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Abstract

We prove existence and uniqueness of strong solutions of the equation uuz — uyy = f in
the vicinity of the linear shear flow, subject to perturbations of the source term and lateral
boundary conditions. Since the solutions we consider have opposite signs in the lower and
upper half of the domain, this is a forward-backward parabolic problem, which changes type
across a critical curved line within the domain. In particular, lateral boundary conditions can
be imposed only where the characteristics are inwards.

There are several difficulties associated with this problem. First, the forward-backward
geometry depends on the solution itself. This requires to be quite careful with the approx-
imation procedure used to construct solutions. Second, and maybe more importantly, the
linearized equations solved at each step of the iterative scheme admit a finite number of sin-
gular solutions. This is similar to well-known phenomena in elliptic problems in nonsmooth
domains. Hence, the solutions of the equation are regular if and only if the source terms satisfy
a finite number of orthogonality conditions. A key difficulty of this work is to cope with these
orthogonality conditions during the nonlinear fixed-point scheme. In particular, we are led to
prove their stability with respect to the underlying base flow.
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1 Introduction

We investigate the existence and uniqueness of sign-changing solutions to the equation
UOpu — Oyyu = f (1.1)

in the rectangular domain  := (zg,21) X (—1,1), where ¢y < x; are real parameters and f is an
external source term.

A natural solution to (1.1) with a null source term £ = 0 is the linear shear flow u(x,y) := y,
which changes sign across the horizontal line {y = 0}. We are interested in strong solutions to (1.1)
which are close (with respect to an appropriate norm) to this linear shear flow u. Our purpose is to
construct such solutions by perturbing the lateral boundary data 11j,—s, (y) =y and wj,—,, (y) = ¥
or the source term f = 0.

Since such solutions will change sign across a line {4 = 0} lying within Q, a key feature of
this work is that (1.1) must be seen as a nonlinear forward-backward parabolic problem in the
horizontal direction. Thus, to ensure the existence of a solution, one must be particularly careful
as to how one enforces these lateral perturbations.

1.1 Statement of the main results

Due to the forward-backward nature of the problem, we must choose the lateral perturbations and
the source term in a particular product space. We therefore introduce the vector space

€= {(f, 8o,01) € CZ°(2) x C*([0,1]) x C=([~1,0]);  6;(0) = 9,,6;(0) = 976:(0) = 0
1.2
and 6,((—1)") = 925;((—1)") = 0 for i = 0, 1} 2

and H, the Hilbert space defined as the completion of £ with respect to the following norm
(associated with the corresponding canonical scalar product),

17280, 80 B += 113y + 1951113
+ 180ll3s + 18113

L 1 9260(y) \°
+/0 m(aﬁo(y)) dy+/0 |yl <8y ” ) dy (1.3)

0 0 2 2
[ L@ [ <6y895;<y)> ay.

_1 1yl

We establish existence and uniqueness of solutions in the following anisotropic Sobolev space
Q' = L*((zo,21); H>(—1,1)) N ]{5/3((@)7 x1); L*(—1,1)). (1.4)

In particular, for solutions with such regularity, (1.1) holds in a strong sense, almost everywhere
and the various boundary conditions hold in the usual sense of traces, almost everywhere. We first
state a result concerning the well-posedness in Q! of the linear version of (1.1) at the linear shear
flow, up to two orthogonality conditions (see comments below). Although equation (1.5) below has
been thoroughly investigated, as we recall in Section 1.2 below, we could not find this statement
in the existing literature.



Theorem 1. There exists a vector subspace ng C H of codimension two such that, for each
(f,00,01) € H, there exists a solution u € Q* to the problem

YO, u — Oyyu = f,
Uz, = 0i, (1.5)

Uly=41 = 0,

where Yo := {0} x (0,1) and Xy := {x1} x (=1,0), if and only if (f,d,01) € Hg;.

Such a solution is unique and satisfies

l[ullgr < NI(f,d0, 81) - (1.6)

We emphasize that this result implies that there exist triplets (f,dg,d1) that can be chosen
arbitrarily smooth and compactly supported, and for which there are no Q! solutions of (1.5).
Our main result is the following nonlinear generalization for small enough perturbations.

Theorem 2. There exists a Lipschitz submanifold M of H of codimension two, containing 0, such
that, for every (f,00,01) € M, there exists a strong solution u € Q' to

(y + w)0pu — Oyyu = f,

u\y::ﬁ:l =0.

More precisely, M is modeled on "ng and tangent to it at 0. Such solutions are unique in a small
neighborhood of 0 in Q' and satisfy the estimate (1.6).

The nonlinear orthogonality conditions are necessary in the sense that there exists n > 0 such
that, if (f,00,01) € H with ||(f,00,01)|% <n and u € Q' N HZ(H,) with |lullgr + lull 2y <m is
a solution to (1.7), then (f,d0,81) € M. '

In the statement above, the condition that the data (f,dg,d1) belong to the manifold M is the
nonlinear equivalent of the orthogonality conditions from Theorem 1. We emphasize that this is by
no means a technical restriction which could be lifted, but actually a necessary condition to solve
the equation with smooth solutions, as the second part of Theorem 2 points out. A key difficulty
lies in the fact that these orthogonality conditions depend on the solution itself. Hence, tracking
the dependency of these conditions with respect to the unknown function u is a key part of our
result. We will comment more abundantly on these points in the following sections.

1.2 Comments and previous results

We start with a few comments on our main results and recall related known results.

Problem (1.5), involving the operator y0, — 0y, can be seen as a particular case of the class
of “degenerate second-order elliptic-parabolic linear equations”, also referred to as “second-order
equations with nonnegative characteristic form” (as opposed to positive definite ones), “forward-
backward” or “mixed type” problems. They date back at least to Gevrey [16].

Problem (1.5) itself, as well as these wide classes of equations, has received a lot of attention
and has been investigated under different aspects: with variable coefficients or other geometries
[14, 34], higher-order operators [28, Ch. 3, 2.6], abstract operators [6, 35], explicit representation
formulas [15, 19] or with a focus on numerical analysis [2].



On weak solutions for the linear problem. It is well-known since the work of Fichera [14]
that weak solutions to (1.5) with LiH; regularity exist. For general boundary-value problems
for elliptic-parabolic second-order equations, one owes to Fichera the systematic separation of the
boundary of the domain in three parts: a “noncharacteristic” part, where one sets either Dirichlet
or Neumann boundary conditions (here y = +1), an “inflow” part, where one sets a Dirichlet
boundary condition (here ¥y U ¥;) and an “outflow” part, where one cannot set a boundary
condition (here, the two sets {zo} x (—=1,0) and {z;} x (0,1)).

Baouendi and Grisvard [5] proved the uniqueness of weak solutions to (1.5) with LiH; regu-
larity, by means of a trace theorem and a Green identity (see Appendix A). '

On strong solutions for the linear problem. There is an extensive literature on the regularity
of solutions to degenerate elliptic-parabolic linear equations, and the question of whether weak
solutions are strong. We refer the reader in particular to the book [30] by Oleinik and Radkevic.
Generally speaking, depending on the exact setting considered, it is quite often possible to prove
that the solutions to such equations are regular far from the boundaries of the domain and/or
from the regions where the characteristic form is not positive definite. A nice example is Kohn
and Nirenberg’s work [24], which proves a very general regularity result. A key assumption of
their work is that the “outflow” part of the boundary does not meet the “noncharacteristic” and
“inflow” parts (i.e. they are in disjoint connected components of 9€2). Hence, it does not apply
to (1.5), and hints towards a difficulty near the points (x,0) and (x1,0).

In a series of papers [32, 33, 34], Pagani proved the existence of strong solutions to (1.5) (and
related equations). More precisely, Pagani proved the existence of solutions such that y0,u and
dyyu belong to L*(Q). Moreover, he determined the exact regularity of the various traces of such
solutions (trace of u at & = x;, at y = £1 or y = 0, and trace of Jyu at y = 0). These maximal
regularity results play a key role in our analysis and motivate the functional spaces we introduce
in Section 1.5.

On orthogonality conditions for higher regularity. As noted by Pyatkov in [36], for such
forward-backward problems: “as a rule, there is mo existence theorems for smooth solutions with-
out some additional orthogonality-type conditions on the problem data”. Even for the linear prob-
lem (1.5), there have been very few works concerning higher regularity (than Pagani’s framework)
in the whole domain. Most of the works focused on higher regularity (such as [36]) involve weighted
estimates which entail regularity within the domain but not near the critical points (z;,0). An
attempt for global regularity is Goldstein and Mazumdar’s work [17, Theorem 4.2] albeit the proof
seems incomplete (see Proposition 2.7 below and its proofs for more details).

A misleading aspect is that it is quite easy, assuming the existence of a smooth solution, to prove
a priori estimates at any order. Such phenomenons are usual in the theory of elliptic problems
in domains with corners or mixed Dirichlet-Neumann boundary conditions (see for instance [20]).
Let us give an illustration of such a phenomenon in a close context. For a source term f € C2°(£2),
consider the elliptic problem

—Au=f in £,

u(zi,y) =0 for (—1)'y > 0,
Opu(ziyy) =0 for (—1)iy <0,
u(z,£1) =0  for x € (zg, x1).

(1.8)

It is classical that such a system has a unique weak solution u € H'(2). Moreover, assuming that



u is smooth enough, v := 0, u satisfies

—Av=20,f in Q,

Opv(zi,y) =0 for (—1)'y > 0,
v(x;,y) =0 for (—1)%y < 0,
v(z,£1) =0 for z € (g, x1).

(1.9)

For such systems, one has ||v]|g: < ||0xf||r2- Hence ||Ozu| < ||0xf |12, and, using the equation,
lullgz S || f]lgr. So one has an a priori estimate. However, it is known that there exist source
terms for which the unique weak solution u € H' does not enjoy H? regularity (see [20, Ch. 4]).
The key point is that, when reconstructing v from the solution v to (1.9), say by setting u(z,y) :=
ffo v(z',y) dz’ for y > 0 and u(x,y) := f;l v(z’,y) dz’ for y < 0, there might be a discontinuity of
u or yu across the line y = 0. Such discontinuities prevent v from solving (1.8). Preventing these
discontinuities requires that the source term satisfies appropriate orthogonality conditions.

Of course, such orthogonality conditions make it very difficult to obtain results at a nonlinear
level. Even for elliptic problems in polygonal domains, we are not aware of nonlinear results
coping with orthogonality conditions. For instance [20, Section 8.1] focuses on a case where there
is no orthogonality condition. Tracking the evolution of the orthogonality conditions during the
nonlinear scheme is one of the main difficulties of this work (see Sections 4 and 5.1). At the
nonlinear level, these orthogonality conditions are translated in Theorem 2 as the fact that the
data must lie within the manifold M, which can be pictured as a perturbation of the linear subspace
Hi‘g of data satisfying the orthogonality conditions for the linear problem.

Let us also emphasize that if one wishes to construct solutions with even stronger regularity,
say u € Hg’fH; with k > 1, then generically, one needs to ensure that 2k orthogonality conditions
are satisfied by the source terms.

On entropy solutions. An entirely different approach to solve (1.1) is to look directly for weak
solutions to the nonlinear problem, for example using an entropy formulation. The regularity for
such solutions is w € L% N LiH; and they are typically obtained as limits of solutions u® to
regularized versions of (1.1), e.g. u0,u® — Oyyu® — €0z,u® = 0. Such solutions satisfy both the
equation and the lateral boundary conditions only in the weak sense of appropriate inequalities
linked with “entropy pairs”. Given dg,d; € L*°(—1,1), the existence of an entropy solution to

U0y u — Oyyu = 0,

Uly=+1 =10

was first proved in [8]. More recently, Kuznetsov proved in [25] the uniqueness of the entropy
solution to (1.10), determined in which sense the lateral boundary conditions were satisfied and
proved a stability estimate of the form

lw =@l Lr () S 160 = dollLr(—1.1) + 161 = &1l (~1.0)- (1.11)

In particular, this stability estimate guarantees that one can construct sign-changing solutions in
the vicinity of the linear shear flow.
However, an important drawback of the entropy formulation is that the boundary conditions

are only satisfied in a very weak sense. Although functions in L% N LiH; don’t have classical



traces at * = x;, one can give a weak sense to the traces using the equation (see [26] for more
details). Unfortunately, it is expected that these weak traces do not coincide with the supplied
boundary data on sets of positive measure.

In contrast, since the solutions we construct in this work have (at least) H;Lf/ regularity, they
have usual traces ujy, € L*(3;) and the equalities us;, = &; hold in L*(X;), so almost everywhere.

On the choice of the linear shear flow. We choose to study the well-posedness of (1.1) in the
vicinity of the linear shear flow to lighten the computations. Nonetheless, we expect that our results
and proofs can be extended to study the well-posedness of (1.1) in the vicinity of any sufficiently
regular reference flow u changing sign across a single line {u = 0}, satisfying u, > ¢o > 0 in Q (so
that (1.5) is the correct toy model) and with ||u,||eo small enough (to ensure a priori estimates).

Moreover, taking a step further in the modelization of recirculation problems in fluid mechanics
(see Section 1.3), we also expect that our approach could be extended to an unbounded domain of
the form (20, 21) x (0,400), with a reference flow such that uj,—q = 0, u < 0 below some critical
line and then u > 0 above, with u having some appropriate asymptotic behavior as y — 4o00. In
such a setting, the Poincaré inequalities in the vertical direction that we use here should probably
be replaced with well-suited Hardy inequalities.

On the conditions §y(0) = 6;(0) = 0 for fixed end-points. It is an important feature of our
work that we are able to enforce precisely the exact endpoints of the (curved) line {u = 0} at
x = z9 and x = 7. Theorem 2 is stated for perturbations which satisfy ¢;(0) = 0 (see (1.2)),
so that the full boundary data y + ;(y) changes sign exactly at y = 0. This choice simplifies
the definition of the submanifold M of boundary data for which we are able to solve the problem.
Nevertheless, given yo, y1 sufficiently close to 0 and dp, d; such that y+;(y) changes sign at y = y;,
we expect that a similar existence result holds, provided that the perturbations are chosen in an
appropriate modification of M, with suitable modifications to the norm (1.3) and where, in (1.7),
the definitions of 3J; are generalized by setting ¥; := {(x;,v); (=1)*(y + &(y)) > 0}.

On the boundary conditions wu,—+; = 0. These boundary conditions are merely chosen
to simplify the statements and lighten the computations, since they guarantee that (z,y) —
(z,y + u(x,y)) is a well-defined global change of variables mapping € to itself (see Section 3.1).
Straightforward modifications would ensure the well-posedness of the considered systems with
sufficiently regular non-zero boundary data for uj,—.

On the compatibility conditions §;((—1)%) = 0 and §7(0) = 6/((—1)?) = 0. These conditions
are classical compatibility conditions for solutions to elliptic-parabolic equations. For example,
the condition do(1) = 0 is intended to match the condition u,—; = 0. The condition dg(0) = 0
comes from the equation. Indeed, if u is a sufficiently regular solution with f(z,0) = 0, the
equality 0,,u = zd,u at (x0,0) enforces 9,,u(zo,0) = 0, so d;(0) = 0. The condition 67 (1) = 0
stems similarly from the equation and the fact that d,uj,—; = 0. It corresponds to a classical
parabolic regularity compatibility condition. Note that we actually require the cancellation of
two additional boundary conditions, namely §;(0) = ¢61(0) = 0. We believe that these extra
assumptions are technical, and could be removed.



1.3 Motivation from recirculation problems in fluid mechanics

Our original motivation stems from fluid mechanics. Indeed, the stationary Prandtl equation,
which describes the behavior of a fluid with small viscosity in the vicinity of a wall, reads

u0yu + vOyu — Oyyu = —0zPE,
Uy=0 = Vjy=0 = 0, (1.12)

limy o0 u(z,y) = ug(x),

where ug(x) (resp. pg(x)) is the trace of an outer Euler flow (resp. pressure) on the wall, and
satisfies updyup = —0:pPE-

As long as u remains positive, (1.12) can be seen as a nonlocal, nonlinear diffusion type equa-
tion, the variable z being the evolution variable. Using this point of view, Oleinik (see e.g. [31,
Theorem 2.1.1]) proved the local well-posedness of a solution of (1.12) when the equation (1.12) is
supplemented with a boundary data w,—¢ = ug, where ug(y) > 0 for y > 0 and such that u4(0) > 0.
Let us mention that such positive solutions exist globally when d,pgr < 0, but are only local when
O0.pg > 0. More precisely, when 0,pp = 1 for instance, for a large class of boundary data wug, there
exists z* > 0 such that lim,_,,« u,(z,0) = 0. Furthermore, the solution may develop a singularity
at x = x*, known as Goldstein singularity. The point z* is called the separation point: intuitively,
if the solution of Prandtl exists beyond z*, then it must have a negative sign close to the boundary
(and therefore change sign). We refer to the seminal works of [18] and Stewartson [39] for formal
computations on this problem. A first mathematical statement describing separation was given by
Weinan E in [13] in a joint work with Luis Cafarelli, but the complete proof was never published.
The first author and Nader Masmoudi then gave a complete description of the formation of the
Goldstein singularity [10]. The recent work [38] indicates that this singularity holds for a large
class of initial data.

