € L?(3;) and the equalities us;, = d; hold in L*(%;), so almost everywhere.

On the choice of the linear shear flow. We choose to study the well-posedness of (1.1) in the
vicinity of the linear shear flow to lighten the computations. Nonetheless, we expect that our results
and proofs can be extended to study the well-posedness of (1.1) in the vicinity of any sufficiently
regular reference flow u changing sign across a single line {u = 0}, satisfying u, > ¢y > 0 in Q (so
that (1.5) is the correct toy model) and with ||, || small enough (to ensure a priori estimates).

Moreover, taking a step further in the modeling of recirculation problems in fluid mechanics
(see Section 1.3), we also expect that our approach could be extended to an unbounded domain of
the form (20, 71) x (0,400), with a reference flow such that uj,—o = 0, u < 0 below some critical
line and then u > 0 above, with u having some appropriate asymptotic behavior as y — 4o00. In
such a setting, the Poincaré inequalities in the vertical direction that we use here should probably
be replaced with well-suited Hardy inequalities.



On the conditions §y(0) = §;(0) = 0 for fixed end-points. It is an important feature of our
work that we are able to enforce precisely the exact endpoints of the (curved) line {u = 0} at
x = xy and x = x;. Theorem 3 is stated for perturbations which satisfy 4;(0) = 0 (see (1.2)),
so that the full boundary data y + d;(y) changes sign exactly at y = 0. This choice simplifies
the definition of the submanifold M of boundary data for which we are able to solve the problem.
Nevertheless, given yo, y1 sufficiently close to 0 and d¢, d; such that y+J;(y) changes sign at y = y;,
we expect that a similar existence result holds, provided that the perturbations are chosen in an
appropriate modification of M, with suitable modifications to the norm (1.3) and where, in (1.7),
the definitions of 3J; are generalized by setting ¥; := {(x;,v); (=1)"(y + &(y)) > 0}.

On the boundary conditions wuj,—.; = 0. These boundary conditions are merely chosen
to simplify the statements and lighten the computations, since they guarantee that (z,y) —
(z,y + u(x,y)) is a well-defined global change of variables mapping € to itself (see Section 3.1).
Straightforward modifications would ensure the well-posedness of the considered systems with suf-

ficiently regular non-zero boundary data for u|,—41, up to suitable compatibility conditions on
9:((—1)*) and 6/ ((—1)*) (see next item).

On the compatibility conditions §;((—1)%) = 0 and §/(0) = 6/((—1)?) = 0. These conditions
are classical compatibility conditions for solutions to elliptic-parabolic equations. For example,
the condition dp(1) = 0 is intended to match the condition u|,—; = 0, and is necessary to have
LiH; regularity. The condition 6 (0) = 0 comes from the equation. Indeed, if u is a sufficiently
regular solution with f(x0,0) = 0, the equality 0,.u = zd,u at (zo,0) enforces 9,,u(xp,0) = 0,
so 04(0) = 0. The condition ¢{(1) = 0 stems similarly from the equation and the fact that
Ozujy—1 = 0. It corresponds to a classical parabolic regularity compatibility condition in order to
have ijH;1 regularity. Note that we actually require the cancellation of two additional boundary
conditions, namely 6,(0) = 67(0) = 0. It is possible that these extra assumptions are technical,
and could be removed.

1.3 Motivation from recirculation problems in fluid mechanics

Our original motivation stems from fluid mechanics. Indeed, the stationary Prandtl equation,
which describes the behavior of a fluid with small viscosity in the vicinity of a wall, reads

uﬁxu + Uayu - ayyu - _a:rpE7
Uly=0 = Vjy=0 = 0, (1.12)

hmy—)oo u(x, y) = UE(J;):

where ug(x) (resp. pg(x)) is the trace of an outer Euler flow (resp. pressure) on the wall, and
satisfies upd,up = —0.pE.

As long as u remains positive, (1.12) can be seen as a nonlocal, nonlinear diffusion type equa-
tion, the variable x being the evolution variable. Using this point of view, Oleinik (see e.g. [45,
Theorem 2.1.1]) proved the local well-posedness of a solution to (1.12) when the equation (1.12) is
supplemented with a boundary data uj,—o = uo, where ug(y) > 0 for y > 0 and such that ug(0) > 0.
Let us mention that such positive solutions exist globally when 0,pg < 0, but are only local when
0.pg > 0. More precisely, when 0,pg = 1 for instance, for a large class of boundary data ug, there
exists z* > 0 such that lim,_,,;~ u,(z,0) = 0. Furthermore, the solution may develop a singularity
at x = x*, known as Goldstein singularity. The point z* is called the separation point: intuitively,



if the solution to Prandtl exists beyond x*, then it must have a negative sign close to the boundary
(and therefore change sign). We refer to the seminal works of [25] and Stewartson [54] for formal
computations on this problem. A first mathematical statement describing separation was given by
Weinan E in [20] in a joint work with Luis Cafarelli, but the complete proof was never published.
The first author and Nader Masmoudi then gave a complete description of the formation of the
Goldstein singularity [16]. The recent work [53] indicates that this singularity holds for a large
class of initial data.

Because of this singularity, it is actually unclear that the Prandtl system is a relevant physical
model in the vicinity of the separation point x*, because the normal velocity v becomes unbounded
at © = x*. Consequently, more refined models, such as the triple deck system (see [37] for a
presentation of this model, and [32, 17] for a recent mathematical analysis of its time-dependent
version), were designed specifically to replace the Prandtl system with a more intricate boundary
layer model in the vicinity of the separation point. However, beyond the separation point, i.e.
for x > x*, it is expected that the Prandtl system becomes valid again, but with a changing sign
solution.

To the best of our knowledge, the well-posedness of (1.12) when the solution u is allowed to
change sign has seldom been investigated. Such solutions are called “recirculating solutions”, and
the zone where u < 0 is called a recirculation bubble, the usual convention being that ug(z) > 0,
so that the flow is going forward far from the boundary.

Let us mention however the recent preprint [31] by Sameer Iyer and Nader Masmoudi, in
which the authors prove a priori estimates in high regularity norms for smooth solutions to the
Prandtl equation (1.12), in the vicinity of explicit self-similar recirculating flows, called Falkner-
Skan profiles. The latter are given by

u(z,y) = 2™ f'(¢), (1.13)

oway) =~y O — By IR Q), (1.14)

where ( := (mT'H)%yx% is the self-similarity variable, m is a real parameter and f is the solution
to the Falkner-Skan equation

"L+ BL=(f)?) =0, (1.15)

where 3 = %’ subject to the boundary conditions f(0) = f/(0) = 0 and f’(+o00) = 1. Such
flows correspond to an outer Euler velocity field ug(x) = ™. For some particular values of m
(or, equivalently, /3), these formulas provide physical solutions to (1.12) which exhibit recirculation
(see [13]). Obtaining a priori estimates for recirculating solutions to the Prandtl system (1.12) is
very difficult. This important step was achieved by Sameer Iyer and Nader Masmoudi in [31].

In the present paper, we have chosen to focus on a different type of difficulty, and to consider
the toy-model (1.1), which differs from (1.12) through the lack of the nonlinear transport term
vOyu and its associated difficulties (nonlocality, loss of derivative) and the exclusion of the zones
close to the wall and far from the wall. For the model (1.1), a priori estimates are easy to derive,
see [52, Chapter 4]. The difficulty lies elsewhere, as explained previously. Indeed, in order to
construct a sequence of approximate solutions satisfying the a priori estimates, we need to ensure
that the orthogonality conditions are satisfied all along the sequence. The core of the proof is
to keep track of these orthogonality conditions, and to analyze their dependency on the sequence
itself. For the Prandtl system (1.12), this difficulty has very recently been tackled by Sameer Iyer
and Nader Masmoudi in [30], building upon their a priori estimates of [31] and the ideas developed
in the first version of our present work.
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1.4 Scheme of proof and plan of the paper

The uniqueness of solutions is fairly easy to prove. For the linear problem (1.5), uniqueness already
holds at the level of weak solutions (see Proposition 2.2 and Appendix A). For the nonlinear
problem, uniqueness is straightforward since we are considering strong solutions (see Section 6.3).
Therefore, the main subject of this paper is the proof of the existence of solutions for the nonlinear
problem (1.7).

A first natural idea would be to prove existence thanks to a nonlinear scheme relying on the
linear problem (1.5). For example, one could wish to construct a sequence of solutions (uy,)nen by
setting ug := 0 (or any other initial guess) and solving

yaa:unJrl - ayyunJrl = f - unawuny
(Unt1)|s, = i, (1.16)
(un-l-l)\y:il =0.

However, this strategy fails. The key point is that the right-hand side contains a full tangential
derivative of w,, whereas the operator yd, — d,, only yields a gain of 2/3 of a derivative in
this direction (more precisely, see Proposition 1.4, Remark 1.5 and Proposition 2.4). Hence, this
nonlinear scheme would exhibit a “loss of derivative”, preventing us from proving a uniform bound
on the sequence (U )nen-

Another drawback of this scheme is that it would not translate well to a setting where one does
not assume 6;(0). Indeed, in such a case, the inflow boundaries of the problem with the perturbed
data y + 0;(y) would not match the inflow boundaries of the linear problem (1.5).

Hence, we will rather construct solutions to (1.1) through another iterative scheme, which does
not rely directly on (1.5). In a way, the issues stemming from the linear scheme (1.16) come from
the following fact: in equation (1.7), the geometry of the problem is dictated by the line where the
whole solution y 4+ u changes sign. On the contrary, in (1.5), the geometry of the problem follows
the cancellation of y. Keeping this in mind, we will rather rely on the following linearized equation
around a base flow perturbation %, where @ is a small perturbation of the shear flow y in Q!

U0pu — Oyyu = f,
U|y::|:1 =0.

The well-posedness of such linear systems is investigated in Section 3. Exactly as Theorem 1
requires orthogonality conditions to ensure the existence of regular solutions to (1.5), the existence
of regular solutions to (1.17) is subject to perturbed orthogonality conditions (see Section 3.4). Of
course, these orthogonality conditions depend on the flow 4. We will express them as £4(f, 0o, 1) =
0 for j = 0,1, where #% : H — R are continuous linear forms.
More precisely, we will construct a sequence (uy)nen solving the following iterative scheme
(y + un)axu7z+1 - 8yyun+1 = fn+1a

(1), = 001, (1.18)
(Unt1)jy=+1 = 0.

For this scheme, we are able to prove a uniform bound for u, in an appropriate space Q' and the
convergence of the sequence in an interpolation space! Q/? (see (1.26) and (1.27)). This scheme

1 Actually, one could also prove that (un)nen is a Cauchy sequence in Q* for s close to 1/2. We merely chose
the space @/2 in order to fix ideas.
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is similar to the one used to construct solutions to quasilinear symmetric hyperbolic systems, see
for instance [8, Section 4.3].

In (1.18), (f**+1, 657, 67%) are appropriate perturbations of the data (f,do,d;) tailored to
satisfy the orthogonality conditions associated with the problem (1.17) (for @ = y + uy,), namely
€i+un(f"+1,5g+l,5’f+l) = 0. This is a key difficulty of this work (see Sections 4 and 6.2). In
particular, in order to allow the sequence u,, to converge, we must prove that these perturbations
also converge. This amounts to proving that the linear forms ¢2 associated with (1.17) depend
continuously (and even in a Lipschitz manner) on @, for the same topology as the one within which
we will prove the convergence of the sequence u,. It turns out that for the spaces Q' and Q'/2
defined below in (1.26) and (1.27), for any u, 4’ € Q" such that ||u — yl|gr < 1, [|[&’ — yllgr < 1,

16 = Lalleay S =g/

This allows us to prove that the sequence (uy,)nen is a Cauchy sequence in Q'/2. This continuity
estimate is truly the cornerstone of our strategy to prove nonlinear existence. We also emphasize
that this estimate requires identifying quite precisely what the linear forms ¢% are.

We believe that this methodology is rather robust and can be applied to other nonlinear prob-
lems in which orthogonality conditions are present at the linearized level. As an example, following
the first version of this paper, some elements of this methodology have very recently been used by
Sameer Iyer and Nader Masmoudi in [30] to tackle the Prandtl problem mentioned in Section 1.3.

Given a specific nonlinear problem, one could hope to be able to tweak our nonlinear scheme
in order to avoid the computation of the linear forms £ at a varying flow 4, and always rely on
the reference orthogonality conditions at some reference flow (e.g. at the shear flow u(z,y) = y).
This idea was suggested by Sameer Iyer and Nader Masmoudi during a personal communication
concerning the first version of this paper. We describe an example of such a scheme in Section 6.2.6.
We do not follow this “fixed linear forms” idea in this paper. Indeed, we believe that the “varying
linear forms” approach is natural and adaptable, and has its own interest (for example, it yields
a well-posedness theory for the linearized problems, as in Proposition 3.20). Moreover, we expect
that the “fixed linear form” variant does not substantially decrease the overall length or technicality
of our method (see Section 6.2.6 for further details).

The plan of this work is as follows. As a preliminary, we introduce in Section 1.5 the functional
spaces we will use. First, we study the linear problem (1.5) in Section 2, leading to Theorem 1, and
prove that the two orthogonality conditions we expose are indeed nonvoid. We also construct the
singular profiles aiing and prove Theorem 2. Second, in Section 3, we study linearized problems
of the form (1.17). The main task is to derive the modified orthogonality conditions. We also
provide a formula for ¢2. Third, we prove the stability with respect to the underlying flow @ of the
orthogonality conditions in Section 4. Note that in order to derive estimates in the intermediate
space Q'/2, we will need to prove interpolation results on closed subspaces of Hilbert spaces. This
rather technical step is performed in Section 5, in which we also generalize the decomposition
result of Theorem 2 to the linearized equation (1.17). Then, in Section 6, we turn to the nonlinear
problem for which we prove the existence of solutions in Section 6.2 using the scheme mentioned
above, then uniqueness in Section 6.3 and the necessity of the nonlinear orthogonality conditions
in Section 6.4. This concludes the proof of Theorem 3.

Eventually, in Appendix A, we prove the uniqueness of weak solutions to various linear problems
involved in Section 3, by adapting an argument due to Baouendi and Grisvard [9]. In Appendix B,
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we prove various technical results of functional analysis that we use throughout the paper. Ap-
pendix C and Appendix D contain postponed proofs of some lemmas of Section 3 and Section 5.
As the paper is quite long, a list of notations is provided starting page 116.

1.5 Functional spaces and interpolation results
1.5.1 Notations

Throughout this work, an assumption of the form “A < 1” will mean that there exists a constant
¢ > 0, depending only on  such that, if A < ¢, the result holds. Similarly, a conclusion of the
form “A < B” will mean that there exists a constant C' > 0, depending only on €, such that the
estimate A < C'B holds. For ease of reading, we will not keep track of the value of these constants,
mostly linked with embeddings of functional spaces.

We will often use the notations Q1 := QN {£z > 0}.

1.5.2 Trace spaces for the lateral boundaries

For the traces of the solutions to (1.5) or (1.7) at & = ¢ and & = x1, we will need the following
spaces, due to [48, 49]. We define .£2(—1,1) as the completion of L?(—1,1) with respect to the
following norm:

1
1 3
oz = ([ Jlo?e) ) (119
~1
and J#1(—1,1) as the completion of H}(—1,1) with respect to the following norm:

[9lloer = 1¥ll.z2 + 0= 2. (1.20)

1.5.3 Trace spaces for horizontal cuts
When considering the restriction of a solution to (1.5) or (1.7) at some altitude z € (—1,1), we
will sometimes need the following spaces in the horizontal direction.

The Lions—Magenes space H(% 2(aco, x1) is defined as the completion of Hd (zg, z1) with respect
to the following norm

x1 2 %
10l 22 = llllzrare + (/ _ Rl dx) . (1.21)

o |z — 20]|T1 — 2]

It is also the interpolation space [H&(xo,xl),Lz(xo,xl)]% (see [42, Theorem 11.7, Chapter 1)),
or the subspace of functions of H'/?(xg,x1) of which the extension by 0 is in HY/?(R). By [42,

Proposition 12.1], 8, is continuous from H'/2(xq,z1) to (Hol*(zo,21)). See also [55, Lecture 33]
for another presentation of this space.
We will also need one-sided versions of this space, for functions “vanishing” only on the left

side z = xqg (say H&é?(azo, x1)) or only on the right side x = 1 (say Hégf (zo,71)). For example

x1 2 %
191122 = bl + ( e dx) | (1.22)

s |z —2]
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1.5.4 Pagani’s weighted Sobolev spaces

Let O be an open subset of R2. In the works [48, 49] (albeit with swapped variables with respect
to our setting), Pagani introduced the space Z(O) of scalar functions ¢ on O such that ¢, 9,¢,
0,.¢ and 20,6 belong to L?(O) (in the sense of distributions). In this work, we will refer to this
space with the notation Z°(0). It is a Banach space for the following norm

[¢llzo == [20x@| 2 + 102202 + [|0:¢] 2 + ||| L2- (1.23)

We will also need the space Z'(0), which we define as the space of scalar functions ¢ on O such
that ¢ and 9,¢ belong to Z°(0), associated with the following norm

1@l z1 := ¢l z0 + [|020]| zo- (1.24)

The omitted proofs of the results of this section are postponed to Appendix B. We start with a
straightforward extension result, which allows transferring results on Z°(R?) to Z%(Q).

Lemma 1.3. There exists a continuous extension operator from Z°(Q) to Z°(R?).

The following embedding is the most important result concerning the spaces Z°. Since solutions
to (20, — 0..)u = f for f € L?(Q) belong to Z°(2) (see Proposition 2.4), the following embedding
entails that such solutions belong to H?/3(Q).

Proposition 1.4. Z°(R?) is continuously embedded in Hg/?’Lg.

Remark 1.5. Proposition 1.4 can be seen as an hypoellipticity result for the operator L = 0,, — 20,
in the full space R?, which is of the form X?+ Xy, where X1 = 0., Xo = —20, and [Xo, X1] = 04,
so the Lie brackets generate the full space and L satisfies Hormander’s sufficient condition of [28]
for hypoellipticity. In fact, in the full space R?, the Hi/SLg N L2H? regularity of solutions to
Lu = f for f € L? can be derived from the general theory of quadratic operators, which makes a
link between the anisotropic gain of reqularity and the number of brackets one has to take in order
to generate a direction. For instance, this regularity follows from [1, Theorem 2.10] and more
precisely Example 2.11 therein applied with

R=0 and Qz(g (1)> and B:(g (1))

Lemma 1.6. Z°(R?) is continuously embedded in C’S(H;/z).

Proof. By definition, Z°(R?) — H2(L2?). By Proposition 1.4, Z°(R?) — L§(H§/3). By the
“fractional trace theorem” [42, Equation (4.7), Chapter 1], Z°(R?) — CS(H;/Q). O

Lemma 1.7. Z%(Q) is continuously embedded in C°([zo,21]; 71 (—1,1)).
Proof. This is contained in the trace result [49, Theorem 2.1]. O
Remark 1.8. Although it is “almost” the case, there does not hold Z°(R?) — C°(R?).

e Pagani [48, Theorem 2.1] proves that the operator ¢ +— ¢(-,0) is onto from Z°(R?) to H? (R).
But H2(R) contains unbounded functions of x.

e Pagani [48, Theorem 2.3] proves that the operator ¢ — ¢(0,-) is onto from Z°(R?) to the space
HH(R). But this space contains unbounded functions, for example (z) := (—In|2]/2)%x(z)
for s < 1 and x € C2°(R) with x = 1 in a neighborhood of z = 0.
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1.5.5 Anisotropic Sobolev spaces

In the sequel, we will construct solutions to (1.5) and (1.7) in the following anisotropic Sobolev
spaces. Within all these spaces, one has heuristically the correspondence 9, ~ 02, which corre-

z

sponds to the appropriate scaling due to the degeneracy of 29, at z =0. We consider

Q= L2(H}) N HZ/*(L2), (1.25)
Q' = L2(H)) N HY*(L2), (1.26)

in which we have omitted the domain . By Proposition 1.4, Z° < Q. This is the natural space
for strong solutions to our equations. The space Q' corresponds to the situation where d,u is itself
a strong solution to a similar equation, so d,u € Q°, which yields the Hg/ 3(LZ) estimate. The
L2(H}) estimate comes from a sort of “hidden regularity” result (see e.g. Section 2.4).

Remark 1.9. If u is a solution to 20,u — 0,,u = 0 say on the whole plane R?, then the rescaled
functions uy(x,2) = u(A3x,\2) are also solutions. This is also consistent with the shape of the
singular profiles ﬁéing from Theorem 2, and leads to the rule of thumb “one derivative in x equals
three derivatives in z” (which is different from the usual parabolic scaling, because of the cancellation
on the line z = 0). The definitions of the spaces Q° and Q' are guided by this elementary remark.

A key argument of our work is that we will prove the Lipschitz-stability of the orthogonality
conditions and the convergence of the nonlinear scheme within the following interpolation space:

QY2 :=[Q" Q"

Lemma 1.10. By interpolation, we have the following embeddings

v = L3(Hy?) 0 H/S(L). (1.27)
o Q! — ch’H;’, for all 0,0’ > 0 such that 30 + o' = 5;
e QU2 HgHgl for all o,6" > 0 such that 30 + o' = 7/2;
o Q0 — H;’H;, for all 0,0’ > 0 such that 30 + o’ = 2.

In particular, Q' — L (W2>) and Q'/? — C°([~1,1], H (zo, z1)).

Proof. These embedding follow from [42, Equation (13.4), Chapter 1] and the fractional trace
theorem [42, Equation (4.7), Chapter 1]. O

Eventually, we will use the space
B:={uc L*((xo,71), Hy(—1,1)); 20,u € LA(H; "} (1.28)

This space was introduced by Baouendi and Grisvard in [9], in which the authors proved the
uniqueness of solutions to linear degenerate elliptic equations in B. They also proved that functions
in B have traces on {x = x;} in £2(—1,1). These results are recalled in Appendix A, and will be
used abundantly throughout the paper.
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2 The case of the linear shear flow

This section concerns the well-posedness of the linear system (1.5) which we restate here for
convenience and by using z as a vertical variable rather than y to prepare for the next sections.
We thus consider, in Q = (xg,21) x (—1,1), the system

20U — Oy,u = f,
us, = 0i, (2.1)
Uz=41 = 0,

where 3o = {zo} x (0,1) and X1 = {z1} x (-1,0).

First, in Section 2.1, we recall the theory of weak solutions, due to Fichera for the existence,
and to Baouendi and Grisvard for the uniqueness. Then, in Section 2.2, we recall the theory of
strong solutions with maximal regularity, due to Pagani. Our contributions regarding this problem
are contained in the following subsections. In Section 2.3, we derive orthogonality conditions which
are necessary to obtain higher tangential regularity and prove the existence result of Theorem 1.
In Section 2.4, we prove a hidden regularity result for such solutions, which allows controlling five
derivatives in the vertical directions, and will be useful in the sequel. Eventually, in Section 2.5,
we construct explicit singular solutions and prove the decomposition result of Theorem 2.

2.1 Existence and uniqueness of weak solutions

Definition 2.1 (Weak solution). Let f € L*((zo,z1); H 1(=1,1)) and 8,0 € L2(—1,1). We
say that u € L?((wo,z1); H(—1,1)) is a weak solution to (2.1) when, for all v € H*()) vanishing
on N\ (g UXy), the following weak formulation holds

f/zuﬁmv+/8zu82v:/fv+/ zéovf/ 2010. (2.2)
Q Q Q >o 3

Weak solutions in the above sense are known to exist since the work Fichera [21, Theorem XX]
(which concerns generalized versions of (2.1), albeit with vanishing boundary data). Uniqueness
dates back to [9, Proposition 2] by Baouendi and Grisvard.

Proposition 2.2. Let f € L?((wg,21); H 1(—=1,1)) and 69,51 € L2(—1,1). There exists a unique
weak solution u € L*((zg,21); H3(—1,1)) to (2.1). Moreover,

lullzms S NF N2 o) + 1dollz2 + 10122 (2.3)

Proof. The proof of uniqueness is postponed to Appendix A where we adapt Baouendi and Gris-
vard’s arguments to prove the uniqueness of weak solutions to all the linear problems we encounter
in this paper. It relies on the proof of a trace theorem and a Green identity.

Let us prove the existence. We introduce two Hilbert spaces ¥ < % < L?((zq,1); H}(0,1))
as follows. Let ¥ := {v € HY(Q); v = 0on Q\ (o UXp)}. Let Z be the completion of
H' () N L%((wo, z1); Hi (—1,1)) with respect to the scalar product

(u, v) oy :z/@zuﬁvar/ zuvf/ Zuv. (2.4)
Q o D1
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For u,v € % x ¥, let

a(u,v) := 7/ zu(?var/ 0,u0,v, (2.5)
Q Q

b(v) :== / fv +/ 200V f/ 2010. (2.6)
Q Eo 21
In particular, for every v € ¥, integration by parts leads to a(v,v) = ||v||%, and
80)] < (112 iz, + I0ollz2 + 1012 ) vl (2.7)

Hence, b € L(¥) can be extended as a linear form over %2 and existence follows from the Lax-
Milgram type existence principle Lemma B.2 in Appendix B, which also yields the energy estimate
(2.3) thanks to (2.7) and Poincaré’s inequality. O

Remark 2.3. Instead of using the weak Lax-Milgram existence principle Lemma B.2, an alternate
proof would be to reqularize equation (2.1) by vanishing viscosity, and to obtain uniform L2H}
estimates on the approrimation.

2.2 Strong solutions with maximal regularity

We now turn to strong solutions, i.e. solutions for which (2.1) holds almost everywhere. The main
result on this topic is due to Pagani.

Proposition 2.4. Let f € L*(Q) and 8,61 € 51 (—1,1) such that §o(1) = §1(—1) = 0. The
unique weak solution u to (2.1) belongs to Z°(Q) and satisfies

llullzo S (1 f[lz2 + 100l ez + 101]| - (2.8)
Moreover, the boundary conditions ujs;, = 0; hold in the sense of traces in ' (3;) (see Lemma 1.7).

Proof. This is a particular case of [49, Theorem 5.2]. Pagani’s proof proceeds by localization. Far
from the critical points (xg,0) and (x1,0), the regularity is rather straightforward. Near these
critical points, the regularity stems from the regularity obtained for a similar problem set in a
half-space (0,+00) x R or R x (0,+00). Pagani studies such half-space problems in [48] where
he derives explicit representation formulas for the solutions, using the Mellin transform and the
Wiener-Hopf method. We do not reproduce these arguments here for brevity. O

2.3 Orthogonality conditions for higher tangential regularity

We now investigate whether solutions to (2.1) enjoy higher regularity in the horizontal direction.
As mentioned in Section 1.2, it is quite easy to obtain a priori estimates in the space Z1(Q)
(see Proposition 2.5). However, we prove in Proposition 2.8 that the weak solution enjoys such
a regularity if only if the data satisfies appropriate orthogonality conditions. Eventually, we give
statements highlighting the fact that these conditions are non-empty.

2Functions in % a priori do not have traces on ¥; so one could wonder how definition (2.6) makes sense when
v € % . The integrals fg, z6;v make sense precisely because % is defined as a completion with respect to (2.4). In
fact, weak solutions do have traces in a strong sense, as proved in Lemma A.1l, thanks to the extra regularity in x
provided by the equation.
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Proposition 2.5. Let f € H'((zg,71); H 1(—1,1)) and 69,01 € S (—1,1) such that 5o(1) =
§1(=1) = 0 and such that Ay, Ay € L2(—1,1), where
. 25.
Ai(z) = F(@i 2) +850i(z). (2.9)

z

If the unique weak solution u to (2.1) belongs to H'((xo,z1); Hi(—1,1)), then one has the following
weak solution estimate for Oyu:

0zull L2 S 10 fll 2 (mzry + 1 Dol 22(se) + A1l 225y (2.10)

If, moreover, f € H'((wg,21); L?(—1,1)), Ao, A1 € S (—1,1) and A¢(1) = A1(—1) = 0, then
u € ZY(Q) and one has the following strong solution estimate for O u:

10zullzo S 1102 fl[L2 + | Aoller + | A1l (2.11)

Proof. The key point is that the information that d,u enjoys L2 H} regularity allows us to prove
that d,u is the unique weak solution to

20w — 0w = 6arf7

Wiz=41 = 0.

Then estimate (2.10) follows from (2.3) and estimate (2.11) follows from (2.8).
Hence, let us prove that, if d,u € L2H}, then d,u is a weak solution to (2.12). Let

¥ i={veC® ); v=00n00)\ (ZoU%),

9,0 =0 on {zo} x (—1,0) and {z1} x (0,1)}. (2.13)

Let v € ¥. Then 0,v is an admissible test function for Definition 2.1. Hence, since u is the weak
solution to (2.1), one has

- [ oo+ [ oo = [ so+ [ ROUE / hO). 21)

The H.H! regularity of u legitimates integrations by parts in x in the left-hand side. Thus

1 Z1 1 T
{/ zuamv} +/ 2(0zu)0zv + {/ 8zu82v} 7/82(8$u)8zv
-1 zo Q -1 o Q
1 1
= [/ fv] — fxv—i—/ z50(6$v)—/ 201(0z0),
1 Q S0 2

zo

(2.15)

which, after taking the boundary conditions into account, integrating by parts in z in the boundary
terms fil d.u0,v and recalling (2.9) yields

—/ 2(0zu)0zv + 32(8xu)8zv=/fxv+/ ZAOU—/ zA10. (2.16)
Q Q Q o N

Since ¥ is dense in the set of test functions for Definition 2.1, this proves that 0,u is the weak
solution to (2.12). O
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We start by defining “dual profiles” which are necessary to state our orthogonality conditions.
Lemma 2.6 (Dual profiles). We define ®°, ®1 € Z°(1) as the unique solutions to
—20,P1 —0,.PT =0 in Oy,
@] — 1,
[ |z=0 =1

(2.17)

@mﬂ\(zouzl) =0.

Proof. Uniqueness is straightforward. Given j € {0,1} and two solutions to (2.17), let ¢ denote
their difference. Then ¢ € Z°(24) and both ¢ and 9,¢ are continuous across the line {z = 0}.
Hence, ¢ € Z°(Q) and ¢ is the solution to a problem of the form (2.1) (with reversed tangential
direction). So ¢ = 0 since weak solutions to such problems are unique in Z0.

We prove the existence of ®0. We define ®0(x, 2) := —21,-0((2) + ¥°(x, 2), where we choose
¢ € C(R) such that ¢ = 1 in a neighborhood of z = 0 and supp¢ C (—1/2,1/2), and where
U0 € L2((zg,71); HE(—1,1)) is the unique weak solution to

—20,0° — 9,0 = —21_.0(¢(2) — 21.50¢"(2) in Q,

UO(z9,2) =0 for z € (—1,0), (2.18)
UO(z1,2) = 2((2) for z € (0, 1), ’
\IJ?Z:ﬂ =0.

By Proposition 2.4, ¥° € Z°(Q2). Hence 0,,®° € L?(Q4) and 20,20 € L*(Qy).
The construction of the profile ®! is similar and is left to the reader. For example, one can
decompose ®! as ®1(z,2) = 1,-0((2) + V! (x, 2), where, similarly, ¥ € Z°(Q). O

Remark 2.7. The jump conditions in (2.17) prevent the dual profiles from enjoying vertical regu-
larity across the line {z = 0}. More subtly, even inside each half-domain, neither the D7 nor their
lifted version the Wi enjoy tangential reqularity. Indeed, formally, 8,®7 and 0,7 satisfy systems
of the form (2.1) (with reversed tangential direction) with zero source term and zero boundary data.
Hence, if they were sufficiently regular, they would be zero by the uniqueness results of Appendiz A,
and so would ® and W7 by integration, contradicting (2.17). We will see in Corollary 2.28 that
these dual profiles indeed do contain an explicit singular part localized near the endpoints (x;,0).

We now turn to the main result of this section, which gives a necessary and sufficient condition
for the solutions to enjoy the mentioned tangential regularity. Strangely, we could not find a proof
of the following result in the literature, although some works mention orthogonality conditions (see
[21, Equation (4.2)] or [51]). Hence, we provide here a full proof. This strategy will be extended in
the next section to equations with variable coefficients. We prove further that these orthogonality
conditions are not empty.

Proposition 2.8. For f € H'((zg,71); L?(—1,1)), 6,61 € 1 (—1,1) with dp(1) = §1(—1) =0
and Ao, Ay € L (—1,1) with Ag(1) = A1(=1) =0 (see (2.9)), the unique weak solution u to (2.1)
belongs to H ((zg,21); HE(—1,1)) if and only if, for 5 =0 and j = 1,
/ (%f@ + / ZAO@ — / ZAla = 6;(51 (0) — 8;50(0), (2.19)
Q Yo P

where ® and ®1 are defined in Lemma 2.6.
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Proof. Step 1. We exhibit possible discontinuities. Let us consider the unique solution u € Z°(Q)
to (2.1). Following the strategy sketched by Goldstein and Mazumdar® [24, Theorem 4.2], we
introduce the unique strong solution w € Z%(Q) to (2.12), so that w is a good candidate for d,u.
The idea is then to introduce the function u; defined by

(2, 7) = {60(,2) + [ w(@',z)de’ in Qy, (2.20)

61(2) — [T w(a!,z)da’ in Q_
so that d,u; = w almost everywhere. Furthermore, it can be easily proved that, in D’'(4),
20,u1 — O up = f. (2.21)

However, this does not entail that u; is a solution to this equation in the whole domain. Indeed,
w1 and 0,u; may have discontinuities across the line z = 0. One checks that w; and 0,u; are
continuous across z = 0 if and only if

/w1 w(z,0) dz = 61(0) — dp(0),
o (2.22)
/ w2 (2, 0) dz = 9-61(0) — D-60(0).

The two integrals are well-defined since w, and w.. belong to L? (Q).

Step 2. We compute the mean value of w and w, using the dual profiles. Let ¢ € Z°(Q4) such
that ¢jpo\(synz,) = 0. Since w € Z9(9), it satisfies (2.12) almost everywhere, so that we can
multiply the equation by ¢ and integrate over €2, . Hence,

Q4 Q.
where, on the one hand,
/ 2(0pw)p = z2A1p — 2W0g ¢ (2.24)
Q. bl Q4
and on the other hand,
- / (azzw)¢ = / (azw¢ - waz¢)(x7 0+) dz — / w0, . (2'25)
Q+ xo Q+

Thus, performing the same computation on 2_ and summing both contributions yields

/ (@[]0 — w]D26]jpm0) (@, 0) do = /Q o+ /2 oo [ 2

(2.26)
—|—/ w(20,0 + 0..0).
Qy

30ddly, Goldstein and Mazumdar do not mention the orthogonality conditions (2.19). They merely state that,
“since 0,,u1 = 20gu1 — f in D’'(Q4) and since zui, f € CO([xo,z1]; L2(—1, 1)), consequently z0;u1 — 0,,u1 = f in
L2%(Q)”. However, these orthogonality conditions are non-empty, as we show below (see Proposition 2.10).
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Hence, for j € {0,1},
T . _ _ _
/ Hw(x,0)dx = | f,PI +/ FAANY —/ LFANE X (2.27)
%o Q DN Dl

where the dual profiles ®° and ®! are defined in Lemma 2.6.