Because of this singularity, it is actually unclear that the Prandtl system is a relevant physical
model in the vicinity of the separation point x*, because the normal velocity v becomes unbounded
at © = x*. Consequently, more refined models, such as the triple deck system (see [27] for a
presentation of this model, and [23, 11] for a recent mathematical analysis of its time-dependent
version), were designed specifically to replace the Prandtl system with a more intricate boundary
layer model in the vicinity of the separation point. However, beyond the separation point, i.e.
for > x*, it is expected that the Prandtl system becomes valid again, but with a changing sign
solution.

To the best of our knowledge, the well-posedness of (1.12) when the solution u is allowed to
change sign has seldom been investigated. Such solutions are called “recirculating solutions”, and
the zone where u < 0 is called a recirculation bubble, the usual convention being that ug(z) > 0,
so that the flow is going forward far from the boundary.

Let us mention however the very recent preprint [22] by Sameer Iyer and Nader Masmoudi, in
which the authors prove a priori estimates in high regularity norms for smooth solutions of the
Prandtl equation (1.12) in the vicinity of explicit self-similar recirculating flows, called Falkner-Skan
profiles. The latter are given by

U’(x’y) = xmf/(C)’ (1.13)

o) =~y I Q) — Ty R ), (1.14)

where ¢ := (m; 1)%y30mT71 is the self-similarity variable, m is a real parameter and f is the solution



to the Falkner-Skan equation
" L+ B (1)) =0, (1.15)

where 38 = 72—1“1, subject to the boundary conditions f(0) = f/(0) = 0 and f’(+o00) = 1. Such
flows correspond to an outer Euler velocity field ug(z) = ™. For some particular values of m
(or, equivalently, 3), these formulas provide physical solutions to (1.12) which exhibit recirculation
(see [9]).

Obtaining a priori estimates for recirculating solutions of the Prandtl system (1.12) is very
difficult. This important step was achieved by Sameer Iyer and Nader Masmoudi in [22]. In the
present paper, we have chosen to focus on a different type of difficulty, and to consider the toy-
model (1.1), which differs from (1.12) through the lack of the nonlinear transport term v9,u and
its associated difficulties (nonlocality, loss of derivative) and the exclusion of the zones close to
the wall and far from the wall. For the model (1.1), a priori estimates are easy to derive, see [37,
Chapter 4]. The difficulty lies elsewhere, as explained previously. Indeed, in order to construct
a sequence of approximate solutions satisfying the a priori estimates, we need to ensure that the
orthogonality conditions are satisfied all along the sequence. The core of the proof is to keep track
of these orthogonality conditions, and to analyze their dependency on the sequence itself.

1.4 Scheme of proof and plan of the paper

Uniqueness of solutions is fairly easy to prove. For the linear problem (1.5), uniqueness already
holds at the level of weak solutions (see Proposition 2.2 and Appendix A). For the nonlinear
problem, uniqueness is straightforward since we are considering strong solutions (see Section 5.2).
Therefore, the main subject of this paper is the proof of the existence of solutions for the nonlinear
problem (1.7).

A first natural idea would be to prove existence thanks to a nonlinear scheme relying on the
linear problem (1.5). For example, one could wish to construct a sequence of solutions (un)nen by
setting ug := 0 (or any other initial guess) and solving

y@wum_l - 8yyun+1 = f - unaﬂ«'u"“
(Unt1)[; = 04 (1.16)
(un+1)|y:j:1 = 0.

However, this strategy fails. The key point is that the right-hand side contains a full tangential
derivative of u,, whereas the operator yd, — 0y, only yields a gain of 2/3 of a derivative in this
direction (more precisely, see Proposition 1.2 and Proposition 2.4). Hence, this nonlinear scheme
would exhibit a “loss of derivative”, preventing us to prove a uniform bound on the sequence
(un)n€N~

Another drawback of this scheme is that it would not translate well to a setting where one does
not assume 6;(0). Indeed, in such a case, the inflow boundaries of the problem with the perturbed
data y + 0;(y) would not match the inflow boundaries of the linear problem (1.5).

Hence we will rather construct solutions of (1.1) through another iterative scheme, which does
not rely directly on (1.5). In a way, the issues stemming from the linear scheme (1.16) come from
the following fact: in equation (1.7), the geometry of the problem is dictated by the line where the
whole solution y 4+ u changes sign. On the contrary, in (1.5), the geometry of the problem follows
the cancellation of y. Keeping this in mind, we will rather rely on the following linearized equation



around a base flow perturbation %, where @ is a small perturbation of the shear flow y in Q!

U0gu — Oyyu = f,
Uz, = 51', (1.17)
’U/|y::t1 =0.

The well-posedness of such linear systems is investigated in Section 3. Exactly as Theorem 1

requires orthogonality conditions to ensure the existence of regular solutions to (1.5), the existence

of regular solutions to (1.17) is subject to perturbed orthogonality conditions (see Section 3.4).
More precisely, we will construct a sequence (u,)nen solving the following iterative scheme

(y + Un)axun—i-l - ayyun+1 = fn+17
(Un+1)|s; = 5?“, (1.18)

(Uny1)jy=+1 = 0.

For this scheme, we are able to prove a uniform bound for u, in an appropriate space Q' and the
convergence of the sequence in an interpolation space Q'/2 (see (1.29) and (1.30)). This scheme is
similar to the one used to construct solutions of quasilinear symmetric hyperbolic systems, see for
instance [4, Section 4.3].

In (1.18), (f”“,ég“,éf“) are appropriate perturbations of the data (f,do,d1) tailored to
satisfy the orthogonality conditions associated with the problem (1.17) (for @ = u,). This is a key
difficulty of this work (see Sections 4 and 5.1). In particular, in order to allow the sequence u,, to
converge, we must prove that these perturbations also converge, which amounts to prove that the
orthogonality conditions for (1.17) depend continuously (and even in a Lipschitz manner) on 4,
for the same topology as the one within which we will prove the convergence of the sequence w.,.

The plan of this work is as follows. As a preliminary, we introduce in Section 1.5 the functional
spaces we will use. First, we study the linear problem (1.5) in Section 2, leading to Theorem 1, and
prove that the two orthogonality conditions we expose are indeed nonvoid. Second, in Section 3, we
study linearized problems of the form (1.17). The main task is to derive the modified orthogonality
conditions and prove their existence. Third, we prove the stability with respect to the underlying
flow @ of the orthogonality conditions in Section 4. Then, in Section 5, we turn to the nonlinear
problem for which we prove the existence of solutions in Section 5.1 using the scheme mentioned
above, then uniqueness in Section 5.2 and the necessity of the nonlinear orthogonality conditions
in Section 5.3. This concludes the proof of Theorem 2.

Eventually, in Appendix A, we prove the uniqueness of weak solutions to various linear problems
involved in Section 3, by adapting an argument due to Baouendi and Grisvard [5]. In Appendix B,
we prove various technical results of functional analysis that we use throughout the paper.

1.5 Functional spaces and interpolation results
1.5.1 Notations

Throughout this work, an assumption of the form “A <« 1”7 will mean that there exists a constant
¢ > 0, depending only on Q such that, if A < ¢, the result holds. Similarly, a conclusion of the
form “A < B” will mean that there exists a constant C' > 0, depending only on €2, such that the
estimate A < C'B holds. For ease of reading, we will not keep track of the value of these constants,
mostly linked with embeddings of functional spaces.

We will often use the notations Q1 := QN {£z > 0}.

10



1.5.2 Trace spaces for the lateral boundaries

For the traces of the solutions to (1.5) or (1.7) at & = zp and & = x1, we will need the following
spaces, due to [33, 34]. We define £2(—1,1) as the completion of L?(—1,1) with respect to the
following norm:

llls = ( / 11 2l (2) dz)é (1.19)

and 21 (—1,1) as the completion of H}(—1,1) with respect to the following norm:
[Pl = 1]z + [0:0] 2. (1.20)

1.5.3 Trace spaces for horizontal cuts

When considering the restriction of a solution to (1.5) or (1.7) at some altitude z € (—1,1), we
will sometimes need the following spaces in the horizontal direction.

The Lions-Magenes space Hééz (w0, 1) is defined as the completion of HE(zg,21) with respect
to the following norm

1 2 %
101l = 0l + ( e d:r) | (1.21)

., T —2oll21 — 2]

It is also the interpolation space [Hg(xo,21), L?(20,21)]3 (see [29, Théoreme 11.7, Chapter 1),
or the subspace of functions of H'/?(xg,x1) of which the extension by 0 is in HY/?(R). By [29,
Proposition 12.1], @, is continuous from H'/2(zo, z1) to (Hy,* (zo,21))".

We will also need one-sided versions of this space, for functions “vanishing” only at the left side

x =z (say Hééf (z0,21)) or only at the right side z = z;1 (say Hééf(xm x1)). For example

1 2 %
16l 2 = ||¢|H1/2+( [ dx) . (1.2

s |z —2]

1.5.4 Pagani’s weighted Sobolev spaces

Let O be an open subset of R?. In the works [33, 34] (albeit with swapped variables with respect
to our setting), Pagani introduced the space Z(O) of scalar functions ¢ on O such that ¢, 9,¢,
9,.¢ and 20, belong to L?(O) (in the sense of distributions). In this work, we will refer to this
space with the notation Z°(O). It is a Banach space for the following norm

[¢llzo == [20c@| 2 + 102202 + [|0:¢] 2 + ||| L2- (1.23)

We will also need the space Z'(0), which we define as the space of scalar functions ¢ on O such
that ¢ and 9,¢ belong to Z°(0), associated with the following norm

1@l z2 == l|@llzo + (|02l zo- (1.24)

The omitted proofs of the results of this section are postponed to Appendix B. We start with a
straightforward extension result, which will allows to transfer results on Z°(R?) to Z°(€).

Lemma 1.1. There exists a continuous extension operator from Z°(Q) to Z°(R?).

11



The following embedding is the most important result concerning the space Z°. Since solutions
to (20, — 0..)u = f for f € L%(Q) belong to Z°(2) (see Proposition 2.4), the following embedding
entails that such solutions belong to H?/3(Q)!.

Proposition 1.2. Z°(R?) is continuously embedded in H§/3L§.
Proof. Let ¢ € C°(R). By Lemma B.10, one has

[¥llee S lz9ll2 + (10229 L2 (1.25)

Using standard dimensional analysis arguments (e.g. by introducing the rescaled function ¢y : z —
Y(Az) for A > 0 and optimizing the choice of \), one deduces from (1.25) that

[Pllz2 S 2l 22102291l 72 (1.26)

Let ¢ € C°(R?). Let (£, z) denote the Fourier-transform of ¢ in the horizontal direction. Then
using (1.26) and Hélder’s inequality,

6lese, = [+ IgPHI6E, 2P déas

S WolE= + [ 16131006, 2 l0-:06, )1, e
R

. 1 (1.27)
. 3 . 3
Slolis + ([ lepsiite P azae) ([ 1onite o) asac)
1 2
Hence [|§| ,2/3,, < ||¢llzo. This concludes the proof, by density of C2°(R?) in Z°(R?).
’ O

Lemma 1.3. Z°(R?) is continuously embedded in C’B(H;m).

Proof. By definition, Z°(R?) — H2(L2?). By Proposition 1.2, Z°(R?) — L§(H§/3). By the
“fractional trace theorem” [29, Equation (4.7), Chapter 1], Z°(R?) — CS(H;/Q). O

Lemma 1.4. Z°(Q) is continuously embedded in C°([zq,x1]; 1 (—1,1)).
Proof. This is contained in the trace result [34, Theorem 2.1]. O
Remark 1.5. Although it is “almost” the case, there does not hold Z°(R?) — C°(R?).

e Pagani [33, Theorem 2.1] proves that the operator ¢ — ¢(-,0) is onto from Z°(R?) to Hz (R).
But H2(R) contains unbounded functions of x.

e Pagani [33, Theorem 2.3] proves that the operator ¢ — ¢(0,-) is onto from Z°(R?) to the space
AL (R). But this spaces contains unbounded functions, for example 1(z) := (—1In|z]/2)*x(2)
for s < % and x € C°(R) with x =1 in a neighborhood of z = 0.

1This can be seen as an hypoellipticity result for the operator L = 0., — 20, in the full space, which is of the
form X12 + Xo, where X1 = 9,, Xo = —20; and [Xo, X1] = O, so the Lie brackets generate the full space and L
satisfies Hormander’s sufficient condition of [21] for hypoellipticity.

12



1.5.5 Anisotropic Sobolev spaces

In the sequel, we will construct solutions of (1.5) and (1.7) in the following anisotropic Sobolev
spaces. Within all these spaces, one has heuristically the correspondence 9, ~ 02, which corre-

z

sponds to the appropriate scaling due to the degeneracy of 29, at z = 0. We consider

Q"= L3(Hy)n HY (L), (1.28)
Q' = L2(H)) N HY*(L2). (1.29)

By Proposition 1.2, Z° < Q. This is the natural space for strong solutions to our equations. The
space Q' corresponds to the situation where d,u is a strong solution to an equation of the same
structure, so d,u € Q¥, which yields the Hg/s(LZ) estimate. The Li(HS) estimate comes from a
sort of “hidden regularity” result (see e.g. Section 2.4).

Eventually, a key argument of our work is that we will prove the Lipschitz-stability of the
orthogonality conditions and the convergence of the nonlinear scheme within the following inter-
polation space:

Q' =1Q% Q"

Lemma 1.6. By interpolation, we have the following embeddings

= L2(H}/*)n HY/S(L2). (1.30)

1
2

e Q' C HgHg/ for all 0,0’ > 0 such that 30 + o' = 5;
e QY2 C HgHy”/ for all 0,0’ > 0 such that 30 + o’/ =7/2;
e Q0 C HgHg/ for all 0,0’ > 0 such that 30 + o' = 2.

In particular, Q' C L (W),

2 The case of the linear shear flow

This section concerns the well-posedness of the linear system (1.5) which we restate here for
convenience and by using z as a vertical variable rather than y to prepare for the next sections.
We thus consider, in Q = (zg,21) x (=1, 1), the system

20,0 — Oy u = e
U\Ei = (51', (21)
Ulz=+1 = 0,

where 3o = {zo} x (0,1) and X1 = {z1} x (—1,0).

First, in Section 2.1, we recall the theory of weak solutions, due to Fichera, Baouendi and
Grisvard. Then, in Section 2.2, we recall the theory of strong solutions with maximal regularity,
due to Pagani. Our main contribution regarding this problem is contained in Section 2.3, where we
derive two orthogonality conditions which are necessary to obtain higher tangential regularity and
prove Theorem 1. Eventually, in Section 2.4, we prove a hidden regularity result for such solutions,
which allows to control five derivatives in the vertical directions, and will be useful for the sequel.
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2.1 Existence and uniqueness of weak solutions

Definition 2.1 (Weak solution). Let f € L*((wo,71); H *(=1,1)) and 6,01 € L2(—1,1). We
say that u € L?((wo,z1); HE(—1,1)) is a weak solution to (2.1) when, for all v € H*(Q) vanishing
on I\ (Zo UX4), the following weak formulation holds

—/zu@mv—l—/&zu@zv:/fv—i—/ 2601)—/ 2010. (2.2)
Q Q Q >o P

Weak solutions in the above sense are known to exist since the work Fichera [14, Theorem XX]
(which concerns generalized versions of (2.1), albeit with vanishing boundary data). Uniqueness
dates back to [5, Proposition 2] by Baouendi and Grisvard.

Proposition 2.2. Let f € L?((wg,z1); H~1(—1,1)) and 69,01 € L2(—1,1). There exists a unique
weak solution u € L?((zg,71); HY(=1,1)) to (2.1). Moreover,

lullcz sy S 11l g2 oty + 100ll22 + 1101 ]].22- (2.3)

Proof. The proof of uniqueness is postponed to Appendix A were we adapt Baouendi and Grisvard’s
arguments to prove uniqueness of weak solutions to all the linear problems we encounter in this
paper. It relies on the proof of a trace theorem and a Green identity.

Let us prove the existence. We introduce two Hilbert spaces ¥ < % < L?((z0,71); H}(0,1))
as follows. Let ¥ = {v € H*); v = 0on Q\ (3o UXy)}. Let % be the completion of
HY(Q) N L%((wo,z1); Hi (—1,1)) with respect to the scalar product

(u, v) oy ::/azuazv—i—/ zuv—/ ZU. (2.4)
Q o o

For u,v € % x ¥, let

a(u,v) = —/Qzuawv—l—/gazuazv, (2.5)

/szfv+/20 zéov—/zl z010. (2.6)

In particular, for every v € ¥, integration by parts leads to a(v,v) = ||v|%, and

S
—

<
=

I

b@) < (If 21y + 10ollzz + 1d1]22) 0]l - (2.7)

Hence, b € L(% )? and existence follows from the Lax-Milgram type existence principle Lemma B.2,
which also yields the energy estimate (2.3) thanks to (2.7) and Poincaré’s inequality. O

Remark 2.3. Instead of using the weak Lax-Milgram ezistence principle Lemma B.2, an alternate
proof would be to reqularize equation (2.1) by vanishing viscosity, and to obtain uniform L2(H}L)
estimates on the approximation.

2Functions in % a priori do not have traces on %; so one could wonder how definition (2.6) makes sense. The
integrals fEi z6;v make sense precisely because % is defined as a completion with respect to (2.4). In fact, weak
solutions do have traces in a strong sense, as proved in Lemma A.1, thanks to the extra regularity in & provided by
the equation.
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2.2 Strong solutions with maximal regularity

We now turn to strong solutions, i.e. solutions for which (2.1) holds almost everywhere. The main
result on this topic are due to Pagani.

Proposition 2.4. Let f € L*(Q) and 8,61 € 51 (—1,1) such that §o(1) = §1(—1) = 0. The
unique weak solution u to (2.1) belongs to Z°(Q) and satisfies

lullzo S NI fllz2 + doll ez + [101 ] 2 (2.8)
Moreover, the boundary conditions ujs, = 6; hold in the sense of traces in HL(X;) (see Lemma 1.4).

Proof. This is a particular case of [34, Theorem 5.2]. Pagani’s proof proceeds by localization. Far
from the critical points (z(,0) and (z1,0), the regularity is rather straightforward. Near these
critical points, the regularity stems from the regularity obtained for a similar problem set in a
half-space. Pagani studies such half-space problems in [33] where he derives explicit representation
formulas for the solutions, using the Mellin transform and the Wiener-Hopf method. We do not
reproduce these arguments here for brevity. O

2.3 Orthogonality conditions for higher tangential regularity

We now investigate the question of whether solutions to (2.1) enjoy higher regularity in the tangen-
tial direction. As mentioned in Section 1.2, it is quite easy to obtain a priori estimates in the space
ZY(9) (see Proposition 2.5). However, we prove in Proposition 2.7 that the weak solution enjoys
such a regularity if only if the data satisfies appropriate orthogonality conditions. Eventually, we
give statements highlighting the fact that these conditions are non empty.

Proposition 2.5. Let f € H'((zo,71); H 1(—1,1)) and 60,01 € S (—1,1) such that do(1) =
§1(=1) = 0 and such that Ay, Ay € L2(—1,1), where

f(i,2) +67(2)
. :

Ai(z) = (2.9)

If the unique weak solution u to (2.1) belongs to H'((wo,z1); Hi(—1,1)), then one has the following
weak solution estimate for Oyu:

[0zull L2y S N0 fll 2 =1 + [[Aollz2 + [[Ar]l.22. (2.10)

If moreover, f € H'((zo,71); L*(—1,1)), Ao, A1 € H(—1,1) and Ag(1) = A1(=1) = 0, then
u € Z1 () and one has the following strong solution estimate for Oyu:

10zullzo S 1102 fl[L2 + | Aoller + | A1]lses- (2.11)

Proof. The key point is that the information that d,u enjoys L2H} regularity allows us to prove
that d,u is the unique weak solution to

Zazw - azzw = fma
wys, = A, (2.12)
W)z=+1 = 0.
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Then estimate (2.10) follows from (2.3) and estimate (2.11) follows from (2.8). Hence, let us prove
that d,u is a weak solution to (2.12). Let

¥ i={velC® ); v=00n00)\ (ZoU%),

9,v=0on {zg} x (—=1,0) and {z1} x (0,1)}. (2.13)

Let v € ¥. Then 0,v is an admissible test function for Definition 2.1. Hence, since u is the weak
solution to (2.1), one has

_ /Q udn(By0) + /Q .40 (0y0) = /Q F(Ou0) + /E =(on0) - /Z =i (0h0). (2.14)

The H!H! regularity of u legitimates integrations by parts in x in the left-hand side. Thus

1 x1 1 1
{—/ zu@xv} —|—/ 2(0zu)0zv + {/ azuazv} — [ 0.(0yu)d,v
1 Q -1 Q

xo Zo

_ [/_11 fv]: _/waw/zo 250(83511)—/21 261(9,0),

which, after taking the boundary conditions into account, integrating by parts in z in the boundary
terms f_ll 0,ud,v and recalling (2.9) yields

7/ z(@xu)avar/ 82(3$u)8zv:/fxv+/ ZAOU—/ zAqv. (2.16)
Q Q Q o P

Since 7 is dense in the set of test functions for Definition 2.1, this proves that d,u is the weak
solution to (2.12). O

(2.15)

We start by defining “dual profiles” which are necessary to state our orthogonality conditions.

Lemma 2.6 (Dual profiles). We define ®°, &' € Z°(Q\ {z = 0}) as the unique solutions to

—20,97 — 9, =0 inQ\ {z =0},

[q)j} |2=0 = 1j=1, (2.17)
[az(I)JLZ:O = 71‘7:03

J _
oo\ (zousy) = 0-

Proof. Uniqueness is straightforward. Given j € {0,1} and two solutions of (2.17), let ¢ denote
their difference. Then ¢ € Z°(Q2\ {z = 0}) and both ¢ and 9,¢ are continuous across the line
{z = 0}. Hence ¢ € Z°(Q) and is the solution to a problem of the form (2.1) (with reversed
tangential direction). So ¢ = 0 since weak solutions of such problems are unique.

We prove the existence of ®°. The profile ®' can be constructed similarly and is left to the
reader. We define ®°(z,2) := —2,((2) + ¥°(z, 2), where ¢ € C°(R) is such that ( = 1 in a
neighborhood of z = 0 and supp¢ C (—1/2,1/2) and ¥° € L?((zg,z1); H*(—1,1)) is the unique
weak solution to

_281,\110 - 8zlej0 = _21z>0</(z) - Z-‘rCH(Z) in Qv
U0 (z9,2) =0 for 2 € (—1,0),
UO(xy,2) = 2((2) for z € (0,1),

0 _
\I]|z::|:1 = 0.

(2.18)
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By Proposition 2.4, ¥° € Z9(Q). Hence 9.,9° € L?(Q4) and 29,9° € L?(Q). O

We now turn to the main result of this section, which gives a necessary and sufficient condition
for the solutions to enjoy the mentioned tangential regularity. Strangely, we could not find a proof
of the above result in the literature, although some works mention orthogonality conditions (see
[14, Equation (4.2)] or [36]). Hence we provide here a full proof. This strategy will be extended in
the next section to equations with variable coefficients. We prove further that these orthogonality
conditions are not empty.

Proposition 2.7. For f € H'((wo,x1); L*(—1,1)), 60,01 € 541 (—1,1) with §o(1) = 61(—1) = 0
and Ao, Ay € HL(—1,1) with Ag(1) = A1(=1) =0 (see (2.9)), the unique weak solution u to (2.1)
belongs to H ((zg,21); H(—1,1)) if and only if, for 5 =0 and j = 1,

8»qu>] +/ ZAoq)j —/ ZAl(I)j = 8151(0) - 6;50(0) (219)
Q Eo 3

Furthermore, under this condition, we actually have O,u € Z°(2), so u € Z*(Q).

Proof. First step: We exhibit possible discontinuities. Let us consider the unique solution v € Z°
to (2.1). Following the strategy sketched by Goldstein and Mazumdar® [17, Theorem 4.2], we
introduce the unique strong solution w € Z°(2) to (2.12), so that w is a good candidate for 9,u.
The idea is then to introduce the function u; defined by
uy(z, 2) = do(z) —|—/ w(z',2)dz’  in Qp = (w9, 71) x (0,1),
%0 (2.20)

T1

ui(x, z) = 61(2) 7/ w(z',z)dz’  in Q_ = (xg, 1) x (—1,0)

x

so that d,u; = w almost everywhere. Furthermore it can be easily proved that
20,u1 — Oyur = f (2.21)

in D’'(Q4). However this does not entail that u; is a solution of this equation in the whole domain.
Indeed, u; and 0,u; may have discontinuities across the line z = 0. Nevertheless, one checks that
w1 and O,up are continuous across z = 0 if and only if

/xl w(z,0) de = 61(0) — §p(0),
o (2.22)
/ w,(z,0) dz = §1(0) — &,(0).

0

The two integrals are well defined since w, and w.. belong to L? (Q).

Second step: We compute the mean value of w and w, using the dual profiles. Let ¢ € Z°(Q4)
such that ¢|s0\(s,nx,) = 0. Since w € Z9(Q), it satisfies (2.12) almost everywhere, so that we can
multiply the equation by ¢ and integrate over €2,. Hence

Q. Q,

30ddly, Goldstein and Mazumdar do not mention the orthogonality conditions (2.19). They merely state that
since 8pu1 = w, u1 € H((zo,z1); H3(—1,1)). However, these orthogonality conditions are necessary and non-
empty, as we show below (see Proposition 2.9).
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where, on the one hand,
/ 2(0,w)p = 2010 — 2w0y ¢ (2.24)
Qy o Q.
and on the other hand,

— 0. = " 0, — wo, ,+ dzx — 0., 0. .
/m( w)$ /mo( wi — wd.d)(z,0%) dx /w " (2.25)

Q.

Thus, performing the same computation on 2_ and summing both contributions yields

/ (0.0[@]js0 — w[D26]10—0) (2, 0) dz = /wa¢+ /E Do [ 2big

(2.26)
—|—/ w(205¢ + 0..0).
Q4

Hence, for j € {0,1},

/ M w(x,0) dx:/fmfbj—l—/ ontbj—/ 2N D (2.27)
o Q Yo p35

Third step: Conclusion. Assume that the orthogonality conditions (2.19) are satisfied for
j = 0and j = 1. Then (2.22) holds, and a consequence, [ui]j.—o = [D.u1].—0 = 0, and
uy € L?((wo,21); HY(—1,1)) is a weak solution of (2.1). We infer from the uniqueness of weak
solutions solutions that u = wuj, and therefore d,u = w € L?((zg,z1); H}(—1,1)). Hence u €
}11((3307 1‘1); H&(—l, 1))

Conversely, if u is a solution to (2.1) with H'((xq,z1); Hi(—1,1)) regularity, then d,u is a weak
solution to (2.12) (see the proof of Proposition 2.5) and w is given in terms of dyu by (2.20) almost
everywhere. Since [u1]|.—o = [0;u1]|.—0 = 0, one has f:ol uz(z,0) dor = f;ol Uz (2,0) dz = 0, and
thus the orthogonality conditions (2.19) are satisfied. O

Definition 2.8. In the sequel, we denote by ¢ the linear forms associated with the orthogonality
conditions (2.19) for the linear shear flow problem, i.e. we set

0(F,00,61) = 960(0) — 61 (0) +/

onqﬂ'—/ zA1q>j+/aqu>j. (2.28)
3o P Q

We now prove that the orthogonality conditions (2.19) are non-empty and independent.

Proposition 2.9. The linear forms €° and ¢* are linearly independent on C2°(2) x {0} x {0}. In
particular, this also holds on C°(Q) x CX(Xy) x C°(X1).

Proof. Proceeding by contradiction, let (co, c;) € R? such that, for every f € C°(), cof°(£,0,0)+
101 (f,0,0) = 0. Then ®° := ¢o®° + ¢, P! satisfies [, 0, f®° = 0 for every f € C°(), so 9, P =0
in D'(Q4). Since ®°(z1,2) = 0 for z € (0,1) and ¢ € Z°(€2,), this implies that ¢ = 0 in Q4
(since Z° functions have traces in the usual sense, see Lemma 1.4). The same holds in 2_. Hence
[@€]2=0 = [0-9]|2—0 = 0, which implies ¢y = ¢; = 0. O
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Corollary 2.10 (Biorthogonal basis). There exist =% = (f* 6k, 68) € H for k € {0,1} such that,
for every j, k € {0,1}, , 4
((2F) = (%, 6,688 = 1,0 (2.20)

and such that, within H,
HE = (RE+REY) " = ker £ Nker £, (2.30)

Proof. Since (° and ¢! are continuous linear forms on H, by the Riesz representation theorem,
they can be written as scalar products with two given triplets, say A®, Al € H which are linearly
independent thanks to Proposition 2.9. Then one looks for ZF = (f*, 6k, 6%) as axA® + by A' where
ay, by, € R? are such that ay(A7; A') + br(AJ;A%) = 1. These systems can be solved since A°
and A! are free. Moreover, this ensures (2.30) and their independence guarantees that Hng is of
codimension 2 in H. O

2.4 Hidden vertical regularity

The goal of this paragraph is to prove that, if u is a solution to (2.1) such that 9,,.u € L?(f2), then
one also has d5u € L?(Q), provided that the data is sufficiently regular. There is no additional
orthogonality condition. We start with the straightforward claim that 9%u € L?(2).

Lemma 2.11. Let f € L2H; ' and 69,01 € L2. Assume that 6o(1) = 61(—1) = Ap(l) =
A1(=1) = 0. Let u be the unique weak solution to (2.1). Assume that w € HLH? and f € L2H?2.
Then 0%u € Z° and

lullz2 s + [120:02ull 2 S llullry ez + |1 £l 22 a2

Proof. Since u is a strong solution to (2.1), there holds 0,.u = 20, u— f in L*(Q). Hence, in D’'(Q),
Otu = 20p22u + 20p.u — 0. f . Thus Otu € L2(Q) and |[ullz2ms < | fllc2m2 + llullgime.

The Z° regularity follows from the results of Proposition 2.4, noticing that the compatibility
conditions in the corners are satisfied. O

Proposition 2.12. Let f € L2H; ' and 80,61 € £2. Let u be the unique weak solution to (2.1).
Assume that w € HIH?, f € L2H? and 0260,0261 € A7, with do(1) = 51(—1) = Ag(1) =
A(—1) = 0. Assume furthermore that 9,0%f € L*((wo,z1) % (1/2,1)) N L?((wg, z1) X (=1, —1/2)).

Then d3u € L*(Q) and

lull 2z S Null ez + 1z me + 10202 fLizmapallee + Y 10264 e (2.31)
1€{0,1}

Proof. In the course of the proof, we will need to distinguish between different regions:

e One “interior” region, close to the line z = 0. In this region, we will prove that d3u is such
that (20, — 02)02u € L?, and use the results of Pagani to deduce that 95u € L.

e Two “boundary” regions, in the vicinity of the lines z = +1. In these regions, since z is
bounded away from zero, we will use classical parabolic regularity arguments.

e Interior region: Let ¢ € C°°(Q) such that ¢ = 0 on {zo} x [-1,0], ¢ = 0 on {z1} x [0,1]
and ¢ vanishes identically on neighborhoods of z = £+1. Thanks to the regularity of u, we can
multiply the PDE for u by 93¢ and integrate over (2. Vertical integrations by parts yield vanishing
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boundary terms because ¢ vanishes identically in neighborhoods of z = +1. We proceed with care
for the horizontal term so that all manipulations are licit:

/ zazuaqu = /(28mu + 20,.,u)0,0
Q Q

(2.32)
- / 20,.ud. b + / 20.010.6 — | 20.-600-6 / 20
Q b 2o Q
We rewrite the last term as
_/ Zazzuawz¢:/zazzzuaw¢+/8zzuaw¢
¢ ¢ o (2.33)

= / Zazzzuaw¢ +/ azz(sld) - 82250¢ - 6a:zzu¢)'
Q Y Q

o

Hence,

/z@muaf(b:—?)/ amu¢+/ zaguawqb— Z
Q Q Q

1€{0,1}

(_1)i/ 0:20i(20.0 + ¢) (234)
3
We also integrate by parts the boundary term. For example, on ¥y:

— 8ZZ60z82¢ = —[Zazzao¢|a;:$0]é + / (26350 + 62250)¢. (235)

>0 o

The pointwise term is null at z = 1 because ¢ vanishes identically near z = 1 and null at z = 0
since ¢ vanishes at 0 and 9,.00 € H#72(Xp).
Eventually, this proves that

~ / 2(8%u)dp o + / 0.(Ru)d.0 = > / 2036, + / (82 f — 30,2.1)0. (2.36)

Q Q ic{o,1} /% Q
Since u € L2H? (by Lemma 2.11), v € HLH?, f € L2H? and 6; € H3, by density, this equality
still holds for ¢ € H'(Q2) such that ¢ = 0 on {z¢} x [~1,0], {z1} x [0,1] and 2z = £1.