Step 8. Conclusion. Assume that the orthogonality conditions (2.19) are satisfied for j =
0 and j = 1. Then (2.22) holds, and a consequence, [u1]j.—g = [0.u1]j.—0 = 0, and u; €
L?((z0,71); H}(—1,1)) is a weak solution to (2.1). We infer from the uniqueness of weak solutions
that w = uy, and therefore d,u = w € L*((wo,z1); Hi(—1,1)). Hence u € H'((zo,x1); H} (—1,1)).
Conversely, if u is a solution to (2.1) with H!((xo,z1); Hi(—1,1)) regularity, then d,u is a
weak solution to (2.12) (see the proof of Proposition 2.5) and u is given in terms of d,u by (2.20)
almost everywhere. Thus [u1].—g = [0.u1]j.—0 = 0. Hence f;ol Ug(z,0) dz = 61(0) — dp(0) and
fol Uy, (2,0)dz = 0,61(0) — 0.60(0), and thus the orthogonality conditions (2.19) are satisfied. O

Definition 2.9. In the sequel, we denote by €3 the linear forms associated with the orthogonality
conditions (2.19) for the linear shear flow problem, i.e., for (f,do,01) € H, we set

0i(f,80,6,) := 8260(0)—8261(0)+/8xf@+/ zAOE—/ 2N DI (2.28)
Q Yo 1

We now prove that the orthogonality conditions (2.19) are non-empty and independent.

Proposition 2.10 (Independence of the orthogonality conditions). The linear forms 0 and 01
are linearly independent over C°(Q) x {0} x {0} C H.

Proof. Proceeding by contradiction, let (co,c1) € R? such that, for every f € C2°(Q), there holds
col°(f,0,0)+c101(f,0,0) = 0. Then ®¢ := ¢y®Y+c, P! satisfies [, 0, fP° = 0 for every f € C°(9),
so 0,9¢ = 0 in D'(Q4). Since ®¢(z1,2) = 0 for z € (0,1) and ®¢ € Z°(Q,), this implies that
®¢ =0 in Q (since Z° functions have traces in the usual sense, see Lemma 1.7). The same holds
in Q_. Hence [®°],—¢ = [0.®°]|.—o = 0, which implies ¢y = ¢; = 0. O

Remark 2.11. Proposition 2.10 of course implies that £ and 1 are linearly independent on H.
Although Proposition 2.10 gives a prominent role to the source term f, we will actually also prove
that €0 and ¢* are linearly independent on {0} x C°(Xg) x C°(X1) C H. This property relies on
the structure of the dual profiles ®I near the points (4,0), and will be proved at the end of this
section (see Proposition 2.30).

Similarly, it can be easily checked that the control of k derivatives in « requires the cancellation
of 2k independent conditions. Although controlling a single z-derivative will be sufficient in the
sequel to obtain our nonlinear result, we establish here this short higher-regularity statement as
an illustration. More precisely, we have the following result.

Lemma 2.12. Let k > 1. Let f € C®(Q), §; € C°°(%;). Define recursively AT for 0 < n < k
and z € ¥; by

AY(z) = 6i(2), (2.29)
A(z) = L (@0 f(ar,2) + 028771 (2)) (2.30)

z
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Assume that the following compatibility conditions are satisfied:
Vn € {0,---,k}, Aj(1)=AF(-1)=0. (2.31)

Assume furthermore that for alln € {0,---k}, A € H(%,).
Let u be the unique solution to (1.5). Then v € HEH? if and only if the following orthogonality
conditions are satisfied

E(a:.ﬂAgvA?) :07 Vn € {07 ak_l}v J € {071} (232)
Furthermore, these 2k orthogonality conditions are linearly independent.

Proof. First, notice that 0]'u satisfies formally

(205 — 0,2)00u =02 f in Q,
a;LU‘Z:il = Oa

The first part of the statement follows easily from Proposition 2.8 and Proposition 2.5 and from
an induction argument.

Let us now check the independence of the orthogonality conditions. We extend the methodology
used in the proof of Proposition 2.10. Assume that there exist ¢/ € R, 0 <n < k—1, j = 0,1 such
that for all (f,dg, 1) satisfying the assumptions of the lemma,

k—1
DD Al f, Ay AY) =0.
7=0,1 n=0

In particular, for any f € C°(9),

k—1
Z Z C%E(a;lfvm 0) =0,

§=0,1n=0

i.e.
k—1

[ axf @7 | =0.

n=079 j=0,1
This means that

k—1
> D (-1 =0

§=0,1n=0

in the sense of distributions. Since [0 ®7].— = [0}0.PI]|.—¢ = 0 for n > 1, we infer that
(430 + 7| _ [0:(ch7 + Cg@]l =0

Once again, using the jump conditions on ®J, we deduce that cé = 0, and thus

k—1
O | DD (-1)rdoptei =0 =o.

7j=0,1n=1
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It follows that

N

—1
(—1)"c) 0517 = p(=)
1

7=0,1n

for some function p. Note that by parabolic regularity, the profiles ® (and therefore the function
p) are smooth away from the line {z = 0}. Taking the trace of the above identity on {xo} x
(=1,0) U {x1} x (0,1), we find that p = 0. Arguing by induction, we infer eventually that ¢/ = 0
foral0<n<k-—1,57=0,1. O

Corollary 2.13 (Biorthogonal basis). There exist =F = (f* 6k, 6%) € H for k € {0,1} such that,
for every j,k € {0,1},
G(=*) = 6 (f*, 85, 67) = 1y (2.33)
and such that, within H,

HE = (RE +REY)" = ker &0 N ker (1 (2.34)

s a vector subspace of codimension 2.

Proof. Since 0 and ¢ are continuous linear forms on A, by the Riesz representation theorem,
they can be written as scalar products with two given triplets, say 20, =1 € H which are linearly
independent thanks to Proposition 2.10. Then one looks for 2% = (f*, 6k, 6F) as ax =0 + b, EL where
ar, b, € R? are such that ak(g; =0) + bk<§; =l = 1,—;. These systems can be solved since =0
and E! are free. Moreover, this ensures (2.34) and their independence guarantees that ng is of
codimension 2 in H. O

2.4 Hidden vertical regularity

The goal of this paragraph is to prove that, if u is a solution to (2.1) such that 9,,,u € L?(£2), then
one also has d5u € L?(Q), provided that the data is sufficiently regular. There is no additional
orthogonality condition. We start with the straightforward claim that 9u € L%(Q).

Lemma 2.14. Let f € L2H? and §o,61 € £L2(—1,1). Let u be the unique weak solution to (2.1).
Assume that u € HXH?. Then u € L2H? and

lullpz s S Nullgrmz + 1 fllc2 a2 (2.35)

Proof. Since u € HH?, one can integrate by parts in the weak formulation (2.2) by testing against
smooth compactly supported functions, and prove that 9,,u = 20,u— f in L?(2). Hence, in D’ (2),
Ot = 205220 + 2050 — O, f. Thus dju € L*() and ||lullpz s S ([ fllz2 a2 + |l a2 O

Proposition 2.15. Let f € L2H? and 69,61 € ' (—1,1). Let u be the unique weak solution to
(2.1). Assume that u € HLH? and 936; € 31 (%;), with 5o(1) = §1(=1) = Ag(1) = Ay(—1) = 0.
Assume furthermore that 0,0, f € L*((wo,x1) x (1/2,1)) N L?((wo,x1) X (—1,—1/2)) and A; €
H?2(3; n{|z| > 1/2}). Then d2u € L*(QQ) and
lullLzms S lullaimz + 1 fllezms + 10202 £112>1 2]l L2
+ Z 10261 ser + 18|l 2 (212121 /21 - (2.36)
i€{0,1}

Proof. In the course of the proof, we will need to distinguish between different regions:

23



e One “interior” region, close to the line z = 0. In this region, we will prove that d3u is such
that (20, — 0%)93u € L?, and use the results of Pagani to deduce that d%u € L2.

e Two “boundary” regions, in the vicinity of the lines z = +1. In these regions, since z is
bounded away from zero, we will use classical parabolic regularity arguments.

Step 1. Interior region. Let ¢ € C*°(Q) such that ¢ = 0 on {z¢} x [~1,0], $ = 0 on {z;} x [0,1]
and ¢ vanishes identically on neighborhoods of z = £1. Thanks to the regularity of u, we can
multiply the PDE for u by 93¢ and integrate over 2. Vertical integrations by parts yield vanishing
boundary terms because ¢ vanishes identically in neighborhoods of z = +1. We proceed with care
for the horizontal term so that all manipulations are licit:

/ 20,u0>p = /(28Mu+ 2052,1)0, @
Q Q

(2.37)
= / Zawzuaz¢ + / Zazz5182¢ - Zazz5082¢ - / Zazzuacvz(b'
Q bl o Q
Recalling that u € L2 H2 thanks to Lemma 2.14, we rewrite the last term as
_/ Zazzuazz¢ = / Zaguaw¢ +/ 8zzuaw¢
@ " n (2.38)
= / 28§U31¢ + 8zz61¢ - 82260¢ - awzzu¢'
Q bl o Q
Hence,
[ w000 ==3 [ ot [ 20000 S (-1 [ dusGosre.  (23)
Q Q Q i€{0,1} i
We also integrate by parts the boundary term. For example, on Y:
— 8zz50z<9zd) = —[Zazzéo(b\z:zo](l) + / (263(50 + 8zz60)¢ (240)
Mo 3o

The pointwise term is null at z = 1 because ¢ vanishes identically near z = 1 and null at z = 0
since ¢ vanishes at 0 and 9,.0p € H}(Xp).
Eventually, this proves that

3 3 _ 3 _ U —1)¢ 2036;0. .
_/Qz(azu)ax(b—k/g@z((?zu)azd)—/Q(@Zf 30,)p+ S (1) /E Boip.  (2.41)

i€{0,1} i

Since u € L2H? (by Lemma 2.14), u € HIH?, f € L2H? and 935; € 21 (%;), by density, this
equality still holds for ¢ € H'(Q) such that ¢ =0 on {zo} x [~1,0], {z1} x [0,1] and z = £1.

Now, let xo € C°((—1,1)) such that xo = 1 in a neighborhood of z = 0. The above argument
shows that xo02u € L2H} is the unique weak solution to (2.1) with boundary data xc93d; and
source term Xo(02f — 30...u) — Xx(O3u — x(0iu € L*(Q). We infer from Proposition 2.4 that
Y002u € L?. Note that thanks to the truncation yg, the compatibility conditions at (xg,1) and
(z1,—1) are automatically satisfied. By (2.8),

Ix0P2ullz2ms S lullmrme + 1 Fllczms + Y 1036 (2.42)
i€{0,1}

24



Step 2. Boundary regions. By symmetry, we only treat the upper boundary region. We consider
a function x; € C*°(R) such that x; = 1 in a neighborhood of z = 1, and supp x1 C (1/2,1).
Then u; := x1u is a solution to

Zawul - 8zzul = 91, in (anxl) X (1/2a 1)
Up|z=1/2 = U|z=1 = 0, (2.43)

Ul|z=xg = Xléoa

where g1 = fx1 — 2x10.u — x{u. This is a standard parabolic equation, for which we can apply
classical regularity results. First, the assumptions on u and f ensure that g; € HIH!((zo,71) X
(1/2,1)). Since the compatibility conditions (x100)(1/2) = (x100)(1) = 0 are satisfied, J,u; is a
solution to the parabolic equation

20:0,u1 — 05,0, u1 = Opg1, In (x0,21) X (1/2,1)
awu1|z:1/2 = aa:Ul|z:1 =0,
OpUi 3=y = 2791 + 922(x100)) = x140.

Now 0,1 € L? and the compatibility conditions (x1A0)(1/2) = (x140)(1) = 0 are satisfied. Thus
Oyuy € LPHINL2H2N HLL?. Differentiating the above equation twice with respect to z, we find
that 9,0%u; now solves

20,0,0%u1 — 0..0,0%u1 = 0,029, — 20201, in (w0, 21) x (1/2,1)
0:02uyz=1/2 = 0,  020%u1).—1 = —0u fla—1,
azazul\x:mo = ag(XIAO)

The right-hand side of the above equation belongs to L2H_1(xg,z1) x (1/2,1), and therefore
0,0%u; € LL(L2) N L2(H}). Therefore, using equation (2.43), we deduce that d5u; € L2. O

2.5 Singular radial solutions in the half-plane and profile decomposition

In this subsection, we give a full description of the singularities that appear when the orthogonality
conditions are not satisfied. We start by constructing singular solutions to the homogeneous equa-
tion set in the half-plane, using separation of variables in polar-like coordinates. We then localize
these solutions near the critical points (x;,0) to obtain the decomposition result of Theorem 2.

Our approach is similar to the one developed by Grisvard in [27, Section 4.4] for elliptic problems
in polygonal domains (see in particular the singular profiles of equation (4.4.3.7) and the decom-
position result of Theorem 4.4.3.7 therein). The main difference is that we cannot use usual polar
coordinates and that the construction of the elementary singular profiles is much more technical
than, for instance, the classical solution of the form r2 sin(#/2) which is involved in the resolution
of Dirichlet-Neumann junctions as in the elliptic problem (1.8) mentioned in the introduction.

2.5.1 Construction of singular solutions in the half-plane

In this paragraph, we look for elementary singular radial solutions to the following problem without
source-term in the half-plane:

(2.44)

20;u—0,,u=0 x>0,z€R,
u(0,2) =0 z> 0.
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Remark 2.16. In [22], Fleming considered the related problem of finding a “fairly explicit formula”
for solutions to z0,u — O,,u = 0 in a strip (0,1) x R, with prescribed boundary data at x = 0,
z>0and x =1, z < 0. His proof involves Whittaker functions, which are related to the confluent
hypergeometric functions we use below.

In [26], Gor’kov computes a representation formula for solutions to (2.44) with a mon-zero
source term and boundary data, and proves uniqueness of such solutions, under a growth assump-

tion of the form |u(0,2)| < [2|7 for 0 < o < L on the line x = 0, for which he claims that

uniqueness holds. The threshold o = % is precisely the scaling (at which uniqueness indeed breaks)
of the first fundamental singular solution vy which we construct below.
Our setting is a little different from the works mentioned above, as we look for (non-zero)

solutions to the homogeneous equation.

Near the point (0,0) which is expected to be singular, balancing the terms 29, and 0., leads
to the natural scaling z ~ 7. Thus, we introduce the following polar-like coordinates (r,t) €
[0,4+00) x R:

= (22 + xg)% and t:=zz s (2.45)
The reverse change of coordinates is given by

r3 rt
r=———= and z=—"—F.
(1+1t2)z

v (2.46)

Since it will be convenient to switch from cartesian coordinates (z, z) to the polar-like coordinates
(r,t), we compute the Jacobian

or Or 1 z (1+12)3 t
9 - 3zhr T 3r2 (1+12)%
J(’I"7 t) — e = (2.47)
ot ot LA t1+12)3  (1+12)3
Oor 0Oz 3z g3 T 3,3 r

where we have used the equalities (2.46). In particular,

(1+1¢%)?
det J(r,t) = ———— 2.48
et (1) = L EL (2.45)
which we will use to compute integrals using the (r,t) variables.
By (2.47), for any C* function ¢,

(1+1%)2 t(1412)2
Opp = Orp — o, 2.49
v 3r2 v 3r3 ad (2.49)

t (1+1%)2
d.p = O + Orep. 2.50
v ——0p (2.50)
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Figure 2: Plot of ¢t — Ag(t) for t € (—7,7), highlighting the main properties: Ag is a smooth,
monotone decreasing function on R, such that Ag(—oc0) =1 and Ag(+00) =0

In particular, if u(r,t) = r*A(t),

20,u = TAB_ i [MA(E) — £2(1 + £2)0,A(8)] (2.51)
_ t (1+13)? A1 At 2%
0pu = ERSE Or + " O ( ((1 +t2)%A(t) + (1 +t%) atA(t)>> (2.52)
2
e {(x 1) (ﬁj AW+ tatm)) IO ((1 j;)é AW+ (1+ t%éatA(t)ﬂ -

We are now ready to construct solutions to (2.44) using these coordinates.

Proposition 2.17. For every k € Z, equation (2.44) has a solution of the form
v 1= 12 TIRAL(2) (2.53)

with the variables (r,t) of (2.45) and Ay € C®(R;R) is a smooth bounded function satisfying
Ak(—00) =1 and Ak (+00) = 0. The profile Ay is presented in Fig. 2.

Proof. By separation of variables, we look for a solution to (2.44) under the form u := r*A(t)
where A € R and A : R — R is a smooth function. The boundary condition «(0,z) = 0 for
z > 0 translates to A(+o00) = 0. From (2.51) and (2.52) above, one checks that such a u satisfies
20,u — 0,,u = 0 if and only if

22X\t I I+ (A =1)?
2 — _—— =
OFA(t) + <3 + 1+t2) OpA(t) +)\< Sl ERE A(t) = 0. (2.54)

To absorb the (1 + £2) factors, we perform the change of unknown A(t) =: (1 + ¢2)~2 H(t). Then,
A satisfies (2.54) if and only if H is a solution to

OPH (t) + gBtH(t) - %H(t) =0. (2.55)
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Moreover, for ¢ # 0, using the change of variable ¢ := —t3/9, and looking for H(t) =: W (—t3/9),
we obtain that H solves (2.55) on R\ {0} if and only if W is a solution to

2 A
i@+ (3 -¢)awio - (-3) wio =0 (2.56)
which corresponds to Kummer’s equation, with a = —% and b = % It is known (see [46, Section

13.2]) that (2.56) has a unique solution behaving like (=% as { — oo. This (complex valued)
solution is usually denoted by U(a, b, () and called confluent hypergeometric function of the second
kind, or Tricomi’s function. In general, U has a branch point at { = 0. More precisely, the
asymptotic (7 holds in the region |arg (| < 2 and the principal branch of U(a, b, () corresponds
to the principal value of (7. Moreover, when b is not an integer, which is our case, one has (see
[46, Equation 13.2.42]),

r'(1-0b)

(b-1)
I'a—b+1)

Ula,b,¢) = M(a,b,¢) + L Ta) "M a—b+1,2-b,0), (2.57)

where M is the confluent hypergeometric function of the first kind or Kummer’s function,

M(a,b,¢) =Y (@)n ¢ (2.58)

7'a
neN (b)n G

where (a), and (b), denote the rising factorial. In particular, M is an entire function of (.
From (2.57), we see that the singularity in Tricomi’s function U stems from the fractional power

¢ = C%. When ¢ = —p (for p > 0), C% = e%p%. Since we will evaluate this expression
at ¢ = —t3/9 and since we are interested in a real-valued solution to (2.55), we wish to choose
another determination of the cubic root. We therefore set

in A2

By linearity, W is still a solution to (2.56). Moreover, by [46, Equation 13.7.3], as { — oo,

W(¢) = %{e?ga (1+0 (é))} (2.60)

In particular, when A =  + 3k for k € Z (and only in this situation), as p — +oo,
W(—p) = O(p), (2.61)

because R{e™/3e~i0mp=a} = R{(—1)Fe™/3eim/6p=a} = (—1)Fp=*R{i} = 0. Defining H(t) :=
W (—t3/9) for W as in (2.59) and recalling that A(t) = (1 +¢2)~*»2H(t) implies that A(+o00) = 0.
Indeed, as t — +o0,

At)=(1+)"20 <t3(%’1)) = O(t™3). (2.62)

Moreover, from (2.60), we obtain that A is bounded as ¢t — —oo. Indeed, as t — —oo,

A(t) = (1+t2)‘33?{6i3" (‘i) E (HO (|1€13)>} (2.63)

= JOTH R ) R (14 0( ) = 5974+ O(1 ).
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Eventually, let us check that H is an entire function of ¢, which will entail that A is smooth. Using
(2.59) and (2.57),

1 I(1—-b) t3 1 ¢t I'(b-1) t3
H(t)—QF(a_b+1)M<a,b,—9>—291/3 T (a) M{a=b+1,2-b-5), (264

so that H is entire because M is. This also entails that H solves (2.55) even across t = 0. Moreover,
(2.62) and (2.63) imply that A is bounded on R. Eventually, using (2.63), we can define Ay as
295tk A, which ensures that Ay(—oc) = 1. For this normalization, one deduces from (2.64) that

1 I'(1/3)
Ap(0) =95 th 2177 2.65
k(0) =93 (/6 k) (2.65)
which will be used below. O

If w is a solution to (2.44), then, formally, d,u too (the operator 20, — 9, commutes with 0,
and the boundary condition at = 0 and z > 0 is satisfied thanks to the equation). This property
entails that the solutions vy, = rzt3FA,, (t) are related by a recurrence relation on the profiles Ay.

Lemma 2.18 (Recurrence relations). Let k € Z and ¢y, = % —9k2. One has

OV, = CLUE—1. (2.66)
Moreover, for every t € R,
crhp_1(t) = <1+3t2) <(; + 3k> Ag(t) —t(1+ t2)A§€(t)> , (2.67)
or, equivalently,
A (t) = ﬁ <<; + 3k> Ag(t) — W) . (2.68)

Proof. By (2.49), one has 0,vp = r2t3¢+=DH,(t), where Hy(t) is the right-hand side of (2.67).
Thus dyvy is a solution to (2.44) of the form studied in Proposition 2.17. Since the proof of
Proposition 2.17 proceeds by equivalence, vg_1 is the only solution of the form r2+3(k=1)  This
entails that Hy(t) is proportional to Ax_1(t) and the constant can be identified by comparing
the values at 0 using (2.65), yielding (2.67), (2.66) and (2.68) (which are all equivalent) with
Cr = i — 9k‘2.

Actually, these identities are linked with recurrence relations on Tricomi’s function U. Let us
give another proof of (2.68) using this approach. By the proof of Proposition 2.17,

6 379
First, using the relation 0:U(a —1,b,¢) = (1 — a)U(a,b+ 1, () (see [46, Equation (13.3.22)]),

1+k 2y—1_2k in 1 2
Ap(t) =298k 4 )ik Rl eFU (-2 — k2, - ), (2.69)

Ay(t) = — (; + 3k) #Ak(t)

1 13, 3 1 in 3 1 5 3
9.98Tk(] L2y 18k 2 - _z ——_ 1,=. —— )Y,
+2-957TF(14¢%)" 172 tk+6%es 5 U G k+,3, 9

Eventually, (2.68) follows from the relation (b — a)U(a,b,{) + U(a —1,b,() — CU(a,b+1,{) =0
(see [46, Equation (13.3.10)]). O

(2.70)
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Remark 2.19. We will see below that vy is linked with a solution to (2.1) which has Z° regqularity,
but does not belong to HXH. Similarly, for each k > 0, vy, is linked with a solution u such that
Oku € Z0(Q) but uw ¢ HETYHL. Conversely, for k = —1, one could expect to be able to construct a
very weak solution u based on v_y which would entail that uniqueness fails for solutions with less
than L2H! regularity.

Lemma 2.18 entails the following decay estimates, which will be useful in the sequel.
Lemma 2.20. For every k € Z, there exists Cy, > 0 such that, for every t € R,
Ak ()] + [P AL (0] + AL ()] + [PAY (t)] < O (2.71)

Proof. For all k € Z, the bound |A(t)| < Cj is already contained in Proposition 2.17 which claims
that Ay is bounded. Since Ap_; and Ay are uniformly bounded over R, we deduce from (2.68)
that t3A} (¢) is also bounded on R. Eventually, differentiating (2.68) with respect to ¢ leads to a
uniform bound for [t*A{(¢)| and [t°A}(t)| over R. O

Moreover, the recurrence relations of Lemma 2.18 also imply that the solutions vy, to (2.44) are
smooth, up to the boundary {z = 0}, except at the origin (0, 0).

Lemma 2.21. For every k € Z, v, € C°(Py), where P, := ([0, +00) x R) \ {(0,0)}.

Proof. The smoothness inside the half-plane {x > 0} follows directly from Proposition 2.17 since
Ay € C*°(R) and the function r — 7238 as well as the change of coordinates of (2.45) are smooth
inside this domain.
By Proposition 2.17, since Ay is continuous on R and has limits at ¢ = +o00, we obtain that
v = 7"%*3’“Ak(t) is continuous up to the boundary {x = 0}, except at the origin: vy € C°(P,).
We now turn to the continuity of derivatives. Using (2.50),

1 1 t 1

Since A, has limits at ¢ = 0o and since, by Lemma 2.20, t3A},(t) = O(1), we obtain that 9,vy
has limits at ¢t = +o0o. Hence d,vx € C°(P,).

Eventually, the C*°(P,) regularity follows from a bootstrap argument. Indeed, by (2.66),
Oy = CrUL_1, 80 Opvp € CO(P,) because vy_1 € C°(P,). And, similarly, in the vertical direction,
using (2.44), 0,.v = 20,V = zcpvg_1 50 O, € CO(P,). Tterating the argument concludes the
proof. O

2.5.2 Localization and decomposition

%

We now introduce singular profiles ug;,,, for ¢ = 0, 1, localized in the vicinity of (z4,0) and based

on the singular profiles of the previous paragraph. Let x; € C () be a cut-off function such that
xi = 1 in a neighborhood of (z;,0), and supp x C B((x;,0), R) for some R < min(1,z; — x)/2.
These localized profiles are the ones involved in the main decomposition result of Theorem 2.

Definition 2.22. Fori € {0,1}, let

al o (x,2) = 7"1-%/\0(12))@(95,,z)7 (2.73)

sing
where Ag is constructed in Proposition 2.17 and

1

Ty = (z2 + |z — xz\%)f and t;:= (=1)'z|zx — xi|7%. (2.74)
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Lemma 2.23. Fori € {0,1}, there exists f; € C*(Q), with f; = 0 in neighborhoods of (z;,0) and
{z = %1}, such that ﬂging is the unique solution with Z°(Y) regularity to
20,0 . — 0,0k . = fi,

sing 2z ¥sing
sing\EoUEH =0, (275)
77t —
using‘zzil = 0

Moreover, @i, € C*(Q\ {(xi,0)}) but @},

smg

sing ¢ H;(H;)
Proof. By symmetry, we only prove the statement for fy and meg In order to simplify the
computations, we drop the index 0 in rg, tp and xo. We introduce positive numbers 0 < r_ < ry
such that x =1 for r <r_ and x = 0 for » > r;. In particular, all derivatives of x are smooth,
bounded, and supported in 1,_ <r<p, .

Straightforward computations lead to (2.75), provided that one defines

fo = T%Ao(t) (20xx — O22X) — 28Z(T%A0(t))6zx = vg (20X — D22X) — 20,000, X. (2.76)

Since the derivatives of x are supported away from the point (zg,0), the C°(Q) regularity of fo
follows directly from the smoothness of vy away from the origin proved in Lemma 2.21. Since
ﬂgmg(x 2) = vo(z,2)x(z, 2), the C°(Q\ {(x,0)}) regularity of @’ _, follows from Lemma 2.21.

smg

Therefore, to prove the lemma, there remains to prove that @l . 0,,4% . and 20,42 _ are in

sing? sing sing
L?(Q) but 9,0 ﬂgmg ¢ L?(Q). We will use the change of coordinates from cartesian to polar-like
ones of Jacobian given by (2.48), so that, for ¢ : Q@ - R,

lell72) = / / T+ ) s e(r, ) dtdr. (2.77)

In particular, we have the following integrability criterion. Assume that ¢ is of the form r*H (t)
where H(t) = O, 100(|t]) and supp® C 1,p,. If p > —2 or suppt C 1,_,, then p € L*(1).

Step 1. Preliminary estimates. Let 1 such that suppy C 1,,,. By the previous integrability
criterion, since Ag(t) = O(1), 72 Ag(t)y € L2(R2). Using (2.50),

9. (T%Ao(t)) =% {MAO(@ +(1+ t2)%Ag(t)] . (2.78)

By Lemma 2.20, [t|A}(t) = O(|t|~2). Thus, 8. (rzAo(t))y € L%(Q). Using (2.50) again,

i) - Log 1 ! )AL
0:: (o)) = = (1+2)3 [2(1+t2)5A0(t>+(1+” Aow} (2.79)
Using (2.49),
g (2.49) } s [(1+e2)3 t(1+1%)3
o, (riAo(t)> —p3 TAo(t) — 3/\6(0] . (2.80)

By Lemma 2.20, Aj(t) = O(|t|=3). Hence, |t|Ao(t) = O(Jt]) and [t|*AL(t) = O(|t|) so, assuming
additionally that suppt C 1,_ <<, , one concludes that 8$(T%Ao(t))w € L*(Q).
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Eventually, using (2.50),

t 1 t
Op=(r2Ag(t)) =13 (—4A0(t) — 6A’( V(1 +2)(1 + 3t2) — 5(1 + tQ)QA{J’(t)) . (2.81)
Step 2. Zy estimates on umg By Step 1, usmg and 8zzubmg belong to L?(2). Since 20, umng =
fo+ 022Uy, and fo € L*(2), we infer that 20, U € L*(€2). Hence ad,, € Z°().
Step 3. Lack of HyH estimate for a},,. Recalling (2.81),
0,010y = 1~ 2H()X + 05 (rF Ao () Do x + 02 (r2 Ao (1)), (2.82)

where, by (2.81), one checks that H(0) = —A{(0)/6 # 0. The last two terms in the right-hand side
belong to L?(Q) according to the previous computations. Since H(0) # 0, the L? norm of the first
term is bounded from below by

c/ =73 dr = +oo. (2.83)

0

and thus 0,0.ud,, ¢ L*(). O
Actually, we have the following regularity on the profiles umg7 which is slightly better than Z°.

Lemma 2.24. For all 0 < 3, i, € H 5 L2 NL2ZHZTe.

Proof. The proof follows from an easy scaling argument. We start with the z derivative and focus

on ﬁ(s)ing. Dropping the index 0 in rg and ¢ as in the previous proof, we have, using (2.45) and

Definition 2.22, and setting x(z, z) := xo(zo + z, 2),

Z1> x(@o, 2),

—0 1
Uging (To +,2) = 8 "

where o(t) = (1 + 2)3 Ag(t). Therefore,
5‘36%%(% +x,z)=x 530 ( : > + 2z~ 6<p (Zl> Xz + xégo <Zl> Xzz- (2.84)
3;‘3 €T3 T3

We focus on the regularity of the first term, which is the most singular. We have, for any ¢ > 0,

72y £ x(z, 2) i </l; o Z — " Z dedzdz'
xs Cllpeme TS wlz =2 s a3 '

Changing variables in the above integral, we get

z" 3y (Zl) x(z, 2)
€T3

The integral in the right-hand side is finite if and only if ¢ < 4. Moreover, ||¢ @) < e 134 ®)-

From the definition of ¢ and the decay bounds of Lemma 2.20, we infer that " € H(R). This
shows that @, € LZH>™ for o < 3.

sing

2
2 o

"2 e —2_29
<16 2 / 2|5 % d.
0

LiHZ

//||2

240
The bound in H,? L2 is obtained similarly and left to the reader. O
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Eventually, we introduce the following 2 x 2 nonsingular matrix which translates the fact that
ﬂging and ﬂimg are indeed independent elementary solutions related with the non-satisfaction of
the orthogonality constraints /0 and ¢1. We will use this reference matrix multiple times in the

sequel for perturbations of this shear flow situation.

Lemma 2.25. Let fo, f1 as in Lemma 2.23 and ®°, ®1 as in Lemma 2.6. The matriz
M := < Oufi <I>1> € Mz (R) (2.85)
Q2 0<i,j<1

1s invertible.

Proof. Let ¢ € R? such that Mc = 0. Then, for j = 0,1,
/ 896(00% + clﬁ)@ = 0.
Q

Thus, the source term for the function Coﬁging + clabl,ing satisfies the orthogonality conditions (2.19)
(note that in this case, the boundary data are null). It then follows from Proposition 2.8 that
Coliging + C1U%,, € HyH]. Localizing in the vicinity of (x;,0), we infer that c;ul,, € HyHL,
which, since @, ¢ HjH} (by Lemma 2.23), implies that ¢; = 0. Therefore, ¢ = 0 and M is
invertible. 0

Corollary 2.26 (Decomposition into singular profiles). Let f € HX(L2)NL2H3 N HIH({|z| >
1/2}) be arbitrary, and let 8,81 € 1 (—1,1) with o(1) = §1(—1) = 0, and Ao, Ay € S (—1,1)
with Ag(1) = A1 (—1) = 0. Assume furthermore that A; € H?(3; N {|z] > 1/2}).

Let u € Z°(Q) be the unique weak solution to (2.1). Then there exists two real constants cg, c1
and a function ureg € Q*, as defined in (1.26), such that

u= coﬂging + clﬂ’;ing + Ureg- (2.86)
Proof. We recall the definition of the matrix M from Lemma 2.25. Since M is invertible, we may
define ¢ = (cp, ¢1) such that
7 O(f, b0 51))
Mc= (=) . 2.87
<€1(f750761> ( )
Let fo and f as in Lemma 2.23. By Lemma 2.25 and construction, the triplet (f—cofo—c1f1, 60, 01)
satisfies the orthogonality conditions from Proposition 2.8. It follows that the solution wu,eg to
Zarureg - azzureg = f - CO% - Clﬁ in Qa
Ureg|s; = 57L7 (288)
Ureg|z=41 = 0
satisfies uyeg € HE(HL). Thus, estimate (2.11) of Proposition 2.5 ensures that dyumes € Z°(€2).
By Proposition 1.4, teg € HS/SLi. Proposition 2.15 entails that urg € L3H? (note that with a
suitable choice of the truncation, fo and f; vanish identically for |z| > 1/2). Thus, ues € Q' as

defined in (1.26). Now, u and Ureg + Colid,, + 17k, both belong to Z°(Q) and satisfy system
(2.1). By the uniqueness result of Proposition 2.2, the result follows. O
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Theorem 2 follows easily from Corollary 2.26. Indeed, if (f,dg,d1) € H, the regularity assump-
tions of Corollary 2.26 are satisfied (see (1.3)), together with the compatibility conditions in the
corners dp(1) = 61(—1) = Ag(1) = Ay(—=1) = 0 (recall that, in H, f = 0 on 09, thanks to (1.2)).