Now, let xo € C3°((—1,1)) such that xo = 1 in a neighbourhood of z = 0. The above argument
shows that xod2u € L2H] is the unique weak solution to (2.1) with boundary data x93d; and
source term Xo(02f — 30,..u) — x§O2u — x402u € L*(Q). We infer from Proposition 2.4 that
x002u € L?. Note that thanks to the truncation yg, the compatibility conditions at (x¢,1) and
(21, —1) are automatically satisfied. Furthermore, 2x00,02u € L?. As a consequence, using the
equation, we infer that 22y020,u € L?.

e Boundary regions:

By symmetry, we only treat the upper boundary region. We consider a function x; € C*(R)
such that x; = 1 in a neighbourhood of z = 1, and Suppyx; C (1/2,1).

Then uq := x1u is a solution of

20,u1 — Oz,u1 = f1 = fx1 — X10,u1 — x{u1, in (wo, 1) x (1/2,1)
Up|z=1/2 = Ut|z=1 = 0, (2.37)

Ul |z=x¢ = X150-
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This is a standard parabolic equation, for which we can apply classical regularity results. Note
that the assumptions on f together with the observation that 20,0%u € L2, 2x00,0u € L2,
22020,uxo € L? imply that 92f; € Hy(L?). The compatibility conditions dp(1) = Ag(1) = 0
ensures that 8,0%u; € L?((xo, 1), H'(—1,1)). Therefore, using equation (2.37), we deduce that
32114 e 12 O

3 The linearized problem

The goal of this section is to establish the well-posedness of the linearized problem

U0yu — Oyyu = in €,

Uly=+1 = 0,

where @ € Q' (see (1.29)) is a given perturbation of the linear shear flow, f is an external source
term and (dp,d1) are lateral boundary data. It is fairly straightforward to adapt the theory of
existence and uniqueness of weak solutions depicted in the previous section to the above equation.
However, writing the orthogonality conditions for a general shear flow @ is quite complicated. In-
deed, we recall that the strategy is to find the equation solved by wu, in the upper region {@ > 0}
and in the lower region {t < 0}, and to glue together these two solutions (provided the orthogo-
nality conditions, which ensure the continuity of w and w, across the line {& = 0}, are satisfied).
When the line {z = 0} is straight, this is a fairly simple process, which we described in the previous
section. However, when {@ = 0} is not a straight line, retrieving u from u, is not entirely obvious
(one needs to integrate u, on curved lines).

Therefore, we have chosen to first straighten the flow @ by changing the vertical coordinate. Of
course, this introduces variable coefficients in the equation. We then prove existence and uniqueness
of weak solutions for the equation in the new coordinates, and exhibit orthogonality conditions,
which are necessary and sufficient conditions ensuring that the weak solution has in fact HjH,
regularity. Eventually, we go back to the original variables and infer the existence of strong Z'
solutions of (3.1) under orthogonality conditions.

3.1 A change of vertical coordinate

Throughout this section, we assume that @ is a Q' function such that ||& — y||g1 is small. In
particular, |ty — 1|z < [Juy — 1]|gr < 1 (see Lemma 1.6). It follows that there exists a line
y = y(z) on which @ vanishes, and 4 < 0 on y < g(x).

As a consequence, we define an associated change of variables Y such that

Vz € (—1,1), Vz e (zo,z1), u(z,Y(x,2)) ==z (3.2)
We then look for « under the form
u(z,y) = Uz, u(z,y)), (3-3)
so that U = U(z, z) solves

20, U +~v0,U — a0,,U =g in Q,
U\y:il =0,
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where

a(z, z) = (9ya)*(z, Y (z, 2)), (3.5)
V@, 2) = (2Uy — Uyy) (2, Y (2, 2)), (3.6)
g(x,z) = f(x,Y(x,2)) (3.7)
and _
0i(2) == 6;(Y(y, 2)). (3.8)

The next sub-sections are devoted to the analysis of equation (3.4): existence and uniqueness of
weak solutions, Z" regularity, orthogonality conditions for Z' regularity.

3.2 Existence and uniqueness of weak solutions

This section follows exactly the arguments of Section 2.1. The only slight difference lies in the
derivation of the a priori estimates, in which we use smallness assumptions to treat perturbatively
the additional drift term v9,U and the commutator coming from the diffusion.

Definition 3.1 (Weak solution). Let g € L*((xq,z1); H 1(~1,1)) and do,01 € L2(—1,1). Let
o€ H(LY), 7 € L3(LE).

We say that U € L?((zo,71); Hi(—1,1)) is a weak solution to (3.4) when, for all V € H()
vanishing on O\ (Xg U X1), the following weak formulation holds

—/zU@xV+/(7+az)8zUV+/a@ZUan:/gV—/ z51V+/ 260V (3.9)
Q Q Q Q 1 Yo

Proposition 3.2 (Existence and uniqueness of weak solutions). Assume that o and v satisfy
lo = 1| poe + [Vl r2(pse) + llezllpz ey < 1. (3.10)

Then, for every g € L*((zo,x1), H 1(—1,1)) and 61,00 € L2(—1,1), there exists a unique weak
solution U € L?((wo, 1), Hi(—1,1)) to (3.4). Moreover,

1UN 2y S NMgll2 1y + 60l + +161] 22 (3.11)

Proof. We mimic the proof of Proposition 2.2. We take ¥ = {V € H*(Q),V = 0 on 0Q\ (XoUX1)}
and % the completion of H'(Q) N L2((xg,z1); H}(—1,1)) with respect to the scalar product

1 1
(U, V) ::/aazU(’?zV—i—f/ ZUV—*/ 2UV. (3.12)
Q 2 Js, 2 /s,
For (U, V) e % x ¥, let
a(U,V) ::—/ zU@xV—i—/(’y—kaz)azUV—k/a@zUazv, (3.13)
Q Q Q

:/gV—/ zglV—i-/ z6V. (3.14)
Q P o

Now, for any V' € 7, using (3.10) and the Poincaré inequality ||V||ze(z2) < 2[0.V [ 22(0),

1
aWV.V) = VI + [ O+ aVo.v = 51V (3.15)
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The linear form b satisfies (2.7). As in Proposition 2.2, the existence follows from the Lax-Milgram
type existence principle Lemma B.2, and we obtain the energy estimate (3.11).

As in the proof of Proposition 2.2, uniqueness follows from the result by Baouendi and Grisvard,
recalled in Appendix A. O

Remark 3.3. Instead of using the weak Lax-Milgram existence principle Lemma B.2, an alternate
proof would be to reqularize equation (3.4) by vanishing viscosity, and to obtain uniform L2(H}!)
estimates on the approrimation.

3.3 Strong solutions with maximal regularity

In this paragraph, we adapt the results of [34] to construct solutions to (3.4) with Z° regularity,
with estimates independent of the coefficients a and +, provided that (3.10) is satisfied.

Proposition 3.4. Assume that o and ~y satisfy (3.10). Then, for every g € L*(Q) and 80,01 €
A (—1,1), the unique weak solution U to (3.4) satisfies U € Z°(Y) with the estimate

[Ullzo < Nlgllez + 1dollozr + (101 ]2 - (3.16)
Proof. Thanks to Proposition 3.2, there exists ¢ > 0 such that, if
oo =z + [[Yllz2(zee) + lezllrz(re) < cos (3.17)

the problem (3.4) is well-posed at the level of weak solutions. We proceed in four steps.

e Case of smooth coefficients with a large zero-order term. We start with coefficients «;,y that
are smooth, satisfy (3.17), and we consider the following variant of (3.4):

20, U + 70, U — a0, U + CoU =h in Q,
Uy, =0, (3.18)

i

U\y::ﬁ:l = 07

where Cy > %azz + %’yz. By Pagani [34, Theorem 5.2] (for the operator 20, + v0, — ad,.), for

every h € L%*(Q), there exists a unique U € Z°(Q) solution to (3.18) and a constant C (possibly
depending on «, v and Cj in a way that is not entirely explicit in the work of Pagani) such that

1Ullzo < CllA] L2 (3.19)

Thus, we can define the bounded linear operator K : L?(Q) — Z°(Q) C L%*(Q) which maps h
to U, the solution to (3.18). Moreover, K € L£(L*(Q)) is compact since Z°(Q) < Hﬁ/j(ﬂ) by
Proposition 1.2.

e Case of smooth coefficients. We still consider coefficients a,y that are smooth, satisfy (3.17),
and we consider the equation

20, U +v0,U — ad,,U =h in Q,
Ups, =0, (3.20)
Upy=+1 = 0.

Applying Fredholm’s alternative to the operator K we obtain that
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e cither, for every h € L?, there exists a unique U € Z%(Q) solution to (3.20),
e or there exists a nontrivial solution U € Z°(2) to (3.20) with h = 0.

The second possibility is excluded by the uniqueness of weak solutions stated in Proposition 3.2.
Rewriting (3.20) as
20,U — 0,,U = h —~v0,U + (a — 1)9,,U (3.21)

and applying [34, Estimate (5.13)] (this time to the universal operator z9, — 9.,), we obtain
[Ullzo < Cpagani ([1Pllz2 + 17l 222y [0:U Nl (22 + [l = oo |02:U | 22) - (3.22)

Hence, under condition (3.17) (up to choosing ¢y < 1/(2CPpagani)), the last two terms can be treated
perturbatively and we obtain
[Ullzo < (1Rl Lz, (3.23)

with a constant depending only on the domain 2.

e Case of smooth coefficients with boundary data. We still consider coefficients o, that are
smooth and satisfy (3.17). By [34, Theorem 2.1], there exists a bounded linear map from L :
AN (o) x AN(S1) — Z°(Q) such that Us := L(Jo, 1) satisfies (Us)ys, = &; and (Us)jy=s1 = 0.
Then we look for a solution U to (3.4) under the form U = Us + V', where V is a solution to (3.20)
with

h:=g—20,Us +ad,,Us —~v0,Us. (3.24)

Under assumption (3.17),

[1Pllze <llglle> + 1202Us| 2 + lllloo|022Usll 2 + [Vl 22222y 102U Nl Lo £2)

(3.25)
S lallzz + [1Usl 20

so we obtain that U has Z° regularity and satisfies (3.16) by boundedness of L.

e Case of general coefficients. We then address the case of general coefficients satisfying (3.17).
We take a smooth approximation sequence (o™, ™) of (a,7), which satisfies the same smallness
assumptions and which converges towards (a,y) in L™ N HL(L) x L2(LS°). For the sequence
(a™,4™), we construct a sequence of solutions U™ € Z°, which satisfy the estimate (3.16) with
uniform bounds. Extracting a subsequence if necessary, we can find a function U € Z°(Q2) such
that U™ — U in ZY. Passing to the limit in the equation, it can be easily checked that U is a
solution to (3.4). By Proposition 3.2, it is in fact the unique weak solution to (3.4), which completes
the proof. O

3.4 Orthogonality conditions for higher tangential regularity

As in Section 2.3, we build solutions to (3.4) with higher regularity in the tangential direction,
provided that the data satisfy appropriate orthogonality conditions. The main goal of this para-
graph is to derive suitable expressions for these orthogonality conditions, analogous to the linear
shear flow case.
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3.4.1 Derivation of the equations for the dual profiles

We start by formally differentiating (3.4) with respect to « and we find that, if U is regular in the
tangential direction, V' := 0, U is a solution to

20,V 470,V = 0.V — g0 [ V47,0, [; V=ho inQy,
20,V +70.V — 0.,V + 0,0, [['V —7,0. [V =hy inQ_,
[V]z:() = [aiV]Z:O = 0 on (l‘o, 33‘1), (326)
V(xo,z) = A0 for z € (0,1),
V(z1,2) = for z € (—1,0),
V(z,£1) = for x € (xo, 1),
where, for i € {0, 1},
and 1
AA@::;@@u@+a@h@@ﬁx) @“>35(0 (3.28)
Reciprocally, if V' is a solution of the above system, then U defined by
o+ [TV inQ
ot g, Vi€ (3.29)
o + le V in Q_
is a solution to (3.4) if and only if V satisfies
/ V(z,0) dz = &, (0) — d(0),
(3.30)

avuoyufaag) .60(0).

Zo

For the time being, we do not worry about the regularity of the coefficients, and perform all
computations as if the coefficients were smooth. A suitable definition of weak solutions of (3.26),
which makes sense at the level of regularity available for the coefficients a and ~, will be given in
Definition 3.12. Taking any function ¢, sufficiently smooth on Q; and Q_ (but not necessarily
continuous across the line z = 0) and vanishing on Q\ (£oUX), the weak formulation of the above
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system yields
0o _ T
/ h0<p+/ hlgof/ 2A1(2)p(z1, 2) der/ 2A0(2)p(xo,2) dz
QL Q_ 0

-1

— / V(=2050 — 0..(ap) — 0:(7))
QLU0

Q4 T T _ x0 )

T

’ s / ! 0™ !

Zo

T1

o [ ovof /

xo x

+a(2,0) (p(x,0%) — ¢(2,07) ) dz

[ veo ([ @00 + (ue0) a

0 x

T1

+ / " (0. (00 0)(.07) + () (e’ 07)) da’

0

+ (9:(ap)(2,0") = 0 (ap)(z,07)) + (yp)(z,07) — (W)(x»of)) dz.
Following the reasoning of Section 2.3, this leads to the following generalization of Lemma 2.6.

Definition 3.5 (Dual profiles). We define ®° and ®' as the weak solutions to

20,97 — 0. (YD) — 0. (a®9) = 0. [ ® — 0, [ 7 ® =0 in Qy,

—20,97 — 0, (v®7) — 0,.(a®?) + 0, ffo a; ®7 + 0, f;o P =0 inQ_,

I (x0,2) =0 for z € (—1,0), (3.32)
DI (21,2) =0 for z € (0,1),

QI (x,+1) =0 on (o, 1),

together with the jump conditions

. 1 . x )
[a®?],—o(x) + / az(2',0)®7 (2/,07) dz’ + / ag(z',0)®7 (2',07)da’ = 1,4 (3.33)
x xo

and

Z1

[0.(a®7) + D] ,_o(x) + / (0:(az @) + 7, ®7) (2/,07) da’
e (3.34)
—|—/ (0:(ap®’) + 7, @) (2/,07) da’ = —1;.

0

In the next paragraphs, we prove existence and uniqueness of solutions to these dual systems.

3.4.2 Existence and uniqueness of the dual profiles

This paragraph is devoted to the proof of existence and uniqueness of the functions ®7, which will
then allow us to state the orthogonality conditions for equation (3.4).
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Proposition 3.6 (Existence and uniqueness of weak solutions to (3.32)-(3.33)-(3.34)). Assume
that « satisfies
||azHoo + ||a - 1”00 + ||0430z||L2 < 1. (335)
Assume that v = 2y1 + 72, where y1 € L2(L) N Lg"(H;m), 2 € HY(L?) and
Imllzzws) + 1l o 22y + 12l < 1. (3.36)

Then the system (3.32)-(3.33)-(3.34) has a unique weak solution ® such that ® € L2(HL(Q4))
and 20,97 € L2(H;1(Q4)) and

1 0
/ 2®7 (20, 2)> dz — / 2®7 (11, 2)* dz < +oo. (3.37)
0

-1

Furthermore, introducing

i 04<I>3: + [ az@f in Q,
©7:= { adl — ffo o, ® in Q_, (3.38)
one has . 0
t/ z@j@m,Qde—l/ 2 (21, 2)2 dz + 30,6720, S 1. (3.39)

Remark 3.7. Note that |lo..|[r2 < 1 implies ||| o2y < 1. The latter bound will be used
several times in the proof.