Remark 2.27. The constants cg,c1 depend (linearly) on u, but do not depend on the choice of the
truncation functions x;. Indeed, if x(, X} is another truncation, associated with constants cj,c},
then applying Corollary 2.26 twice yields

—0 —1 —0 —1 1
CoUsing + C1Uging — CG(“sing)/ - Cll (using)/ € Q .

Therefore, in a small neighborhood Vi = x; *({1}) N (x})~*({1}) of (x:,0), we obtain

1
2

(i — ci)ri Mo(ts) € HyHZ(V2),
and therefore ¢; = c}.

As already claimed in Remark 2.7, we can also prove a related decomposition result for the
dual profiles ®J defined in Lemma 2.6. Here, the decomposition always involves a singular part.

Corollary 2.28. Let (co,c1) € R?\{0}. There exists (do,d1) € R*\ {0} and ®req € Q', as defined
in (1.26), such that

co®0 4 ;BT = (—coz + ¢1)1,50((2) + doﬂging(m, —z) + dlﬂ;ing(ac, —2) + Oreg, (2.89)
where ¢ is a smooth cut-off function, equal to 1 near z =0 and compactly supported in (—1,1).

Proof. Using the same decomposition as in Lemma 2.6, set
U= cg®0 + 18T — (—coz + €1)1250((2). (2.90)

Then U¢(z, z) := U¢(x, —2) is the solution to

zaT\I/; — GZZ\I,; = g. in Q,

U(zp,2) =0 for z € (0,1), (2.01)
U(zy,2) = (—coz — c1)¢(—2) for z € (—1,0),

\Il|cz::i:1 =0,

where g. = (c1¢"(—2) — 2¢o(’(—2) + c02¢"(=2))1.<o. Thus, (2.89) follows from Corollary 2.26,
applied with f = g. € C*®(Q), dp = Ag = 0 and §1(2) = (—coz — ¢1){(—2) and A; = 0.
It remains to prove that (do,d1) # (0,0). By Proposition 2.8, ¥¢ € HIH! if and only if

03(g.,0,01) =0 for j = 0,1. By Definition 2.9, since 9,9, = 0 and Ay = A; =0,
03(ge,0,01) = 0 <= 0150(0) — 9261 (0) = 0. (2.92)

Since §p = 0 and 6;(0) = —¢1 and 01(0) = —co, (do,d1) = (0,0) if and only if Ue e HIH! if and

z)

only if (¢, c1) = 0. O

Remark 2.29. Using Corollary 2.28 and the regularity result Lemma 2.24 on ﬂ;ing, we see that

f = 0i(f,0,0) = Jo Dp f®I is mot only continuous on HLL? but also on HIL? for every o > :
We will recover a related threshold of tangential reqularity in Section 5.3.
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Using the decomposition of the dual profiles, we can show that the orthogonality conditions
are also independent when considering only variations of the inflow boundary data.

Proposition 2.30. The linear forms €0 and ¢ are independent on {0} x C°(Xg) x C°(;).
Proof. By contradiction, let (cg, c1) € R?\ {0} such that, for every 5o € C°(%g) and 6; € C°(%1),
60570(0, do, 51) + Clﬁ(o, o, 51) =0. (293)

Let (do,d1) € R?*\ {0} and ®,.;, € Q' be given by Corollary 2.28. By symmetry, assume that
dp # 0. Then, by Definition 2.9, for every dy € C2°(X),

0 = ¢col°(0, 6o, 0) + ¢1£1(0, &g, 0)

2.94
= /E 20 [(—coz + a1)¢(2) + doaging(xo, —2) 4 Preg] - (2.94)

Let z > 0 small enough, one can ensure that ¢ = 1 on (0, z) and ﬂging(xm —2) = 22 Ag(—00) = 22
(see Definition 2.22 and Proposition 2.17). Since Q* < H} H? (see Lemma 1.10), ®,e)5;, € H*(Z0).

If supp do C (0, 2) for zZ > 0, using zAg(z) = §((2) and integrating by parts yields

1
1

Ozd/ [—z
o, 1

where ¢(2) 1= 0, Preg (0, 2) € L?(X0). Since z — 272 does not belong to L2(0, z) but ¢ does, one
easily deduces that there exists dp € C2°((0, 2)) such that the right-hand side is non-zero, reaching
a contradiction. O

[S][)

+ @(2)} do(2), (2.95)

3 The linearized problem

The goal of this section is to establish the well-posedness of the linearized problem

U0pu — Oyyu = [ in §,
us, = 0;, (3.1)

Uly=+1 = 07

where 4 € Q! (see (1.26)) is a given perturbation of the linear shear flow, f is an external source
term and (dp,d1) are lateral boundary data. It is fairly straightforward to adapt the theory of
existence and uniqueness of weak solutions depicted in the previous section to the above equation.
However, writing the orthogonality conditions for a general shear flow @ is quite complicated. In-
deed, we recall that the strategy is to find the equation solved by w, in the upper region {@ > 0}
and in the lower region {a@ < 0}, and to glue together these two solutions (provided the orthogo-
nality conditions, which ensure the continuity of v and wu, across the line {& = 0}, are satisfied).
When the line {# = 0} is straight, this is a fairly simple process, which we described in the previous
section. However, when {@ = 0} is not a straight line, retrieving u from w, is not entirely obvious
(one needs to integrate u, on curved lines).

Therefore, we have chosen to first straighten the flow w by changing the vertical coordinate.
Of course, this introduces variable coefficients in the equation. We then prove the existence and
uniqueness of weak solutions for the equation in the new coordinates, and exhibit orthogonality
conditions, which are necessary and sufficient conditions ensuring that the weak solution has in
fact H1H ; regularity. Eventually, we go back to the original variables and infer the existence of
strong Z?! solutions to (3.1) under orthogonality conditions.
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3.1 A change of vertical coordinate

Throughout this section, we assume that @ is a Q' function such that ||@ — y||g1 is small. In
particular, |[a, — 1|z~ < ||& — yllgr < 1 (see Lemma 1.10). It follows that there exists a line
y = g(z) on which @ vanishes, and @ < 0 on y < g(z). As a consequence, by the implicit function
theorem, we define an associated change of variables Y such that

Vz e (-1,1), Vz e (zg,z1), u(z,Y(x,2)) ==z (3.2)
We then look for v under the form
u(z,y) = U(z,u(z,y)), (3.3)
so that U = Ul(x, z) solves

20, U +v0,U — ad,,U =g in €,

U|y:i1 = 07
where
a(z,2) = (ay)*(z, Y (2, 2)), (3.5)
V(€ 2) 1= (2Ua — Uyy) (7, Y (7, 2)) (3.6)
g(x,2) = f(z,Y(,2)), (3.7)
8i(2) = 8u(Y (24, 2)) (3.8)
In the sequel, we will often use the decomposition v = zy; + 2, where
Y(x, 2) = Up(z, Y (x,2)) and  ya(z, 2) = —Uyy(z, Y (2, 2)). (3.9)

The next subsections are devoted to the analysis of equation (3.4): existence and uniqueness of
weak solutions, Z° regularity, orthogonality conditions for HlH! regularity. More precisely, our
results concerning (3.4) can be summarized as below. Eventually, in Section 3.5, we will translate
these results in the original variables, and prove the conditional Q! regularity of solutions to (3.1).

Proposition 3.1. Leta € HIH! OH§/5HZ2. Assume that there exists v1 € Hg/?’LE ﬂLgo(le/Z) N
W1oo(L2) and yo € HLL2 0 HY HY such that v = 2y + v and

lloe = Ularmr + 1102l yors n <1,
HrYlHH;‘Z/SLﬁ + ||71HL;>°(H;/2) + ||8271||L§°(L§) <1, (310)
[v2llm1ze + ||5z72||Hg/5L3 <1

Then the following results hold:

o For any g € L*(Q), 69,01 € HH(—1,1) such that So(1) = 01(=1) = 0, equation (3.4) has a
unique solution U € Z°(Q), which satisfies

1Ullzo < Nlgllzz + 100ll s + (161 [|es (3.11)
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o There exist two independent linear forms €2, 0L defined on H, such that the following result

uru?

holds. Let (f,d0,01) € H, and let g,00,01 be given by (3.7) and (3.8). Assume that 6o(1) =
51(=1) =0, and that

/ZVﬁ(f(xivy(qu))+(5£/(Y($Ci7z)))2 ds < +o0.

Let U € Z%(Q) be the unique solution to (3.4). Then U € HLH! if and only if

)
09(f,60,61) = L5(f,00,61) =0,

and in this case

Nl

. 1
10Ny < Mgz + 10l + > (/ B (@, Y (i, 2)) + 57 (Y (w3, 2)))° dz>
i i

3.2 Existence and uniqueness of weak solutions

This section follows exactly the arguments of Section 2.1. The only slight difference lies in the
derivation of the a priori estimates, in which we use smallness assumptions to treat perturbatively
the additional drift term v0,U and the commutator coming from the diffusion.

Definition 3.2 (Weak solution). Let g € L2((xo,x1); H"Y(=1,1)) and 69,6, € L2(—1,1). Let
a € HY(L), v € L2(L). We say that U € L*((xg,21); Hi(—1,1)) is a weak solution to (3.4)
when, for all V€ HY(Q) vanishing on 9N\ (Xo U X1), the following weak formulation holds:

—/ zU@xV—F/(7—|—az)3zUV—|—/a8ZU8ZV:/gV—/ z51V+/ 26 V. (3.12)
Q Q Q Q 1 >0

Proposition 3.3 (Existence and uniqueness of weak solutions). Assume that « and v satisfy
lov = 1| poe + [zl L2 (rze) + VL2 (2ee) < 1. (3.13)

Then, for every g € L*((xg,71), H *(—1,1)) and 51,50 € L2(—1,1), there exists a unique weak
solution U € L?((wo, 1), Hi(—1,1)) to (3.4). Moreover,

U2 2y S 9l 2 oty + 100ll22 + +[]01 ]| 22 (3.14)

Proof. We mimic the proof of Proposition 2.2. We take ¥ = {V € H*(Q),V = 0 on 0Q\ (XoUX4)}
and % the completion of H(Q) N L2((xg,z1); H}(—1,1)) with respect to the scalar product

1 1
(U, Vg = / a0, U0,V + 7/ 22UV — 7/ 2UV. (3.15)
Q 2 /s, 2 /s,
For (U, V) e % x ¥, let

a(U,V) = —/ zU@mV—l—/(v—i—az)@ZUV—l—/ ad,Ud,V, (3.16)
Q Q Q
b(V) ::/gV—/ zglV—i—/ 26 V. (3.17)
Q P 3o
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Now, for any V' € 7, assuming that |vy||z2(ze) + [|@zl[z2(zc) < 1/4 and using the Poincaré
inequality ||V||L§o(L?E) < 2H8ZV||L2(Q),

1
aWVV) = VI + [ (o avo.y = 5IVIE. (315)

The linear form b satisfies (2.7). As in Proposition 2.2, the existence follows from the Lax-Milgram
type existence principle Lemma B.2, and we obtain the energy estimate (3.14).

As in the proof of Proposition 2.2, uniqueness follows from the result by Baouendi and Grisvard,
recalled in Appendix A. O

Remark 3.4. Instead of using the weak Laz-Milgram existence principle Lemma B.2, an alternate
proof would be to reqularize equation (3.4) by vanishing viscosity, and to obtain uniform L2(HL)
estimates on the approrimation.

3.3 Strong solutions with maximal regularity

In this paragraph, we adapt the results of [49] to construct solutions to (3.4) with Z° regularity,
with estimates independent of the coefficients o and +, in the regime (3.13).

Proposition 3.5. Assume that o and v satisfy (3.13). Then, for every g € L*(Q) and every
80,01 € S (—1,1), the unique weak solution U to (3.4) satisfies U € Z°(Q) with the estimate

1Ullzo < Nlgllz> + ll0olloer + 1161 52 (3.19)
Proof. Thanks to Proposition 3.3, there exists ¢y > 0 such that, if
oo =1 zee + [lazllr2 ey + 1VIL2 (L) < cos (3.20)

the problem (3.4) is well-posed at the level of weak solutions. We proceed in four steps.

Step 1. Case of smooth coefficients with a large zero-order term. We start with coefficients a,~y
that are smooth, say in C2((, satisfy (3.20), and we consider the following variant of (3.4):

20, U +~v0,U — a0,,U + CoU = h in Q,
Ups, =0, (3.21)
U|y:i1 = Oa

where Cy > %azz + %'yz. By Pagani [49, Theorem 5.2] (for the operator 20, +~0. — ad. . + Cy), for
every h € L*(Q), there exists a unique U € Z°(Q) solution to (3.21) and a constant C (possibly
depending on «, v and Cj in a way that is not entirely explicit in the work of Pagani) such that

[Ullzo < ClIA]| - (3.22)

Thus, we can define the bounded linear operator K : L?(Q2) — Z°(Q) — L?(Q) which maps h
to U, the solution to (3.21). Moreover, K € L£(L2(f)) is compact since Z°(Q) < H2/3(Q) by
Proposition 1.4.
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Step 2. Case of smooth coefficients. We still consider coefficients «,~ that are smooth, satisfy
(3.20), and we consider the equation

20, U +~v0,U — ad,,U =h in Q,
Ugs, =0, (3.23)
Upy=+1=0.

Applying Fredholm’s alternative to the operator K we obtain that
e cither, for every h € L?, there exists a unique U € Z°(Q2) solution to (3.23),
e or there exists a nontrivial solution U € Z°() to (3.23) with h = 0.

The second possibility is excluded by the uniqueness of weak solutions stated in Proposition 3.3.
Rewriting (3.23) as
20,U — 0,,U = h —~0,U + (o« — 1)0,,U (3.24)

and applying [49, Estimate (5.13)] (this time to the universal operator z0, — 9,.), we obtain
1Ullzo < Cpagani (I1hllz2 + [V]lz2 2y 10:Ull 1 (22) + Il = Ul 102U 2) - (3.25)

Hence, under condition (3.20) (up to choosing ¢y < 1/(2Cpagani)), the last two terms can be treated
perturbatively and we obtain
[Ullzo < (1R z2, (3.26)

with a constant depending only on the domain €.

Step 3. Case of smooth coefficients with boundary data. We still consider coefficients «,y that
are smooth and satisfy (3.20). By [49, Theorem 2.1], there exists a bounded linear map L :
(Do) x AL(S1) — Z°() such that Uy := L(dg,d;) satisfies Us)s, = 6; and (Us)jy=+1 = 0.
Then we look for a solution U to (3.4) under the form U = Us + V', where V is a solution to (3.23)
with

h:=g—20.Us + a0,,Us — ~v0,Us. (3.27)

Under assumption (3.20),

[Rllz> < llgllzz + 1202Usll > + llallool|022Usll L2 + IVl 22 (2g) 192Ul Lo (£2)

(3.28)
Slgliez + 1Usl zo

so we obtain that U has Z° regularity and satisfies (3.19) by boundedness of L.

Step 4. Case of general coefficients. We then address the case of general (non-smooth) coefficients
satisfying (3.20). We take a smooth approximation sequence (a™,v™) of («,~), which satisfies the
same smallness assumptions and which converges towards (a,7) in L N H(LZ) x L2(LY).
For the sequence (a”,+™), we construct a sequence of solutions U™ € Z°(f2), which satisfy the
estimate (3.19) with uniform bounds. Extracting a subsequence if necessary, we can find a function
U € Z°Q) such that U™ — U in Z°(Q). Passing to the limit in the equation, it can be easily
checked that U is a solution to (3.4). By Proposition 3.3, it is in fact the unique weak solution
to (3.4), which completes the proof. O
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3.4 Orthogonality conditions for higher tangential regularity

As in Section 2.3, we build solutions to (3.4) with higher regularity in the tangential direction,
provided that the data satisfy appropriate orthogonality conditions. The main goal of this para-
graph is to derive suitable expressions for these orthogonality conditions, analogous to the linear
shear flow case.

3.4.1 Derivation of the equations for the dual profiles

We start by formally differentiating (3.4) with respect to « and we find that, if U is regular in the
tangential direction, then V := 9,U is a solution to

20,V 470,V — a0,V — .8, [ V+7.0. [ V=hy nQy,
20,V +70.V — ..V + 0,0, [['V — 7,0, [V =hy inQ_,
[V]iz0 = [GZNV]ZZO =0 on (xg,x1), (3.29)
V(zo,2) = A0 for z € (0,1),
V(zy,2) = for z € (—1,0),
V(z,£1) = for z € (xo, 1),
where, for i € {0, 1},
hi = 009 + 0p0220; — 7200, (330)
and 1
Ai(z) =2 (g(azi,z) + ol@s, 2)520:(2) — (1, 2)00 (2 )) (3.31)

Reciprocally, assuming that the above system has a unique weak solution V (in a sense that will
be made explicit later on), then U; defined by

do+ [TV inQ
U, =0t fgo R (3.32)
o1 + fxl V inQ_
is a solution to (3.4) if and only if V satisfies
T1 ~ ~
/ V(2,0) dz = 31(0) — 39(0),
/20 (3.33)

8.V (x,0) dz = 9,61(0) — 0.50(0).

Zo

For the time being, we do not worry about the regularity of the coefficients, and perform all
computations as if the coefficients were smooth. A suitable definition of weak solutions to (3.29),
which makes sense at the level of regularity available for the coefficients o and ~y, will be given in
Definition 3.13. Taking any function ¢, sufficiently smooth on Q, and Q_ (but not necessarily
continuous across the line z = 0) and vanishing on 99 \ (3¢ U X;), the weak formulation of the
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above system is

0 1
hoyp + hip — / 2D (2)p(21, 2) dz + / 200 (2)p(wo, 2) dz
Qy a_ —1 0

_ / V(—20pp — 02(vp) — 022 (ap))
Q. uQ_

_/ V(azz/ O‘x‘P"'az/ ’Yx‘ﬂ) +/ V<8zz/ Oéac@"'az/ ’79090)
Q4 T T _ xo zo

Xy xr

+ an(m, 0)(/301 am(xlv O)CP(xla 0+) dz’ + / Oéx(x/’ O)SD(I/’ 07) da’ (334)

Zo Zo

+ a(z,0) ((p(m,0+) — oz, 0_)) ) dx

- [V o( [ @07 + )@, 0) a’

o xT

+ / " (0:(000) (',07) + (rap) (@', 07) da’

0

+ (0:(ap)(@,0%) = 0:(ag)(2,07)) + (v¢)(2,0%) — (w)(x,O‘)) da.
Following the reasoning of Section 2.3, this leads to the following generalization of Lemma 2.6.

Definition 3.6 (Dual profiles). We define ®° and ®' as the weak solutions to

—20, D7 — 0,(v97) — 0..(a®?) — 0. [ p® =0, [[1 7T =0 in Qy,

—20,®7 = 0.(Y®7) = 0. (a®?) + 0z [, 0 ® + 0. [} 7B =0  inQ_,

&7 (29,2) =0 for z € (=1,0), (3.35)
& (21,2) =0 for z € (0,1),

QI (z,£1) =0 on (zo, 1),

together with the jump conditions

[a®],—o(x) —|—/ ag(z',0)®7 (', 07) da’ —|—/ oz (2',0)®7 (z/,07) da’ = 1,4 (3.36)
and
0. (ad) + 4] _o(x) + / (0 (0s®9) + 71,87) (o, 0F) da’
= (3.37)
—|—/ (9:(az®?) + 7, ®7) (2/,07) da’ = —1 ;.

0

In the next paragraphs, we prove the existence and uniqueness of solutions to these dual systems,
in a suitable sense. We emphasize in particular that our assumptions on the coefficient v; do not
ensure that 9,71 € Li (Q), for instance. Therefore, we will take special care to define rigorously
the integral [ 7, ®7.
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3.4.2 Preliminary observations

As emphasized above, since the coefficient ; has low regularity, the meaning of equation (3.35) is
not so clear at this stage. Therefore, we shall start with some preliminary remarks that will allow
us to define the profiles ®/ is a rigorous fashion. We will introduce in particular some notations
and tools which will be used throughout this section.

e Unknown 67:

First, let us consider the unknown ©7 defined by

o ::{ a®l + [T o, ®F  in Qy, (3.38)

ad®l — fji a;® in Q_,
Formally, 0,07 = ad,®7, so that ® can be retrieved from ©7 thanks to the inversion formula

J 3 )
9 — / %@j in Q_},.,
«Q
o fra. (3.39)
— —I—/ o7 in Q_.
« 2o O

It follows in particular that [|®7(| 2 < [|©7]|L2 and [|0.®7|| 20,y S 10:07]|L2(0.) thanks to
the L N H1H} bound on o — 1 of (3.10).

e Operator G:
When v € HL(L?), setting I := v/, it will be convenient to define the operator

f;‘l F$6 in QJ’_,

z 3.40
_faco r,© inQ_. ( )

G[O] :=TO + {

We will generalize in Lemma 3.8 the definition of the operator G when - merely satisfies the
assumptions of Proposition 3.1. Formally, 9,G[07] = 70,®7 and G[©7] = y®7 + [ 7, PI.

Therefore, equation (3.35) can be written as
—20,07 —0.G[07] - 0..07 =0 in LU,

09 (z0,2) =0 for z € (—1,0), (3.41)
0 (x1,2) =0 for z € (0,1),

while the jump conditions (3.36)-(3.37) become
[©7],20 = 1,-1,

[0:67 + G[O7]]__ = ~1;m0.

(3.42)

Remark 3.7. Under the assumptions of Proposition 3.1, we can define I' :== zI'y 4+ T'y, with
Ty := i/, and T'1, Ty satisfy the same bounds (3.10) as y1,7v2. For instance, the L;O(H%/z)
bound for Ty stems from the same bound for 1, the LS°(L2) bound for o, and the pointwise

multiplication result Lemma B.3.
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e Lifts for ©7:

It will be convenient, in the course of the proof, to introduce a lift for ©7 in order to remove
some jumps across the line {z = 0}. More precisely, we introduce a lift which will remove
the jump of ©7 and of G[©7] + 9,07 (but which will authorize a jump in the z-derivative of
the lifted function). Other lifts are also considered in Appendix C.1. We write

@j = (]-j:1 — leZO)X(Z)1Q+ + @;,
where x € C°((—1,1)) is such that x =1 in a neighborhood of zero, so that @g is such that

[0])1.=0 =0, [0:0] + G[©7]].—o = 0. (3.43)
Note that
GlOo] = G[(1jo1 - 21,-0)x(2)1a,] + G[6]]
= 1Q+F(l'1, Z)(ljzl — le:Q)X(Z) + G[@é]

Therefore, the lifted function @g satisfies, in Q4

~20,0] - 0.(0.6] + G[6]) = Lo00:: (L= — 21;=0)x(2))

+ 0, (L.50(1=1 — 21=0)x(2)T' (21, 2)) ,

0 — 0, (3.44)

J
flz==%1
0} (xg,2) =0 Vz € (-1,0),
O} (r1,2) = — (1j=1 — 21=0)x(2) Yz € (0,1).
We conclude this preliminary step by a result providing some useful bounds on the operator G.

We recall the definition of the functional space B := {u € L2(H}); 20,u € L2(H; ')} (see (1.28)),
whose properties are detailed in Appendix A. We set

18l := [10:Ol|2 + 12020l 12 (1)

Lemma 3.8. Let © € B, and let no,n1 € Hi(—1,1). Assume that ©(xq,z) = no(2) for all z < 0,
O(x1,2) = m(2) for all z > 0. Let « € HyH} such that |ja — 1||g1pg: < 1. Let v € H'. Then

1G]z < (IT2llz1z2 + IT1llz2(re)) (10:O1lz2 + 06l 2 + (7] 22)
FNT2l oo 22y (IOl + [0l [+ Nl |20

+ (T (1, )220,y + 1T 2 @)l [ a2
+ (T (o, )l 2(-1.0) + [Tl z2(22)) ol 222

(3.45)

As a consequence, the linear application
yeH' — G[O] € L?
can be extended in a unique way to the subspace
{(veL*(Q), y=emt+rye, meLIULY)NLE(H?), 72 € HyLZ),
and the extension still satisfies (3.45).
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Proof. Step 1. We first treat the case ng = 11 = 0. We start with the part with I's which is easier.
Using 9,5 € L2, we have

1
F2@+/ 9,120 S P2llrir2 1Ol pee z2) < P2l m2r2|0:0 20, )- (3.46)

L2(Q4)

A similar bound holds in 2_. The term with I'; is more involved. First, we have
127100 2() S IT1llz2 o) 1Ol e 22y S Tl 22 (220 [[0-OllL2 () (3.47)

Concerning the integral term, we use Lemma B.16 in the Appendix, from which we deduce that
20 € L?((0,1), Hééf) We then observe that by definition of the L? norm,

T 1
‘/ 20,110 sup / h/ 20,110
@ L2(Qy) heL2(Qp)llhl o<1 Joy e
xT

= sup / (/ h) 200,T'1.
hELZ(Q+)7|‘h‘|L2S1 Q4 xo

Now, using Lemma B.9, for any z > 0,

/ (/ h> 200,11

Integrating with respect to z and using a Cauchy—Schwarz inequality, we get

T
5 ”FlHLg"(H;/Z) (||Zam@HL2(H—1) + ||82;@||L2(Q+)) . (3.50)

Gathering (3.46), (3.47) and (3.49), we obtain (3.45) in the case 79 = 1 = 0.

S Tl 221201 g2 1 All 22 (o 21)- (3.48)

5 ||F1HLgo(H;/Z)HZG)HLi(H%f) (3.49)

L2(Q4)

Step 2. The case of non-vanishing n;. We write
0 =0 +m(2)x(x — 21) + no(2)x (= — 70),

where x € C°(R) is such that x = 1 in a neighborhood of zero and supp x C B(0, (z1 — x0)/2).
According to the first step, G[O] satisfies (3.45) with 79 = n; = 0. We then note that

100 (z1,2) — [ T(2, 2)X (' —x1)da’  if 2> 0,
Glmx(z —x1)] = ni(2) { ol flx %(x’{aﬁz)x'((a:’ —)xlg da’ Y if z<0.

The estimate follows easily.

Step 3. Conclusion. Now, assume merely that v, € L2(LX) N L (H'?) and vy € HL2. Let

Yin € H' such that
e = yunllzze) + 11 = Yinll o vy + 2 = v2mllm22) = 0.

Let G, be the operator associated with v, = 2y1,n +v2,n € H 1. Then, according to the previous
estimates, G,[O] is uniformly bounded in L2. In fact, since the operator G' depends linearly on 7,
the sequence G,,[0] is a Cauchy sequence in L%. Hence, it has a unique limit in L?(2), which we
still denote G[O)]. It follows from standard arguments that the limit does not depend on the choice
of the approximating sequence 7,, and thus G[O] is well-defined. O
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This lemma allows us to define a notion of weak solution for the following system

-20,0 - 0.G[O] —0..0 = f, in Q4
O(-,£1) =0,

O(z1,2)=m Vz>0,

O(xp,2) =np Vz<O0.

(3.51)

Definition 3.9 (Weak solution to (3.51)). Assume that the coefficients cv,~y satisfy the assumptions
of Proposition 8.1. Let ng,n1 € Hi(—1,1), f € L2H !

We say that © € B is a weak solution to (3.51) when* O(x;,2) = n; for (=1)"*12 > 0 and, for
every V € L2(H}(-1,1)),

/azeazv+/ G[@]82V<zam®,v
Q Q

> =(f V>L2 H7'.L2H} (3.52)
@/ p2HY L2 HL e e

3.4.3 Existence and uniqueness of the dual profiles &7

Let us now state our main result concerning the profiles ®7:

Proposition 3.10 (Existence, uniqueness and regularity of the dual profiles). Assume that «
and 7 satisfy the assumptions of Proposition 3.1. Then system (3.35)-(3.36)-(3.37) has a unique
solution ®7 such that ® € Z°(Q4). Equivalently, system (3.41)-(3.42) has a unique solution ©7
such that ©7 € Z°(Q4). Furthermore,

107|200,y + 197|200y S 1. (3.53)

The above proposition will rely on two separate lemmas, whose proofs are postponed to Ap-
pendix C. The first result is the existence and uniqueness of weak solutions to equation (3.51),
proved in Appendix C.2.

Lemma 3.11. Assume that v = zy1 + 72 and that o, v1,7v2 satisfy

oz lloo + [la = oo + [[azz]|L2 < 1,

3.54
IMllzz e + Il e gz + ellayes) < 1. (3.54)

Let no,m € Hi(=1,1), f € L2H L.
Then system (3.51) has a unique weak solution in the sense of Definition 3.9. Furthermore,
this solution satisfies the estimate

1 0
/ 20(xg,2)* dz —/ 20(z1,2)? dz + [|©]F2 1 + ||z8$®||izH71
0 -1 o v

Sz g+ ol vay + iz 1) (3-55)

4Recall that if © € B, the traces on x = z; are well-defined in .#2(—1,1) by Lemma A.1
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Note that this implies the existence and uniqueness of weak solutions ©/ € L2ZH!(Q4) to
(3.41)-(3.42). Indeed, according to Section 3.4.2, it is sufficient to apply Lemma 3.11 to the case

f(x,2) =1.500.. (1j=1 — 21j=0)x(2)) + 0> (150 ((Lj=1 — 21=0)x(2)) ['(z1,2)),
mo(z) =0,
m(z) = —(1j=1 — 2Lj=0)x(2).

The existence and uniqueness of 9§ which solves (3.44) follows. From there, we obtain the existence
and uniqueness of ©7 in L2H!(Q.), and eventually of ®’ given by (3.39).

The next result is the Z° regularity of these dual profiles, which holds under slightly more
stringent conditions on the coefficients o and «y, and is proved in Appendix C.3.

Lemma 3.12. Assume that o and v satisfy the assumptions of Proposition 3.1. Let ©7 € B be
the unique weak solution to (3.41)-(3.42). Then ©7 € Z°%(Q4.).

3.4.4 Well-posedness of equation (3.29)

We now turn towards the existence and uniqueness of solutions to (3.29). The first step is to exhibit
a definition of weak solutions for this equation. This definition follows from the computations from
(3.34) and Section 3.4.2.

Let us start with the case when 8,y € L?, so that hg € L?(2), hy € L*(Q_). In this case, we
say that V is a weak solution to (3.29) when, for every ® € B such that ® = 0 on 9Q\ (o U 1),

—<Z3x‘137V>L2H;1,L2H3+/G[9]3ZV+/3z@3zV

“ e N (3.56)

:/ h0<I>+/ h1<I>—/ zAl(z)q)(xl,z)dz—F/ 2A0(2)®(x0, 2) dz,
Q+ Q_ 1

Yo

where O is defined by (3.38) (replacing ®’ by ®).

We now perform transformations of the source and boundary terms, whose purpose is to re-
write the terms involving 7; in the right-hand side in a weaker form. We also force the appearance
of the function ©, which will be convenient in the rest of the paper. We recall that

~1 ~/

20i(2) = g(@i, 2) + (i, 2)0; (2) — (@, 2)0; (2).

and that h; = 0,9 + axazz&- — %82&. As a consequence, we have
/ D, g +/ (g®)5, = —/ 90,® = —/ Yo0=| a.(2)e +/ (Z0) .
Qy o Q Q, @ Q4 o 5o V¥ /%o
Similarly, for any z > 0,
z1
/ g (x, 2)P(z, z) de + a(zg, 2)P(x0, 2) = O(z0, 2)
xo

and
/ o, 2)B(x, 2) d + (w0, 2)B(z0, 2) = G[O] (20, 2).
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Therefore,

hofb—i—/ 20o(2)®(x0, 2) dz
Q, o

(67

:/Q+ 8, (9)@+/EO [(g(xo,z)+&)”(z))@(wo,z)—&'(z)a[e](xo,z) dz.

The next step is to isolate the terms involving I'y. To that end, we set G = 2G1 + Ga, following
the decomposition I" = zI'; + I's. Then, for a.e. z > 0,

2G1[O](xo, 2) = 2(I'10)(x0, 2) +/ 20,110 = —/ I'20,0,

o 0
T1

GQ[@] (Io, Z) = (FQ@)(I’(), Z) =+ 8IF2@

Zo

It follows that

ho® + / 20o(2)P(z0, 2) dz = / 0y (g) e — ci)l(z)ﬁng@ + (%/(z)l“lzaz@
Q, %o Q, o,

@ Q4
-|-/E {% + (%H(z) - C%I(Z)FQ:| (z0,2)O(x0, ) dz.

Similar computations in 2_ lead to

/ hi® — /Z 2Ry (2)B(x1, 2) dz = /Q, By (%) o - /Q, 81 (2)9,T20 + /Q, 81 (2)1'120,0

— /El (2 + 5~1H(z) — (5~1,(2)F2) (z1,2)0O(x1, 2) dz.

o
Gathering all the terms, we are led to the following definition.

Definition 3.13 (Weak solutions to (3.29)). Let g € HLL?. Assume that the coefficients a and y
satisfy the assumptions of Proposition 3.1. Assume furthermore that §5(0) = §7(0) = 0 and

1 ~ ~ 2
[ L+8e -] <t

We say that V € L2(Hg(—1,1)) is a weak solution to (3.29) when, for any © € L2(H}(—1,1))
such that 20,0 € L2(H; ') and such that © =0 on 0Q\ (3o U X1),

—<z8m®,v> +/G[®}azv+/azeazvz/aw (3)@
&/ 2112t JQ Q Q a

— /01 [g(;vl,z) +gf(z) — 5/1(2)]?2(361,2)} O(21,2) dz

«

' 5 5 3.57
I R ETSERE B 18N E) NS P

+ (20,0,T1 (1,007 + 1z>056)>L2(H*1),L2(H01)

_/(1z<051 + 12>066)81F2@-
Q
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Let us now state the existence and uniqueness of weak solutions to equation (3.29). Once again,
the proof of this result is postponed to Appendix C.4 for the sake of readability.

Lemma 3.14. Let g € HLL?. Assume that the coeﬁciczents o and v satisfy the assumptions of
Proposition 3.1. Assume furthermore that 50( )= (5’( ) =0, do(1 )= 61(=1) =0, and

119 | S 2

2 48(2) =8| < oo,
s, 2] La

Then equation (3.29) has a unique weak solution in the sense of Definition 3.13. Furthermore, this

solution satisfies the estimate

IVl % ooz + 3 ( /

1
2

[ +07 () - 5'(Z)F2]2> . (3.58)

P

3.4.5 Orthogonality conditions for regular solutions

We are now ready to formulate the orthogonality conditions for the existence of H!H! solutions
0 (3.4). The computations are identical to the ones preceding Definition 3.13, and are therefore,
for the most part, left to the reader. We first assume that ¢ € H' and ; € H'. In that case,
the source terms h; defined in (3.30) belong to L?(Q2). During this first step, we also assume that
giz,2" 1?2 € L*(%;), and that ['j5, 2~ /% € L*(%;).

Going back to conditions (3.33) and using the definition of the functions ®7, we infer that the
orthogonality conditions for (3.4) in order to have H}H! regularity can be written as

/ (1.50ho + 1.<0h1)®7 + / 200®7 — / 20,7 = 976,(0) — 0150(0). (3.59)
Q 2o 31
We then transform the above equalities. As in the previous paragraph, we have

/ ho®7 +/ zﬁo(z)q)j(xo,z) dz :/ Oy (g) el — JNOI(Z)&TFQG) + (%/(Z)Flzaw@j
Q4 o Q4 « Q4 oy

Jr/Z {% + (%N(z) - (%/(Z)F2:| (zg,2)07 (20, 2) dz.

and a similar equality holds on ©_. Grouping together the integrals on Q4 and Q2_, we arrive at
the following definition.

Definition 3.15 (Linear forms associated with equation (3.4)). Let (do,d1, f) € H. We define
9= f(@.Y(2,2)) and 5,(z) = 6(Y (21, 2)). We define, for j = 0,1,

CL(f, 80, 01) ;:/ O (g> e’ +/ (20,01 — 9,T'2,07) (1.<08) 4 1.5000)
Q «a Q
9 v j_ 9 cn_ j (3.60)
+/EO (a+50 r:%) e /)S (a+51 r,3)e
— 0761(0) + 9200(0)-
Remark 3.16. In fact, when (69,01, f) € H, then &(0) = &/(0) =0 for i =0,1. Therefore, the

last term in the right-hand side of the definition can be removed. We deliberately chose to leave
the terms 815;(0) in order to help the reader follow the computations.
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Remark 3.17. Assume that Y is such that u(z,Y (v,2)) = z for all (z,2) € Q, and that
oz, Y (x,2) = u(x,Y (2, 2)), v2 = —lyy(2,Y (x,2)). Then it is easily checked from (3.8) that

S S Y (. 2
52(’2) - ﬂy(.’L'l,Y(.’IJZ,Z))al(Y( 19 ))a (361)
61 (2) = Ta(xi, 2)00(2) + - (xli Z)él'-'(Y(xi,z)). (3.62)

In this case, the boundary terms in the definition of E% can be written as

g N N j 1 " j
45 - Tad) o = DY (20,2)) + 6/ (Y (24,2))0 (35, 2) dz. (3.63
LG o)l = [ Y ) 4 0 ) 2 e (369
Remark 3.18. By Proposition 3.10, ©7 € Z°(Q4), so €7 € Hz/ng(Qi) by Proposition 1.4. A
consequence of this reqularity is the fact that the linear forms £2 can also be extended to the space

HYBLIANLZH® x H*(So) x H*(31).

Indeed, setting g = f(z,Y (2,2)) and 6;(2) = 6;(Y (x1, 2)), we have, using Definition 3.15,

J - g Vi IR oA i N/ e A j
(£, 80,01) <a,8m® >H;/3L3,H;1/3Lg + /Z (% ~28) © /E (5 -1231) ©
+/ Zaazej]-—‘l(]-z<05/1 + 12>Og£)) - / (]—z<Og/1 + lz>05(/))8mr2@j

Q Q
— 8761(0) + 0750(0).

In particular, using Lemma B.4,

j 9
10,0 S ||| e, S 1o gs + 11 g ez

Hy/?12
We are now ready to formulate our regularity results for solutions to (3.4).
Lemma 3.19. Let f € HIL2NL2H?2, §; € H*(X;), and let i € Q*. Let g(x,2) = f(x,Y(z,2)),

0i(2) = 6;(Y(x4,2)). Assume that the coefficients o and ~y satisfy the assumptions of Proposi-
tion 3.1. Assume furthermore that

2

1 ~ ~
/E [+ —en] <.

Consider the unique solution U € Z°(Q) to (3.4). Then U € HLHL(Q) if and only if

0L (f,00,01) =0, j=0,1. (3.64)
Furthermore, in this case
1 - ~ 2
0y S 1 e+ U s+ 3 [ o [24 ) =Fm] + 155 669)
i=0,1" >
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Proof. The proof goes along the same lines as the one of Proposition 2.8. Assuming that the
orthogonality conditions (3.64) are satisfied, and defining U by

- So+ [TV inQ
o {0+wa 3 (3.66)

TV oo
we see that U is a solution to (3.4), and belongs to L?>(H"'). Hence U = U, and therefore 9,U €
L2(H}). Conversely, if U € HLH], then 9,U is the only solution to (3.29). Since the jumps of U

and 0, U across the line z = 0 are zero, the orthogonality conditions (3.64) are satisfied. Eventually,
using Lemma B.4, note that [lgllm:z2 S | fllmzs + 1] 22 0

3.5 Well-posedness results for the linearized problem

Proposition 3.20. Let 4 € Q' such that the coefficients o,y defined by
CY(J?,Z) :ﬂi(;mY(gc,z)), 71(9572) :ﬁz($7Y($,2)), ’72(37’2) = —ayy(LY(m,z))

satisfy the assumptions of Proposition 8.1. Assume also that u(x, £1) = £1, and ||u — y||g» < 1.
Let 60,01 € H*([—1,1]) such that 6o(1) = do(—1) =0, f € Hy (L) N L2H2, and define &; by (3.8).
Then there exists a unique solution u € Q° to (3.1). It satisfies

lullgo < I1f1lL2 + 6ol + 1161 72 (3.67)

Moreover, when additionally 8,(0) = 0 for i = 0,1 and (f(x;) + 6/)(Y (24, 2))/2 € (), this
solution has H;H; reqularity if and only if K%(f, 00,01) =0 for j € {0,1} (recall Definition 3.15).
In this case, and if f(xo,1) + 0§(1) = f(z1,—1) +67(—=1) = 0 and 9,0, f € L*({|y| > 1/4}), u
actually enjoys Q' regularity and one has the estimates

lullgr S W fllmaze + 1 fllzzams + 11020y fllL2(iy1>1/a3)

3 Nl + | H7Go) + 800 G2

i=0,1

(3.68)

H}H(E4) .

Remark 3.21. [t is quite tempting, in view of the above estimates, to infer by interpolation (at
least when flaq =0 and §; = 0) that

||'a||Ql/2 IS Hf”Hééng + HfHLgH{j’/Q + ||fHHéé2H;/2({|y\21/4})' (3'69)

However, because of the linear forms é%, such a result is not obvious. Indeed, we need to interpolate
between L?(Q) and the closed subspace of source terms in HyL2 N L2H3 N HyH}({|ly| > 1/4})
satisfying the orthogonality conditions. This important, but technical step will be the purpose of
Section 5.3 (see Lemma 5.2). As a consequence, we will deduce that the above inequality is true
(see Proposition 5.1).

Another approach to prove (3.69) would be to rely on the characterization of fractional Sobolev
norms by finite differences to establish (3.69) directly, without relying on interpolation theory.
However, while this approach works quite straightforwardly in the full plane R?, we have not been
able to adapt it to handle the boundary conditions on Xg U X1.
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Proof. The first part of the statement is an immediate consequence of the equivalence between u
and U: u is a solution to (3.1) if and only if U is a solution to (3.4).

Step 1. Necessity of the orthogonality conditions. Using Lemma B.4, we see that
||uHH3/dL§ S HU”H%”’L? + HU||L§H;1/33
||U||H§/3L3 S HuHHg/Q‘L]Z/ + ‘|U||L§H;/3.
Additionally, since u(z,y) = U(z, u(zx,y)),
uy(ac,y) = ﬁyUZ(xﬂ ﬂ(xvy))v uyy(xvy) = ﬁyyUZ(xvﬂ(xa y)) + ﬂzUzz(x,ﬁ(%y)),
and since 4y, iy, € L™ (see Lemma 1.10)
lullrz a2y S MUl Lz m2),
and conversely,
U2 (mz2) S llullrz az)-

We infer that
lullgo S 1Ullge < llullge-
Hence Proposition 3.5 implies that equation (3.1) has a unique solution u € Q°.
Now, assume that gi/(O) =0, |2|7 (f(z) + (Y (24, 2)) € H1(E;). Assume that the orthog-
onality conditions f%(f, 80,61) = 0 are satisfied. Then according to Lemma 3.19, U € HlH}.

Using the equation and using the fact that 7o € L™>, v, € L?(H;m) — LP for all p < oo and
0.U € HY(Q) < LP for all p < oo, it follows that

ad.,U= 20,U+ ~0,U — g €L2(L¥)+L*+ Li(LY).
—— —— ~—
€L2H! €LP Vp<oo €HLLZ?
Using the identities

uz(xvy) = Uz(:c,ﬂ(:r,y)) + ﬂmUz(x,ﬂ(x,y)),
Uy (T,Y) = UyUs. (2, 0(2,y)) + Uy Uz (7, u(z,y)) + Uiy U5 (7, u(w, y)),

and recalling that @, € L°(L2) N L* N LP(L2), we see that u, € L2(H,). Conversely, if u, €
L2(H,), using the same line of argument, we infer that u,, € L3(L°) + L2(L°). We deduce,
using the change of variables Y, that U,, € L? and therefore U € HIH!. As a consequence, the
orthogonality conditions (3.64) are satisfied.

Step 2. Q' regularity. Let us now prove that in this case, we have u € Q'. Note that we do not
try to prove that U € Q'. Indeed, U, is a solution to

(Zax + ’Yaz - aazz)Uw =49 — ’YwUz + axUzz~

In the right-hand side of the above formula, there is a term —z0,v,U,, which does not belong to
L? a priori. Instead, we go back to the equation in u and we notice that u, € L2(H?!) is the unique
weak solution to

(W0y — Oyy) Uy = —Ugly + Oy f =: g1,

_ f(@iy) + 67 (y)
U’:E‘EI - 'lTL 9

uz|i1 = 0.
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Furthermore, since i, € Q°, we have u, € L? (LZO), so that the right-hand side g; belongs to L2.
Hence, we can write

ux(z,y) = Wz, u(z,y)).
Note that W and U, are slightly different: indeed,

W(z,z) — Uz, 2) = 11U (2, 2).

Since the term 0,v,U, is precisely the one preventing us that U, belongs to Z°(Q) when the
coefficients are not smooth, we see that the purpose of this new change of variables is to remove a
potential singular part in U.

Then W is a solution to

20, W +~70.W — a0, W = g1(z,Y (z,2)) € L*(Q),
Wemir =0, (3.70)
x5,2) + 6 (Y (zi, 2
Wi, = 22 Y (00)

Hence we can apply the results of Proposition 3.5. Note that the compatibility conditions at (xg, 1)
and at (z1,—1) are satisfied. We infer that W € Z°(2), and thus u, € Z°(2). It follows that
ue Hy L2,

We now prove that (’“)Su € L2. As in the proof of Proposition 2.15, we will need to distinguish
between an “interior regularity”, close to the line z = 0, and a “boundary regularity”, close to the
lines z = £1.

Step 3. Interior regularity. Assume that the orthogonality conditions (3.64) are satisfied, so that
uz € Q°, and that ngf € L2. In that case, writing

Uyy = Uy — f,

we immediately infer that v € L2(H,)). Indeed, since u, € Q°, u, € Li(Hﬁ”) — L2(Lg°), and
tyy € L2(H)) < L°(L2). Note also that @,u, € L.

In order to prove that d5u € L?((xg,x1) X (=14 4,1+ 6) for any § > 0, we mimick the proof
of Proposition 2.15. Multiplying (3.1) by a test function 8§’¢, for some ¢ € C*(Q) such that ¢
identically vanishes in a neighborhood of +1 and on {z} x (—1,0) U{z1} x (0,1), we obtain

/ Uy, 33¢

/3§(ﬂux)8y¢
/(fayyum + 20Uy Uy ) Oy @ + /aumyyay¢
[ st + 281000, = [ 020,01~ 30 (-1 [ (@0,0) w11

i=0,1 Xi
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We integrate by parts both the boundary terms and the interior terms and we are led to
/ﬂu18§’¢ = /(—8361&1, — Uy Uny — 2UyUzyy + UgyUyy + ﬁz(‘?;’u)qS + /&cqﬁay(ﬂuyy)

/qsxz,y (s )3 () dy

101

/(—8311% — By Uy — 2y Uayy + Uaylyy + UgOyt)p — /qbaw(ayuyy)

+ / Oz qbﬂagu

/ O(wiry) [0, (@i, )0V () — Ty ()] dy.

7.01

But we also have
/aux&gd) = /(f+8§)u0§’¢ = —/82]“(;54— /ijuayqz&.

Gathering all the terms and using a density argument, we deduce that for any function ¢ € H*(2)
vanishing on 99\ (Xo U 1),

—/Q(ﬂasuaxtb—i-ﬂzaju(é) —I—/@;lu@yqﬁ
= / [83f - (83ﬂux + 38212uxy + 30y utigyy)] @

/ o(xs, )z, 1)6® (v)).

101

This proves that for any test function xg € C°(] — 1,1[) such that y = 1 in a neighborhood of
z=0,say xo =1on (—1/2,1/2) and supp xo C (—3/4,3/4), xo0,u is the unique weak solution to

aaw(x()@gu) — 8§(X08§’u) = X0 (83]" — afjauw — 3851]1;1,/ — 30y Utigyy) — Xga?‘:’u — 2X(’)8;u.

The right-hand side belongs to L%(£2), and the compatibility conditions at the corners (zg, 1) and
(x1,—1) are automatically satisfied because of the truncation yo. Hence, Proposition 3.5 ensures
that xo(Y (z, 2))du(z,Y (z,2)) € Z°(Q). We infer that xodju € L?, and uxod,0;u € L?. Using
the equation satlsﬁed by u, it follows that xou?d20,u € L?.

In conclusion, we find that the following estimate holds: there exists a constant C, depending
only on € and on xo, such that for any f € HJL? N L2H}, and for any (d,61) € H*(—1,1)

satisfying the assumptions of Proposition 3.20 and such that éé(f, 00,01) =0

(3.71)

1
Ixoullgr < C [ 1flmes + 1 lizmg + S 1ills + Hz<f<xi> 3V (1, 2)

i=0,1 HH(Z4)

Step 4. Boundary regularity. We now take xy; € C2°(R), with x = 1 on [1/2,1], and supp x1 C
[1/4,1]. Note that with the choice above, supp X} C Xy ({1}). Let u; = uy:. Then u; satisfies

uOpu1 — Oyyur = S1:= fx1 — 2x10,u — x{u in (zg,z1) x (1/4,1),
up(+,1/4) = uq1(-,1) =0, (3.72)
u1(x0,y) = x100-
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By assumption, ||& — y|/c < € for some ¢ < 1. Without loss of generality, we assume that ¢ < 1/8
so that @ > 1/8 on (x,21) x (1/4,1). Hence the equation is parabolic. Note also that

a0ur = 0,81 + 920,u1 — 8, udyu,

and the right-hand side is in L?. Thus d%u; € L2,8§8mu1 € L?, from where it follows that
Oyur € L™, with a bound [0,u1 e S (J|uellgo + [|ullgo + |0z X1 2)-
We now differentiate (3.72) twice with respect to y. Since (x0do)(1) = (x000)(1/4) = 0, dgus
is a solution to ) )
(ﬂaz — 5'yy)8yu1 = 8y51 — ﬂyyamul — 2ﬂy8xyu1,
Oour(-,1/4) = Poua(-,1) =0, (3.73)
O2ur (x0,y) = 03 (x100)-
And since 9;(x100)(1/4) = 92(x180)(1) = 0, we have

(ﬂ@x - 8yy)8x8§u1 = 8968551 — ﬂxyyaxul — ’L_Lyyaiul — 28y(ﬂx8xyu1),
OwOpus (-,1/4) = 0,07us (-, 1) = 0, (3.74)
By Oua (0, y) = 05 (x140)-

Now, let us perform energy estimates for the above parabolic system. We multiply by a—lagaa;ul
and integrate over (xg,z1) X (1/4,1). According to the previous regularity estimates on u and
uy, we know that 9,025 € L*(H™'), tigyydpur € L?, Gy, 0iuy € L?. We estimate the terms
Oy (i Opyur) in L2((wo, x1), H1((1/4,1)). It is easily proved that it is bounded in this space. We
infer that 8,05u; € L?((xo, 1), (1/4,1)). Eventually, writing

ajul = U0,uy — S1,

we deduce that 9Ju; € L*((2o,21), (1/4,1)). O

4 Local stability of the orthogonality conditions

This section is devoted to the derivation of some key estimates for the nonlinear scheme we use in
Section 6. Indeed, as explained in Section 1.4, a crucial point of our proof lies in the fact that the
linear forms associated with the orthogonality conditions depend continuously on the data @, in a
suitable norm. This is stated in Proposition 4.1 below.

In this section, we consider two flows @, @ in a Q' neighborhood of the linear shear flow profile
u(z,y) = y. We define two changes of variables Y, Y’ such that

Vz € (xg,11), Vze(-1,1), u(z,Y(z,2))=1u(z,Y'(z,2)) = 2. (4.1)
We define, as in Section 3.1,
oz, z) = ﬁz(x,Y(x,z)), (
y1(x, 2) := Uy (z, Y (2, 2)), .
vYa(z, 2) 1= —lyy (2, Y (z, 2)), (4.4)

and analogously, we define o/, 71 and +4 from @. We set v := 2y + 72 and v/ := 29} + 75.
We then consider the profiles ®7, (®7) constructed in Proposition 3.10, and the associated
linear forms ¢}, ¢2, introduced in Definition 3.15. The main result of this section is the following.
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Proposition 4.1. There exists ¢ > 0 such that, for every u,w € Q' with la—yllor < ¢, u(x;,0) =
0, u(x,+1) = £1 (and similarly for @' ), there holds

166 = Lo e S =l (4.5)

We decompose the proof of the proposition into several lemmas. We first investigate bounds
on the coefficients o — o', v — 4 in terms of ||& — @[|g1/2. Then, we prove that the solutions
®7 to (3.35) depend continuously on the coefficients. Putting together these two results leads to
Proposition 4.1.

Remark 4.2. According to Corollary B.5, the changes of variables Y, Y’ satisfy the assumptions

of Lemma B.4, which will be used abundantly throughout this section.

4.1 Stability of the change of variables

We start by estimating the difference between the two changes of variables.

Lemma 4.3. There exists ¢ € (0,1) and C > 0 such that, for any 4, € Q' such that u(£1) =
w(£1) = =1 and ||a — y|lgr < ¢ and ||t’ —y|lor < ¢, if Y, Y’ are defined by (4.1),

Y =Y |y SIIY — Y/HHZ/IZH; <Cla- ﬂ'HQl/z. (4.6)
Proof. From the definition of Y, one infers that
# ds
Y(z,2)=-1 +/ _. (4.7)
1 Uy(z, Y (2,9))
Hence, combined with the corresponding relation for Y’, one has
2 al (Y'(x,8)) — ty(x,Y(x,s))
Y —-Y’ = y ’ v s 4.8
(@,2) = Y'(@,2) /_1 Uy (@, Y (2, 9))i, (2, Y (2,5)) (48)
From there, it follows that for a.e. € (zg, 1),
u, (Y' (2, ) = uy(2,Y (z,-))
IV (@) = V(s < || 2 i (4.9)
f uy(l‘,Y(.’L‘,))u;(l‘,Y/(l‘,)) L2
We decompose the right-hand side as
ﬂ;/(z7yl(x7))_ﬁy(xay(xv)) _ (ﬂ;_ay)(xayl(xz)) ﬂy(z,Y’(x,))—ﬂy(x,Y(gc,))
ﬁy(m,Y(x,-))ﬂ;(x,Y’(x,)) ﬂy(x,Y(x,~))ﬁ;(x7Y’(m7-)) ﬁy(m,Y(x,-))’[L;(x,y’(x7~))
(4.10)
The first term is bounded in HZ/ 12L§ as follows
(i — uy)(z,Y'(z,)) H
ﬂy(m, Y(x’ ))111('7;’ Y/($7 )) /212
s ) ) (4.11)
< (@, — ay)(z, Y (z, )|l g7 — R e Ty p—
v L (2, Y (@) | e gy 2 (Y @) | e
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Recalling that Y, (x,2) = — (U, /ty) (2, Y (2, 2)), we infer, using Lemma B.4

(ty —uy)(z,Y'(z,))
’L_Ly(:C, Y(Iv ))ﬂ;(zv Y/(I, ))

HHZ/IQLE
S (LR A T T A (4.12)

x (14 tzyll oo L2y + ||ﬂa:ﬂyy||Lg°(L§)) (1+ @y | oo 2y + ”ﬂ/wa;/y”L?(Li))
Slla—a g1+ a3 1+ [[@]15).

Concerning the second term in the right-hand side of (4.10), we write a Taylor formula, namely

Uy (z,Y' (2, 2)) — ay(z,Y (2, 2)) = (Y(2,2) — Y(z, z))/o Ou(x, 7Y (x,2) + (1 — 7)Y (2, 2)) dr.

(4.13)
Hence,
’l_Ly([E, Y/('T7 )) — ay(xa Y(l‘, )) ”
ﬁy(x,Y(x,))ﬂ;(x,Y’(x,)) HZ/HLZ
1
<||Y' - Y||LM(H’7/12) / Oru(x, 7Y (x,2) + (1 — 7)Y (,2)) dr (4.14)
=@ || o /2L
“ 1 v
Uy (z,Y (z,-)) Lo (1) ay (2, Y (x,-)) Lo (H1) '
As previously, we have
1
— S 1+ [lald,
Uy (z,Y (z,)) Lee(HY) o
1
T S1+ @3
%(%Y/(CU,)) Lo (HY) @
Furthermore,
||Y/_YHL:°(HZ/12) S ||Y_Y,||HZ/12H; (415)

And using Lemma B.4,

1
| ey @+ =) ar <1020 310 s + 1030 20 S N8~ .

HI/'?L2
B (4.16)
Therefore, since ¢ < 1, we infer that there exists a universal constant C' such that
Y — Y/HH;/HH; <C (Ha — || g2 + Y — y/HH;/le;) . (4.17)

For ¢ sufficiently small, we can absorb the second term in the right-hand side into the left-hand
side, and we obtain the result announced in the lemma. O
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4.2 Boundedness and stability of the coefficients

We now state two lemmas allowing us to estimate the coefficients « and ~y, as well as their difference
in terms of the Q! and Q'/2 norms of the functions @, @'.

Lemma 4.4 (Bounds on the coefficients in terms of the Q' norm). Letu € Q' such that ||[u—y||gr <
¢ < 1. Let a,y1,72 be given by (4.2), (4.3), (4.4).
Then the following estimates hold (uniformly in ¢):

llo = Ulmzas + 1020l yars e S lla = yllor,
IVill 2o g2 + Il o a2y + 110l L 22) S 2 = yllQr, (4.18)
Ivellmzez + 1002l gars o S 116 = yllgr-
Remark 4.5. Thanks to the above lemma, if | —y||or < &< 1, then a and y satisfy the smallness

assumptions of Proposition 3.1.

Lemma 4.6 (Bounds on differences between coefficients in terms of the Q'/2 norm). Let @, 4’ € Q'
such that ||u —y|lgr < e < 1, ||[u' —yllgr < e < 1. Let o, ', 71,71, 72,72 be given by (4.2), (4.3),
(4.4). Then the following estimates hold (uniformly in c):

HOZ—O/||L§O(HZ/12) 5 H’lj,—’EL/H(‘?l/z7 (419)
v = 7llzeez2) S lla—a'llgie, (4.20)
I = 4l gy S 18— @ g (1.21)

Proof of Lemma 4.4. Concerning the bounds on «, we recall that a(x, z) = @2 (x,Y (, 2)), so that

0, = 20y (2, Y (2, 2)) 0y (z, Y (, z))%—y = 20yy(z,Y (2, 2))
z
and, recalling that Y, (z, z) = — (. /0y)(z,Y (z, 2)),
0310,
Qg = 2Ugyy(2,Y (z,2)) — 2 e — u(a:,Y(x, z)).
Oyt

Noticing that i, 931 € Q° < L(L2) N L2(LF), we infer that [|ag:|z2 < @ —yllgr + 1@ — yll%:-
In a similar fashion,

doiu
ay(x,2) = 2@(33, Y(x, 2)),
so that according to Lemma B.4,
o3 03u
ezl yors o S # = Slu =yl
: vt H3/5L2 vt L2HY®

We now address the bounds on 1 = 4, (z,Y (z, z)). We have, using Lemma B.4

||71||H§/3L§ SJ ||ﬂ$HH§/‘5L§ + ||am||Li(H$/‘5) S; ||ra - y”Ql
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Furthermore,

oY _
O.m = gumy(iﬂ, Y(x, Z))a

so that
107l z2) S 10:mll2wee) S NtayllLzwee) S ltayllLz (a)-

Hence [|0.71 |z (z2) S 1t —yllqr-

Concerning the L?(H;/Q) bound on v, we note that Hg/ng N Hg%/?’HZ1 — C((—1, 1),H;/2)

according to the “fractional trace theorem” [42, Equation (4.7), Chapter 1], so that
H71||L§°(H;/2) S H'YlHH;‘;“Lz + ||8z71||H;/3L§-
We then bound the two terms in the right-hand side, using Lemma B.4. We have

Ill 2o S Nall yaraga + el e S N5 yllar.

Furthermore,
aYy i a
0. (x,z) = a—(x,z)umy(x,Y(x,z)) = Y(2,Y(z,2)),
z Uy
so that, using Lemma B.4,
u U
Haz%HHl/st S — —4 :
=Lz Uy Hi/sLi Uy L2H2/®
We bound the first term as follows
] _ 1 _ _
7 S eyl g1rs o || = Sl —=yllor Iyl myay)-
Yy WH3/ L2 vyl e (H2)
The second term is bounded similarly
u _ _ _
— S Nayll s g2 || = S i = yllgr[tyyllso-
Uy [lp2p2/3 = v llLge(HY)
Eventually, we get
Il sy S lallos = yllgn.
Concerning the term vo = —,,(z, Y (z, 2)), we write

ay

_ax’72(x7 Z) = al.yy(x,Y(a:, Z)) + ox

8;’11(36, Y(x,z2)).

(4.22)

(4.23)

(4.24)

The first term is bounded in L? by ||Tayy |12 S | —yllo1 (see Lemma B.4). Concerning the second
one, we recall that 0,Y = —(u,/uy)(z,Y (x,2)), and therefore 0,Y € LP(Q) for all p < oo (note
that the Jacobian of the change of variables y = Y (x, z) is bounded from above and below by a
uniform constant). And since 95u € H?/3(2) < L°(Q2), we obtain, thanks to the Holder inequality,

10x72ll 2 < (14 [laflou)lle = yllor-

Eventually, 0,79 = —82@/8yﬂ(:10, Y (z,z)) , so that, using one last time Lemma B.4, we obtain the

desired estimate on 0,7s.
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Proof of Lemma 4.6. We use the same type of techniques as in the previous lemma. Recalling the
definition of o, o/, we write

a(z,2) — o (z,2) = w(x,Y(x,2) — (u,)*(z,Y(z,2)) (4.25)
+(@y)* (@, Y (2, 2)) — (@) (2, Y (2, 2)). (4.26)
Using the results of Lemma B.4, the term (4.25) is bounded as follows
Ha;(x,Y(m,z)) - (ﬂ;l)2(ac,Y(x,z))||L§o(H;/12) §||ﬂ§(x,Y(x,z)) — (ﬂ/y)2($,Y($7Z))HH.’ZS/AI(HZ/IZ)

S”ﬂi - (ﬂ;;)z||1rir;/12H§’/‘L + Hﬁz - (a;)2”L§H§3/12'
7/12 173/4 oo o
Note that H,' “Hy'~ — L°°, and therefore it is an algebra. Hence

||’[L§ — (ﬂ;)2”H;/12HS/4 S ||ﬂy — ﬂ;”Hg/mHSM (”ﬂyHH;/IZH;’M + ”ﬂ;JHH;/lesM) SJ ||7:L — a/HQl/z.
(4.27)
Concerning the other term, we have

12— (@) e S gty — By, | pr1ne

S
S My =yl grnzllayyl| e + |y =ty [l ol ome.

Note that
||ayy||Lgo(H;1/12) 5 Hayy”Hg/B(H;l/l?) 5 ||ﬂ - yHQl’

and
gy = Tyl e e S 1= @ gure.

We deduce that
I (2, Y (2, 2)) — (@) (2, Y (2, )| oo 12y S T = T |12

We now address the term (4.26), which we write as

(ﬂ;)Q(m, Y(x,z2)) — (ﬁ’y)Z(x, Y'(z,2)) =2(Y(x,2) — Y'(x,2)) /o (ﬂ;ﬁ’yy)(;z:, 7Y + (1 —7)Y")dr.

Hence, using Lemma B.4 and Lemma 4.3
”(4'26)”H3/4HZ/12 S (HY - Y/||H2/4HZ/12 + ||Y — Y/HLngg/n)
% (Il gz + 1yl ) (4.28)
X (gl g gz + Nyl 2 oo )

<= gure.
Gathering (4.27) and (4.28), we infer that

o= ol sy S 1= @l
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We then address the bounds on 3 — 1. As previously, we write
(=)@, 2) = (Ua(2, Y (2, 2)) = U (2, Y (2, 2))) + (U (2, Y (2, 2)) — U (2, Y (2, 2))) -
Using Lemma 4.3, the first term is bounded in the following way
[t (2, Y (2, 2)) = W (2, Y (2, 2)) | oo (12) < Ny |22 (250) 1Y = Voo S [ = @[] /2.
For the second term, recall that Q'/2 < C°([—1, 1], H}). Therefore, using once again Lemma B.4,
102 (@ — @) (2, Y (2, 2)) | oo (22) SN (@ — ) (@, Y (2, )| yrve 2 + (@ = @) (2, Y (2, 2)))] 2 o2
Sla—u'llgue-

Since

Uy (2, Y (2,2)) —ul(2,Y (2,2)) = 0x((u — @) (2, Y'(2,2))) — 0, Y 0y (u — @) (x,Y'(, 2))),
we infer, recalling that Y, = —u/, /u, (z,Y”),

o (2, Y (1, 2)) — (2, Y (2 2) | e )

@ — @[l grrz + 102" | oo (r2) |0 [| Lo

Hﬂ_'L_L/”Ql/Q.

Consequently,
I = Yillre ey S 1a—@llgu--
Eventually, we address the bounds on v — v4, which we decompose as previously as

('}é - 72)('1:’ Z) = (ﬂyy(x, Y(Z‘, Z)) - ’U’;y(x7 Y(J?, Z))) + (a;y(‘xa Y(l‘v Z)) - a;y(xv Y/(J?, Z))) : (429)
Concerning the second term, we use a Taylor formula
1
w,, (z,Y) =, (z,Y') = (Y = Y’) /0 B (z, 7Y + (1 - 7)Y")dr. (4.30)
From there, it follows that for some o > 1/2, using Lemma 4.3 and Lemma B.3,
||ﬁ/yy(xa Y) - ﬂfyy(mv Y,)

31:/2) S ||Y - Y/”L;Q(Hi/Q)

1
||L2(H ‘/ 33@’(9:,7’5/ + (1 —=7)Y"dr
z 0

L2(HgZ)
<Y =Yl o 12 (193" | L2 ey + 1050 || 2o (£2))

Sl —ullgu: @l qr-

(4.31)
We then address the first term in (4.29). Using Lemma B.4, we obtain
Gy = ) (@Y (22D gy S (W = iy o vy + gy = 22213 ) )
5 H’l] — ﬂ/HQl/z.
This completes the proof. O

60



4.3 Stability of the dual profiles

The penultimate step of this section consists in evaluating the dependency of the profiles @J: in
terms of the coefficients «,y. This is crucial to have a continuity estimate of the linear forms ¢, in
terms of u. Combined with the estimates of Lemma 4.6, the following lemma will lead immediately
to Proposition 4.1 in Section 4.4.

We consider the profiles ©7 and (©7)" constructed in Proposition 3.10.

Lemma 4.7. Let (a,7) and (¢/,7') be two sets of coefficients satisfying the assumptions of Propo-
sition 3.1. Let ©3 (©7) be the associated solutions to (3.41)-(3.42).
Then

167 — (&) llzz () + 120:(87 = (€Yl 2 -

(4.33)
Sl =l grnzy + Im = llee@z) + vz = 2l .-
As a consequence,
. . 1 . . 0 . .
@7 — (q)J)'HLz(Q) —|—/ 2(D7 — (B7))2 (2o, 2) dz —|—/ 12|(®7 — (D9))2(z1, 2) dz
0 1 (4.34)

S lla— 04'||L30(H;/12) + [l — %HL;O(Lg) + lve — 7§||H;/2L3-

Proof. In order to alleviate the notation, we drop the superscripts j, choosing one of the cases
j=0or j=1 (the two cases are similar.) Following Proposition 3.10, we introduce ©,©’ defined
by (3.38), and we define § = © — ©'. Note that [0]|.—o = 0, so that 6 € L2(H}). We also denote
by G, G’ the operators defined in (3.40) associated with («,7), (¢/,~").

It follows that 6 satisfies

~0,(0,0 + G[6]) — 2319 - (1 _ ;) 20,0’ +0.(G — G"[O],

/

o(-,+1) =0, (4.35)
O(x1,2) =0 Vz>0,
O(zg,2) =0 Vz<O.

Then, according to Lemma 3.11, it suffices to estimate the right-hand side in L?(H~1).