Remark 3.8 (Preliminary observations). Before tackling the proof of Proposition 3.6, we introduce
some notations and tools which will be used throughout this section.

e Operators F and G, equation in terms of ©7:

First, let us consider the unknown ©7 defined in (3.38). Formally, 0,07 = ad,®’, so that
®7 can be retrieved from ©J thanks to the inversion formula

Sy Ty o
— - —;@7 in Qq,
a
x

P = aj . (3.40)
& +/ el Q.
e wo O

It follows in particular that |7 2 < [|©7||p2 and (0,97 120,y S 0:07] 20y thanks to
the bounds on a.

We also define an operator

[y @ in Q.

x 3.41
— féI?o Y@ in Q_. ( )

F[9] ::7@4—{

Note that 0, F = 70, ® = 20,0. Therefore, setting I' = v/, it will be convenient to define
the operator
f;l ].—‘19 m Q+7

3.42
—[IT.0 inQ_. (3-42)

G@L:ﬂ@:r@+{
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Under the assumptions of Proposition 3.6, we can define I' :== zI'y + 'y, with T'; := ~;/a, and

ITullzz ooy + 00l oo gravzy + T2l 22y < 1. (3.43)

The LZO(H;/Q) bound for T'y stems from the same bound for 1, the L°(L2) bound for o
and the pointwise multiplication result Lemma B.S3.

We set FI .= F[®7] = G[O7], so that (3.32) becomes, with these functions,
— 20,00 —9,F1 0,00 =0 inQ,UQ_, (3.44)
a

while the jump conditions (3.33)-(3.34) ensure that

[@j]\z:o =1;-,

o (3.45)
(0.6 + FI]._g = —1;0.

e Lifts for ©7:

It will be convenient, in the course of the proof, to introduce a lift for ©7 in order to remove the
Jumps across the line {z = 0}. Actually, we will introduce two such lifts: one lift which will
remove the jump of ©9 and of F7 +0,07 (but which will authorize a jump in the z-derivative
of the lifted function), and one lift such that the lifted function will be H? in z.

More precisely, we set ‘ _
©7 = (0o,; — 201,7)x(2)1a, + 6O},

where x € C°((—1,1)) is such that x = 1 in a neighbourhood of zero, so that ®§ is such that
[©]j:=0 =0, [0:0] + F']|._o = 0. (3.46)
The lifted function @g satisfies
~20,0] ~ 0.(9.0] + FY) = 1500:: (60,5 — 261,,)x(2))
CH—
@g(:no,z) =0 Vze(-1,0),
@g(ml, z) = —(0o0,; + 201,5)x(2)Vz € (0,1)

=0 (3.47)

We will also consider another lift O, which we define in the following way. First, we set
e = 0] + 0],
where the lifting term @{ s given by
@{ = 2zby (2)x(2)1a, + 2b_(x)x(2)1la_
with some coefficients b to be determined. The role of 6){ is to ensure that

©/]=0, [0.6]]=0.
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Note that the first condition is automatically satisfied with our choice above.
Furthermore,

(=, 0)
a(z,0)
Hence the jump of F7 is constant across the line {z = 0}, and is equal to

L [P

T1 — X x0

61[Fj(x, ')]\z:O = ’7(9:7 0)8T[q)j(xa ')]\Z:O = 61[("‘)](:8, )] =0.

Consequently, we choose by to be constant in x, and we define

1
by = — / Fi(z,07)dx,
1 — X0 z0
IR
b_ = F/(z,07) dz.
1 — Xo xo

With this choice, '
[F7 4+ (b1150 = b-1.c0)] ,_o = 0,

and therefore [azG)g]‘Z:O =0, and [F7 + azG){]‘Z:O = 0. Note also that 3@@@{ = 0. It follows
that . 4 ' _
— aﬁx@ﬁ -0..0) =57 inQ, (3.48)

where
57 =1.500.2 ((80,; — 261,5)x(2)) + 9: (0.0} + F) .
The boundary conditions for @g are
0/ (z,£1) =0,
O] (z0,2) = —b_zx(z) Vz e (-1,0),
0] (w1,2) = —(0o; + 2(=61,; + b1))x(2) ¥z € (0,1).

Proof of Proposition 3.6. Throughout the proof, we will actually consider existence and uniqueness
in L2(H!) of solutions of the system

—0.(0.0 + G[O]) — 2875@ —f mQ

O(z1,2) =m Vz>0,
@(%0, Z) =To Vz < 07
where 19 € C?([-1,0]), m € C?([0,1]) and f € L2(H_!). In the above equation, the operator G

is defined in (3.42).
According to Remark 3.8, it will then be sufficient to apply the existence and uniqueness result

to the case
f=1.500.. ((do,; + 201,5)x(2)),
o = 07
m(z) = — (00,5 + 261,5)x(2).
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Classically, we say that © € L?((zq, 1), H}(—1,1)) is a weak solution of (3.49) if the following
weak formulation holds: for any V € H(Q) such that V,_4; = 0 and Vis, =0,

v
/Qaz@azv+/ﬂc:[@]azv+/ﬂz@am <a> (3.50)

1 0
= /QfVJr/O n1MV(x1,z)dz+/ Mo z V(zo, 2) dz. (3.51)

_1 " a(xo, 2)

e First step: Bound on the operator G.

The purpose of this first step is to prove the following bound: if ©® € L2(H}) is such that
20,0 € L2(H; 1Y), and if ®(xg,2) = 0 for all z < 0, ®(z1,2) = 0 for all z > 0, then G[O] € L*(Q)
and

IG[O]llz2 <C (IT2llmrrz + T4l 22(L2x)) [10:O| 2

(3.52)
O 172, (12050 2 2, + 110:0)]12).
Concerning the term with I'y, since 0,T's € L?, we have
1
‘ I',0 +/ 9.120 STzl neer2) S I2llm1r2(10:0] L2 (0 )- (3.53)
z L2(Qy4)

A similar bound holds in 2_. The term with 7, is more involved. First, we have

2101 L2(0) S IT1llz2 ooy [Oll e 22y S IT1llz2(22) 02O L2 (0, )- (3.54)

Concerning the integral term, we use Lemma B.15 in the Appendix, from which we deduce that
20 € L?((0,1), Hééf) We then observe that by definition of the L? norm,

1 o1
‘ / 20,110 sup / h/ 20,110
z L2(24) heL2(Q4),llhll2<1 /0y Ja

sup / (/ h) 200,I';.
heL2(Qy),lIhll 2 <1JQy \Jag

Now, using Lemma B.8, for any z > 0,

/ (/ h) 200,
xo Zxo

Integrating with respect to z and using a Cauchy-Schwarz inequality, we get

Gathering (3.53), (3.54) and (3.56), we obtain (3.52).
In the rest of the proof, to lighten the notation, we set

< CIT 372120 gz 122 G- (3.59)

ST oo 272 12O 12 172
L) oo (a2 1FPN L2 (g )

S HFlHLgO(H;“) (||28I@HL2(H71) + ||6z@||L2(Q+)) . (357)

(3.56)

po = Tl oo grvzy + ITallL2 ey + T2l azez + o= oo + llazlloo + ol e (22)-

e Second step: uniqueness:
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Let © € L?((z0,71), Hi(—1,1)) such that a=120,0 € L*(H~!) be a weak solution of (3.49)
with f = 0, n; = 0. Note that since a, € L>(f), 20,0 € L>(H™1).

We adapt the arguments of Baouendi and Grisvard (see Appendix A). For any V € L2(Hg)
such that 20,V € L2(H; '), the trace Vj,—,, is well-defined in the sense of functions in .£?(—1,1)
thanks to Lemma A 1, and we have

<§8w@,V>L2(H71,L2(H1) = G[@]&ZV—F 0,00,V. (3.58)
Q Q

Furthermore,

<fa$@,v>
a L2(H-1),L2(H})

1
<Za$@,V>L2(H—1)7L2(Hé) + <Z ( — 1> 830@, V>L2(H_1,L2(H8)

(0%

z
<z@w@, V>L2(H—1),L2(H5) + <5816), (a — 1)V>L2(H*1),L2(Hé)

= <Za @ V>L2(H 1), L2(H}) (359)
+/G[@]a (a—1)V /a@a (a—1)V). (3.60)
Q
From there, it follows that
Hzax@HLz(H—l) = sup <Zaz@,V>L2(H—1),L2(H1) (3.61)
VeL2(Hp),|VIip2 g1 <1
< (IGO]llze +19:0]22) (1 + [la = Ujoo + [zl 2 z))-  (3:62)

Using (3.52) together with the smallness assumption on I'y, we obtain

1202021y < 110202,

(3.63)
IGO]llz2 < 10l|0:O] 2
Eventually, thanks to Corollary A.2, we observe that
1 1 1
(20:0,0) 1251y 121y = 3 (/ 20(x1,2)? dz—/ 20(x9, 2)? dz) (3.64)
-1 -1

_ % </01 z@(xl,z)2dz—/olz@(x0,z)2 dz) . (3.65)

Now, take V' = O in (3.58). Using (3.60), (3.63) and (3.65), we obtain

1 0

1 (/ 20(xg, 2)* dz —/ 20(x1, 2)* dz) + [ 0,07

2 \Jo —1 Q

1G[O]][L2 (10:OllL> + [|0=((a = 1)©)|[£2) + [[0:0]| 2|0 ((a = 1)O| 2

<
< holl0:0]Z-.

Hence, for g < 1, we infer that © = 0.

e Third step: Energy estimates for equation (3.49)
First, since we have assumed that the boundary terms 79, 11 are smooth, note that we can
always lift them with a function ©,(z,2) = xo(x)no(2) + x1(x)n1(2) for some cut-off functions
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Xi € C*([zo,x1]) such that x; = 1 in a neighborhood of z; and Suppy; C {|z — ;| < (z1 —x0)/2}.
This will add a smooth additional source term to the equation. Hence, in the following, we will
consider the case n; = 0, without loss of generality.

Let us multiply formally (3.49) by © and integrate on 2. We obtain

0.0)> = (20,0, ,©) L2z —/ G[0]9.0. 3.66
/Q( ) <a >L2(H71)7L2(H1) +{f,©) r2(ar—1),L2(m1) . [©] (3.66)
As in the previous step, we decompose the first term in the right-hand side as follows
z
<58”®’®>L2(H71),L2(H1) = (2020, 0) 21 20 (3.67)
+(20,6,(a-1)0) (3.68)
a " L2(H-1),L2(H) ’
The term (3.67) yields a positive contribution on X U X7, namely
1 1 /0
—(20:0,0) 2 (g-1) 201y = 7/ 2(0(z0,2))? dz — f/ 2(0(x1, 2))? dz. (3.69)
, 2 J; 2/,
We bound (3.68) as follows
(20,6,(a-1)0) < Hia @’ I(a—1)8) (3.70)
a ' @ L2(H-1),L2HY)| ~ o ® L2(H; Y o Li(HY) " :
Using the equation (3.47) together with (3.52),
z
Z0,6| <cC L+ 0.0 Gle
|Z0:0] . ,po0, < C Uz +10:8012 + 1O 2) -

<C(Iflle2—) +110:8ll2) + ,UOHZ&E@HLZ(H*),
while
(=102 a1y S (lazllzz(pee) + o = o) 10:© |2,y S H0ll0:O L2 (0,
Using the same type of computation as in (3.60), we also obtain that
120202 (zr-1) < C([|0:Ol| L2 + (| fll L2 (1-1)),
for some universal constant C', provided pg < 1. Hence
IGO]llz2 < po(l10:OllL2 + [ fllL2(r-1))-

Gathering the previous estimates, we obtain, if pg is small enough,

1 [t 1 /0
8.0 —&—f/z@at,z 2dz—f/ z2(0(x1, 2 2dz < Cl ]2, 1y,
10:01z2() + 5 ; (©(20,2)) 5/, (O(z1,2)) 11220 (3.72)

1208l (1) < Cllfllzzaa—)-

e Fourth step: Existence of weak solutions for smooth coefficients, with a large zero order term.
We assume in this paragraph that the coefficients are smooth, say «,v; € CZ ().
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The purpose is to prove that for Cy > 0 sufficiently large, depending on some norms of the
coefficients, the equation

—2319 —0.(G[O] +0.0) + C,L@ = f inQ,

O(x1,2) =0 Vz>0,
O(z9,2) =0 Vz<0

has a unique solution in L2(H}).
We proceed by viscous regularization and consider, for every € > 0, the system

—gaweg — 0.G[O.] + 0,.0, — £0,,0] + 0. = f in Oy,
©.=0 on 9.

(3.74)

We then perform the same type of estimates as before. Since we allow the coefficients to be
smooth and the constant Cj to be large, the estimates are somewhat simpler. It can be easily
proved that if

Co 2 llazlloo + 17z loo

the equation (3.74) has a unique solution in H}(2), which satisfies uniform in e bounds in L2(H}).

Passing to the limit as ¢ — 0, we deduce that for the above choice of Cy, there exists a solution

© € L?>(H") of (3.73). Using the equation, we infer that this solution is such that 20,0 € LZ(H;').

Using the second step (or a variant including the term Cjy), we deduce that this solution is unique.
o Fifth step: Existence of weak solutions of (3.49) for smooth coefficients and L? source.

Now, for any f € L2(f2), consider the solution of (3.73). As in Remark 3.8, we introduce

coefficients b1 defined by
1

1 — o

by =F / G[O](z,0%) dz.
xo

and a function ©, such that
O = 2bix(2)1isn0 + O,
+

Note that

[b+] S 1072|0020 L2,
so that ||0,0y||L2 < 11020 2. The function ©, is a solution of

~20,0,-0..0, = 5,
@]

where

Sy=f+0. (G[@] —0: <Z ZbiX(z)liz>0>> € L*(9).
£

According to the results of Pagani [34], ©, € Z°. In particular, ©, € H§/3(Lz). Since O, is

constant in z, it follows that © € Hg/g(Lf,). As a consequence, the operator K : f € L? — © €

Hi/g(Lz) N L2(H}), where © is the solution of (3.73), is compact.
We now apply the Fredholm alternative to the operator K, which implies the following:
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(i) either, for any f € L?*(Q), there exists a unique solution in Hi/S(Lz) N L2(H}) of (3.49);

(ii) or there exists a non-trivial solution © of

—0.(0.6 + G[6]) — gaxé =0 inQ,

O(z,+1) =0,
O(z1,2) =0 Vz>0,
O(wg,2) =0 Vz<0;

According to the second step (uniqueness for (3.49)), the second case never arises.
We deduce that when the coefficients «, are smooth and satisfy the smallness assumptions
above, for any source term f € L2, there exists a unique solution of (3.49).

o Sixth step: Existence of weak solutions of (3.49) for general coefficients and source terms.

We argue by density and consider sequences of smooth coefficients o™, 77", 75 converging towards
a,71,72 in the relevant norms (i.e. in the norms in which we stated the smallness assumptions.)
We also consider a sequence (fy,)nen of L? functions such that f, — f in L?(H~1).

For any n € N, there exists a solution O™ of (3.49) with the coefficients o™, ~}",v% and source
term f,. Furthermore, the third step shows that this solution is uniformly bounded in L?(H?'),
and 20,0" is uniformly bounded in L?(H~!). Hence we can extract a subsequence such that

O™ —© in L2(H}).

The limit is a weak solution of (3.49). This concludes the proof.

During the proof, we actually obtained the following result, which will be used hereafter.

Corollary 3.9. Assume that the coefficients o and ~y satisfy the assumptions of Proposition 3.6.
For every f € L?((wo,x1); H (—1,1)), there exists a unique solution © € L2(H}) to

~20,0 - 9.(C[6] +9.0) = f.
O(,+1) =0, (3.75)

O(z1,2) =0 Vz>0,
O(zp,2) =0 Vz<0.

Furthermore, this solution satisfies

1©1[L2(a1) + 120201l L2 g1y S 1 f |2 -y (3.76)

3.4.3 Orthogonality conditions for regular solutions

Going back to conditions (3.30) and using the definition of the functions ®7, we infer that the
orthogonality conditions for (3.4) in order to have H!H! regularity can be formally written as

/ (1.50ho + 1.<0h1)®@° + /
Q

2Rg®” — / 2,8 = 8,(0) — 55(0),
E() E1

(3.77)
/ (1.50ho + L.coh1)®@" + /
Q

2R, 0! _/ SR = 61(0) — 60(0).
E() E1
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However, since d,y; does not belong to L?, the source terms h; do not belong to L? in general.
Therefore we first perform formal transformations in order to re-write the terms involving 7; in a
weaker form. We recall that

~1 ~/

2Ni(2) = 9@, 2) + an(mi, 2)8 (2) = (i, 2)8; (2).