Step 1. Estimate of (1/a —1/a/)20,0" in L?>(H~'). Using the Sobolev embedding LI(—1,1) —
H=Y(—1,1) for all ¢ > 1, we obtain
1 1
. ( - ) 0,0
a

1 1
z ( —_ /) 8$@/
(6% (8%
Cllo = o[l g0 24) 12002

Using the Z° bounds on ©' from Lemma 3.12, we get

1 1
z ( — /) 835@/
o o

IN

L2(HIY) L2(LY®)

IN

Slla—alle S lla = a/ll g2y (4.36)
L2(HY) ®
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Step 2. Estimate of (G—G')[0'] in L?(2). As we already did several times, we write I' = 2I'; +T's.
We focus on the bound of (G — G")[©’] in L?(£2y), since the bound in Q_ is identical. Note that

T

(I -0’ + / 9,(T —T")0' = _/ (I - 19,0/

We start with the terms involving I'; and I'}. We have

z1
| s o <00 0 - Tl (437)
@ L2(Q4)
Since , ,
— o —
I =2y 2
« (676
we get
IT1 = Tilleee(r2) S I = Yillee ) + Il 2yl — o[l
Sl =mlleews) + o= o/l o gz
Hence

Sl = Yillze@e) + o= ol oo g7z (4.38)
L2(Q4) z

/ 2Ty - T)9,0

We now address the terms with I's, T'. Integrating by parts, we have

@1
= sup / h/ (T3 —T%)0,0’
L2(Qy) heL?(24),[|hll 2 <1 JQ4 T

sup / (/ h) (Ty —T5)0,0".
her2(), Il 2 <1 Ja, \Ja,

Then, for any z € (0,1), using Lemma B.10, we have

[ ()

Integrating over z € (0, 1) and using the embedding of Lemma B.14, we obtain, for any h € L*(2),

/ h/ (T — T)0,0'
Q+ x

/ (Ty — T4)0,0'

(4.39)

SN2 T2 = Toll 22 ]|©]l 2

éf(x07$1)'

L e S P L (B RN

S nlpz (T2 = F/2||L§H;/2 [CAPICRE

Hence
S P2 = Toll o 12110 20y - (4.41)
L2(Q4) o

/ (Ty — T)0,60'

Now, writing
/ !/
T2 a -
F2 - F/Z = 2 + Vé AR
o oo
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we obtain

T2 = Toll 12 grrve Slvz = Yall g2 vzl oo gy

, , , (4.42)
1 e g el iy + 0 e i)l = ol e g
Therefore -
’ / (F2 _Fé)af@, Lo 5 H’VQ _’y;”LzHi/Q + HOZ—Q/||LZO(H1}/2)» (443)
z ()
Gathering (4.36), (4.38) and (4.43), we obtain the result announced in the lemma. O

4.4 Proof of the stability of the orthogonality conditions

Let us now say a few words about the proof of Proposition 4.1. Let @, 4’ be two profiles such that
e —yllor < ¢, ||@' —yllor < é According to Lemma 4.4, the coefficients o, o 1,71, 72, 75 satisfy
the smallness assumptions of Proposition 3.1. Hence, by Proposition 3.10, we can construct the
profiles ©7, (67)" € Z°(Q.) associated with o, and o/, respectively.

We now use Lemma 4.6 together with Lemma 4.7, from which we infer that

0

169~ (O ooy + [ 209 ~(©) w0, a2+ [ BIO — @) P(@as

S lla = @[[Ga e

Now, let & = (f,00,91) € H. In this case, note that f(x;, ) = 0. Furthermore, since @(z;,0) = 0,

we have Y (z;,0) = 0 and thus?,- (0) = &/(O) = 0. Additionally, there exists a universal constant C
such that C~1'z <Y (x4, 2) < Cz.

—_

Therefore, the linear forms #2 (Z) can be written as

“(E) ;Z/Qaw (W> @J’+/01 ! 50 (Y (20, 2))07 (0, 2) dz

o a(zg, z)
0
- /_1 a(:cll,z) 81 (Y (x1,2)0 (21, 2) dz (4.45)
L0.OIT — @ 01 (Y (21,2)) 36 (Y (o, 2))
+/( 0,0'T'1 — ©’9,I7) <1z<oﬁy(z1’y(xhz)) +1Z>°ay(xo,Y(xo,z))>'

Using the definition of the H norm together with (4.44) and with the estimates from Lemma 4.3
and Lemma 4.6, we infer that

4@ - @

S lla =l Il (4.46)

This completes the proof of Proposition 4.1.

5 Interpolation estimate for the linearized problem
This section is devoted to a rather technical step of the proof, whose necessity we now justify.

As explained in the introduction, the proof of Theorem 3 will rely on an iterative scheme. More
precisely, we will construct a sequence (un )nen, and we will use the estimates of Proposition 3.20 to
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prove that, under orthogonality conditions (that change at every step!), u, is uniformly bounded
in Q. However, in order to prove the convergence, we will need to show that (uy,),en is a Cauchy
sequence. Because of the nonlinear term wu, in the equation, it seems too difficult to show that
(tun)nen is a Cauchy sequence in @Q'. In view of the Lipschitz continuity of the applications
@ € QY2 s £ (see Proposition 4.1), it seems more reasonable to try to prove that (u,)pen is
a Cauchy sequence in Q'/2. To that end, it is natural to interpolate the Q° and Q' estimates
from Proposition 3.20. This step is precisely the purpose of this section. However, because of the
orthogonality conditions, justifying that the interpolate space for the source terms is the expected
one turns out to be quite complicated. In fact, the proof of this result relies strongly on the shape
of the singular profiles @, (see Definition 2.22).

The main result of this section is the following estimate in the intermediate space Q/2. We
recall that the Lions—Magenes spaces Héé 2, Héélz and Hééf are defined in Section 1.5.3. We denote

by Hg/z(—l, 1) the space {f € H3/?(-1,1), f(+1) = 0}.
Proposition 5.1. Let & € Q' such that ||i — yllgr < 1 and such that 0} (@ — y)(x;,0) = 0 for
k=0,1,2 andi=0,1, and @(x,+1) = £1. Let f such that
e L2HY? 0 HyPL2(Q4) N Hoh“LA(Q), (5.1)
1 € Hob (o, n); Hog (1/4,1)) 0 Hog (o, 1); Hog,' (=1, =1/4)) (5:2)

Assume that £2(£,0,0) =

L(f,0,0) = 0. Define the coefficients o and v by (3.5) and (3.6). Let u
be the unique solution to (3.1

) with 50 = 51 = 0, i.€e.

UOyu — Oyyu = [ in £,
us, =0, (5.3)

u|y:i1 = O
Then u € QY2 and

lullgr S 1l o grare + Hf”Hggng(m) T Hf”HééfLZ(QJ (5.4)
+ Hf”H;gl"‘((IO,II);Hééf(l/ﬁhl)) + ||f”Hééf((aco,m);Hééf(fl,flM)).

As explained above, Proposition 5.1 stems from the Q° and Q' estimates from Proposition 3.20,
which we shall interpolate. However, because of the orthogonality conditions, interpolating is not
immediate. We introduce the following spaces for the source terms

Yo = L*(9), 5
V= {f (S H;Lz n LiHS’ f|EoU21 = 0}

endowed with their usual norms and
Yii={f e £(f,0,0)=£3(f,0,0) =0}, (5.7)

endowed with the norm of Y, where ¢2 and £ are defined in Definition 3.15. Since £2(-,0,0) and
¢L(-,0,0) are continuous for the H;Li norm, V¥ is a closed subspace of ).
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In order to obtain the desired regularity of our solutions in the interior of the domain (i.e. close
to the line y = 0) we need to interpolate between )y and Yf. Using classical interpolation theory
(see Lemma 5.17), one can determine Y /5 := [V, y1]1/2 quite easily®.

Nevertheless, there is a difficulty in the determination of the space [Vo, V], 2. This corre-
sponds to the well-known problem of “subspace interpolation”, for which we give a short survey
in Section 5.3. An occurrence of this difficulty was already encountered in Section 1.5.3, since the
space HY/? illustrates that the half-interpolate of L?(x, z1) and HZ (o, 1) is neither H'/2(xq, 1),
nor a closed subspace of codimension 2 of HY?(zg, 1), but involves an “added norm” (see the
integral term in (1.21)), which is reminiscent of the orthogonality conditions f(z¢) = f(x1) = 0.

Therefore, one crucial result of this section is the following lemma.

Lemma 5.2. Let i € Q' satisfying the assumptions of Proposition 5.1. The linear forms £2(-,0,0)
and (L(-,0,0) admit continuous extensions to Y1/2. Moreover, the half-interpolate between Vo and

V¥ of (5.7) is
yf/Z = [ymyf:l 1/2 = {f € yl/Q; g%(f7070) = g'tll(fuovo) = O} ) (58)
endowed with the norm of Yo (see Lemma 5.17).

This lemma relies on a careful analysis of the dual profiles ©7, and in particular on a decomposi-
tion of the latter into an explicit singular part and a regular part. This decomposition allows us to
have quantitative upper and lower bounds on the functions 7 — N (7, £2), which play a paramount
role in interpolation theory (see [39] and Section 5.1.2 below).

The organization of this section is as follows. We start by introducing the theory of subspace
interpolation, and associated notations in Section 5.1. Then, as a first step, we prove an interpo-
lated well-posedness theory for the case of the linear shear flow in Section 5.2, illustrating how the
general theory can be applied for our problem, thanks to the knowledge of the singular profiles of
Section 2.5. Using this first step, we will deduce in Appendix D a decomposition result for the
profiles ©7 into a regular part and a singular part involving the profiles ﬂéing. This decomposi-
tion allows us to identify the interpolation space for the source terms and prove Lemma 5.2 in
Section 5.3. Eventually, we prove the Q'/2? estimate of Proposition 5.1 in Section 5.4.

5.1 A primer on subspace interpolation

Using interpolation theory in a context where one needs to enforce constraints on the data comes
with a specific difficulty, known as “subspace interpolation”. In this subsection, we give a short
introduction and set up notations and a lemma that will be used in the next subsections.

5.1.1 An introduction to subspace interpolation

Let us start by a short introduction to the topic of subspace interpolation and the associated
difficulty. This difficulty is not linked with the difference between complex and real interpolation
methods. Indeed, it occurs even in the case of “quadratic” interpolation between separable Hilbert
spaces, for which all methods construct the same interpolation spaces (see [14, Remark 3.6] and
[15, Section 3.3, item (4)] based on the initial geometric argument of [43]).

5Due to the boundary condition fizous; = 0, it is not exactly true that Y, 5 = H;/2L§ n LiHS/Q (see (5.67))
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Setting of the problem Let A and A} denote two Banach spaces with a dense continuous
embedding X; — Ay. Let X, = [Xy, Xi]s, for o € (0,1), say, for the complex method to fix
ideas. Let ¢ be a continuous linear form on X;, which is however unbounded on X%, and define
its kernel X! := {f € &1; £(f) = 0}, which is a closed subspace of X;. The question of “subspace
interpolation” consists in the determining the relation between X, and [Xp, Xf],. This question
of course admits a straightforward generalization to the case of a finite number of orthogonality
conditions.

Generally, one checks that the closure of [Xp, X], in X, is either a subspace of codimension
one, when ¢ is continuous on X,, or the whole of X, when ¢ is unbounded on X,. In the former
case, there is no guarantee that [Xy, Xf], itself is closed in X, (or, equivalently, that the associated
norms are equivalent on [Xy, Xf],). The first systematic occurrence of this question seems to date
back to [42, Problem 18.5, Chapter 1], which claims that a major difficulty to use interpolation
theory is that “l’interpolé de sous-espaces fermés n’est pas nécessairement un sous-espace fermé
dans linterpolé” (the interpolation space between closed subspaces is not necessarily a closed
subspace in the interpolation space), and asks for sufficient conditions for [Xp, X{], to be closed
in X,.

Some examples The best known and most simple example of such a phenomenon, introduced
in [42, Theorem 11.7, Chapter 1], was already discussed in Section 1.5.3, with the construction of
the space Héé2(m0,a?1) = [L?(x0, 1), Hj (w0, 21)]1/2. As already noted, Héo/z(azmxl) is not closed
in H'/2(z, 1), since its norm involves a non-equivalent “additional term” (see (1.21)).

In [58], using real interpolation between L' and L°°, Wallstén constructed examples illustrating
that this pathological behavior is not limited to exceptional values of the interpolation parameter,
since there exist constraints for which it occurs for every o € (0,1).

Short survey of known results Precising earlier results of Lofstrom [39, 40], Ivanov and Kalton
proved in [29] that, in the general case, there exist two thresholds 0 < gg < 07 < 1 such that:

e when 0 < o < gy, [Xp, Xf}]g = X,, with equivalent norms,
e when oy < o < 0y, the norm on [Xp, X{], is not equivalent to the one on X,
e when oy < o < 1, [Xp, Xf], is a closed subspace of codimension 1 in A,.

In the first case, ¢ is unbounded on X, (the constraint does not make sense). In the second
and third cases, ¢ admits a continuous extension to X, and the closure of [Xy, X{], in X, is of
codimension one.

This classification has generalizations to the case of multiple constraints (see [3]), potentially
involving multiple pathological intervals, associated with each constraint.

In the difficult regime oy < o < o1, more precise results [6, 7] allow computing the “additional
norm” stemming from the presence of the constraints.

The recent work [59] considers a kind of dual problem, by computing interpolation spaces
between Xy and X; @ Rw, where w is a singular function of Xy \ X}, whose singularity is expressed
in polar coordinates. In this work, g = o1. This is also our case below, and our dual profiles also
involve singular parts which are expressed in radial-like coordinates, as constructed in Section 2.5.

6When £ is continuous for the topology of Xo, there is no difficulty. Indeed, one checks that, for every o € (0,1),
[Xo, X ) = {f € Xs; £(f) = 0}, endowed with the topology of X, for which £ is continuous (see e.g. the related
result [42, Theorem 13.3, Chapter 1]).
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5.1.2 A variant of a criterium due to Lofstrom

To prove Lemma 5.2, we will rely on an abstract interpolation result proved by Lofstrom in [39)].
Let Ay and X denote two Hilbert spaces with a dense continuous embedding X; — Aj.
For f € X and 7 € (0,1), let

IF17 = I + 721 F 11, - (5.9)
This notation is actually inspired by [29], as [39] uses instead the quantity
J(7, f) = max (|| fll a0, 7l f ]| 2,) - (5.10)

One checks however that J(7, f) < |||l < V2J(, f), so they can be used equivalently.
Given a linear form ¢ on Xj, one defines, for 7 € (0,1),

N(1,0):= sup £f) .
rex{oy Ifll-

(5.11)

As 7 — 0, upper bounds on N(7,¢) are linked with the boundedness of ¢ on intermediate spaces
between Xy and X;, while lower bounds on N (7, £) are linked with the non-degeneracy of ¢ on these
spaces. In particular, one has the following result, which is a reformulation of [39, Theorem 2] in
the particular case of two constraints having the same “order”.

Lemma 5.3. Let Xy and Xy denote two Hilbert spaces with a dense continuous embedding X7 —
Xo. Let 0, ¢ be two linear forms on Xy. Assume that there exists C+ > 0 and & € (0,1) such
that, for every (co,c1) € St and every T € (0,1),

C_ 777 < N(1,col’ +c10t) < C 177 (5.12)

As in Section 5.1.1, let X} = {f € Xy; °(f) = 1(f) = 0} and, for o € (0,1), X, := [Xo, Xi],,
for the complex interpolation method. Then,

e for every o € (0,5), [Xo, X{]s = X,, with equivalent norms,

e for every o € (G,1), the linear forms (° and ¢* have continuous extensions to X, and
[Xo, Xf]o = {f € Xy; O(f) = £1(f) = 0}, endowed with the norm of X,.

Remark 5.4. Lemma 5.3 does not say anything on [Xy, X{]s for the critical value o = &. In fact,
with the notations of [29] mentioned above, one has oo = o1 = &, so the norm of [Xy, X{]s is not
equivalent to the norm of Xs.

Remark 5.5. In assumption (5.12), it is important to consider arbitrary linear combinations of
the two linear forms (° and ¢*. It would not be sufficient to assume (5.12) with (co,c1) = (1,0)
and (co,c1) = (0,1). Indeed, the lower bound of this condition ensures that the two linear forms
remain sufficiently independent on the intermediate spaces. We state here a formulation giving a
symmetrical role to (° and ¢, whereas [39] uses a hierarchical formulation. We prove below that
our formulation indeed implies Léfstrom’s one.

Proof of Lemma 5.3. This is an application of [39, Theorem 2]. By (5.12) with (¢, c1) = (1,0)
and (cp,c1) = (0,1), both £° and ¢! have “order” & in Lofstrém’s vocabulary. Therefore, there
only remains to check that they form a “strongly independent basis”, i.e. that there exists C' > 0
such that, for every 7 € (0, 1),

N(7,£%) < CNy(r,£Y), (5.13)
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where
M (f)
1117

Let 7 € (0,1). Denote by (-,-); the scalar product associated with the norm || - ||, on X;. By
the Riesz representation theorem, there exists g2, g2 € X; such that ¢/ = (g/,-),. In particular
N(7,07) = ||¢2]|-. Moreover, by (5.14), No(r, £!) is the supremum of ¢! on the intersection of ker ¢°
with the unit ball in X; for the norm | - ||,. Thus, a natural candidate to bound Ny(7,¢') from
below is the orthogonal projection of gl/||gl||. on ker °, namely,

No(r,£Y) := sup{ ; FeXx\{0}and (°(f) = 0} . (5.14)

1 0 1 0
9r gr 9r 97
fr= -R where R ::< , > . (5.15)
gt T gl . lgzll="llg2ll= / -

In particular ||f}]|; = (1 — R2)= and O(f}) = (g%, f}) =0. Thus
1 (f1,97)r 2\4 1 23 1
No(r,£7) > W = (1= R2)z2|g:ll- = (1 = R7)ZN(7, 7). (5.16)

Thus, to prove (5.13), it is sufficient to prove that the ratio R? is bounded away from 1. By (5.12),
for every (cg,c1) € St, ) )
C_177 < |lcogy +crgzll- < C77°. (5.17)

In particular, ) ‘ )
C_177 < |lgills < Cyr. (5.18)

By homogeneity, for every (cg,c1) € R?,
C2r72(cf + ) < cillgr |17 + cillgzlI7 + 2c0e1{g?, g7)r < CLT727(cf + ). (5.19)
Substituting ¢; < ¢;/||gZ|; and using (5.18) leads to the fact that, for every (co,c1) € R?,
P+ c3) <2+ 3+ 2R coer < p (e + ), (5.20)

where p := C_/C,. In particular, using (cg,c;) = (1,1) and (1,—1) yields p> < 1 + R, and
p? <1 - R,. Hence, (5.16) proves that

NO(T7 él) Z pQN(Tv él): (521)

which implies (5.13) with C = p~2. So (% and ¢! form a “strongly independent basis” and
Lemma 5.3 follows from [39, Theorem 2]. O

5.2 Interpolated theory in the case of the linear shear flow

In this subsection, we consider the problem (2.1) at the linear shear flow, with vanishing boundary
data. We proved in Section 2.2 that, when f € L2L?, the solutions to this problem have Z° regu-
larity, and in Section 2.3 that they have Z! regularity when f € HIL? and the two orthogonality
conditions (2.19) are satisfied. Here, we establish an interpolated theory for the problem (2.1)
with source terms f € HIL?, o € (0,1), see Lemma 5.11. This interpolated theory involves the

difficulty exposed in Section 5.1. We define

Xy = L*(Q), (5.22)
X :={feH,L}; fis,us, =0}, (5.23)
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endowed with their usual norms and
Xy = {f € Xy; £9(f,0,0) = £1(f,0,0) = 0}. (5.24)

For o € (0,1), let X, := [Xp, X1],. In order to extend the theory of Section 2 to fractional
tangential regularity, we start by identifying the spaces [Xp, X1],. More precisely, we prove the
following characterization.

Lemma 5.6. Let Xy, Xi and X as above. Then,
e For every o € (0,1/6), [Xo, X1], = X, with equivalent norms.

e For every o € (1/6,1), the linear forms €0 and /1 admit continuous extensions to X, and

(X, By = { € Xs 19(£,0,0) = 77(£,0,0) = 0}, (5.25)
endowed with the norm of X,.

Remark 5.7. The threshold at o = 1/6 is consistent with the observation of Remark 2.29 that the
maps £1(-,0,0) are bounded on HZL? for every o > 1/6.

For 7 € (0,1), we use the notations of the previous paragraph, in particular the norm || - || of
(5.9) and the function N(7,-) of (5.11), with Xy and X; defined as above.

To derive the estimates required to apply Lemma 5.3, two strategies would be possible. Both
rely on the explicit knowledge of the singular radial solutions constructed in Section 2.5, which
are involved in the orthogonality conditions. First, one could impose periodic boundary conditions
on f, compute a 2D Fourier-series representation of (an extension by parity of) the singular profiles
and estimate the functions N working in the Fourier space. Such a frequency-domain approach
is carried out in [6], assuming some appropriate asymptotic decay of the Fourier transform of
the profile defining the orthogonality condition. We choose a second strategy, which stays in the
spatial domain, and involves estimates using cut-off functions whose space-scale are linked with the
parameter 7. This strategy is related to the one used in [59] and inspired by the links between the
K functional of real interpolation theory and the notions of modulus of continuity and modulus of
smoothness of functions (see e.g. [33]).

To prove Lemma 5.6, we intend to apply Lemma 5.3. Hence, we need to bound from below
and from above the functions N(7,£7). By Definition 2.9, £/(f,0,0) = [, 8, f®7. As highlighted
more generally in Corollary 2.28, the profiles ®/ can be decomposed as the sum of a singular radial
part, an z-independent part, and a regular part. The singular radial part is the one that will be
dominating the behavior of the orthogonality conditions. Thus, we start by two lemmas concerning
estimates from above and from below for integrals of the form fQ (O.f)u before moving to the
general case.

i
sing?

Lemma 5.8. Let h € HL? such that h =0 on Yo UX;. Then, for 7 € (0,1),

/Q(axh(x, z))ﬂ;ing(x, —2)dz dz| ST YO (||h| 2 + 7]|02R] L2) (5.26)

where Ug,,,

is defined in Definition 2.22.
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Proof. By symmetry, it is sufficient to prove the result with ¢ = 0, which we assume from now
on, and we drop the indexes ¢ = 0 on r; and ¢; involved in Definition 2.22. We also let x(x, z) :=
Xi(z, —z) of Definition 2.22 and A(t) := A¢(—t), where A is defined in Proposition 2.17. With
these notations )

0 (@ —2) = rEAO)X(a, 2). (5.27)

In particular, since Ag(400) = 0, usmg(xo, —z) = 0 for z € (—1,0). We split the integral to be
estimated depending on whether » < 7% or r > 7%, where a > 0 is to be chosen later. Let
n € C*(R; 0, 1]) such that n(s) =1 for s <1 and n(s) =0 for s > 2.

U

Step 1. Estimate in the region: r < 7%. By Cauchy—Schwarz,

[ B MO 1(r/7)] < Il AL ( / wf(r/f‘*)) . (5.28)

Using the polar-like change of coordinates of (2.45) and (2.48), one has
/ rn?(r/T%) / / T t2 2 (r/7®) drdt < (1%)°. (5.29)
Hence, in this region,

S (7%)%2)|0uh| 12 (5.30)

JRERERUNIOS
Q

Step 2. FEstimate in the region: r > 7%. We intend to integrate by parts in z. At x = x1,

w (z,—2z) =0 for z € (—1,1) because x = 0. At = zg, when z > 0, h = 0 by assumption, and,

sing
when z < 0, u x,—z) = 0 as recalled above. Hence, there is no boundary term and

smg(

[ auheriatnc =t/ = = [ hoc (- rtA@O=atr/m) . 631

First, one easily bounds

| hoax-riAm —n(r/T"‘))‘ < IIRllz2 [ Alloc 10 Xlloo max T2 < 12z (5.32)

For the second term, when 9, hits on the function expressed in (r,t) coordinates, we use the
derivative formula (2.49):

1

; 1+t2 2 1 o
/thaz (rZA(t)( n(r/T) / / 3 A5)r ( St/ ))> e (5.33)

/ / Al 1”2 e (L= p(r/m))BA().

We bound both terms using the Cauchy—Schwarz inequality and the polar-like change of coordinates
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(2.45) with Jacobian determinant (2.48). In particular, on the one hand,

/ / 1;:12 t) dt dr (& (r%(l — n(r/T“))))2

3’)"3 1 + t2 2 1 a 2
- Lt e o)) ae
> — « « « dr .
S/O (r 1(1—77(7"/T ) (' (r/7%)? /(7 )2)7
av-1 [ 2 / 2d3< ay—1
= (%) 1 (57 (1 =n(s)”* +500'(s))°) — S (+*) 7
On the other hand,
o 2 1 2\3
| [P - ae ey p@ac? arar
0 R 9r
00 3,',,3 t2(1 + t2)3 9
— 1- )2 (A (1)) dt d
| L e et
<1
< (/ (1 + 2)(0A(1))? dt) / (1= /o)) dr
R 0 3r
< (r)™
by the integrability property ¢39;A(t) = O(1) of Lemma 2.20.
Thus, gathering the estimates in this region proves that
ek r A (= ate/r )| £ ) (5.36)
Gathering the estimates in both regions and choosing o = 1/3 concludes the proof. O

Lemma 5.9. There exists a family (h )re(o,1) of non-zero, smooth, compactly supported, functions
on ) such that, as T — 0,

> /6 (IRL] 2 + 7Okl L2 + T)|O2RE | 12) (5.37)

Q@hi(:c, 2))tiipg (v, —2) dz dz

and [, Ophluly,, =0 for j # i, where ul;

T Vsing

is defined in Definition 2.22.

sing

Remark 5.10. The bound from below (5.37) involves a term ||02hL|| 12 which is not required at this
stage since the space Xy of (5.23) does not involve regularity in the vertical direction. However, it
will be used in the proof of Lemma 5.16 (see more precisely (5.6) and (5.62)).

Proof. As in the previous lemma, by symmetry, it is sufficient to prove the result with ¢ = 0, which
we assume from now on, and we drop the indexes ¢ = 0 on r; and ¢; involved in Definition 2.22.
We also let x(z,z2) := xi(x,—2) of Definition 2.22 and A(t) := A¢(—t), where Ag is defined in
Proposition 2.17. With these notations, one has (5.27).
Let @ > 0. Let H € C°(R; [—1,1]) and n € C°(R; [—1,1]) such that suppn C (1/2,3/2). For
€ (0,1), we define
hy :==n(r/T)H(t). (5.38)
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By the support properties of H and 7, one checks that h, is both smooth and compactly supported
in 2. Moreover, it is non-zero if H # 0 and n # 0.
Let 7 > 0 be sufficiently small such that the support of h; is included in the region where
= 1. Note that with this choice, we also have [, 9,h,ul,, = 0. Then, using the formula (2.49)
for 0, and the determinant (2.48),

sing

—/8zh7—asing<$, —z)dzdz
3 +t2)% a\—1,/ @ t(l +t2)% o / 3r 3
/ /r At ( ()™ (r /T H(t) — TH(T/T VH (t)) mdt dr

/ / riA(t 3 (r(r) "1 (r/7*)H (t) — t(1 + 2)n(r/7*)H'(£)) dt dr

1+1¢2)2
— (7™)3/2 (t) (t) $3/20 () ds — (+)3/2 tH'(t)A(t) 0051/2 ) ds
= ey [ B a [ (o as - ooy [ EEOZE a7 sty a

(5.39)

In particular, one can choose H and 7 such that the two first integrals are equal to 1 and such
that [ s1/27(s) ds = 0, which ensures that

/ Duhr - TIA()X = —(r2)9/2. (5.40)
Q

Using once again the formula (2.49) for 9, and the change of coordinates of Jacobian (2.48), one
obtains that ||h,||z2 < (79)? and ||0h, ||z < 1/7. Similarly, using (2.50) to compute 92k, and
the same technique, ||02h, || 2 < 1/7%. Thus, choosing a = 1/3 leads to

Ihrllzz + 7l|0zhe L2 + TN02he | 22 S (7%)?, (5.41)
which concludes the proof. O

We are now ready to prove Lemma 5.6.

Proof of Lemma 5.6. This is an application of Lemma 5.3 with & = 1/6. Therefore, we need to
find constants Cx > 0 such that, for every 7 € (0,1) and (cg, c1) € St,

C_77 Y6 < N(7,¢0l0 4 ¢101) < Cy7 /6, (5.42)

Let (co,c1) € St and f € &;. By Definition 3.15,
6(£,0,0) = / Dy f DI, (5.43)
Q

where ®J is the solution to (2.17).
By Corollary 2.28, there exists (dg,d;) € R? \ {0} such that

COE(fv 0’ 0) + Clﬁ(fa 0; O) = /Q 8acf(dOaging( ) + dlubmg( _Z))

(5.44)
+/ Do f (reg + (1 — 2¢0)x(2) L) |
Q
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where &, € Q'. By linearity, dy, di and O, are uniformly bounded for (co,c1) € St. The
first term corresponds to the one studied in Lemma 5.8 and Lemma 5.9. We want to integrate
by parts in the second term. Since f € &1, fis,us, = 0. At z = 20 and z € (—1,0), &/ = 0 by
(2.17). Moreover, a;,, (0, —2) = 0 because Ag(4+00) = 0 and @k, (0, —2) = 0 because ul,, is
compactly supported near (z1,0). Hence, ®req(z0,2) + (1 — 2¢0)x(2)1250 = 0 on (—1,0). The
same conclusion holds at = x; and z € (0,1). Thus, we can integrate by parts with no boundary
term and the second term is estimated as

/Qazf (Preg + (c1 — 2¢0)X(2)L20) | < [ fllz2 /100 Pregllz2- (5.45)

Step 1. Bound from above. Thus, for T € (0, 1), using Lemma 5.8,

[cof(f,0,0) + 1l (£,0,0) S 77O (If |2 +7llflla) - (5.46)

Step 2. Bound from below. For 7 € (0,1) let f; := h,, where h, is constructed in Lemma 5.9,
which ensures that f. is compactly supported in €2 so satisfies (f)|s,us, = 0. Substituting in (5.44)
and integrating by parts yields

col(fr,0,0) + 1 01(f,,0,0) = — / heOp®rog + > di / (Ouhy) Uiy, (2, —2). (5.47)
Q icfo,1y 79

By Corollary 2.28 and linearity, min |dy|, |d1| is uniformly bounded below. We choose h, as either
hY or hl of Lemma 5.9 accordingly. Thus, by Lemma 5.9, as 7 — 0,

|0 (f-,0,0) + 1 05(f7,0,0)| 2 77 % (sl 2 + 7l hellae,) = Clllel| 2 05 Preg |l 2

2 7V (lhr 2 + 7l e ;) (5.48)
=7 VO fr e + 7l 7 llx,)
for 7 > 0 sufficiently small. This concludes the proof. O

Thus, we are now ready to state our well-posedness result with fractional tangential regularity
for the problem (2.1).

Lemma 5.11. Let o € (0,1/6) U (1/6,1/2) U (1/2,1). Let f € HJL?, 6y € H?*(X0), 61 € H*(%1)
such that §o(1) = §1(—1) = 0.

o If o >1/6, assume that €9(f,50,61) = €1(f,80,61) = 0.
o Ifo > 1/2, assume that also that fis,us,—o-

The unique strong solution u € Z°(Q2) to (2.1) satisfies u € Z°(Q) where Z7 () := [Z°(Q), Z*(Q)]»
(and Z' is defined in (1.24)), with the estimate

lullze S 1fllagrz + 1ol > + [191]] 2 (5.49)

In particular,
[ull oo o + el gz S 1 F Nl gz + 190l 2 + (01| 2 (5.50)
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Remark 5.12. The case 0 = 1/6 is not covered in the above result, since this critical level
of reqularity corresponding to the mazimal continuity of the orthogonality conditions was already
excluded from Lemma 5.3. In this case, one would erpect a similar result to hold, but with a
supplementary norm on f, in the spirit of [6, 7]. The case 0 = 1/2 is also excluded, but it would
be possible to include it provided one introduces the appropriate Héég norms on f corresponding to
fizous, = 0 at the H'/2 level.

Remark 5.13. Lemma 5.11 is a tangential result, and does not take into account the hidden
vertical reqularity gains of Section 2.4. Of course, one could adapt it to obtain a fractional result
also in the vertical direction, up to requiring more vertical reqularity on f. This is essentially what
we do in Proposition 5.1 in the general linearized case. Here, we stick to this tangential version
because it is the one we need in Appendiz D to prove Proposition 5.15 below.

Remark 5.14. The reqularity assumptions on the §;’s are not optimal and could be enhanced, but
this is not our concern here.

Proof. Step 1. Case 6o = 6; = 0. By Proposition 2.4, for every f € L?(f), there exists a
unique solution u € Z%(Q) to (2.1) with dp = 61 = 0 and |jul|zo < ||f|/zz. By Proposition 2.8
and Proposition 2.5, for every f € HjL?2 such that fis,us, = 0 (so that Ag = A; = 0) and
£9(£,0,0) = £1(f,0,0) = 0, this solution satisfies u € Z'(Q) with |ul|z, < | fllz222. Hence, by
interpolation, the mapping f + u is bounded from [Xp, X1, to Z°(£). Moreover, from standard
interpolation theory (see e.g. [42, Equation (13.4), Chapter 1]), when o # 1/2, [X, X1], = HZL?
(with null boundary conditions on ¥y U X; when o > 1/2). This proves the first part of the
statement and estimate (5.49). By Proposition 1.4, Z0(Q) < H2/*L? and Z'(Q) — HY/’L2.
Hence Z7(Q2) — [Hg/?’Lz,H;;)/BLg]U = H3/3+UL§ (again, using e.g. [42, Equation (13.4), Chapter
1]). By definition, Z°(Q) < L2H? and Z'(Q) < H.H?, so Z°(Q)) — HZ H?. This concludes the
proof of (5.50) when dg = d; = 0.

Step 2. Arbitrary boundary data. When §y and d; are arbitrary, we extend them to (—1,1) in
such a way that the extension belongs to HZ(—1,1). We then lift the boundary data by setting
wr(z, z) = x(x — x0)0o + x(x — x1)d1, with x € C°(R), supported in B(0, (z1 — x0)/2), and equal
to 1 in a neighborhood of zero. This introduces a source term f; = 20,u; — d,,u; € HLL? in the
equation, whose trace on ¥; is §/. When o < 1/2, we immediately obtain the desired result. For
o > 1/2, we first note that

G(f ~ £1,0,0) = 0.

We therefore introduce a function h; € C°(9) such that
1Pl ezez S 1 gave e + (00l 2 + (101 22

and L _
éj(f - Zamul + h’l7 03 O) == gj(azzul - hl, 0, O) - 0.

We then apply the result of the first step to the system with source term f — z0,u; + h; (which
vanishes on XU %), and the result of Proposition 2.8 to the system with source term 9,,u; — h;.
This concludes the proof. O
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5.3 Identification of the interpolation space for source terms

In this subsection, we prove Lemma 5.16, which is a generalized version of Lemma 5.2. The key
point is the following decomposition result.

Proposition 5.15. Let & € Q' satisfying the assumptions of Proposition 5.1. Define o, 7 by
(3.5), (3.6). Let ©Y, ©! be the profiles defined in Proposition 3.10, and let (co,c1) € R?\ {0}.
There ezists (do,d1) € R*\ {0} and O,eq € HLL? such that

00" + 10" = (—coz + c1)150x(2) + doﬂging(x, —z) + dlasl,ing(x, —2) + Oreg- (5.51)

This decomposition result is reminiscent of Corollary 2.26 and Corollary 2.28 in the case of
the shear flow, and its proof relies on the same key observations. Nevertheless, the proof is quite
technical, so we postpone it to Appendix D. The main idea is to write the equation satisfied by
Oreg under the form 20,065 — 0..01¢g = S, where S is a source term which can be estimated
in H;/?’Lz. Moreover, we prove that we can find (dg,d;) € R? \ {0} such that S satisfies the
orthogonality conditions 7 = 0 associated with the shear flow problem. Then, relying on the
interpolated well-posedness theory of Lemma 5.11 for the shear flow (with o = 1/3), we infer that
Oreg € HLL? (see (5.50)). Although it is rather easy to close an energy estimate with this strategy,
its proper justification turns out to be unfortunately quite technical, because we do not a priori
know that S € Hy/*L2.

Thanks to the decomposition result of Proposition 5.15, the following result is a rather straight-
forward generalization of Lemma 5.6 to the linearized case.

Lemma 5.16. Let i € Q' satisfying the assumptions of Proposition 5.1. Let Yo, Y1 and V¥ as
defined in (5.5), (5.6) and (5.7). Then,

e For every o € (0,1/6), [Yo, Vi, = Vo, V1], with equivalent norms.

e For every o € (1/6,1), the linear forms £2(-,0,0) and €L(-,0,0) admit continuous extensions
to Y, and )
(Yo, V1], = {f € Vs £3(f,0,0) = £;(f,0,0) = 0}, (5.52)

endowed with the norm of V.

Proof. The proof is very similar to the one of Lemma 5.6, substituting the linear form ¢/ with E%.
By Definition 3.15,
fr0.0 = [
Q
where g = foY and o = @ oY (see (3.5) and (3.7)), for the change of variable Y defined in
(3.2), and ©7 is the solution to (3.41)-(3.42). Let (co,c1) € S'. By Proposition 5.15, there exists
(do,dq) € R?\ {0} and O,ee € HLL? such that, for f € Vi,

8, (3) o7, (5.53)

(67

eol2(1,0,0) + 1L (f,0,0) = /

g _ _
[ 01 (5 (g, —2) + il (. —2)

(5.54)
4 /Q 0. (£) (@reg + (1 — me0)x(2)10)

As in the proof of Lemma 5.6, we can integrate by parts with no boundary term and the second
term is estimated as

/Q 0: (£) (Orcs + (2 = 20)x(2)1e0)| < ll9/0] 12110 Ore 2. (5.55)
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Step 1. Bound from above. Thus, for 7 € (0, 1), using Lemma 5.8,
|0l (£,0,0) + c1 £ (£,0,0)] S llg/allpz + 77 (llg/all> + 71|0(g/@)|L2) - (5.56)

By the estimate of Lemma B.4 on Sobolev norms of compositions, whose assumptions are satisfied
thanks to Corollary B.5, there holds

lg/adlze S If/Tyllze and (|0u(g/a)llLe S If /yllesLs + 1F /|2 a2 (5.57)

Thanks to the assumption @ € Q' and ||u — yllor < 1, and using the embeddings of Lemma 1.10,
we can estimate all terms. Since the computations are very similar to those of Section 4, we leave
them to the reader. Using the embeddings Q' — L;"WyQ*‘x’, Qr — H;Hj and Q! — Hg/BHS, we
infer

]i < flse and \_fQ <l (5.58)
Uy HLLG yllL2p2
We conclude that

lco9(£,0,0) + 105 (£,0,0)| < 770 (|| fllz2 + 7l fllyy) - (5.59)

Step 2. Bound from below. For 7 € (0,1) and (x,y) € Q, define
fr(@,y) = (aghs) (@, a(z,y)), (5.60)

where h, is constructed in Lemma 5.9, which ensures that f. is compactly supported in  so
satisfies (fr)jsous, = 0. Letting g, := fr oY, one has g./a = h,. Substituting in (5.54) and
integrating by parts yields

COK%(fT,O,O)+61€711(f‘,-,0,0):/h.,-am@rcg+ Z di/(ﬁmhf)ﬂémg(x, —2). (5.61)
Q ic{o,1y 79

By Proposition 5.15 and linearity, min |dg|, |d1 | is uniformly bounded below. We choose h. as either
hY or hl of Lemma 5.9 accordingly. Thus, by Lemma 5.9, as 7 — 0,

leofa(f,0,0) + e1b5(£7,0,0)] Z 7 VC (el 2 + 7llhr ) = Cllhrl| 2 02O reg| 2

_ (5.62)
270 (I llce + 7llhellyy)
for 7 > 0 sufficiently small. By Lemma B.4,
I £llz2 S Naghellze < l1hellze. (5.63)

By Corollary B.6 about estimates for compositions,
£ lly, S Naghelly, - (5.64)
Using the embeddings Q' — H;H; and Q' — L;;°Wy2’°°7 we infer
laghellmrz S hellmzz,  105@@h )z < l1he]l- (5.65)
Thus || f- |y, < |lh-|ly, and, recalling (5.63) and (5.62),
leota(fr,0,0) + erbi(£7,0,0) Z 7 VO (I frll2 + 7 frlly) - (5.66)

This concludes the proof. O
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Lemma 5.17. Let o € (0,1). Let YV, := [Vo, V1]o, for the complex interpolation method.
o Wheno € (0,1/2), Yo = HJL; N L2H.°.
o When o =1/2,

f2(x,y) do dy + [2(x,y)
|33 —330| Q

=

1B W+ M1+ | drdy.  (5.67)
Y x n

o Wheno e (1/2,1), Yo ={f € HILZNLZH}"; fis,us,=0}, with the usual norm.

Proof. This follows from classical interpolation theory for intersections (see [42, Theorem 13.1
and Equation (13.4), Chapter 1]), and from (one-sided versions of) the equality Héé2(m0,m1) =
[H{ (w0, 1), L (0, 21)] 1 (see [42, Theorem 11.7, Chapter 1]) . O
5.4 Proof of the interpolation estimate

Proof of Proposition 5.1. We distinguish between the regularity of the solution to (3.1) close to
the line z = 0, for which we use the interpolation result of Lemma 5.2, and the regularity close
to the lines z = +1, for which we use the parabolic nature of the equation together with classical
interpolation results.

Step 1. Q'/? regularity close to the line z = 0. Let xo € C>°(R) such that xo = 1 in (—=1/2,1/2),
and supp xo C (—3/4,3/4). Consider the application

Lo:feL?— xoucQ’, (5.68)

where u € Q° is the unique solution to (3.1) with dy = d; = 0.
Then, according to the proof of Proposition 3.20 (see in particular estimate (3.71)), Ly : Yo —
Q°, Lo : V¥ — Q' and there exist finite constants Cp, C; such that

Lol co.@0) < Cos ([ Lollcyi.qry < Ch. (5.69)

The constants C; depend only on 2 and on (. By the interpolation result of Lemma 5.2, it follows
that Lo : V), — Q2.
Therefore,
Ixoullgiz < Hf||H30/l2L§(Q+) + Hf||Hé(§T2L§(Qf) + 1l 232 (5.70)

Step 2. Q'/? regularity close to the lines z = +1:

We focus on the regularity close to the line z = 1. As in the proof of Proposition 3.20, we
introduce a cut-off function x; € C*°(R) such that x; =1 on [1/2,1] and supp x1 C [1/4,1], and
we set u; = uyi. Note that with this choice, supp x] C {xo = 1}. We recall that u; satisfies the
parabolic equation (3.72), with o = 0. Hence, we will prove the interpolation result directly on the
parabolic equation (3.72). One remarkable point lies in the fact that the orthogonality conditions
are not necessary to have regularity close to the lines z = +1.

Let Q1 := (z0,71) X (1/4,1). For any S € L?(£2;), consider the solution v of

U0V — Oyyv = S In
Vly=1/4 = V=1 =0, (5.71)

'U|:1::x0 =0.
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and we consider the application
Ly:8 € L) —ve L®((xo, 1), L2(1/4,1)) N L*((xo, x1), Hy (1/4,1)). (5.72)

Note that since v vanishes on {y = 1/4}U{y = 1}U{z = ¢}, compatibility conditions at first order
are automatically satisfied in the corners (xg,1/4) and (xg,1). From classical parabolic arguments,
it follows that

L1(L*(Q1)) <= L*((zo, 1), H*(1/4,1)) N H*((xg, 1), L*(1/4,1)). (5.73)
Now, let
K1:={S € H ((zo,21), H (1/4,1)) N L*((x0, x1), H3(1/4,1)), S(zo,-) = 0}. (5.74)
Let S € K; be arbitrary, and let v = £;(S). Then v, is the unique weak solution to

U0V + UgVy — OyyVy = Sz In Oy,
Vzly=1/4 = Valy=1 = 0, (5.75)

Vplz=x9 = 0.

Note that the initial data for v, at * = x¢ is obtained by taking the trace of (5.71) and noticing
that the compatibility conditions in the corners (xg,1/4) and (x¢, 1) are satisfied.
As a consequence, since ||iz]lc < 1,

Hvx||Loo((zo,zl),Hg(1/4,1)) + H%yy”L?(Ql) + Hvxx||L2(Ql) S ||Sx||L2(Ql)-

We then follow the same path as in the proof of Proposition 3.20. Differentiating (5.71) twice with
respect to y and then once with respect to z, we find first that

[0yy |l oo ((wo,a0), 12 (1/4,1)) + 105v0llz2 00y S I1Sellz2(n) + 1055220
and then
102050 Lo (wo,21),£2(1/4,1)) + 102050l L2021 S 10y S|l a1 (1) + 1025 22(21)-
Using equation (5.71), we infer eventually that
105l L2y S 1SNk, -

Therefore
2775 272
L1(K1) C LyH)NH;L. (5.76)

Let us now interpolate between (5.73) and (5.76). We set

Ko = [L(),K1], 5 = Hoy ((zo, 1), Hod > (1/4,1)) N L*((wo, 21), Hy'*(1/4,1)).

1/2
We find that
L1(K1/2) € L*((wo, 1), H2(1/4,1)) N H¥?((w0,21), L*(1/4,1)).
Going back to (3.72), we infer that

IxaullQrz < Ixaull pa e + Ixaull gz o < ISty o
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where S7 = fx1 — 2x10,u — x{u.
Recall that supp x4, supp X7 C {xo = 1}. Therefore, using the estimates on xgu,

||51H’C1/2 5 ”fHHéélz((wo,wﬂ,Héo/f(1/4,1)) + ”fHL?EHS/z + HXOuHHéfH;’“ + ”XOuHLiHS/Z’ (577)
where, by Lemma 1.10 and the estimates on xou,
Ixoul g e + ol e S Doullars S Wy racay + Wl iagesacay + Il e (5:78)

Gathering the results on xou, x1u (and, symmetrically, on x_ju), we obtain the estimate (5.4). O

6 The nonlinear problem

In this section, we prove Theorem 3. The most difficult part is the existence statement, which relies
on the scheme described in Section 1.4. Let us recall its main steps, and their connections with
the intermediate results of the preceding sections. Let (f,do,d1) € H, with ||(f,d0,01)||x <n < 1.

e We define iteratively a sequence (uy,)nen by solving the equation

(y + un)awun+1 - ayyun+1 = f + V2+1f0 + 1/»,11+1f1 = fn+17
(Unt1)js; = 0i + V51107 + vy y10) =1 Gins, (6.1)
(Un+1)jy=t1 =0,

where the triplets (f*, 85, d7) are defined in Corollary 2.13. The coefficients ¥, ; ensure that
the orthogonality conditions

gg/—i-un (f7l+17 60,n+1a 61,n+1) =0

are satisfied. It then follows from the analysis of Section 3 (see in particular Proposition 3.20)
that u, € Q" for all n € N,

e We also prove uniform bounds on the sequence (uy, )pen in Q", and on the sequences (u,’j)neN.
More precisely, we prove that there exists a constant C' such that for all n € N,

[unllgr + vl + [vp] < Cn.

These bounds follow from Proposition 3.20 and from the Lipschitz continuity of the maps

we QY2 s giJru € L(H) (see Proposition 4.1).

e The next step is to prove that (u,)nen is a Cauchy sequence in Q'/2. To that end, we write
an equation for w,, := t,4+1 — U, namely

(y + un)aan - ayywn = —wp_10zUn + fvz+1 - fnv
Wn |z, = 5i,n+1 - 5i,na
U}n|:|:1 =0.

Note that the nonlinear term w,,_10,u, in the right-hand side does not belong to H;Lz N
Lf:HS, and therefore we cannot use our Q' estimate. However, the term f, 41 — f,, involves
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Vni1 — Vn, and therefore the difference ¢, — €.,

This dictates our choice of the Q'/? norm to control w,. Fortunately, the nonlinear term
Wy —10Uy, is bounded in Hi/zLi N L§H2/2 by [|[wn—1llgi/2[|unllqr-

which is controlled by [Jwy,—1][g1/2.

The estimate on w,, therefore relies on two main ingredients: (i) the estimate from Propo-
sition 5.1, which itself uses crucially the interpolation result of Lemma 5.2; and (ii) the
Lipschitz regularity of @ € Q2 — 2, which will lead to an estimate of the type

|1/n+1 - Vn\ S 72||wn71||Q1/2-

We therefore obtain a recursive estimate of the type
lwallgre S nllwa-1llgiz + n*lwa—2ll g2,

from which we deduce that (u,)ney is a Cauchy sequence in Q/2.

e We then pass to the limit in the equation for w,,, and obtain a solution in Q' of an equation
of the type
(y+ u)0pu — Oyyu = f+ 0 f0 4+ vl fl
uy, = 6; + 007 + 1o},
Uly=+1 =0,

where the numbers 19, v! are such that

O (A0 + v Y 8o + 1080 + 1165, 60 + 1067 + o)) = 0.
This leads us to study the nonlinear maps (f,dy,d1) € H — (v°,v'). We prove that these

maps are Lipschitz continuous. The definition of the manifold M from Theorem 3 will then
rely on these two maps, accounting for some nonlinear orthogonality conditions.

The organization of this section is as follows. We first state a proposition giving the existence
of the two maps °,v!, and explain how Theorem 3 follows from that proposition. The rest
of the section is then mostly devoted to the construction of the maps »° and v!, following the
steps outlined above. We end the section with a proof of uniqueness, and of the necessity of the

orthogonality conditions.

6.1 Definition of the manifold and reformulation of the existence result

Throughout this section, we denote by = = (f,0p,d1) an element of H. We recall that there
exists Z°,Z! € H such that £7(E¥) = 1, (see Corollary 2.13), and such that ker /0 N ker {1 =
(RZ° + R=HL. We set ng = ker (9 N ker ¢1, and we recall that if = € ng, the model problem
(2.1) can be solved with Q' regularity, see Proposition 2.8 and Proposition 2.15.

For nn > 0 denote by B, the open ball of radius 1 and centered at 0 in Hslg. For every = € H,

one has the decomposition

(1]
(1]

T+ E%EWRE + ELEME (6.2)

where =+ € ng and the linear maps = ++ =+ and = + (Z¥; =) are continuous. We will deduce

the existence statement of Theorem 3 from the following proposition.
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Proposition 6.1. There exist n > 0, two Lipschitz maps 1° and v* from B, to R with 0(0) =
v1(0) = 0 and a map U, : B, — Q', which is Lipschitz from B, to Q'/2, such that, for every
triplet 2 € By, U (E) is a solution to (1.7) with data E + v°(E)Z° + v (E)E! (where 2, are
defined in Corollary 2.13).

Proof of the existence statement of Theorem 3. The existence statement of Theorem 3 is a direct
consequence of Proposition 6.1. Indeed, with the notations of Proposition 6.1, define

M:={E€eH; ||E|n <nand (F*;E)y =v*E") for k=0,1} (6.3)
and set, for £ € M,
UE) :=U, (BH). (6.4)
Then M is a Lipschitz manifold modeled on Hslg since v¥ and v! are Lipschitz maps. It contains 0y
since 19(0y ) = v'(0gL ) = Og. Moreover, M is “tangent” to HSLg at 0 in the sense of Remark 6.2
below. - -

Eventually, for every Z € M, U(Z) € Q! is a strong solution to (1.7) with data =+ 4v°(E+)Z0 +
v1(24)Z! = =. So the conclusions of the existence statement of Theorem 3 are satisfied. O

Remark 6.2. Since we only proved Lipschitz reqularity for the maps v° and v, (6.3) a priori only
defines a Lipschitz manifold. Hence, it is difficult to define tangent spaces to M. Nevertheless,
one can say that ng is tangent to M at 0 in the following weak senses:

e ForZ2e M, d(E,HSJg) < ||E||3-L

o For every 2+ € HE

sg» Jor € € R small enough, d(eZ+, M) <2

Both facts are straightforward consequences of the definition (6.3) and the estimate (6.25), which we
prove below. For the second item, we note that for all 2+ € Hy,, 2+ +0(EH)E + 01 (2H)E e M
by definition of M, so that d(e=+, M) < [V0(e24)| + vt (e21)).

6.2 Execution of the nonlinear scheme

We prove Proposition 6.1.

6.2.1 Construction of the sequence and uniform Q' bound

Let > 0 small enough to be chosen later. Let = = (f,dp,01) € Hslg with [|E]|y < 7.
Let x € C*=(R, [0,1]), identically equal to one on [—%, 1] and compactly supported in [—3, 1].
We define the initialization profile of our iterative scheme as

uo(,) = 6o(y)x ( =2 ) +61(y)x ( e — ) : (6.5)

T1— Zo T1 — To

Hence, there exists C, > 0 such that uy € Q' and ||ugllgr < Cy(||dolln + |01]ln) < 2nCy. In
particular, this stems from the fact that [|6;[| s < [[(f,d0,01)[[2, by definition (1.3). Furthermore,
Oz ug identically vanishes on the boundaries.

For each n € N, we let u,+; be the solution to

(y + un)Ogtni1 — Oyyliny1 = f + V2+1f0 + V’r11+1f17
(Unt1)z, = 0 + V9,107 + vy 16], (6.6)
(u7z+1)|y:i1 =0,
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where the coefficients v/%,, are defined below, and where the triplets (f*,d5,6%) are defined in
Corollary 2.13.
We prove the following result:

Lemma 6.3. There exists a constant ¢ depending only on Q such that if n < ¢, there exist two
sequences (V2)p>1 and (v))n>1 so that the following properties are satisfied:

e Foralln €N, u, € Q%;
o There exists a constant C depending only on Q0 such that for all n € N*,

lunllgr + v9] + lval < Cn;

. dljun(xi,()) =0 fork=0,1,2 and up,(z,£1) = +1.

Proof. We argue by induction. The properties stated in the lemma clearly hold for ug. Assume
that u;, V;? are constructed for j < n and satisfy the assumptions stated in the lemma. Then
Yy Sy +un(ziy) Sy

Our purpose is now to apply Proposition 3.20. Hence we first check that the boundary data
have sufficient regularity. As a consequence, denoting by Y, the change of variables associated
with y 4+ uy, i.e.

Yul@, 2) + wn(@, Ya(2,2) = 2 V(z,2) € T,

we have 7 "
’ 5 (Ya (@ 2)) ‘ < ’ %(z) ’ (67)
z 22wy 2 22y
and, recalling that 0,Y;, = (1 + Oyun(x,Y,)) ",
o O (Val@n2) Yl 2)8" (Va(ei, 2)) = 0 (Va (@i, 2))
z > - 22

+(z - Yn(xi7z))W

2(1 4 Oyun (i, Yo (i, 2)))

8 (Y, 2)).

The first term is bounded in .£2(%;) by |6/ (2)/z] 1 (s,)- The second one is also bounded, noticing
that |z — Y, (z;,2)| = O(2?) because of the cancellations u, (z;,0) = dyu,(z;,0) = 0. As for the
last one, using once again the property Jyuy,(z;,0) = 0, it satisfies

Oyun (i, Yo (i, 2)) 5®)

Yn [ < 2 n o (3, 5(3) Yn [
Z(1+8yun($i7yn(l'i7z))) 4 ( ($ 72)) ~ ||8yu ”L (E¢)| i ( ((ﬂ ,Z))‘

and thus its Z2(%;) norm is bounded by C’n||5i(3)||Lz. (Here we use the fact that [|02un||Le <
lunllgr S m.) We conclude that 67 (Y, (x;, 2))/2z € 5 (5;). ‘

We now choose /0 _H,V}L 41 such that the orthogonality conditions are satisfied. For brevity
and with a slight abuse of notation, we denote by ¢/, the linear forms associated with the flow
Ty = Y + uy, (see Definition 3.15). For u € Q*, we define the following 2 by 2 matrix:

My = (6,,(F*, 35, 08)) (6.8)

0<j,k<1

82



In particular, since My = Id and u — ¢, is locally Lipschitz (by Proposition 4.1) from Q2
to L(H), M, is invertible for u small enough in Q', and v € Q'/? — M ! is Lipschitz. We set
M, := M,,,. Then the coefficients v,,11 are defined by

0
e (80

It is easily checked that this choice ensures that, for j = 0,1,
EZ; (f + V2+1f0 + V’I’1L+1f17 do + V2+1§8 + V’I1L+16(%7 o1+ V2+15? + V71L+15%) = 0. (6.10)

Furthermore, since |ju,| g1 < Cn, [vp41| < C'||E||3 for some universal constant C’ involving only
the norms of the linear forms 7.

By Proposition 3.20 and Lemma, 4.4, this choice ensures that the system has a solution in Q'
and the existence of a constant C' > 0 such that

lansillgr < CIEls + Clvnit] S IEllx < Can (6.11)

for some universal constant C;. In order to complete the induction, there only remains to check
that 6gl/un+1(xi, 0) = 0 for [ = 0,1,2. These cancellations follow from the fact that (u,41)s, =
6; +v0,16) + v} 16} and from the properties 87552-(0) = 8;5;’“(0) =0forl=0,1,2 since Z,Z% € H.

This completes the proof of the lemma. O

Remark 6.4. At each step, we solve (6.1) with data Z,41 = =+ v) 20 + vp B, designed
to satisfy the orthogonality conditions at this step. The important property of the correctors =0
and Z' is that they satisfy £7(E¥) = 1, (see Corollary 2.13). Their existence stems from the
independence of the orthogonality conditions on H. By Proposition 2.10 and Proposition 2.30,
they are also independent on C°(Q2) x {0} x {0} and on {0} x C*(Zy) x C°(31). Hence, it
would be possible to construct correctors =F involving only the source term f (respectively, only
boundary data (8o, 061)). Using such correctors, as claimed in Remark 2.11, our nonlinear scheme
would prove the existence of a submanifold of codimension 2 of source terms (resp. a manifold of
codimension 2 of boundary data) for which the nonlinear problem (1.7) is well posed in Q' with
null boundary data (resp. with null source term). Of course, similar claims hold at the linear level.

6.2.2 Convergence of the sequence in Q'/2.

We now prove that (u,)nen is a Cauchy sequence in Q'/2, using the following result:

Lemma 6.5. There exist uniform constants C,¢ > 0, such that if n < ¢, for all n € N,
[Vn41 = va| + Juns1 — unllgre < Cn".

Proof. Let w, := up41 — u, for n > 1. Thanks to Lemma 6.3, the sequence w,, is uniformly
bounded in Q' by 2Cn. Moreover, for each n € N*, w,, is the strong solution to

(Y + un)Opwn — Oyywy = —Wwp_10;un + (V2+1 - V?L)fo + (V%+1 - 1/711)f17
(wa) s, = (Vg1 — V)07 + (Vpgq — v)0}, (6.12)

(wn)ly::tl =0.

We already know that the solution w,, belongs to Q', as the difference between two Q' functions.
Hence, there is no need to check that the orthogonality conditions are satisfied, and we can apply
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Proposition 5.1, recalling that |u,||g: is small thanks to (6.11). There is just one technicality:
Proposition 5.1 requires that the source term vanishes on 3y U 31, which is not the case of the
term —w,,_10,u,. Hence, we first set

D} = —(wy—10,up)|5,

Note that DI can be expressed in terms of &;, 6%

7, namely

85(51' + 269 + vlsl)
y+6;+v0 80 +vk 6l

DI = — ((yg — V)8 + (vh — v _1)d})

Since (f,680,01) € H and (f*,6k,6%) € H, D € H%*(Z;). Moreover, extending D" by zero on
(—1,1)\ 3, the extension remains in H?2.
We then lift these boundary conditions by setting

fl"—DS(y)x<x_x°>+Di‘(y)x<x1_x),

T1 — Zo T1 — Zo

where x € C*°(R) is the same cut-off function as in (6.5). Then f* € HFH? for any k € N,
and f'(y = £1) = 0. Furthermore || f/*|| g2 < 7|vn — vn—1|. Of course introducing this lift in the
source term will perturb the orthogonality conditions. Hence we also introduce a smooth function
hy, € C3°(€2) such that

Kﬁl(_wnaﬂwun - fln + (V’r01+1 - Vg)fo + (VTlL-‘,-l - Vib)fl + hn7070) =0 for .7 = 07 1.

In view of Remark 3.18, we can choose h,, (say, involving regularized versions of the biorthogonal
basis of Corollary 2.13) such that

Iallre < € (Wt = vl + 17 a2 + o datinll grss o + [w0nDstinll a0

_ (6.13)
<C (|Vn+1 — V| +0|vn — Vo] + [Juallgr Hwn—1||Q1/2) .
We then write w,, as w,, = w,, + w,, where w,, and w,, solve the respective equations
UnOpWy, — Oyyy = —Wpn—105Uy, + (Vg+1 -0+ (IJ}LJr1 —vhft - f,ll + hy,,
By, =0, (6.14)

Wy|y=+1 = 0
and
Up Oy, — Oyytly, = fL — hy,
Wnps, = (Vnar — V)8 + (Vhyr — )0}, (6.15)
Wy |y=+1 = 0.
Note that the orthogonality conditions are satisfied for both systems by choice of h,,, and that the

source term for w,, vanishes on the lateral boundaries thanks to f..
Therefore, we are now ready to apply Proposition 5.1 to @,,. We obtain, by (5.4),

wnllgr/e Sllwn-10zun — f’rlLHHSéZLZ + ||wn—1awun”L3H§/2
l l
+ llwn—18zun — fn”H352<<xo,x1>,H35f(1/4,1) + llwn—18zun — 'f"HH;62(($07$1)7Hégf(—17—1/4)

+ |Vn+1 - Vn‘ + 77|Vn - Vn—1| + ”h’n”H2
(6.16)
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Indeed, the elementary functions f7 and (5f of Corollary 2.13 have fixed norms.
By (6.9) and Proposition 4.1,

vns1 —val = My (2) — Mn_—llfn—l(E”
<M = M2 ([ (E)] + 1M 2 1160 (E) = £ (B)] (6.17)
S llun = unallgral=llx S nllwn-1llgre-
Let us now derive bounds on w,,_19,u, — f.. For any o €]0,1/6],
[wn—10ztn — ffz”Héé?Lg S llwn—102un — f’rlLHHG+%L§
!
Sl oo ety + Wil oy (618)
< ||un||Q1 ||wn—1||Q1/2 +nlvn — vp-1l,

and
ltn10stinl s g S 01l g 19otnl s e S Nemll lomillgre: (6.19)

The bound on ||wy,—10uy, is slightly more involved. Note that the

_fl
fn||H;gZ((xO,xl),H;gf(1/4,1)
. . 1/2 471/2
Q" bound on u,, in itself, does not allow us to bound O, u, in Hz/ Hy/ . However, we can use

the same arguments as in Proposition 3.20, and observe that on (xg,z1) x (1/4,1), u, satisfies a
classical parabolic equation. More precisely, recall that

(Y + Up_1)0pup = f +0f0 + ) 1 4 8§un,

where f, f°, f are smooth, and d3u,, € L?. Differentiating the equation with respect to y and
using the estimates |08y 1|00 < [lunllr for k = 1,2, we infer that (y + u,)0,05u, € L?, and

1y + 1n)0205unl Lz S 0+ |val + L+ [[un—1llo) unllr S -
Hence
10200 | L2 gy 2 1/43) < O,
uniformly in n. Using once again the same method, we infer that
102un| L2 (gy=1/ay) < Cny 1020yunll2(1y>1/43) < On,

uniformly in n. Hence, d,u, is bounded by Cn in H;H; N LiHS((xO, x1) x (1/4,1)), uniformly in
n. We deduce that for ¢ > 0 sufficiently small,

lwn—10wttn = Full g/2 (o ony, 112 1 jan) S N0n=tll grravo garevo |00t by o wryx 1 /a0y + |22

Snllwn-illgre + 1 wn—zllgire-
(6.20)

Gathering (6.18), (6.19), (6.20) and (6.22) we obtain

1@nllgr/2 < nllwn-illgr2 + 1*lwn—2llgi- (6.21)
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The bound on w,, is easier, and no interpolation result is needed. We observe that the right-hand
side belongs to H2(£2), and satisfies the orthogonality conditions. Therefore w,, € ma/ SLZ NLZH,,
and

10l 575 o + lnllzz s S Vnt1 = val + 1l 2 + | foll sz
b Y

(6.22)
S ‘VnJrl - Z/n| + 77||wn71HQ1/2 + 77||Vn — VUp—1]|-
Hence we also obtain
[@nllgre S Mllwn-1llgrz + 1 llwn—2llg2- (6.23)
An induction argument then leads to the estimate announced in the lemma. O

6.2.3 Convergence of the sequence (u,),cy and definition of the map U,

Classically, for 7 small enough, we deduce from Lemma 6.5 that (u,)nen is a Cauchy sequence in
Q2. We recall that it is also uniformly bounded in Q'. Hence, there exists u = U, (Z) € Q' such
that
U, — u  strongly in Q'/2,
up —u  weakly in Q.

The strong convergence is sufficient to pass to the limit in (6.6). Furthermore, thanks to the
continuity of the linear forms u € Q'/2 — ¢!, we can also pass to the limit in (6.9). We denote by
v(f,d0,01) = v(E) the limit of the sequence v,.

In particular, taking the limit in (6.9) proves that, for j = 0,1,
E+L @ +v(B)E) =0 VE € Hy,. (6.24)

J
gerML )

This relation translates the (tautological) fact that the Q' solution to the nonlinear problem
satisfies the orthogonality conditions of the linearized problem at itself.
Let us prove that this entails the following quadratic estimate on v(E), used in Remark 6.2:

w(E) S IEI- (6.25)
0. vl and U, are Lipschitz,

L @E)lgr + @)+ 1w E)] < 1Ell. (6.26)

Since v

Thus, using Proposition 4.1,
1) i, @ — Plleany S ULE)llor S I1Eln- (6.27)

From (6.24), we have, by linearity, for all = € Hi‘g,

_pI = k(=\y=k
0= e |2+ D V(EE

k=0,1
) ) | - (6.28)
—0E+ Y FEUEN+ (B, -F) [E+ Y FEE
et k=0,1
=0+ Mv(2) + O(|Z]3),

where M is the invertible matrix defined in Lemma 2.25, so that (6.25) follows.
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6.2.4 Lipschitz regularity of the constructed maps.

In this paragraph, we prove that the maps E — U, (Z) and Z — v(E) have Lipschitz regularity.
Let Z,2" € B,. We use the prime notation to denote all the quantities associated with Z’ during
the nonlinear scheme.

In particular, one has

(y + Un)ax(un+1 - ;L-i-l) - ayy(un-&-l - In+1)
1
=f—f = (un —up,)0s Un+1 + (vp n+1 n+1)f0 + ( 711+1 Zy b

1 (6.29)
(U’nJrl n+1) ¥, — 5 - 5 + ( Vpt1 — n+1)§ + ( Vpy1 — n+1)§
(Unt1 — Upy1)jy=+1 = 0.
Using the same estimates as previously,
s = sl < nllCtn — ) llqurs + 1 = =l + e — Vg 4l — ). (6.30)
And, using one again Proposition 4.1 together with the definition (6.9),
i1 = Vngal SIE = E s+ nllun — upllgue (6.31)
Summing recursively these estimates this leads to the uniform estimates
[uns1 — upiillgie SIE—El, (6.32)
[Vn41 = Vpgallre SIIE = E [l (6.33)

Passing to the limit as n — oo, we infer that = — U, (E) is Lipschitz from ng to QY2 and v is
Lipschitz from H to R?.

6.2.5 Value of 0 and v! at zero.

One checks that, for = = 0 = (0,0,0), the constructed initialization ug defined in (6.5) is null.
Since 0 € ’HL and ¢/ v0 = — (7, this leads to v, = 0 (by (6.9)). Hence, in (6.6) for n = 0, the system
solved by uq has Vamshlng boundary data and vanishing source term. Hence u; = 0. This property
propagates for every n > 0. Hence v/ (0) = lim v/ (0) = 0.

This concludes the proof of Proposition 6.1.

6.2.6 A variation of the nonlinear scheme

In this paragraph, we discuss the possibility (already mentioned in Section 1.4) to tweak the
nonlinear scheme in order to avoid the computation of the linear forms ¢ at varying flows 4,
and only rely on the reference orthogonality conditions ¢7. Of course, as described in Section 1.4,
relying directly on the linearization scheme (1.16) is not possible, as it involves a loss of derivative.

With the change of variables of Section 3.1, and natural indexed variations of the notations of
this section, our nonlinear scheme can be roughly seen as the resolution of:

LnUn+1 = (Za:r + ’Ynaz - anazz) Un+1 = Ggn+1, (634)

for which g,41 is chosen to ensure the varying orthogonality conditions ¢ (g,.1) = 0 (say with
null boundary data), associated with the operator Li,.
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A possible tweak would be to put v,0,Up+1 — (a, — 1)0..U, 11 in the right-hand side, where
we replace U,,+1 by U,,. More precisely, this would suggest the following scheme:

(Zaa: - azz) ﬁn+1 = gn+1 + ’?nazﬁn + (&n - 1)822[711 (635)
In this scheme, g,41 would be chosen to satisfy the reference orthogonality conditions
E (gnJrl - ’S’nazUn + (dn - 1)8zz0n> =0. (636)

To prove that the sequence U, converges in some space (), one would need to make sure that g,41
also converges. In particular, one would need to check that

'E (:Ynazf]n - :Yn—lazﬁn—l) ’ /S n"ﬁn - 0n—1||Q' (637)
By Lemma 5.16, £/ is not continuous below Hy 1/ 6L2
1/6

tangential regularity. Thus, one would need to
prove that 4,0, U, converges in Hy Lzzr Since 4, involves a term of the form 9, Un, this probably
requires working at least with Q = Q/2.