When ~; is smooth, we have

1
—/ Z'yl(xmz)&o/(z)q)j(mo,z) dz —/ z@xvl(x,z)dol(z)éj(x,z) dx dz
0 Q

+

— [ (o2 ()0, (0,2) da dz (378)
Q4

/ I’y (z, z)(%/(z)zax@j (z,2) dz dz.
Q4

Similarly,
0

zy1 (21, z)5~1/(z)<I>j (x1,2)dz — / 20,71 (z, z)(i/(z)fbj(m, z)dx dz
! » - (3.79)
= / T (x,2)01 (2)20,07 (x, 2) dx dz.

—

Now, assume that 8)(0) = &,(0) = 0 and 9,7, € L% Then I'y (1,08} + 1.5004) € L2(HY). And

/ Iy (z, z)(%/(z)zaw@j(x, z)dx dz + / T (z, z)(i/(z)zam@j(x, z) dx dz
a, . (3.80)

= <Zaz®j; F1(12<05/1 + 1Z>056)>L2(H*1),L2(Hé) :

Eventually, recalling the definition of ©7 and h;, we re-write the orthogonality conditions (3.77)

as
/8zg‘1’j +/ (9%7)15, +/ (5~6’_F2|2056)@{20
Q o >

0

: = g ; 81
- /E (g®]>\21 - /E (62/{ - 112\21(5,1)@121 + <Zaa:®jarl(1z<06l1 + 1z>066)>L2(H*1),L2(Hé) (3 8 )
1 1

= 0161(0) — 9280(0).

Definition 3.10 (Linear forms associated with equation (3.4)). Let (8o, 01, f) € H. We define
g = f(z,Y(x,2)), 6:(2) = 6;(Y(2s,2)). Assume that 5,(0) = §;(0) = 0 and 9,71 € L?. Assume
furthermore that

[ 512 (e -] < v

(07
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We define, for j = 0,1,
A oY g~ o\
%“%ﬁ”:éaﬂa+éja+%—“%%bw%

g | Fn N j
(L4531, 8 O
/21 (Oé +0p 2|3, 1) ®|21 (382)

j N N
+ <Zam@ T1(L<od + 12>050)>L2(H*1),L2(Hé)
— 876,(0) + 8750(0).
Remark 3.11. Assume that Y is such that u(x,Y (x,2)) = z for all (z,2) € Q, and that
a(z,Y(z,2)) = ﬂz(z,Y(x,z)), Yo = —lUyy(z,Y (2, 2)).
Then it is easily checked that

1

5i(z) = Wdi(y(ﬂ%z))y )
FU(z) = Talae B(2) + 2otV (Y (@),

In this case, the boundary terms in the definition of E% can be written as

Ty 2)

/E (g +ng — ij;) @fzi = /E ﬁ(f(mi,Y(xi,z)) + 60 (Y (24, 2))07 (24, 2) dz. (3.84)

We are now ready to formulate our regularity results for solutions of (3.4). To that end, we
first give a definition of weak solutions of (3.26). This definition follows the computations from
(3.31) and Remark 3.8.

Definition 3.12. Assume that the coefficients «,y; satisfy the assumptions of Proposition 3.6.
Assume furthermore that that 64(0) = &§,(0) =0, 9,71 € L?, and

I rg N N 2
/Ei " [a + (5i (2) 51-(,2)1“2)} < +o0.

Let V € L2(H}(—1,1)). We say that V is a weak solution of (3.26) if and only if, for any
© € L2(H}(-1,1)) such that 20,0 € L2(H; 1) and such that ® =0 on 9Q \ (X U X1),

—<iaz@,v> +/G[@]8ZV+ 9,00,V

a L2H-1L2H}  Jq Q
[¢) «
0 g = -

[ [+ (5@ - e, )] 0. 2) ds (3.85)
1

+/01[

z
+ (20,0, m(Locod] + 1on00)))

Q|

(x0,2) + (Sg’(z) — & ()T (0, z))] O(x0, 2) dz

L2(H-1),L2(HY)
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Lemma 3.13. Assume that the coefficients o, v; satisfy the assumptions of Proposition 3.6. As-
sume furthermore that that 5,(0) = §7(0) =0, do(1) = §1(=1) =0, 9.y € L?, and

[ L8 (e o)) < s

Consider the unique solution U € Z°(Q) of (3.4). Then U € HIHI(Q) if and only if the
orthogonality conditions (3.81) are satisfied, and in this case

2 ~
WU s S Mgy + D / + () =) | + 13 (3:86)

i=0,1

Proof. e We first prove that under the assumptions of Proposition 3.6, equation (3.26) has a
unique solution in L2(H}). We start with uniqueness. Assume that g = 0, §;. Let f € L2(H1)
be arbitrary and let © be the unique solution of (3.49). It follows from Definition 3.12 that

(f, V>L2H—1,L2H3 =0

Since the function f is arbitrary, we infer that V = 0.

The same argument allows us to prove a priori estimates. Indeed, assume that V € L2(H}) is
a solution of (3.26) in the sense of Definition 3.12. Consider the unique solution © € L?*(H{) of
(3.49) with f = —0,,V € L*(H™'). Then

Hgag”@’ L2

Furthermore, combining the weak formulation from Definition 3.12 together with the one of equa-
tion (3.49), we deduce that

[@vi=[ o7

_ /01 (%(m, z) + 5~6/(Z) - g{)(z)Fg(xl, z)) O(z1,2) dz

1Ol S 1V iy,

(3.87)
L B _
+ / (a(xo, 2)+07(2) — 5’1(2)I‘2(w0,z)> O(xo, 2) dz
0
z ~ ~
200,71 (1,<06] + 1,500, )
* <a M(La<od + 1o 0)>L2(H—1)7L2(H5)

Using the assumptions on the coefficients a, «y; together with Lemma A.1, we see that the right-hand
side is lower than

c (nazgnm ONR-IFCE —5;<z>r2)f)1/2 + ||67||H1)
q(

Combining the two estimates and using a Cauchy-Schwarz inequality, we deduce that

IVllzzag < ||axg||Lz+Z(/ M[ + (32 - Sz<z>r2)}2)1/2+||’5;||m.

1Ol )
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Once a priori estimates are available, we can adapt the arguments of Proposition 3.6 to prove
existence of solutions in L?(H?!).

e The rest of the proof goes along the same lines as the one of Proposition 2.7. Assuming that
the orthogonality conditions (3.81) are satisfied, and defining U by

5. {50+fjov in Q.

_ ) g 3.88
01 + f$1 V inQ_ ( )

we see that U is a solution of (3.4), and belongs to L?(H'). Hence U = U, and therefore 8,U €
L2(H}). Conversely, if U € HLH], then 9,U is the only solution of (3.26). Since the jumps of U

and 0,U across the line z = 0 is zero, the orthogonality conditions (3.81) are satisfied.
O

3.5 Well-posedness results for the linearized problem

Proposition 3.14. Let 4 € Q' such that the coefficients o,y defined by
oz, z) :ﬂi(:c,Y(x,z)), 11(2,2) = e (2, Y (7, 2)), 72(z,2) = —ﬂyy(w,Y(x,z))

satisfy the assumptions of Proposition 3.6. Assume also that 0,v, € L%, u(x,£1) = %1, and
2 —yllgr < 1.
Let 6o,6, € H*([-1,1]
Assume that do(1) =
satisfies

), fe HY(L), and define 5 by (3.8).
So(—=1) = 0. Then there exists a unique solution u € Q° to (3.1). It
lullgo S I1f1lL2 + 6ol a4 (101 71 (3.89)

Moreover, when additionally 52(0) =0 fori=0,1 and (f(x:) + 0;)(Y(2s,2))/2 € S, this
solution has H;H; regularity if and only if €4(f,80,81) = 0 for j € {0,1} (recall Definition 3.10).
In this case, and if f(xo, 1)+ (1) = f(z1,—1)+0{(—1) = 0 and 0,0, f € L*((—1,—1/4)U(1/4,1)),

u actually enjoys Q' regularity and one has the estimates

lullgr S I fllm2ez + I fllez s + 1020y fllLz2((—1,-1/a)0(1/4,1)) (3.90)
1
S Il |2 + 6;’><Y<xi,z>>H (3.91)
i=0,1 o HH(50)
||’u’||Ql/2 S Hf”H;/ng + HfHLgHS/Q + ”fHH}D/2H1}/2((71,71/4)U(1/4,1)) (392)
1

S [ills + H(f(wz-) ; 6;’><Y<xi,z>>\ (3.93)

i=0,1 z S (Z4)

Proof. The first part of the statement is an immediate consequence of the equivalence between u
and U: w is a solution of (3.1) if and only if U is a solution of (3.4). Furthermore, using Lemma B.4,
we see that

lllgzrs s S 101 g2 gz + 101 s

”UHHE/BLE S HUHHﬁ/?’Lg + HU’HLiH;‘/S'
Additionally, since u(z,y) = U(z, a(z,y)),

uy(z,y) = uyUz (2, 0(2,y)),  uyy(,y) =y, U (2, u(z,y)) + ﬂzUzz(x,ﬂ(m,y)),
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and since Uy, Uy, € L™ (see Lemma 1.6)

lullzz a2y S ULz mz),
and conversely,

Uz a2y S Nlullpz a2)-

We infer that
ullgo S 1Ullge < llullge-

Hence Proposition 3.4 implies that equation (3.1) has a unique solution u € Q°.
Furthermore, assuming that ¢;(0) = 0 and using the identities

uw(x,y) = Um(x,ﬂ(m,y)) + 1, U (

Uay (2, y) = UyUsz (2, U(2,y)) + Uay Uz (2, U(2,y)) + Ualiy U (

x’ a(x’ y))7
z, Uz, y)),
we see that u, € L?(H))) if and only if U, € L?(H}), which occurs if and only if the two orthogo-
nality conditions (3.81) are satisfied.

Let us now prove that in this case, we have & € Q'. Note that we do not try to prove that
U € Q. Indeed, U, is a solution of

(Zaa: + ’yaz - aazz>U =9 — ’YLEUZ + amUzz

In the right-hand side of the above formula, there is a term —z0,7v,U,, which does not belong to
L? a priori. Instead, we go back to the equation in u and we notice that u, € L2(H?') is the unique
weak solution of

(U0g — Oyy) Uz = —UglUg + 0o f =: g1,

_ f@iy) + 67 ()
U’ZL"Z,L - 71 9

’U/z|:|:1 =0.

Furthermore, since @, € Q°, we have @, € L2(L;°), so that the right-hand side g1 belongs to L*.
Hence we can write

ug (2, y) = Wz, u(z,y)).
Note that W and U, are slightly different: indeed,

W(x,z) — Ugp(z, 2) = U, (x, 2).

Since the term 9,7, U, is precisely the one preventing us that U belongs to L? when the coefficients
are not smooth, we see that the purpose of this new change of variables is to remove a potential
singular part in U.

Then W is a solution of

20, W + 70, W — ad..W = g(x,Y (x,2)) € L*(Q),

Wz:ilzoa
X, 2) + 07 (Y (2, 2
i, = 20s) £ O/ 1)

Hence we can apply the results of Proposition 3.4. Note that the compatibility conditions at (g, 1)
and at (21, —1) are satisfied. We infer that W € Z°, and thus u, € Z°. Tt follows that u € H,g/‘SL;.
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We now prove that agu € L2. As in the proof of Proposition 2.12, we will need to distinguish
between an “interior regularity”, close to the line z = 0, and a “boundary regularity”, close to the
lines z = +1.

e Interior reqularity.

Assume that the orthogonality conditions (3.81) are satisfied, so that u, € @, and that
83]‘ € L2. In that case, writing

Uyy = Uly — f7
we immediately infer that v € L2(H,). Indeed, since u, € Q°, u, € L;(Hff/d) C L(Ly), and
iy, € L2(H)) C Ly°(L2). Note also that @, a, € L.

In order to prove that dju € LZ((xo,asl) x (=14 46,1+ 9) for any ¢ > 0, we mimick the proof
of Proposition 2.12. Multiplying (3.1) by a test function 93¢, for some ¢ € C>(Q) such that ¢
identically vanishes in a neighbourhood of £1 and on {z¢} x (—1,0) U {z1} x (0,1), we obtain

/ﬁux33¢ = /0§(ﬂu$)8y¢
[ s+ 2,0)0,0 ~ [ 00,00~ 3 (1) [ (@005 dy.

i=0,1 i

We integrate by parts both the boundary terms and the interior terms and we are led to
/auwagq’) = /(—Qiﬂuw — By Uy — 20Uy Ugyy + Upylyy + ﬂzﬁzu)qﬁ + /&(bay(ﬁuyy)

/’¢%w (s, 4)67 (4)) dy

101

/ (—Opitug — BlyyUay — 2yUgyy + Uy lyy + Uz Oyu)d — / 0y (ytyy)

+ / Oy (bﬂ@gu

t/¢%w (s, )67 (4)) — @y (y)] dy.

101

/auwﬁjgb = /(f+a§)uag¢ - —/a§f¢+/a§uay¢.

Gathering all the terms and using a density argument, we deduce that for any function ¢ € H(Q)
vanishing on 99\ (Xo U 31),

But we also have

—A(ﬁ@2u8m¢+ﬂx8§’u¢) —l—/(“);luayqb
= / [83]‘ - (8311%; + 382ﬂuwy + 38yuuwyy)] 10}

/¢@, (e )6 ().

101
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This proves that for any test function xo € C¢°(] — 1, 1) such that x = 1 in a neighbourhood of
z=0,say xo =1 on (—1/2,1/2) and Suppxo C (—3/4,3/4), xo0u is the unique weak solution of

ﬂ@z(x()ag’u) — 5‘5()(08310 = X0 (3Zf — 5'5’5%3 - 385ﬂuzy — 38yuumyy) — Xgaju - 2Xg8;1u.

The right-hand side belongs to L%(€2), and the compatibility conditions at the corners (zg, 1) and
(z1,—1) are automatically satisfied because of the truncation yo. Hence Proposition 3.4 ensures
that xo(Y (z, 2))05u(x,Y (z,2)) € Z°. We infer that xod5u € L?, and ux0,05u € L*. Using the
equation satisfied by u, it follows that xou?920,u € L.

e Boundary regqularity:

We now take x; € C°(R), with x =1 on [1/2,1], and Suppyi C [1/4,1]. Note that with the
choice above, Suppx} C Xy ' ({1}). Let u; = uy:. Then u; satisfies

uOyu1 — Oyyur = S1:= fx1 — 2x10,u — x{u in (zg,z1) x (1/4,1),
up(+,1/4) = uq1(-,1) =0, (3.94)
u1(zo,y) = X1

By assumption, ||t — y||lc < m for some m < 1. Without loss of generality, we assume that
m < 1/8 so that @ > 1/8 on (zo,z1) X (1/4,1). Hence the equation is parabolic. Note also that

ﬂ@ful = 0,51 + 858{&1 — axaaxul,

and the right-hand side is in L?2. Thus 0%u; € L2,8§8wu1 € L?, from where it follows that
Oyur € L™, with a bound 0,u1 e S (||uellgo + [|ullgo + |0z X1 2)-
We now differentiate (3.94) twice with respect to y. Since (x0do)(1) = (x000)(1/4) = 0, dpus

is a solution of ) )
(ﬂ@z — 8yy)5‘yu1 = 8yS1 — ﬂyyamul — 2ay81yu1,

Ooui(-,1/4) = Poua(-,1) =0, (3.95)
8§u1(rco,y) = 85()(150).
And since 9; (x100)(1/4) = 92(x100)(1) = 0, we have

(@0p — Byy)0005u1 = 00551 — lhayyOpur — Uyydzur — 20y (g Opyur),
Op0puy (-, 1/4) = 0,0;u1(-,1) = 0, (3.96)

020pu1 (x0,y) = 05 (x100).
Now, let us perform energy estimates for the above parabolic system. We multiply by ﬂ*18$8§u1
and integrate over (xo,x1) X (1/4,1). According to the previous regularity estimates on u and
u1, we know that 813551 € L>(H™Y), UpyyOpUl € L?, ﬂyyaf,ul € L?2. We estimate the terms

Oy (i Opyur) in L2((wo, x1), H*((1/4,1)). It is easily proved that it is bounded in this space. We
infer that 8Z8§’u1 € L*((zo,71),(1/4,1)). Eventually, writing

8511,1 = udyu; — S1,

we deduce that dpuy € L?((zo, 1), (1/4,1)).
e Interpolation:
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We have proved that

Ixoullgo SIfllzz + 0ol + 101l z1
Ixoullgr SN fllmrrz + [ fllozms

X il + | Fr o) + 80 G2

i=0,1 H} (i)

By interpolation, it follows that

1
browlars S 18 s + W+ 3 Vol |50 + 00 o)
v ’ (T

i=0,1
Similarly,
Ixvullge SIfllzz + 0ol + 161 ] 22,
[x1ullQr 5||f||H;L§ + ||f||LgHg + 11020y fll L2 (wo,m1) x (1/4,1))
1
+ X ol + [ H@ i@
i=0,1 o HH ()
By interpolation,
||X1u||Q1/2 SHfHH;/?Lz + Hf”LiH;j’/z + ||fHH;/2H;/2((ZE0,ZE1)X(1/4,1))
1
D) P IES R A E)) (.
) z 1
i=0,1 S} (D4)
Gathering the two estimates, we obtain the desired result. O

4 Local stability of the orthogonality conditions

This section is devoted to the derivation of some key estimates for the nonlinear scheme we will
perform in Section 5. Indeed, as explained in Section 1.4, a crucial point of our proof lies in the
fact that the linear forms associated with the orthogonality conditions depend continuously on the
data u, in a suitable norm. This is proved in Proposition 4.1 below.