In particular, one still needs to establish the Q'/? well-posedness theory, so the identification
of the interpolation space of Section 5 cannot be avoided (and this identification relies on the
construction of the explicit profiles of Section 2.5). Moreover, the stability estimates performed
in Section 4 would mostly still be required, since one would need to estimate 7,, — ¥, _1, which is
exactly what is done in Section 4.2.

In a nutshell, we expect that, while such a scheme could probably avoid part of the definitions
and results of Section 3, the core of the difficulty of the problem would remain the same. Eventually,
as mentioned in Section 1.4, our natural approach of “varying linear forms” has the added benefit
of yielding a well-posedness theory for the linearized problems, as in Proposition 3.20.

6.3 Local uniqueness of solutions to the nonlinear problem

We prove the local uniqueness statement in Theorem 3. The argument is straightforward: if two
strong solutions u and u’ exist and are small in Q', their difference w := u — ' is the solution
to a degenerate elliptic linear equation with null source term and boundary values, so it vanishes
identically.

More precisely, let u,u’ € Q' be two solutions to (1.7) satisfying [lul|g: < n and ||[u/||g1 < 7 for
some small . Then w := u — u’ € Q! and solves the system
(y + w)dpw + (Opu)w — Ojw = 0,
Wyy—+1 = 0, (6.38)
We follow the arguments of Section 3 and introduce a change of variables Y such that,
V(z,z) € Q, Y(x,2)+ulz,Y(z,2) =z
Let a(z,z) = (1 + uy)?(z,Y(2,2)), v = (2uy — uyy)(@,Y (2, 2)), i = u,(z,Y(x,2)). Then
Wiz, z) =w(z,Y(x,2)) is a solution to
20, W +~v0, W + W — ad,.W =0,
Wie=11 =0, (6.39)
Wis, = 0.
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Furthermore, a, v, 7 satisfy the estimates of Lemma 4.4. Using the results of Appendix A, we
infer that W = 0. More precisely, we rely on a generalized version of these results which allows
a term of order 0 in the equations, of the form W, where ||| fr2 < 1. Here, § = 7 and
[7illeezz < Ha;”Hg/ng S 1" — yllgr. This concludes the proof of the uniqueness within the ball

of radius 7 in Q*.

6.4 Necessity of the orthogonality conditions

At the linear level, Theorem 1 states that Z = (f, g, d1) € ’ng is a necessary condition to solve (2.1)
with regularity Q'. Our purpose in this paragraph is to prove that, as stated in Proposition 1.1, at
the nonlinear level, if a solution has Q' regularity, this necessary condition generalizes to = € M.
In particular, the nonlinear phenomena do not eliminate the need for orthogonality conditions, at
least when one tries to obtain solutions with such regularity.

Proof of Proposition 1.1. Let n > 0 to be chosen small enough later on in the proof. Let =2 € H
with ||Z]|% < n and assume that there exists u € Q' with ||ul g1 < 5 such that u is a solution
to (1.7). We introduce

[1It

=2t +0EHE L (EHE, (6.40)

which can be thought of as a good projection of = on M. Thanks to Proposition 6.1, we introduce
u:=U(E) € Q, which is a solution to (1.7) with data = and ||u]|g: < n (by Lipschitz regularity
of the solution operator U ).

For k € {0,1}, we also introduce the coefficients p* := v*(Z+) — (Z¥; Z)4, which characterize
how far Z is from M. Then w := & — u belongs to Q' with

lwlgr < n (6.41)
and is a solution to

(y + W0w — Byyw = ~w(Bw) + 10 + Y,
wys, = P07 + p'é}, (6.42)
w\y::l:l = 0.

By Proposition 3.20, the fact that w € Q! implies that, for j € {0, 1}, the following orthogonality
conditions are satisfied

0 = O (—wdyu + pO fO + pt f1, 1083 + pt o, u08? + utor)

. 07 —0 L (6.43)
= (L (—w0yu,0,0) + p lL(Z”) + p L(2%).
We can now apply Proposition 5.1, after a suitable lifting of the traces of —wd,u.
Mimicking the proof of Lemma 6.5, we infer that
[wllgue S 1]+ 1]+ nllwll - (6.44)
Thus, for n small enough, we obtain
lwligrz S 6] + 1] (6.45)
By Proposition 4.1, for n small enough,
16 = &l ey S Nallgrre < lldlgr < s (6.46)
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where £/ are the orthogonality conditions for the linear shear flow (see Definition 2.9). Hence,
recalling Corollary 2.13, we obtain from (6.43),

O]+ || S (|| + 1) + |6 (wdew, 0,0)| (6.47)
Using Remark 3.18,
We obtain, using (6.45),
1]+ 1] S (| ®] + (). (6.49)
We infer that, for k € {0,1}, u*¥ = 0 so v¥(E1) = (ZF;E)y, so = € M by (6.3). O

A Uniqueness of weak solutions for linear problems

The purpose of this section is to prove the uniqueness of weak solutions in L2(H}(—1,1)) to (3.4),
which is stated in Proposition 3.3. Such a uniqueness result is also proved in [24, Section 5].

The proof follows the arguments of Baouendi and Grisvard in [9], which concerns the case of
the model equation (2.1). For the reader’s convenience, we recall the main steps of the proof here,
and adapt them to the present (slightly different) context.

We assume that the coefficients «, v satisfy the assumptions of Proposition 3.3, and we introduce

the sets
Bi={U € I2(H(-1,1)), 20,U € L2(H; )},

A:=BnH Q).
Note that if U € L2(H(—1,1)) is a weak solution to (3.4), namely
20, U +~’y(9ZU —ad,,U=ge L2H 1,
Us, = 0,
Upo=+1 =0,

then U € B. Indeed, it follows from the weak formulation (3.12) that for any V € H}((Q),

(20, U, V)LQH,l’LzHl z—/('y—i—az)VazU—/a@zUan—F/gV.
Q Q Q

By density, this formula still holds for V € L2(H}), and therefore 20, U € L2(H;').
We then recall the following result from [9]:

Lemma A.1. The set A is dense in B. Furthermore, there exists a constant C depending only on
Q, such that for i € {0,1},

1
o e A, / 2] (s, )2 dy < Coll3.
—1

As a consequence, the applications
v E A vy, € L2(—1,1)

can be uniquely extended into continuous applications on B.
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As a consequence, Baouendi and Grisvard [9] obtain the following corollary:

Corollary A.2. For all u,v € B,

H H
(2050, v) L2 (-1, L2y + (2000, W) L2 (1), L2(13) = / (zu0) g, —/ (2u0) p=aq - (A1)
0 0

Proof. Thanks to Lemma A.1, it suffices to prove the identity when u,v € A. In that case, the

left-hand side is simply
/ 20UV + 2udv = / Oz (zuv).
Q Q

The result follows by integration. O

Proof of uniqueness of weak solutions to (3.4). Let U € L2(H}) be a weak solution to (3.4) with

g =0 and 0; = 0. As mentioned above, U € B. According to Corollary A.2, for any V' € B such
that V=10 on 09Q\ (Xo U %1),

—<28$V, U>L2(H_1),L2(Hé) + A(’Y + az)aZUV + /Q a@ZUan =0.
Now, let h € C°(Q) be arbitrary, and let V € L%(H}) be a weak solution to
—20,V — 0,(7V) — 0,.(aV) = h,
Vioon (zousy) = 0

(The existence of weak solutions for this adjoint problem is proved in the same way as existence
for the direct problem in Proposition 3.3).
Then V € B, and choosing U as a test function in the variational formulation for V', we obtain

/hu:O.
Q

Thus v = 0. Uniqueness of weak solutions to (3.1) follows. O

B Proofs of functional analysis results

B.1 An abstract existence principle

As Fichera in [21], we use the following abstract existence principle (see [18, Theorem 1]), which
allows skipping a viscous regularization scheme.

Lemma B.1. Let 74, % and F be three Hilbert spaces. Let F; € L(; ) for i € {1,2}.
Then the following statements are equivalent:

e range F) C range Fj,

o There exists a constant C > 0 such that

Vhe A, ||Fhl|we < ClIF5hl| . (B.1)
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o There exists G € L(IA; H3) such that F = F>G.

Moreover, when these hold, there exists a unique G € L(JA; %) such that kerG = ker FY,
range G C (range Fy)* and |G| = inf{C > 0; (B.1) holds}.

Indeed, this yields the following weak Lax-Migram result, where the linear right-hand side is
assumed to be continuous for the weaker norm.

Lemma B.2. Let % and V' be two Hilbert spaces with ¥ continuously embedded in % . Let a be
a continuous bilinear form on % X ¥V and b be a continuous linear form on % . Assume that there
exists a constant ¢ > 0 such that, for everyv € ¥,

a(v,v) > cllv||%,. (B.2)
Then, there exists u € % such that ||ullz < L|bllza) and, for everyv € ¥, a(u,v) = b(v).

Proof. Set 7 := L(V), 74 = L(%), Fy :=1d (from L(%) to L(V)), #% = U and Fy : U —
L(?) defined by Fou := a(u,-). Then Fy =1d (from ¥ to %) and Fjv = a(-,v). Moreover

15 vl 2oy 2 la,v)l/[|vlle = ellolla = ellFy vl (B.3)

So (B.1) holds with C' = 1/c and Lemma B.1 yields the existence of G € L(L(% ); %) such that
Fy = F»G and ||G|| < 1. The conclusions follow by setting u := Gb. O

B.2 Product and composition rules in Sobolev spaces

Lemma B.3 (Pointwise multiplication). Pointwise multiplication is a continuous bilinear map
o from H3?(—1,1) x H3/?(—1,1) to H3/?(-1,1),
e from H'Y?(xg,21) x H*(xg,21) to HY?(20,21) for any s > 1/2,
o from HY?(xq,x1) x H*(xg,x1) to H¥ (20,x1) for any s' < min(s,1/2).
o from H*(xg,x1) x H¥ (20, x1) to H¥ (zg,x1) for any s >1/2, s > s'.
Proof. These are particular cases of [11, Theorem 7.4]. O

Lemma B.4 (Composition of H° functions). Let Y € H*(Q) such that 8,Y € L°(H}), 8,Y €

Lg(Hg/S). Assume that there exists m > 0 such that 0,Y (x,z) € [m,m~] a.e. andY (z,+1) = +1.
Then for any 0,0’ € [0,1], for any g € HJ(HJ ) N L2(H;7T")

o, Y @ gz ey < C (192 gy + 19l gz grzesery ) -
Proof. Throughout the proof, we set
G(z,2) = g(z,Y(,2)).

First, note that for all g € L%(Q),
1 1 T 1
1G]172(0 =/ / g*(x,Y (z,2)) de dz < mfl/ / 9*(z,y) dz dy,
o —1 o —1
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so that ||G|lL2 < ||gllz2-
Furthermore,
0,G(z,2) = 0,9(x,Y (2, 2)) + 0,Y (z,2)0yg(x, Y (2, 2)).

Hence

10:Gl12(@) < o (18sll210) + 102Y | g2, 1By9) © V12101 )

where [[(9yg) o Y ||z < 10y9ll L2 + 110:Y (| o< 10yygll L2
Now, note that the application g — G is linear. By interpolation, we obtain, for any o € (0, 1),

1Gllmg 2y < Com (gl oz + 10:Y 15, o gl 2z ) - (B.4)
We now prove the same type of estimates for the z derivatives. We have
0.G(z,z) = 0,Y (x,2)0y9(z,Y (z, 2)),
and thus [|Gllrzm: < ||9llrz - By interpolation, we infer that for any o € (0, 1),

1GllL2me < Cllgllz g -

Additionally,
10:Gllmgr2 < 10yg(@, Y ) agr2l10:Y || oo ma-

Using the first step, we infer that
1Gllig s < Con1+ 10:¥ Lz 12) (Ngllag gy + gl arzony ) -

Interpolating once again, we obtain, for any 0,0’ € (0,1),

1Gzrzr S (Illmg gy + 190 o gamsery)
O

Corollary B.5. Let u € Q' such that ||u — y||g1 < 1, and u(z,+1) = £1. Let Y =Y (x, z) such
that w(z,Y (z,2)) = z for all (z,z) € Q.

Then ||V, — 1||so < 1, Y2 € L2 (HY), Y, € L2(H2'®), and 1Yol o g2y < 1.

)

Proof. First, observe that Y, = 1/u,(z,Y (z, 2)), so that the first estimate follows from Lemma 1.10.
Concerning the estimate on Y, we observe that
Ug

Y, = (z,Y(z,2)).

Uy

Let us first assume that @ is smooth (say C°°), and then argue by density. If @ is smooth, then
the above formula first shows that Y, € L*. Differentiating the identity with respect to x once
again, we infer that Y € W2°. Furthermore, according to Lemma B.4 (see in particular (B.4))
Uy o [ Ug
%(5)
Yy

Vel yzrs s

2/3
IV |

vIlH2/% 2 L2
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When ||z — yl|gr < 1,
Uy

Uy

< 1.
L2

7 ()
Yy uy

Using Young’s inequality in order to absorb the second term in the right-hand side, we obtain
2 [ Uz
%(5)

Yy

v, - -v.2 <“> (@, Y (z, 2)).

Z(?iy u7y
Recalling that Y, € L, iy, iy, € L, and Uy € L2H, < L;°(L2), we deduce that

)
H2/?L2

3

< 1
L2

"

Wall g <

y a2/ L2

Furthermore,

Yazllzee(r2) < Clla —yllgr-
Hence we obtain the result when % is smooth and ||u — y[|g1 < 1. We conclude by density. O
Corollary B.6. Let u € Q' such that ||u—y| g1 < 1 and u(x,£1) = £1. Foro € HIL2NL2H?,
lpotllmrre + o otllrzas S llellairz + llellzmz, (B.5)
where (¢ o u)(z,y) = p(z,u(x,y)).
Proof. This stems from Lemma B.4, applied with Y = u. Indeed, one first has
lpotullmr: S llellazez + ollr2 me- (B.6)
In the vertical direction, write
62 (¢ ot) = tUyyy(py 0 U) + 2uylyy (Pyy 0 U) + ai(@yyy ou). (B.7)
Thus, recalling the embeddings of Lemma 1.10,
195 (w0 @) Iz S 1l 2o pallioy © llzary + 187 ez Py © @ll2 + 1017 20 gy © @l 2

S lellzz me,
(B.8)

which concludes the proof. O

B.3 Extension operators
We start with Lemma 1.3, which allows extending functions from Z°(Q) to Z°(R?).

Proof of Lemma 1.3. Up to translation and rescaling, we can assume that (zg,z1) = (0, 1).

We start by constructing a continuous horizontal extension operator P, from Z°((0,1)x (—1,1))
to Z9R x (—1,1)). Let x € C*(R;[0,1]) such that y = 1 on (0,1) and suppx C (—1,2). Let
¢ € Z°((0,1) x (=1,1)). For z € (—1,2) and z € (—1,1), let

o(—x,2) if x € (—1,0)

(Qz0)(z,2) =< P(x, 2) if z € (0,1), (B.9)
o(2—=x,2) ifzxe(1,2),
(Ped) (2, 2) == x(2)(Qz9)(, 2). (B.10)
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First, || Pyllr2 2 < 3. Moreover, 9% (P,¢) = P,0%¢ for k € {1,2}. Hence ||Py||L2 g2 22 < 3.
Bventually, +0, (Po9) = Py(20,0) + X' Qut. Hence |20, (Poo)ls < 320,612 + 201|612
Thus P, defines a continuous extension operator from Z°((0,1) x (=1,1)) to Z°(R x (—1,1)).
We now construct a continuous upwards vertical extension operator Py from Z°(R x (—1,1))
to Z°%(R x (—1,+00)). We proceed, as classical (see e.g. [5]), by considering a weighted linear
combination of rescaled reflections. For ¢ € Z°(R x (—1,1)), z € R and z € (—1,00), let

) o(x,2) if z € (—1,1),
(@)@, 2) = {3(]5(3:, 2 ) —26(x,3—22) ifze(1,2), (B-11)
(Pro)(z,2) = x+(2)(Q+9)(z, 2), (B.12)

where y; € C*(R;[0,1]) is such that x4 =1 on (—1,1) and supp x4 C (—2,1+ 1). The chosen
coefficients ensure that both Q¢ and 9,(Q. ¢) are continuous at z = 1. Hence P, ¢ € L2H? and

P+ dllnz mimz(—1,400) = 1P+ @ll2 iz (—1,1)) + 1P+l L2 im2(1,400)) < CllOllL2mz,  (B.13)
for some constant C depending only on || x4 ||wz2.. Moreover, using that x(z) =0 for z > 1+ %7
1202 (P4 )| L2 (R;L2(1,400)) = (1202 (P4 )| L2 (RsL2(1,14 1))

S 19201 L2 ;22 (2 1)) (B.14)

S 12020 2 (riz2 (2 1))

Hence P, is a continuous extension operator from Z°(R x (—1,1)) to Z°(R x (=1, +0o0)).
The extension for z < —1 is performed in a similar fashion and left to the reader. O

We will also need the following extension result in this appendix.

Lemma B.7. There exists a continuous extension operator P from Z°(Qy) to Z°((xg,x1) x R)
such that, if ¢|z—p, = 0 on (0,1), (P®)|g=s, = 0.

Proof. We proceed, as in the proof of Lemma 1.3, by extension by reflections and truncation. The
reflection at z = 1 is done in the proof of Lemma 1.3. The truncation is left to the reader. We
only check here the reflection at z = 0 due to the degeneracy of the Z° norm at z = 0.

Let ¢ € Z9(Q24). We define an extension Q¢ on Q by

(@), 2) = {ig(t:)—zm) —26(z, —2) ii E 5211)0) (B-15)
In particular (Q¢)(z,07) = (Q¢)(z,0%) and 8,(Qé)(x,07) = 8,(Qe)(x, 0+), so0
1Qél 2 r2(—1,1) S QA L2 m2(—1,0) + QSN L2 120,1) S 1Dl 22 12 < (9] 20 (B.16)
Moreover,
[20:(Qd) L2 L2 (~1,0) < 3l12(2/2)0u (2, 2/2) || L2 22(0,1) + 2[12020(, 2) || L2 22(0,1) S @]l z0-  (B.17)
Eventually, if ¢jz—,, = 0 on (0,1) (B.15) implies (Q¢)s—s, = 0 on (—1,1). O
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B.4 Critical dualities
Lemma B.8. For a,b € H'(zg,21) such that a(xg) = b(z1) = 0,
< N2 . .
Jablgoge S a0l (B.18)
Proof. On the one hand, by Lemma B.3,

labll gz S Nlall e 1Bz S o[l 101 yage- (B.19)

On the other hand, since for every = € (zo,21), |a(z)| < |z — zo|2||d'|| 12,

" Ja(z)b(z)[? "e /l’1 |b()|?
dz < S lla’[122 10012 12 B.20
/I |$—.730||1‘—$1| T > ||CL ||L2 . 33—$1| NHG‘ ||L2H ||Hé({f ( )

0 0 |

Gathering both estimates concludes the proof. O
Lemma B.9. For q,v,w € H'(zg,71) such that q(z¢) = 0 and w(z1) = 0,

x1
/ q(amw\ S ez ol /o ol g2 (B.21)

0

Proof. By [42, Proposition 12.1], 9, is continuous from H'/?(z¢,z1) to (Hé({Q(xo,xl))’. Hence

z1
[ ae0ru] £ Wllasallowl e (B.22)

0

The conclusion follows from Lemma B.8. O

Lemma B.10. For q,v,w € H'(zg,z1) such that q(zg) = 0 and w(z1) = 0,

1
/ qvaxw\ <N ez ol se ol 1 (B.23)
= 00,

0

Proof. Let x € C°([zg,1];[0,1]) such that x = 1 in a neighborhood of 2y and x = 0 in a
neighborhood of x;. Let us write

/ qv@zw=/ (xqv)azw—/ (l—x)wax(qv)Jr/ X wqv. (B.24)

Zo Zo Zo Zo

By [42, Proposition 12.1], @, is continuous from H'/2(zq,z;) to (Hol({Q(xo,xl))’. Thus

1
/ qvaxw\ < Ixgol e lwlore + 10 = x)wlgosellgolonss + X allzs [ol2 ol 2. (B.25)
X

0

By Lemma B.3, [[xqullmie S [Ixlla gl [[oll gz, ([0 = X)wllgiz S 10 = ) ar[[wllg/z and
lqvll gz S lgll e l[vll oz First, since x = 1 near g, (1 — x(2))? < |z — 20|. Thus

1 1— 2 2 1 2
/ (= x(@) fw@)* < / Jw@)P . < wl2se. (B.26)
v |7 — ol — a1 z |7 =21 Hob,

0 0 |

Similarly, since x*(z) < |z — z1| and ¢*(z) < |z — zo|||¢'||2. by Cauchy-Schwarz, there holds

“x(@)q(x)v(z)? 2 2
e~ de S v||72- B.27
/IO |$—.T0||$—.131| ~ Hq ||L2|| ||L2 ( )

This concludes the proof, since ||q|| g < ||¢'||L2 thanks to the condition ¢(zg) = 0. O
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B.5 Embeddings

We collect in this paragraph various embedding results used throughout the paper.

B.5.1 Embedding of Z° in HZ/*L?
Proof of Proposition 1.4. Let ¢ € C2°(R). By Lemma B.11, one has

¥l S 2]l L2 + 11029 L2

(B.28)

Using standard dimensional analysis arguments (e.g. by introducing the rescaled function ¢y : 2z —

¥(Az) for A > 0 and optimizing the choice of \), one deduces from (B.28) that

2 1
[¥llze S N2l 72 110229117

(B.29)

Let ¢ € C°(R2). Let (£, z) denote the Fourier-transform of ¢ in the horizontal direction. Then

using (B.29) and Hélder’s inequality,
612, = [ 1+ IEH18(E, 2)P de s
x z R2

S 10l + [l =00, 23 10-.6. 1 o

Slolis + ([ leps1ote P azae) ([ 1oudte. o) azag)
< 161125 + 12000 21110226 .

Hence [|¢| ,2/3,, < ||¢llzo. This concludes the proof, by density of C2°(R?) in Z°(R?).

@

B.5.2 Full domain embeddings
The following inequality is used in the proof of the key result Proposition 1.4.

Lemma B.11. For ¢ € C*(R),
[Pl S l2tllze + 10224l 2
Proof. On the one hand, for |z] > 1,
[ v <l
[z1>1
On the other hand, for every (zo, z) € (—2,2),

0= (2)] < 10:9(20)| + 210290 | L2-

Moreover, by classical Sobolev embeddings,

10:% /2 1,2) S 1¥llz21,2) + 110229l 22(1,2) < 129llL2®) + 10229 (| L2 (r)-
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Thus, integrating (B.33) for zy € (1,2),
0=l Lo (—2,2) S 129l L2®) + 19229l L2 () - (B.35)
Now, writing ¥ (z) = ¥(z0) + f; 1" and integrating for zg € (1,2) yields
1922 (-1,1) S N1¥ll2@2) + 12900 2@y + 1102292 ) S 290 2@y + 10229l L2 (), (B.36)

which concludes the proof. 0
Lemma B.12. For ¢ € C*(R),

I12120:91 2 S 2012 + 1920 2- (B.37)

Proof. For |z| < 2, (B.35) yields directly

I12120:0 2 (2.9 S l1248ll 2 + 1022l 2 (B.38)

Let x € C*°(R;[0,1]) with x =0 on [0,1], x =1 on [2;4+00) and |0, x| < 2. Then

+o00 Foo
/ 210.(2)? dz < / X)) da
2 0

“+o0 “+o0
_ / x(2)(2)ath(2) dz — / OO de B
0 0

< 29l 22110229l 2 + 2[|2¢0) 2 (1090l L2 (20400) + 1921 L2(0,2))

The 0.9 z2(0,2) term can be bounded by (B.35) and the [|0.%||12(2;400) term can be treated
perturbatively via the Peter-Paul inequality. This yields

12120: 0l 2 (2ck00) S Ilztbllze + (10220l 2. (B.40)
By symmetry, the same holds on (—oo, —2), which concludes the proof. O
Lemma B.13. For ¢ € Z°(Q),

1
1120261l 1 172, < 1620 (B.41)

Proof. Thanks to Lemma 1.3, it is sufficient to prove the embedding and (B.41) for ¢ € Z°(R?)
with bounded support in the vertical direction, say supp ¢ C R x (—5,5) (as one can always take a
smooth truncation of the extended function). We proceed as in the proof of Proposition 1.4. Let
1 € C*(R). By Lemma B.12, and using standard dimensional analysis arguments, one deduces
that

1 1 1
I12120:9ll> S 112900 721022901 7 - (B.42)
Let ¢ € C°(R?). Let ¢(¢,z) denote the Fourier-transform of ¢ in the horizontal direction. Then
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using (B.42) and Hélder’s inequality,
120012, ey = [ (1 1€P)E 2l -00e, 2 aé
L2(H} 2

S Nlz120:0]7 +/]R|€|HZ¢3(£,Z)IILgllazzé(&Z)lng d¢

1

Slelfo.ols + ([ leie P azae)” ([ ouadte P asac)

1 1 1
S 2l20:0072 + 120201172 110220 -

(B.43)

Moreover, since ¢(-,z) = 0 for |z| > 5,
122 0-l2 < [10:26 2 (B.44)
Hence gathering both inequalities proves that |||z|2 32<;5||L2(H1/2 < ||@llzo. This concludes the
proof, by density of C°(R?) in Z°(R?). O

B.5.3 Embeddings involving the Lions—Magenes space
Lemma B.14. Let ¢ € Z°(Qy) such that ¢,—,, = 0. Then ¢ € C2([0, 1]; Hoé (zo,21)) and

160l srzge < 1l 20- (B.45)

Proof. Thanks to the extension result Lemma B.7, it is sufficient to prove this result with €,
replaced by O := (zg,z1) x R. Therefore, let ¢ € Z°(O) such that Plz=z, = 0 on R. By
Proposition 1.4, ¢ € L2(R; H} (zo,21)) N H2(R; L?(xo, x1)), where H{ (xo, 1) denotes H' func-
tions vanishing at z = z;. By the fractional trace theorem [42, Chapter 1, Theorem 4.2 and
equation (4.7)], this implies that ¢ € CO(R;G) where G is the interpolation space denoted by
[H&T (w0, 21), L?(20,71)]1 in this reference. By [42, Chapter 1, Theorem 11.7]7, G = Hééf(xo,xl).
The claimed norm estimate readily follows. O

Lemma B.15. Let ¢ € Z°(Qy) such that ¢y—,, = 0. Then z0.¢ € L2H, 1/2 and
192l e S 610 (B.40)

Proof. Let ¢ € Z°(24) such that ¢j,—,, = 0. We extend ¢ to Z°(0), where O := (2o, 1) x R,
thanks to the extension result Lemma B.7. We then truncate the extension for |z| > 2 thanks to a
C¢° function, so that the extension is now supported in (xg,z1) x (=3, 3), coincides with ¢ on €2,
and belongs to Z°(0). With a slight abuse of notation, we still denote the extension by ¢. Note
that ¢|z—y, =0 on R.

Let ¢ := z¢. Then ¢ € LZ(R; H} (x9,21)) N HZ(R; L* (w0, 1)) with [[¢o]] < [[¢]lz0 for the
associated norm. By the intermediate derivative theorem [42, Chapter 1, Theorem 2.3], ¢ €

"This reference considers the case of vanishing conditions on the full boundary of the domain (so at & = x¢ and
at * = x1), but the adaptation to functions vanishing only at z; is straightforward.
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H(R; G) where G is the interpolation space denoted by [H{ (z0,21), L?(wo, xl)]% in this reference.
By [42, Chapter 1, Theorem 11.7], G = Hééf(mo, x1) (see Footnote 7, Page 99). This yields

1002272 S 161z (B.AT)

The conclusion follows since 9,1 = 20,¢ + ¢ and ¢ € LgHﬁ/ 3 by Proposition 1.4 (with trace
@lz=z, = 0, which makes sense in H§/3). O

Lemma B.16. Let ¢ € L?*((zg,71); H}(—1,1)) such that 20,¢ € L?((zo,21); H 1(—1,1)). As-
sume that ¢ = 0 on {x1} x (0,1) U {mg} x (—1,0) (in the sense of traces in L2(—1,1), see
Lemma A.1). Then z¢ € L*((0,1); Hyy*) N L2((—1,0); Hy ).

Proof. Let ¢ := z¢. Then ¢ € Hi((—1,1); L*(zo,21)) N H=Y((—=1,1); H' (29, 71)) with ¢p = 0
on {z1} x (0,1) U {x} x (—~1,0) (in the same sense). Moreover, letting ¢» denote the restriction
to (zo,z1) x (0,1) of 1, we have ¢ € H'((0,1); L*(zo,21)) N H1((0,1); H} (20,21)). We then
construct an extension to (zg, 1) x R, still denoted by v which satisfies ¢ € H'(R; L?(xq, 1)) N
H~Y(R; H§ (x0,21)). By [2, Theorem 4.5.5] (which applies since both L*(xo, 1) and Hj (2o, 1)
are Hilbert spaces so enjoy the UMD property), ¢ € L?(R;G) where G is the interpolation space
denoted by [H (xo,xl),Lz(xo,ajl)]%. By [42, Chapter 1, Theorem 11.7], G = Hééf(:co,xl) (see
Footnote 7, Page 99). This proves the right part of the statement. The left part is proved
similarly. O

C Proofs of lemmas of Section 3

C.1 Preliminary remarks on liftings

In Section 3.4.2, we introduced the unknown ©7, which is formally linked to ®7 by 0,07 = a0, ®7.
We also introduced a lifted version @g, which still authorized a jump in az@g across the line

{z = 0}. In this paragraph, we introduce another lift @g such that the lifted function will be H?
in z. This lift will be used in the proofs of this appendix, and is defined in the following way. We
write ‘ ‘ ‘

@; =0/ +0],
where the lifting term 9{ is given by

6] = 2by (z)x(2)1a, + 2b_(x)x(2)1a_
with some coefficients b+ to be determined. The role of @{ is to ensure that
©]]=0, [8.0]]=0.

Note that the first condition is automatically satisfied with our choice above.
Furthermore, setting F7 = G[©],

aw[Fj(xv ')]lz:O = F(Z‘,O)@w[@](l‘, ')}lz:O =0.

Hence the jump of F7 is constant across the line {z = 0}, and is equal to

L /zl [F7(x, )jz=o da.

1 — Xo zo
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Consequently, we choose by to be constant in z, and we define

, 1 T
b = — Fi(z,0%) dz,
1 — Xo xo
. 1 2N
b= — / F/(z,07) dx.
1 — Zo zq
With this choice,
[F/ 4 (B0 ¥ 1co)] =0,

and therefore [6z@g Jlz=0 = 0, and [F7 + 9.0] ljz=0 = 0. Note also that 9,07 = 0. Tt follows that
~20,06/ —0..6/ =5 inQ (C.1)
o

where _ .
S7 = 1.200.. ((Lj—0 — 21;21)x(2)) + 9. (0.0 + G[©7]) .
The boundary conditions for @g are
0/ (z,£1) =0,
0] (20, 2) = ~b_zx(2) Vz € (~1,0),
0] (x1,2) = —(J0; + 2(=Lj=1 + by ))x(2) Yz € (0,1).

C.2 Proof of Lemma 3.11
Throughout the proof, in order to lighten the notation, we set
o = T3l oo grarzy + 1012z (2e) + D2l mrzzz + llo = Uloo + llaslloo + el 2= (z2)-

Remark C.1. Note that |lo..||r2 < 1 implies ||ag||p 2y < 1. The latter bound will be used
several times in the proof.

Proof of Lemma 8.11. Step 1. Uniqueness. Let © € B be a weak solution to (3.51) with f =
0, n; = 0. We adapt the arguments of Baouendi and Grisvard (see Appendix A). Let V €
L2(H}(—1,1)) be arbitrary. We have, using the weak formulation (3.52)

|4 1—a)V
<z§z@, > = (z@m@, V>L2(H*1),L2(Hé) + <Zaz@, ¥>L2(H*1,L2(Hé)
G L2 (H), L2 (H)
= (z@z@,V>L2(H71)’L2(Hé) (02)
— | GB]0:((a —1)V) = [ 0.00.((a —1)V). (C.3)
Q Q

Using once again the weak formulation (3.52), we see that the left-hand side is also equal to

/G[@]azwr/ 0.00,V.
Q Q

101



From there, it follows that

HZﬁIGHLQ(H’l) = sup <Zaz@,V>L2(H71),L2(H1) (04)
VeL2(H{), IV 21 <1
< (IGO]ll2 + 19:0][12) (1 + [l = Lloo + llezllL2(5e))- (C.5)

Using Lemma 3.8 together with the smallness assumption on I';, we obtain

1202021y < 10202,

(C.6)
IGO]llz2 < 10l|0:O] 2.
Eventually, thanks to Corollary A.2, we observe that
1 1 1
(20:0,0) 12(g-1),L2(H1) = 3 </ 20(x1,2)? dz —/ 20(xg, 2)? dz> (C.7)
-1 -1

= % </01 20(x1,2)? dz — /01 20 (g, 2)? dz) . (C.8)

Now, take V' = © in (3.52). Using (C.3), (C.6) and (C.8), we obtain

1 1 0
3 (/0 20(xg, 2)? dz — /71 20(x1, 2)? dz> + /Q(aze)Q
1G[O]llz> ([10:8]l> + 19-((ec = 1)O) [ 2) + [|020][ 2|0 ((a — 1)O | >

<
S h0ll0:0]7:.
Hence, for pg < 1, we infer that © = 0.

Step 2. Energy estimates for equation (3.51).

First, since we have assumed that the boundary terms 79, 11 belong to Hg(—1,1), note that we
can always lift them with a function ©,,(z, 2) = x(x — x0)n0(2) + x1(x — x1)n1(2) for some cut-off
function y € C2°(R) as in the proof of Lemma 3.8. This will add a source term in L2(H 1) to the
equation (coming both from the diffusion term and from the operator G). Hence, in the following,
we will consider the case n; = 0, without loss of generality.