In this section, we consider two flows u, %' in a Z' neighborhood of the linear profile (z,y) + ¥.
We define changes of variables Y, Y’ such that

Vz € (—1,1) Vz € (xg,21), u(z,Y(z,2))=1d'(z,Y (z,2)) =z (4.1)
We define
alz, 2) = (0,u)*(x,Y (z,2)), (4.2)
71(2, 2) = Ue (2, Y (2, 2)), (4.3)
Y2(@, 2) = Uyy (2, Y (2, 2)), (4.4)

and analogously, we define o/,~,. We set v = zy1 + 72.
We then consider the profiles ®/, (®7) constructed in Proposition 3.6, and the associated linear
forms ¢z, {3 introduced in Definition 3.10. The main result of this section is the following.
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Proposition 4.1. There exists ¢ > 0 such that, for every u, @ € Q' with ||[u — y||g» < ¢, ||@ —
Yllor < ¢ and u(x;,0) =0, u(x, +£1) = £1, there holds

16 = el oy S Nla— @ llgrre- (4.5)

We decompose the proof of the Proposition into several Lemmas. We first investigate bounds
on the coefficients a — o', v — ' in terms of |4 — @'[|gi/2. Then, we prove that the solutions
®7 of (3.32) depend continuously on the coefficients. Putting together these two results leads to
Proposition 4.1.

4.1 Stability of the change of variables
We start with a technical lemma which will be used abundantly throughout this section.

Lemma 4.2. There exists m € (0,1) and C > 0 such that, for any i, € Q' such that u(&1) =
a'(£1) = £1 and ||[u — yllgr < m and ||a’ —yllgr <m, if YY" are defined by (4.1),

IV =Y\ o) S Y — Y’||H;/12H§,/4 < Cllu - ’alHQl/Q. (4.6)
Proof. From the definition of Y, one infers that
z ds
Y(z,2z)=-1 +/ . (4.7)
1 Uy(z,Y (2, 5))
Hence, combined with the corresponding relation for Y’, one has
2 a (Y(x,s)) — ty(z,Y(x,s
Y(z,2) = Y'(z,2) :/ _y< (@ 5)) — (@ Y(@,5)) ds. (4.8)
-1 uy(xa Y(l‘, 5))“;;(177 Y’(l‘, 5))
From there, it follows that for a.e. z € (xg, 1),
u, (Y'(z, ) — uy(z,Y(z,))
Y(z,) = Y'(x,)||m < || Y 4.9
o=yl < 5 Gy G g e V) |, (49
We decompose the right-hand side as
uy (@, Y' (@, ) —ay(z,Y(z,)) (@, —u,)(@,Y'(z,)) 4 (@ Y(2,) — Uy (2, Y(, )
fLAm,Y(a:,))ﬂ%(m,Y’(a)) ﬂy(w,Y(x,))ﬁ;(%Y’(x,)) @U<x,Y(x,))ﬂ;(a:,Y’($7))
(4.10)
The first term is bounded in HZ/ 12L§ as follows, using Lemma B.4 together with the Sobolev
embeddings e Lo, Y - 132,
(ﬂ;—ﬂy)(;{:’yl(x,-) ”
ﬂy($7 Y({I?, ))a;(x» Yl(xv )) HZ/HLZ
< i, — ), Y, )] . I
= 8y = Uy )0 LA gl 22 || . i .
@y (2, Y (2, ) W gy 11 0(@ Y (@D | e (4.11)

S (= lgzrva gy + iy = Tl e ) (U iy L2 (22)) (3 + oty 1 2)

Sl = llqura (14 Iall o 2oy o o agzrioy ) (14 1l o 2oy 1oy | e gz

S = @llgue (1 + lalg) @ + 1@[13)-
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Concerning the second term in the right-hand side of (4.10), we write a Taylor formula, namely

Uy (2, Y (2, 2)) — 0y (2,Y (2,2)) = (Y'(2, 2) (z, 2) / 8 w(x, 7Y (z,2) + (1 — 7)Y (2, 2)) dr.

(4.12)
Hence

I_Ly(x, Y/(I’ ) — ’U’y(xv Y(:L', ) ‘
ﬂy(ajv Y(z, ))@;(l‘, Yl(x’ ))

HI/2 L2

1
<||Y' - Y||Loo(H7/12) / Ou(x, 7Y (x,2) + (1 — 7)Y (,2)) dr (4.13)
= 0 H/*?L2
" 1 1
Uy (z,Y (z,-)) Lo (1) ay (2, Y (,-)) Lo (HY) '
As previously, we have
1
— S 1+ |lallg,
1
e Vi ST+
%(ﬂfay’(%')) Lo (HL) 9
Furthermore,
||Y/ — Y”Lgo(Hz/n) S ||Y — YI||H1/12H2/4. (414)

And using Lemma B.4,

1
/0 Oyu(x, 7Y (x,2) + (1 — 7)Y (2, 2)) dr

S/ ||a§a||HZ/12L§ + ||a§a||LiHZ/6 S/ ||Ia - y||Q1

HL/ 212
B (4.15)
Therefore, since m < 1, we infer that there exists a universal constant C' such that
||Y — Y/HHZ/leg/aL < é (Hﬂ — ﬂI”Quz + m||Y — Y/HH;/IZHEM) . (416)

For m sufficiently small, we can absorb the second term in the right-hand side into the left-hand
side, and we obtain the result announced in the Lemma. O

4.2 Bounds and stability of the coefficients o and v

We now state two lemmas allowing us to estimate the coefficients and their difference in terms of
the Q' and Q'/2 norms of the functions a, @'

Lemma 4.3 (Bounds on the coefficients in terms of the Q' norm). Letu € Q' such that ||[i—y||gr <
m. Let a,v1,7v2 be given by (4.2), (4.3), (4.4).
Then the following estimates hold:

llazlloo + llv = oo + ozl 2y S 17— yllgrs
il 2 ggrzrey + Il oo ey + 197l Lo 22) S 12 =yl (4.17)
2llzzcan) + 2l 2oy S = ylier
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Lemma 4.4 (Bounds on differences between coefficients in terms of the Q'/2 norm). Let @, @’ € Q!

such that |u —yllgr < m, |&/ —yllgr <m. Let a,a’,v;, 7, be given by (4.2), (4.3), (4.4).

Then the following estimates hold:

HO[ - O/”L?’(HZ/H) S Ha - ﬂ/||Q1/27
v = 7llLe 2y S la—a'llgie,

(A G L I

(4.18)

(4.19)
(4.20)

Proof of Lemma 4.3. Concerning the bounds on «, we recall that a(z, z) = @ (x,Y (z, 2)), so that

)4

o, = 22Uy, (2, Y (z, 2))ay(x, Y (2, z))a—z

= 20y, (z,Y (2, 2)).

Hence |a;|loc = 2||tyylloo, and iy, € H?
_ . 1, i _

Iloo < ||ty — 1|oo, and since f_l(uy(x,y) —y)dy =0, ||ty — 1|lec < ||Uyylloo-

In a similar fashion,

oY

/BH;. Thus [|tyylle < [[@ = yllgr. Furthermore, [lo —

Qg (T, 2) = 2Ugy (2, Y )ty (2, Y ) +2Uyy (z,Y )ty (, Y)% = 20gy (2, Y ) Uy (2,Y) =20y, (2, Y )ty (z,Y).

Hence - - - -
lowllnee(r2) S Uy lloclltay |2 (roe) + 1y lloo | tall L2 (Lee)
S llallgr|@ayyll e
S lallgrlla — yllgr-

We now address the bounds on v; = @, (z, Y (z,2)). We have, using Lemma B.4
||71||H2/3L§ S ||ﬂ$HH2/‘3L§ + ||ax||Li(H3/‘3) S/ ||’L_l; - y||Q1

Furthermore,

)4
82’71 = aiaﬁfy(xa Y(l‘, Z))7

z

so that
1071l 2ee(r2) < 1020y S NUayllrz(pee) S Ntayllrz cmp)-

Hence (1071 e (z2) S 17— yllgr-

Concerning the L‘Z’O(H;m) bound on v;, we use Lemma B.16 in the Appendix, which yields

Hvl”Lg"(H;/Q) S H’ylHHg/g’Lz + ”8271”1-];/3113'
We then bound the two terms in the right-hand side, using Lemma B.4. We have

<

||'71HH§/3L3 ||ﬂw||H§/3L§ + H%HLiH;/s

S llu—yllg

Furthermore,

01(2.2) = G (.Y oY (,2) = E2 (e Y (0,2),
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so that, using Lemma B.4,

U U
101l yrrs o S || =2 + || =2 . (4.23)
x z Uy Hi/gLi Uy Lng/s
Concerning the first term, we write
] i 1 _ _
— S tayll are 0 || = S e = yllgr gl -
Uy lmy/°L2 Uy Nl pee (1) '
Concerning the second term, we have
a _ 1 _ _
% s S ”PL‘ﬂEy”L;zEH;/i3 S e = yllgr[tyyll oo
v L2 HZ v llLgo(ml)
Eventually, we get
Ml e 22y S lEll@r 7 = wliQr-
Concerning the term vo = —,,(z, Y (z, 2)), we write

oy

_8172(‘%72) = ﬂa«’yy(mv Y((E,Z)) + or

85’11(:3, Y (z,2)).

The first term is bounded in L? by ||Tgyy|lr2 S |2 —yllgr (see Lemma B.4). Concerning the second
one, we recall that 0,Y = —(u,/uy)(z,Y (z,2)), and therefore 0,Y € LP(Q) for all p < oo (note
that the jacobian of the change of variables y = Y (z, z) is bounded from above and below by a
uniform constant). And since du € H 2/3(Q) ¢ L8(Q), we obtain, thanks to the Holder inequality,

10:72ll2 S (1 + @l )l —yllgr
Eventually, using once again Lemma B.4,
||'72HL§(H3/5) S ||ﬂyy||L§(Hg/5) + Hﬂyy”Lg(HS/E’) 5 ||ﬁ - y”Ql'
O

Proof of Lemma 4.4. We use the same type of techniques as in the previous Lemma. Recalling
the definition of «, o', we write

a(z,2) — o (z,2) = (Y (x,2) — (4,)*(z,Y(z,2)) (4.24)

+Hay)* (2, Y (2, 2)) = (@) (2, Y (2, 2)). (4.25)
Using the results of Lemma B.4, the term (4.24) is bounded as follows

Hfbi(l‘, Y(Qﬁ, Z)) - (a;)2($7 Y(CL', Z))”Lgo(H;/l?) 5”@5(% Y(ﬂ;‘, Z)) - (ﬂ/y)Z(x7 Y(:B7 Z)) HH?“(HZ/IZ)

ST — ()2 12 v+ 183 = ()21 e
7/12 1,3/4 o .
Note that H;' “H,'~ C L°°, and therefore it is an algebra. Hence

2 = )2 yzsro gy S Wiy = @ gmsne sy (Nagllgziva grossy + 1y | gzrie o)) S Ml = @llgure.
(4.26)
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Concerning the other term, we have

182 — @)l yzone < Ny, — Ty |y
<y — Tl gy Ny g+ [y = gl e
Note that
||ayy||Lgo(H§1/12) 5 Hﬂyy”Hg/f*(H;l/l?) 5 ”a - y”Ql’
and

gy = Tyl e S 1= @ g

We deduce that
H’EL;(I,Y(Z‘, Z)) - (ﬂ;)Z(z7Y(xa Z))||L§O(HZ/12) 5 Hﬂ - a/”Ql/?-

We now address the term (4.25), which we write as

(ﬂ;)Q(m, Y(z,z2)) — (ﬁ;)Z(:c, Y'(z,2)) =2(Y(x,2) — Y'(x,2)) /o (ﬂ;ﬁ;y)(m, 7Y + (1 —-7)Y")dr.

Hence, using Lemma B.4
”(4'25)”H3/4HZ/12 g (HY — YI||H3/4H1/12 + ||Y — Y’HL%Hsg/n)
X (||ﬂyHH3/4HZ/12 + Hﬂy”LiHia/n) (427)
X (gl g gziie + Wiyl 2 2o )

Sl =@l gue.
Gathering (4.26) and (4.27), we infer that
loe = Ol oo 722y S N8 = W[l /-
We then address the bounds on v; — ~]. As previously, we write
(1 =, 2) = (U2 (2,Y (2, 2)) — a2, Y (2, 2))) + (U (2, Y (2, 2)) — 0, (2, Y (2, 2))).
Using Lemma 4.2, the first term is bounded in the following way
a2, Y (2, 2)) — (2, Y@, ) e g2y < Ny lz o) 1Y = Yoo € Conll — @ llguye.

As for the second term,

a0, Y (2, 2)) = T,V (@ Dy S Nale, V(@ 2)) = (o, Y (2 ) o o)
< e — g2 (nee
< o —a'||gie.

Consequently,
[ = illeer2) < Cmlla — @' gi/e.
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Eventually, we address the bounds on 2 — v4, which we decompose as previously as

(v2 = v9) (@, 2) = (Uyy(z,Y (2, 2)) — iy, (¢, Y (z, z))) + (ﬂ;y(x, Y(x,2)) =y, (z,Y'(z, z))). (4.28)

Concerning the second term, we use a Taylor formula
1
Uiy, (2,Y) — iy, (2,Y') = (Y = Y') / B (x, 7Y + (1 —1)Y')dr. (4.29)
0
From there, it follows that for some o > 1/2,

1
|y, (2,Y) — a;y(x,yf)”L%(Hi/z) <|y - Y/”L;o(Hi”) ‘/0 85’@’(;5,7)/ + (1 —=7)Ydr

L2(HZ)
<Y - Y'||L30(H;/2) (1030 | L2 ey + 1050 || pr2e 1.2))

Sl —ullgu:lalqr-

(4.30)

We then address the first term in (4.28). Using Lemma B.4, we obtain

Ity = )Y 2D gy < Con (i = Tl + oy = pllzi) o
< Cplla — @[ guye-

O

4.3 Uniform regular bounds on the dual profiles

In Proposition 3.6, we proved uniform bounds in L2 H! for the profiles ©7 (defined in (3.38)). We
now prove uniform bounds in Z° which will be useful to prove the stability of the dual profiles.

Lemma 4.5 (Z° estimates for ©7). Assume that the coefficients o, satisfy the hypotheses of
Proposition 3.6. Assume furthermore that o € HX(H}) and 0,,a € Lg(Hg/s), and that v €
L2(H:) 0 L& (H: ™) N W (L2), 55 € LA(L®) N HL(L2) 0 H(H?),
There exists a constant po > 0, depending only on §2, such that if
o — 1HH;(Hzl) + ||azza||L§(H§'/5) < Mo,
H'71HL3(H§/3) + ”’VIHLgo(H;ﬁ) + Haz'YlHLgO(Lg) < Mo,
Ivallzz(zz) + 10s72llz2 + 10920l 2 o5y < b0

then the solution constructed in Proposition 3.6 belongs to Z°(Q), and satisfies the estimate
107|200,y + 197|200y S 1.