Taking © as a test function in the weak formulation (3.52), we obtain

(C]
/(329)2 _ <z@z@,a> TR - / G[6]0.6. (C.9)
£ L2(H=1),L2(Hg) Q
As in the previous step, we decompose the first term in the right-hand side as follows
C]
20,0, o ) = (20,0, 6>L2(H,1)’L2(H&) (C.10)
L2(H-1),L2(Hy)
1 —
+ <z@z®7 O‘@> . (C.11)
L2(H=1),L2(Hg)
The term (C.10) yields a positive contribution on g U Xy, namely
e ) 1 )
—(20:0,0) 121y 21y = 5/0 2(0(z9,2))* dz — 5[1 2(0(z1,2))* dz. (C.12)
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We bound (C.11) as follows

<z8I@, 1_0‘@>
@ L2(H-1),L2(H})

Using the same arguments as in the first step, we find that

< 12020l 2 g1, || ——© (C.13)

‘l—a

LZ(H})

||Zax®||Lg(H;1) S 10:09| 2 + Hf“Lg(H;l)’

while

© < (lezllzneey + lla = 1lso) 10:00 L2024y S 1011020 L2(02)-

@ L2(HY)

Hl—a

Gathering the previous estimates and using once again Lemma 3.8, we obtain
1 1 [0
10:0]220 +/0 2(O(r0,2))?dz — /_1 2(O(a1,2))? dz -
<N fllz2ea-)10:0llL2 @) + Croll0:0|172(q)

Hence, if g is small enough,
1Ol < CllfllL2cm-1)- (C.15)

Step 3. Existence of weak solutions for smooth coefficients, with a large zero order term.

We assume in this paragraph that the coefficients are smooth, say a, 1,72 € C?(Q).

The purpose is to prove that for Cy > 0 sufficiently large, depending on some norms of the
coefficients, the equation

fgam@ —0.(G]O] +0.0) + C,L@ = f inQ,

O(z1,2) =0 Vz >0,
O(xp,2) =0 Vz<0

has a unique solution in L2(H}).
We proceed by viscous regularization and consider, for every € > 0, the system

—2816)8 — 0.G[O.] +0..0. — £0,,0] + 0. = f in Oy,
©.=0 on 9N.

(C.17)

We then perform the same type of estimates as before. Since we allow the coefficients to be
smooth and the constant Cj to be large, the estimates are somewhat simpler. It can be easily
proved that if

Co 2 llazlloo + l12lloo;

the equation (C.17) has a unique solution in H}(2), which satisfies uniform in ¢ bounds in L2(H}).
Passing to the limit as € — 0, we deduce that for the above choice of Cy, there exists a solution © €
L2(H}) to (C.16). Using the equation, we infer that this solution is such that 29,0 € L2(H1!).
Using the first step (or a variant including the term Cy), we deduce that this solution is unique.
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Step 4. Existence of weak solutions to (3.51) for smooth coefficients and L? source.
Now, for any f € L?(f2), consider the solution to (C.16). As in Appendix C.1, we introduce
coefficients b1 defined by

by = — L /mqw@ﬂﬂm.

1 — To )

and a function ©, such that
0 = Zzbix(z)lipo + 0,.
+

Note that
b1| S 10:12]|00]1020| L2,

so that ||0,0y |12 < []0:0||r2. The function ©, is a solution to
z
—=0,0, = 0..0, =5,
a

where

Sp=[f+0: (G[@} —0: (Z ZbiX(Z)liz>O>> — O, € L*(9).
+
According to the results of Pagani [49], ©, € Z°(Q). In particular, ©, € HZ*(L2). Since O, is
constant in z, it follows that © € Hg/g(Lg). As a consequence, the operator K : f € L? — O €
Hz/?’(Li) N L2(H!), where © is the solution to (C.16), is compact.
We now apply the Fredholm alternative to the operator K, which implies the following:

(i) either, for any f € L%(Q), there exists a unique solution in H§/3(Lf) N L2(H}) to (3.51);

(ii) or there exists a non-trivial solution © of

4u@é+e@p—§@9201nm

O(z,+1) =0,
O(z1,2) =0 Vz>0,
O(wg,2) =0 Vz<0;

According to the first step (uniqueness for (3.51)), the second case never arises.
We deduce that when the coefficients «,« are smooth and satisfy the smallness assumptions
above, for any source term f € L2, there exists a unique solution to (3.51).

Step 5. Euxistence of weak solutions to (3.51) for general coefficients and source terms.

We argue by density and consider sequences of smooth coefficients o™, 7{", 75 converging towards
a,71,72 in the relevant norms (i.e. in the norms in which we stated the smallness assumptions.)
We also consider a sequence (fy,)nen of L? functions such that f, — f in L?(H~1).

For any n € N, there exists a solution O™ to (3.51) with the coefficients o™, ~}",v% and source
term f,. Furthermore, the second step (energy estimates) shows that this solution is uniformly
bounded in L?(H'), and 20,0 is uniformly bounded in L?*(H~!). Hence, we can extract a
subsequence such that

O™ —© in L2(H}).

z

The limit is a weak solution to (3.51). This concludes the proof. O
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C.3 Proof of Lemma 3.12

We start with the following technical bound which will be used below.

Lemma C.2. Let & € Q' such that ||u — y||g1 < 1. Consider the operator G defined in (3.40).
For © € Z°(0y),
10:G[O][[z2 < poll®ll zo(as)s (C.18)

where
p0 = Tull oo grrre +10=Tillee 2y + (100l o gy2rey + T2l 2y + 10:L2ll 2 yars). (C19)

Proof. By symmetry, we only treat the case of Q. Differentiating the definition (3.40) of G[O)]
with respect to z, we have, in Q4

0.G[6] — T20.0+ / " 0.100.0 (C.20)
10150 + / " 9,.150 (C.21)
+2T10.0 + / " 9.T120.0 (C.22)
+F1®+/Il 0,I'1© (C.23)
- / " 0.110,0. (C.24)

We then evaluate each term of the right-hand side separately.
e The term (C.20) is the easiest. Recalling that [|0,0][z~((0,1),22) S 1Ol z0(q, ), we have

1(C.20) 1220,y S 1Ol 20y (IT2llL2(rs0) + (02T 2l L2(0)) -

e For the term (C.21), we recall that ||®||L°°(H1/2) < |I8]|zo. Using a H; Y — H2® duality,
we obtain

C2D) 22, 101 27 10Tl ey S 1002y [0:Tel ey
The term (C.23) is treated in a similar fashion, using a H~1/3 — H'/3 duality

1(C-23) I z2() S 1O e g2/ T2l 2 gg22)-

e For the term (C.22), the first part is easily bounded, using the embeddings H'/2 < L* in
1D and Lemma B.13, as

111200 12(0,) S HF1||L30H;/2H|Z|§8z9”LgH;/2 ST e a2 1Ol 202y (C.25)

We write the L? norm of the second part in the following way:
T
= sup / h/ 0,1'120.0
L2(Q4) heL?(Q4), |kl 2<1/Qy z

1 1 x
= sup / / (/ h) 0,1'120,0.
heL?(Q4),llhllL2<1 /0 Jao zo
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By Lemma B.9, for each z € (0, 1),

Ty xr
[ ([ #)arrizae| Sl I ) e l:0.06, sy (€20
Zo Zo r
Integrating over z € (0, 1) yields
1 x, x
/ / (/ h) 8IF1Z8Z(9‘ S bl 00 212080 oy (C28)
0 To zo z T = s ’
Thus, using the embedding of Lemma B.15,
1
/ 8$F1z626 ,S ||F1HLOOH1/2||@HZO(Q+)' (029)
x L?(Qy) =
Combining (C.25) and (C.29) yields
1(C22) 120y S 0l o2 1O 20 (C.30)
o At last, we bound (C.24) by
1(C24) |2y S 12020l L2 [10:T1llL(z2) S 1Ol 202, ) 10Tt Lo (22).-
This concludes the proof. O

Proof of Lemma 3.12. For the proof of the A estimates, it will be convenient to work with the
lift ©] defined in Appendix C.1. We recall that ©] satisfies equation (C.1).

Step 1. Existence of a solution in Z° for smooth coefficients.

We first assume that « and v are smooth, and we now derive Z° estimates for our L?(H?')
solution. In this case, we notice that S7 belongs to L*(Q).

It follows from the work of Pagani that

120:07 | 20) + 10:20] || L2 (o) + ||@§||L30(H;/2) (C.31)
< S ey + 1+ b |+ o] + 1107 | L2 (- (C.32)

~

Thus there remains to evaluate each of the terms in the right-hand side. We start with ||S7{| 2 (q).
According to the definition of ©7, we have

199020y < C(1+ |by] + b))
+ (ITlloo + 110:Tll L2(r2¢)) 10:07 || L2 (022
+ (ITzlloo 4 02T llL2(120)) 10:07 || L2 (02
Note also that
[be] < C (IT]ls0 + T lloo) 167 (-, 05) | L2 (2p.ar) < (ITMoo + [T llo0) 10:07 | 20y )
and

167112 S 17112 + [b] + [b—|
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Since Proposition 3.10 ensures that [8.07||12(q,) S 1, we obtain a bound on [57]|12(q, ) and by
(depending on some high order norms of the coefficients). We therefore obtain a first Z 0 estimate
on ©/.

b

Step 2. ZO estimates for smooth coefficients.
We still assume that the coefficients «,~ are smooth, but our purpose is now to derive a Z°
bound on the solution that only depends on norms of the coefficients «, 1,72 in lower order norms.
We first rewrite the equation for ©] as

~20,0] - 0..0) = (a —1)0..0] + &,
so that there exists a universal constant C' such that
120,031 + 11920312 < € (Jlo = U022 0]l 2 + 187 1 + b + o] + 312 ) .
For |ja — 1]|eo < 1, we absorb the first term into the left-hand side. Furthermore,
1871 z2() S 1+ o]+ [o—| + 10:G[&] [ 12 (2, ) + 10:G[O]][ L2 ()

Note also that by are the (integrals of the) traces of G[@7] at z = 0F. It follows that if the
coefficients «,v satisfy the smallness assumptions of Proposition 3.10, there exists a universal
constant C' such that

120,00 |12 + 0.6l < C (1 + [0.G16] | 12(ar, ) + 0-C16] [ 120 )) (C.33)
Hence, using Lemma C.2, B 4
b1 | < Col|© || o)

and ) .
1071 z0(0x) < 14 CllO] [ 200 )-

Substituting these estimates into (C.33), we get
||@§”Z° <C(1 +M0||@§||ZO),
and thus ' -
04 < C. C.34
b

Step 3. Z° estimates for general coefficients.
We take a sequence a”,~™ of smooth coefficients such that v = 24" + % and 7 (resp. a™)
converges towards v (resp. «) in the relevant norms, namely
I =z ggzrey + I = 9l e gy 1102000 =9l z2) = 0,
72 =27 |2 ) + 19202 = 22) 2 + 10=(v2 = 2l 12 gy2/5) = O,
loe — OénHH;(H}C) + 11022 (a — an)HLz(Hi’/s) — 0.
We consider the profiles ©J associated with ™, ™. According to the previous step, for all
neN, o e 70, and we have the estimate (C.34). Therefore, we can extract a subsequence and

pass to the limit in the equation. It can be easily checked that the limit is a solution to (3.44),
and satisfies (C.34). 0
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C.4 Proof of Lemma 3.14

Proof of Lemma 3.14. We start with uniqueness. Assume that g = 0, 6;=0. Let feL*H 1) be
arbitrary and let © be the unique solution to (3.51) with 779 = 1y = 0. It follows from Definition 3.13
that

(f, V>L2H*1,L2Hé =0
Since the function f is arbitrary, we infer that V = 0.
The same argument allows us to prove a priori estimates. Indeed, assume that V € L%(H{) is

a solution to (3.29) in the sense of Definition 3.13. Consider the unique solution © € L%(H}) to
(3.51) with f = —0,,V € L2(H; ') and with 19 = 7; = 0. Then, according to Lemma 3.11

z
S I T PRPIRY g Py

Furthermore, combining the weak formulation from Definition 3.13 together with the one of equa-
tion (3.51), we deduce that

o fo2)

-/ L)+ 5(0) ~ o) Talen,2)] O ) d

-1

+/0 [%(:m,z) +0(2) — 57)(2){‘2(%‘072')} O(x0, 2) dz (C.35)

+ (20,0,T1(1,<00] + 1z>o56)>L2(H—1),L2(H01)

_/(1z<051 + 1z>066)amr2@~
Q

Using the assumptions on the coefficients «, 1, v2 together with Lemma A.1, we obtain
2\ 2
10:V 72 < <|9|H1Lg +Z (/ [ + 0/ (z )—5;(z)rz] ) + |6§|H1>

<(Iz00

Combining the two estimates and using a Cauchy—Schwarz inequality, we deduce that

© n ).
L2<H71)+|| ||L2(H0)>

1
2

IVl < ||g||H1L2+Z(/ EIERRACEREIN [ RS

Once a priori estimates are available, we can adapt the arguments of Lemma 3.11 to prove the
existence of solutions to (3.29) in L2(H?'). O

D Proofs of lemmas of Section 5

In this section, we prove the decomposition result of Proposition 5.15. The proof will rely in
particular on the following estimate.
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Lemma D.1. Let & € Q' such that || — y||gr < 1, and define the operator G by (3.40). Then,
for all o € [0,1], for all © € ZF (Q4) = [Z2°(0), Z4(Q+)]s,
1010z 10y < 1~ s 10125 -

Proof of Lemma D.1. We work separately within each half-domain €21. For ¢ = 0, the estimate
follows directly from Lemma C.2 and the bounds of Lemma 4.4. For o = 1, we recall that

0,0.G[O] = 0.(I'9,0) = 8.I'0,0 +I'd,0.0.

We then decompose I' as zI'y + I'y and we proceed to evaluate each term. Note that Z7 —
H§+JL§ N HZH?. Furthermore, if § € Z°, then 20,0 € L? and if 6 € Z*, 20,0 € HLL? N L2H?.
By interpolation, if § € Z°, 20,0 € HIJL?> N L2H?*. Now, let © € Z%/3. Then 9,(20,0) €
HY1L2nL2HY® < L2(L2). Since Ty € L°(HY'?) by Lemma 4.4, it follows that

IT10:(20:0)|z> < [t =yl 81| z2/5-

Furthermore, 9,.I'; € L(L2) and 20,0 € H§/3Lz < L2(L). Hence ||0.1120,0|1> < ||u —
Yllo1]|©]| z2/5. The two terms involving I'y are bounded in a similar way, namely

IT20:0:0|L2 < [[Tallol|020:O|2 S @ = yllq1 1Ol z2/2

and
10:120:0| 12 < (|02 L2 (£2) 02Ol o2 S [l — yllr O] 2275

The estimate for o = 1 follows. We then deduce the estimate for o € (0, 1) from a straightforward
interpolation argument. O

We will also use the following cancellation on o — 1.

Lemma D.2. Let i € Q' such that [|[u—y| o1 < 1 and a(z;,0) = tyy(z;,0) = 0 and u,(z;,0) = 1.
Define a by (3.5). Then, in a neighborhood of (x;,0), using the notation r; of (2.74),

o, 2) =1 S = ylgr. (D.1)
Proof. First, 0,a(x;, ) = 20yy (24, Y (25, 2)) with the change of variable Y defined by (3.2). Hence
O,a(x;,-) € H3/2( , 1) with d,a(x;,0) = 0. Therefore, by the Hardy inequality,

L (0,a(x;, 2))?
/ lwdzs 1.0 s 1) < 17— ylor. (D.2)

)
It follows that
la(z, 2) — 1] = |a(z, 2) — az;,0)]

/|0zxx z\dx+/|8aaz“ )| d2’
(D.3)

< o = il oz 2y + 1212110l 20)/7 a-1n)
3
<rila—yllgr

using the embeddings of Lemma 1.10. O
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Lemma D.2 has the following consequence, which will be used in the proof of Proposition 5.15.

Lemma D.3. Let u € Q' such that |[u—y| o1 < 1 and u(z;,0) = tyy(z;,0) = 0 and u,(z;,0) = 1.
Define a by (3.5). Then, for f € H:L?

|67 ((a = 1)£,0,0)| < 1@ — yllo £l 2. (D.4)
Thus, the linear forms f +— €3 ((a —1)f,0,0) can be continuously extended to L*(€).

Proof. By Definition 2.9, using the boundary conditions on ®J of (2.17),
bi((a—1)f,0,0) = /fa—l@@ (D.5)

By Corollary 2.28, there exist (do,d1) € R? and @, € Q' such that

(0 —1)0, D7 = (o — 1) Breg + do(a — 1)0,u z)+di(a—1)0, umg( ,—Z). (D.6)

We then prove that all terms belong to L*(Q). First, ||(a — 1)0;Preg|lz2 S o — 1o S 1@ —ylqr-

We turn to the second and third terms. Far from the critical point (z;,0), (o — 1)d,1,, is easily

bounded in L* since OylUsing is smooth away from (z;,0) by Lemma 2.23. Near (z;,0), using
_s

(2.80), there holds |9, @, | < (1+ |ti])r; *. By Lemma D.2, |a — 1] 73|/ — yl| g1 Recalling the

Jacobian (2.48), we infer that ||(a — 1)d, @, ll2 < @ — yllqr- O

smg(

Proof of Proposition 5.15. Let us first recall that ©7 can be decomposed as
('“)j = (1j=1 - Z1j=0)X(Z)1Z>O + C")é,

where @g is a solution to (3.44). As a consequence, setting O := 0063 +¢10!, we find that O, € B
is a weak solution to

~20,0, - 0.G[0,] ~ 0..0. = f. nQ,
O.(-,£1) =0,

Oc(r1,2) =10 Yz >0,

Oc(z0,2) =n5 Yz <0,

(D.7)

with
fe=1.500.. ((c1 — co2)x(2)) + 0. (1250(c1 — coz)x(2) (21, 2)),
n5 =0, ni(z) = —(c1 — coz)x(2)-
The argument is formally a perturbation of the one of Corollary 2.26. More precisely, for any
do,d1 € R, we note that Oeg := 0. — dotd;, . (x, —2) — dyul,, (z, —2) is a solution to

sing( smg(

_Zax@reg - azz@reg = afc + aazG[@c] + (05 - 1)8zz®c - dO%(z7 _Z) - dlﬁ(xa _Z) = Greg>
Oreg (-, £1) =0,
Oreg(z1,2) =1 Y2 >0,
Oreg(z0,2) =1 Yz < 0.

(D.8)
Let us denote by {7 the linear forms associated with the dual shear flow problem, i.e. with the
equation —zd; — 0,,. The idea is to prove that greg € Hl/?’L2 and to look for dy,d; so that
Zvj(greg, n¢,m§) = 0. Using Lemma 5.11, we then deduce that ©,e, € HLL2.
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The slight difficulty is that we cannot operate immediately on equation (D.8), because we
need to bootstrap the regularity of ©,¢, using Lemma D.1. Therefore we will work with a slightly
modified version of (D.8), in which the vertical derivatives in the right-hand side have been replaced
by finite differences, and we will prove uniform estimates on the solution to our modified equation.

Before proceeding further, we note that we can decompose gy as follows:

Greg — afe— dO%(my _Z) - dlﬁ(xa _Z)

+ Z diaazG[ﬂéing(x, —2)| + di(a — 1)82212;“@;(30, —2z)
i=0,1

+00;G|Oreg] + (¢ — 1)0;,O1cq.

Note that the term on the first line in the right-hand side belongs to H!L?. Therefore we will
focus on the two other terms.
Step 1. Bound on a@zG[ﬁging(x, —2)] and on (o — 1)8zzﬂéing(x, —z). We first obtain bounds in

HY?L2(Q4) on the two terms involving the singular profiles Uil We start with the bound on
(o = 1), 0, (2, —2), which we write as ro - 1)rf/4azza;ng, with r; = (o — 2;|2/3 4 22)1/2.

So..ut € HOL® N L2H3 for

[ sing

all 0 < 7/12. In particular, r?/4azzﬂéing € LP(HZ) for all o < 5/12. We therefore focus on
r7%/*(a = 1), and we prove that this term belongs to L2W1! < L2H}/? by Sobolev embeddings.
We have

With the same arguments as in Lemma 2.24, we find that r

a—1 Gy BHx(-1)a-—1

rf/4 - TZ_5/4 12 7“1'13/4

D |=1/3.

|z — a;
We evaluate each term of the right-hand side in L2L.. By the Minkowski inequality, it is sufficient
to evaluate them in L!L2. For the first term,

1 1/2
[ i)
iy (o= 27

Tl -
< / llova (|22 2 — 2| 77 da < flowllzaz < Il - yllgr-
xT

0

Ay

5/4
i

As for the other term, using Lemma D.2, we deduce that

Tl 1 1 1 %
snfa—yn@/ & — 2|} (/ 2 dz) "
1 (|z — 2|3 + 22)7/4 (D.9)

Li(L2) o a

Sla—yllgr-

a—1
13/1 |z —
T

_1
ZL‘Z| 3

Using Lemma B.3, we conclude that

a—1
5/4
i

172400l g (2, —2) | oo 11
L2HL?

0= 1)0stlig (. ~2) | 15 0 <

for some o € (1/3,5/12).
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We proceed in a similar way for the term 9,G[u Smg(x

a 8 G[ smg( _Z)] a ((ZFI +F2)6 ’LL
0.I'120, ubmg(

40,120,

sin (
g

slng(

We evaluate the right-hand side in L2(LL). First, since 20,4

we have [|0.T1 20,1k,

method as in Lemma 2.24, we see that, for any o > 0, ri
taking 0 < o < ¢/ < 1 and setting ¢ = (14 20")/(1 + 20),

Iy
3to
i

HI‘ 0,(20,1,

Sll’lg( Z>)HL2Li ~

Lz (L3)

smg(

—z)]. Note that

;—2))
z) +T10,(20,u
—2) + 20,0, ubmg( ,—2).

smg(x _Z))

2) € L?(Q) by Lemma 2.23,

(z, =22y S 10:T1l|Le(22)l120 umg”Lz S ||z — yllgr. Using the same
28 (20, ugmg(x

2)) € L?(Q). Hence,

x1
S A (

SIT

! d
T
|z — a;]2/3 + 22)%+%0’

||L°°(H1/2 ||a_y||Q1

The two terms involving I'y are treated in a similar fashion and left to the reader. Eventually, we

infer that, within Q.

”a G[ smg( Z)]HH;/ZLE ,S ||aZG[aéing(x7 -z

and thus, within Q4

||(Oé - 1)azzusmg(x + HO&@ G[ smg(

Z)HH;/3L2

Step 2. Lift of the traces of G[
G (see (3.40)) that Glu
9.Glu

,—2)] and G[BOyeg).

smg(
smg(

Ul (2, —2)] & L*(2). More precisely7 set

1
T1 — Zo

b; = —

= 2x(2) (b 1,50 + b1 1,00),

Then 6, solves

—20,0, — 0,0,
Op(z,+1) =0,

Oy (o, 2) =05 — 2x(2)(dob®. + d1bt + b™°®)
O, (z1,2) =71 — zx(z)(dobg_ + dlb}‘_ + bz_cg)

=S,
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=g Sllw = yllgr

] .
/ Gty (2, —2)] gt o, B = —
0

0, := 2x(2) (b F1.50 + 0%, ),
@b = @reg -

T1 — Zo

)]HLZ(W%’I) Sl —yllor

(D.10)

It follows from the definition of
—z)] and G|O,e;] have jumps on the line z = 0, and therefore
=

1 1
/ G[ercg} |z=0% dz

do©f — d,©} — O°%.

Vz € (—1,0), (D-11)

Vz € (0,1),



where

S, = afe—dofolz,~z) —difi(z,~2)
+Z afl Zzusmg( )+d0&8 ( [smg( )}+a®)
i=0,1
=Y di (0.G[O]] + (o = 1)0..0]) — ad.G[O]®] — (o — 1)0..0;®
i=0,1

+00,(G[0)] + 0.05%) + (a — 1)0,.0,
= g+ aaz(G[@b] + aZG;Cg) + (a - 1)azz®b'

Note that since @f depends only on z,
G[O]] = =6} (1.5l (21, 2) + L.col(20, 2)) -

The assumptions on I' ensure that 9,G[0!] belongs to L? (and therefore to H. 2 L2, since this term

does not depend on x). Furthermore, G[Oycg]|.—0+ = G[Oy].—0+-

At this stage, we have proved that for any choice of the coefficients dy, d1, g, € Hy L 3L2

Step 3. A priori estimates on O In Z'/3. We now derive some a priori estimates on Oreg,
which will be justified in the final step. Assume that the coefficients dy, d; are such that

03(Sy,m5 — 2x(2)(dob® + dibL ), — 2x(2)(dob?. + dibL)) =0 for j = 0,1,
and assume that ©, € Z'/3. Then according to Lemma 5.11,
1Ol z175 S 195l /o 2 + [eol + lex| +[dof + |-
Now, according to (D.10) and Lemma D.1,
1561l 27212 S leol + lex] + [dof + |d| + [[@ = yllgr[|©s] z1/2 + [[(@ = 1) 02204 1/ -
It is easily proved using Lemma B.3 and the same arguments as in Lemma 4.4
(e =1)0:205 || gr/apa Sl = Ul oo (274 1Ol 2272 S 17 = llQr 185 ]| 2172

Hence for ||u — y||g1 < 1, the two terms involving ||©,|z1/s in the right-hand side can be treated
perturbatively, and we obtain

105l 2175 S leol + lex| + |do] + |dal.

There remains to explain how dy and d; can be chosen, and to prove that |do|+|d1| < |eo|+]|c1|. This
will be done thanks to a finite difference approximation scheme, which will allow us to construct
a solution ©, in Z'/3 satisfying the above a priori estimate.

Step 4. Construction of an approximating sequence. In this step, we slightly modify the equation.
For any h € (0,1) and f € L%*(—2,2), we set 7, f := h='(f(- + h) — f), for z € (—1,1). Now,
for © € B, we extend © to (xg,z1) X (—2,2) by setting O(z,2) = —6(z,2 — 2) for z € (1,2),
O(z,2) = —O(x,—2 — 2) for 2 € (—2,—1). Note that with this extension, if © € Z%(Q), its
extension belongs to Z°((zg, 1) % (—2,2)).
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For all ¢y, ¢1,dp,d1 € R, and for h € (0, 1), we consider the system

—20,0p — 0..0, = g, + a7, (G[Oh] + 0.6,°%) + (a — 1)7,0.O4,
Oz, £1) = 0,

On(zo,2) = n§ — 2x(2)(dob®. + d1bL + %) Vz € (-1,0),
On(z1,2) = nf — 2x(2)(dob". + d1bh + %) Vz € (0,1).

(D.12)

In the above formula, the coefficients b’® within the definition of ©;°® have been replaced by

—(z1 —20) 7" [} G[On]jz=0+- Note that [V1*| < [|0.G[On]l| L2 (0s) S 1Ol z0-
Using the same method and estimates as in the proof of Proposition 3.10 and Lemma 3.12, it
can be proved that the above system has a unique solution ©;, € Z°, and that

1Onllzo < leol + [er| + |dol + |da.

As a consequence
1901l 27312 S leol + lex] + [dof + |da]-

Furthermore, for any h > 0 >, ar,G[04], (a — 1)7,0.0), € H;‘;/?’Lg. Indeed, since O}, € Z° — Q,
0.0y, € H;/BLg N L2H}, and therefore (o — 1)7,0.0), € H;/ng. Concerning the other term, we
write, for z > 0,

GlOn](x, 2z) = (T1204) (1, 2) —/ 20,0, + 12,0 +/ 0,156,

The second term is bounded in LZ(W,') by [T1llpe(r2)]|20:On |22 S 1t — yll@1[|On || z0. Hence

we obtain a bound in H;/ 2Lf,. The three other terms are easily bounded. We obtain

|am,G[O] @ —yllgi 1Ol zo-

”H;“Lz(szi) <

It then follows immediately from Lemma 5.11 that for all o < 1/6, there exists a constant C, such
that
IVillze < Cs gy + am (G[O] + Th@;eg) + (o — I)Thaz@h”HgLﬁ .

Using Lemma D.1 together with the bounds on b,
loms (GO4] + 0-07%) [l 1g 12 < llad: (G1O4] + 0-6}°F) g2 < 12— llgr Ol -
Furthermore, following the same argument as in the third step,
[( = 1)0:m.On ez < 12— yll@r|Onll 27

Since ||z — y||gr < 1, we obtain that for all ¢ < 1/6, there exists a constant C, such that for all
co,C1,dg,dq, for all h > 0,

Villze < Co (lcol + lex] + |do] + [da]) -

Let us now prove that for any h > 0, we can choose dy, d; = O(|co| + |c1]) such that for j = 0,1

~

(g, + ot (G[O] + 0.0;°%) + (e — 1)7,0.04,
ns — 2x(2)(dob® + dibl +b"8), nf — 2x(2)(dobS. + dibh +b58)) = 0. (D.13)
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By linearity, it can be easily checked that the left-hand side is equal to

G (afe,n,n5) — doli (Folx, —2),0,0) — difi (fi(w, —2),0,0) + Y Nijdi + > Pyei,
i=0,1 i=0,1

where N;; and P;; are real numbers. We recall that the numbers ¢y, ¢; are given and fixed, and that

we look for d07d1 According to Lemma 2.25, the matrix (EJ(fZ( —2),0,0))0<i,j<1 is invertible.
Hence it suffices to prove that the numbers IV;; are small, uniformly in h, and that P;; are uniformly
bounded in A. Thanks to the first step and to Remark 2.29,

‘é} ((0[ - 1)822u51ng( ) + O[a (G[ smg( )} + a @ ’ - yHQla
|07 (00.G16]] + (@ — 1)0..6},0,0)| S lla — yllo.

Furthermore, using Lemma D.1, we find that 9,G[O}] is bounded in HIL%(Q4), uniformly in A,
for all ¢ < 1/4. Taking for instance ¢ = 2 € (%, 7), we obtain

‘fj (amh (G[On] + 0:6;) 0, 0)‘ Sl —=ylgr®nllzsse < 1w = yllgr (col + [ea] + |dof 4 [da) -
Eventually, using Lemma D.3,
8 (0= 107,04, 0,0)] < 11—yl 101 l120 S 15— yllgn (Ieo] + les| + o] + I

Hence it follows that |Nj;|, |P;;| S ||@—yl|gr, and the estimate is uniform in h. As a consequence, for
all (co,c1) € R?, for all h > 0, there exists df, d? (which depend on h) such that the orthogonality
conditions (D.13) are satisfied. Furthermore,

|dg| + |dY'| < leol + [eal,
uniformly in h. Using Lemma 5.11, we deduce that
Vallz1/s S leol +leal,

and the estimate is uniform in h.

Step 5. Conclusion. By compactness, we extract a subsequence (still denoted by V},) that con-
verges weakly in Z'/3, and such that the sequence (df,d7) also converges in R2. Passing to the
limit in the equation, we obtain the desired decomposition. Furthermore, if dy = d; = 0, then

(1250022 ((c1 = c02)x(2)), 0, =(e1 — co2)x(2)) = O([[a = yllg (Ico| + [ex]))-
Using the same argument as in Corollary 2.28, we find that

co = O([|lu = yllgr(lcol + |ex])), er = O(fla =yl ([eol +[eal)),

and therefore, since |2 — y||gr < 1, ¢ = ¢; = 0. O

115



List of notations

Functional spaces

B
!
H
Hag
Hyy?
Hp,!
Hyp!
z2
Q°

o!
Q12
Yo

V1

3
70

71
Other

Baouendi-Grisvard solution space of (1.28), used in Appendix A, p. 15
Weighted H'! space for boundary data with norm (1.20), p. 13
Hilbert space with norm (1.3) of triples (f,do, d1) considered as data for the PDE, p. /4

Subspace of codimension 2 in H satisfying the shear flow orthogonality conditions, p. 23
Interpolation space of H'/? functions with “vanishing trace” at both endpoints, p. 13
Interpolation space of H'/2 functions with “vanishing trace” at the left endpoint, p. 13

Interpolation space of H'/? functions with “vanishing trace” at the right endpoint, p. 13

Weighted L? space for boundary data with norm (1.19), p. 18
Solution space Lg(Hg) N Hg/S(L§)7 p. 15
Solution space L2(HJ) N H§/3(L§)7 p. 15

Intermediate solution space Li(HZ/Q) N HZ/G(Lg), p. 15

Notation for L?(2) during discussions on interpolation, p. 64

Notation for H;Li N Lng’ with fs,ux, = 0 during discussions on interpolation, p. 64
Subspace of f € ); satisfying the orthogonality conditions at @, p. 64

Pagani solution space such that u, z0,u and 0,,u are L?, with norm (1.23), p. 14

Solution space such that u, d,u € Z°, with norm (1.24), p. 1/

Diffusion coefficient of the PDE in the Y variable, o = (@,)? oY =~ 1, p. 36

Coefficient of the 0, term for the PDE in the Y variable, v = (2ty — Uyy) oY < 1, p. 36
Decomposition of y(x, 2) as zv1(x,2) + 72(x,2), 1 = Uz 0 Y, 72 = —Uyy 0 Y, p. 36
Quotient I' = v/« involved in the definition of the operator G, p. 42

Quotients I'y, = 7/« involved in the equations of the dual profiles, p. 42

Boundary data at the inflow boundary ¥;, p. 4

Boundary data for the PDE in the Y variable, gl =§;0Y,p. 36

Boundary data for d,u, given by A; = (f +9/)/z, see (2.9), p. 18

Related with the dual profile ® by 9,07 = ad,®7, p. 42
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Lifted version of the conjugate dual profile ©7, p. 43
Lifted version of the conjugate dual profile ©7, p. 100

Lifted version of the conjugate dual profile ©7, p. 100

Angular profile of the k-th explicit singular solution in the half-plane, p. 27
Shorthand for a data triplet = = (f,d¢,01) € H, p. 80

Left inflow boundary {xo} x (0,1), see Fig. 1, p. 3

Right inflow boundary {z1} x (—1,0), see Fig. 1, p. 3

Dual profiles of Lemma 2.6 involved in orthogonality conditions for the shear flow, p. 19
Dual profiles for the linearized problem, p. 41

Cut-off function localized near (z;,0), p. 30

Physical rectangular domain (zg, 1) x (—1,1), see Fig. 1, p. 3

Upper and lower halves of the domain §2, p. 13

Smooth source term associated with the singular solution ﬁéing, p. 31

Operator mapping the unknown © to (9,) ! (g&C@), p. 42

Source term for the PDE in the Y variable, g = foY, p. 36

Linear forms on #H giving the orthogonality conditions for the shear flow, p. 21
Linear forms on H of the orthogonality conditions for the linearized problem at u, p. 48
Invertible matrix relating the singular solutions ﬁ;ing with the dual profiles ®7, p. 33
Radial-like variable given by r = (22 + m%)%, p. 26

Radial-like variable near (z;,0) given by r; = (22 + |z — x;]3)2, p. 30

Angular-like variable given by ¢ = zx_%, p. 26

Angular-like variable near (z;,0), given by t; = (—1)iz|z — 2|73, p. 30

Reference singular solution localized near (z;,0), p. 30

Solution to the PDE in the Y coordinate, U =uoY, p. 36

k-th explicit singular solution in the half plane, v, = r2z T3k A, (t), p. 27

Change of vertical coordinate, depending on z, such that @(z,Y (z,2)) = z, p. 36
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