Proof. For the proof of the Z° estimates, it will be convenient to work with the lift @g defined in

Remark 3.8. We recall that @g satisfies equation (3.48).

o First step: existence of a solution in Z° for smooth coefficients.

We still assume that a and « are smooth, and we now derive Z° estimates for our L?(H?!)
solution. In this case, we notice that S7 belongs to L*(Q).
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It follows from the work of Pagani that
120207 2y + 1102207 | 22 () + ||@§||L§C(H;/2) (4.32)
S 18z + 1+ b | + b= + 18] [l 22(0- (4.33)

Thus there remains to evaluate each of the terms in the right-hand side. We start with [|S7|2(q).
According to the definition of ©7, we have

19702200y < C(L+[by|+ b))
+ (IVllso + 107 £2(£2)) 11007 | 204y
=+ (H'YT”OO + ||6127||L§(L2°)) HaZ@]||L2(Qi)'
Note also that
b+| < C (IIT]loo + T2 lloo) 167 (-, 07 L2(2g,21) < (Voo + [Tz lloe) 1067|220,

and ‘ A
19712 S 1912 + [b4] + [b—]

Since Proposition 3.6 ensures that [|0.07| 12, ) < 1, we obtain a bound on |[S7]|12(q, ) and b+
(depending on some high order norms of the coefficients). We therefore obtain a first ZY estimate
on ©7.

o Second step: ZV estimates for smooth coefficients.

We still assume that the coefficients «,~ are smooth, but our purpose is now to derive a Z°
bound on the solution that only depends on norms of the coefficients ;, @ in lower order norms.

More precisely, we now assume that

Y =271t 2,
where 7; € W2, o € W2, and with
Vil g2 ggzray + 101l oo 2oy + 110l L2 22) <1,
Iv2llrz(pee) + 10272l 2 + ||3z72||L3(Hg/5) <L

We also assume that
d.a € L2(HY), 0..a € L2(H3®).

It can be easily checked that these assumptions, together with the ones of Proposition 3.6, ensure
that the coefficients I'; satisfy the same smallness assumptions as the coefficients ;. We first
rewrite the equation for ©] as

—20,0] — 0..0] = (a — 1)0..0] + &,
so that there exists a universal constant C' such that
120,04 12 +119:: 0122 < € (o= Ulo|02-OF 1+ 157112 + 1|+ 1o + 1] 1z2) .
For || — 1]|so < 1, we absorb the first term into the left-hand side. Furthermore,

1572y S 1b4] + 10-| + 8-GOl L2 () + 10-G[O7]] 202y
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Note also that by are the (integrals of the) traces of G[©7] at z = 0%. It follows that if the coef-
ficients «,y satisfy the smallness assumptions of Proposition 3.6, there exists a universal constant
C such that

12020[| 2 + 11022072 < C (1 +10:G[0]|| 122y ) + [0:-G&] I L2(2_y) - (4.34)

Therefore we now focus on the derivation of a bound for 9,G[07] in L?(Q4). By symmetry, we
only treat the case of 2.
Differentiating the definition of G[©7] (3.42) with respect to z, we have, in Q,

0.G[07] = T20.07 + / b 0,120,607 (4.35)
40,1507 + / b 0y 1207 (4.36)
+2110,07 + / b 0,1120,07 (4.37)
+T,67 + / b 0,167 (4.38)
- / " L0.1,0,0. (4.39)

We then evaluate each term of the right-hand side separately.

e The term (4.35) is the easiest. Recalling that [|0.07 |1 (0,1y22) S |07 z0(a, ), We have
1(4-35) [ 12(0,) < CllO | z0¢0,) (IT2llL2(peey + 02T 2]l L2(0))

e For the term (4.36), we recall that ||®j||Loc(H1/2) < 167 z0. Using a H; Y — H2/® duality,
we obtain

1(4-36) [ 2202,y < €€ |0-T'2 ) < ClO 20002, 10:T2

I poo (rr2/3)] gz asr ez sy
The term (4.38) is treated in a similar fashion, using a H~/3 — H'/3 duality

1(4:38)l| 20,y < €167 yIIF

e vy I 2 a2y

e For the term (4.37), the first part is easily bounded, using the embeddings H'Y? < L*in 1D
and Lemma B.12, as

. L .
IT120:0[|L2(y) S T2l o a2 [|12120:07 || L2 172 S Tl 12 1€ | 20(2y)- (440)

We write the L? norm of the second part in the following way:
x1 .
’ = sup / h/ 8zI‘1282@3
L2(Qy)  heL2(Q4)llhll 210y Ja

1 1 T )
= sup / / </ h) 0,1120,06’.
heL?(4), |kl 25170 Jao zo
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By Lemma B.8, for each z € (0, 1),

/ (/ h) 83:F1282®j

Integrating over z € (0, 1) yields

1 1 x
Al ( / h) 0,120,600
0 o o

Thus, using the embedding of Lemma B.14,

(4.42)

SIAC 222 [T ) a2 ]120-67(:, 2)

”Hé[{fm,m)'

SAllze (1T (4.43)

e rr2r2 120070 2 a2 4,

STl oo 221107 2002, - (4.44)
L2(Q4) :

/ 0,1120,07

Combining (4.40) and (4.44) yields
1437 L2200y S IT g 12107 200, (4.45)

e At last, we bound (4.39) by
1(4.37) 122 (24) < Cll20:07 |20 |0:Tillr22) < ClO7 || 20,y 10Tl (22)-
In conclusion, setting
p0 = Tl poe grarz | + 10T illee 2y + 1Tl o grzray + Tallzzcmny + 110:Tall 1o gr2/s)
we infer that there exists a universal constant C such that
10: GOl 201y < Croll©7 [l 200
Hence - .
1b+|Crol©[| 2004,
and ' -
107 2004y < ClIO]] z0(02s)-
Plugging these estimates into (4.34), we get
18]l z0 < C(1 + p10l|©]| z0),
and thus 4 ~
16|20 < C. (4.46)

e Third step: Z° estimates for general coefficients.
We take a sequence a,,y"™ of smooth coefficients such that v = 297" +~§ and ! (resp. a™)
converges towards -y; (resp. «) in the relevant norms, namely

e =Wz zrsy + e =l e arasy + 10001 = W)l z2) = 0,
Iz =8 lr2eee) + 1052 = 98 122 + 1182 (v2 = V8 s g2/ = O,
o = o™l iy + 192z (0 = @™ gy = 0.

We consider the profiles ©J associated with ™, ™. According to the previous step, for all
neN, O ¢ Z°, and we have the estimate (4.46). Therefore we can extract a subsequence and
pass to the limit in the equation. It can be easily checked that the limit is a solution of (3.47),
and satisfies (4.46). This concludes the proof of the Lemma. O
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4.4 Stability of the dual profiles
We consider the profiles ©7 and (©7)" constructed in Proposition 3.6.

Lemma 4.6. Assume that the hypotheses of Proposition 3.6 and Lemma 4.5 are satisfied for the
coefficients o, o', y,~'.
Then ) , ) )
167 = (©7)'lL2(m2) + 1202(07 — (©7) )| 12 (-1,

Slla—all e grmzy +lm = Yilloe@zy + 12 =l 2 g2y
Lo (HL/'?) = (L2) L2(H'?)
As a consequence,

199 — (@) |2 + / (0 — (@) Plao,2) e+ [ @7 (@)1, d:

-1

S lla— 04'||L20(H;/12) +m - ’YiHLgo(Lg) + vz — ’Y§||L3(H;/2)-

Proof. In order to alleviate the notation, we drop the superscripts j, choosing one of the cases
j=0or j =1 (the two cases are similar.) Following Proposition 3.6, we introduce 0,0’ defined
by (3.38), and we define § = © — ©’. Note that 0], = 0, so that § € L2(H}). We also denote
by G,G’ the operators defined in (3.42) associated with («,7), (a/,7").

It follows that 6 satisfies

—@@ﬁ+GWD—;%9:(;—;)zQGWﬁAG—G%@L
o(-,+1) = 0, (4.47)
O(z1,2) =0 Vz>0,

0(zo,2) =0 Vz<O.
Then, according to Corollary 3.9, it suffices to estimate the right-hand side in L?(H~1).

e Estimate of (1/a —1/a/)20,0" in L*(H™1):
Using the Sobolev embedding L4(—1,1) C H~!(—1,1) for all ¢ > 1, we obtain

» (1 - 1) 0,0 . <1 - 1) 0,0
a o« a o«

Clle - 0/||Lg°(L‘§)||Zax9/H%2(Q)~
Using the Z° bounds on ©’ from Lemma 4.5, we get

z(l—ll) 89,0’
a o«

e Estimate of (G — G')[©'] in L?():
As in the proof of Proposition 3.6, we write I' = zI'y +T's. We focus on the bound of (G—G")[0’]
in L?(Q), since the bound in 2_ is identical. Note that

IN

L2(HDY) L2(LY?)

IN

< lla =o'l < = ol i (4.48)

L2(H:Y)

1

(I -0’ + / 0, —T")0' = 7/ (I - 17)9,0'.
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We start with the terms involving I'; and I'j. We have

T
‘ / Z(Fl - I"l)@m@’ < ||z6w®’||L2(Q+)HF1 - F/1||L§°(L§) (449)
x L2(Qy)
Since , ,
— o —
LTy = 2 g2,
o
we get
IT1 = Tilleecrz) S I = Yillee ey + I lle 2l — o[l
Sl - ’YiHLgc(Lg) + [la — 0/||L§<>(H;/12)-
Hence -
‘ / 2(Ty —11)0,0 Sl =Yillee@e) + e = &l o grizy- (4.50)
z L2(Qy) :

We now address the terms with T's, T';. Integrating by parts, we have
1 ZT1
/ (Ty —T5)0,0’ sup / h/ (Ty —T5)0,0’
P L2(9) ReL2(Qy) bl 2<1 /0 Ja

= sup / (/ h) (Ty —1%)0,0".
heL?(2y),|lhll2<1 /Oy xo

Then, for any z € (0,1), using Lemma B.9, we have

[ ([ )o-rone

Integrating over z € (0,1) and using the embedding of Lemma B.13, we obtain, for any h € L?(Q ),

[ 0] @-roe
Q4 T

S Whllz2 T2 = Dol 16 oy (451)

< 022 T2 = Tl a2 1€ s oo

(4.52)
S IPllez T2 = Toll 12 a2 107l 20y )-
Hence -
G T L TR L P (459
@ L2(Qy) =
Now, writing
— o —a
TR VRN ke SN <
ao
we obtain
[T2 — F/2||L§H;/2 Slive — ’Y§||L§H;/2 ol oo (1) (54
+112ll oo 2oy (lll e iy + 1 oo e = @[l oo 22y - .
Therefore -
‘ / (F2 - Fé)ai(_)/ SJ ||’Y2 - ’YQHLEH;/z + ”a - alHLgc(H;/Q)' (455)
v L2(04)
Gathering (4.48), (4.50) and (4.55), we obtain the result announced in the Lemma.
O
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4.5 Proof of the stability of the orthogonality conditions

Let us now say a few words about the proof of Proposition 4.1. Let @, u’ be two profiles such that
| —yllgr < m, |& —yllgr < m. According to Lemma, 4.3, the coefficients «,a’ 7;, 7, satisfy the
smallness assumptions of Proposition 3.6 and Lemma 4.5. Hence we can construct the profiles @7,
(©7) associated with o, o/, respectively. Furthermore, according to Lemma 4.5, these profiles
belong to Z°(Q4.).

We now use Lemma 4.4 together with Lemma 4.6, from which we infer that

0

. . ! 1 ] ] i
107 = (@) 10y + | (67 = (€9 (an,2)de+ [ 12100 = (©9) (o, (456)

S ||fL — ﬂ/HQ1/2.

Now, let & = (f, 09, 1) € H. In this case, note that f(x;,-) = 0. Furthermore, since @(z;,0) = 0,
~ ~1/
we have Y (z;,0) = 0 and thus 6;(0) = d; (0) = 0. Additionally, z < Y (2;,2) S 2.

—

Therefore the linear forms ¢ (=) can be written as

A=) = /Q B (2, Y (2,2)) 2 + / L 50V (20, 2)0 (20, 2) d=

« a(x, 2)
0
e L GO LT (4.57)
j 01 (Y (21, 2)) 85(Y (0, 2))
+t/m281C)IH (1Z<Oﬁy(w1,YTan,z))4'1Z>°ﬂy(xo,yx1@,z))>'

Using the definition of the H norm together with (4.56) and with the estimates from Lemma 4.2
and Lemma 4.4, we infer that

C(E) — £,(3)

Sl = @llgirz[IE]. (4.58)

This completes the proof of Proposition 4.1.

5 The nonlinear problem

In this section, we prove Theorem 2. The most difficult part is the existence statement, which
relies on the scheme described in Section 1.4.

5.1 Execution of the nonlinear scheme

For n > 0 denote by B,, the open ball of radius 1 and centered at 0 in Hslg (the subspace of H of
data for which the model problem (2.1) can be solved with Z! regularity, see (2.30)). For every
2 =(f,d0,01) € H, one has the decomposition

=21+ (=%

)

[1]

20+ (EYE)nE, (5.1)

m
2
[1

where =1 € Hslg, =9 =! are defined in Corollary 2.10, and the linear maps = — =+ and (ZF; =) are
continuous. We will deduce the existence statement of Theorem 2 from the following proposition.
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Proposition 5.1. There exist n > 0, two Lipschitz maps v* for k € {0,1} from B, to R with
v2(0) = v1(0) = 0 and a map U, : B, — Q*, which is Lipschitz from B, to Q/%, such that, for
every triplet E € B, U, () is a solution to (1.7) with data E+ v°(2)E° + v} (E)E! (where 20, 2!
are defined in Corollary 2.10).

Proof of the existence statement of Theorem 2. The existence statement of Theorem 2 is a direct
consequence of Proposition 5.1. Indeed, with the notations of Proposition 5.1, define

M:={E€H; ||Ely <nand (ZF;Z)y =v*E") for k=0,1} (5.2)

and set, for 2 € M,

UE) = UL (ED). (5.3)
Then M is a Lipschitz manifold modeled on g, since ” and v are Lipschitz maps. It contains Oy
since 1/° (Ong) = yl(OHSLg) = Og. Moreover, M is “tangent” to Hg; at 0 in the sense of Remark 5.2.

Eventually, for every = € M, U(Z) € Q! is a strong solution to (1.7). So the conclusions of the
existence statement of Theorem 2 are satisfied. O

Remark 5.2. Since we only proved Lipschitz reqularity for the maps v' and v, (5.2) a priori only
defines a Lipschitz manifold. Hence, it is difficult to define tangent spaces to M. Nevertheless,
one can say that Hi‘g is tangent to M at 0 in the following senses:

o ForZ2e M, d(E,Hg) S 215,

o For every E € HL

se» for t € R small enough, 1= + O(t?) e M.

Proof of Proposition 5.1. Construction of the sequence and uniform Q' bound.

Let 7 > 0 small enough to be chosen later. Let E = (f,d0,d1) € Hslg with ||Z]|x < .

Let x € C*(R, [0,1]), identically equal to one on [—3, ] and compactly supported in [—3, £].
We define the initialization profile of our iterative scheme as

uo(z,y) := do(y)x ( ] ) +61(y)x ( oL ) : (5.4)

T1 — Zo T1 — To

Hence, there exists C), > 0 such that uy € Q' and [lug|lgr < Cy(||dolln + l|61]l%) < 2nC,y.
Furthermore, d,uq identically vanishes on the boundaries.
For each n € N, we let u,4+1 be the solution to

(Y + n)Ogtiny1 — Oyytiny1 = f + V2+1f0 + Vrlerlfla
(Upy1)m, = 0i + VO, 16 + vk 46}, (5.5)

(Unt1)jy=+1 =0,

where the coefficients ¥ 41 are defined below, and where the triplets ( 1%, 6k %) are defined in
Corollary 2.10. Let us assume that u, € Q' is such that |lu,||g1 < Cn for some universal constant
C, and that 8§un(xi,0) =0for k =0,1,2, so that y < y + un(x,y) < y. Assume furthermore
that [|05un || < (s, < 7.

As a consequence, denoting by Y,, the change of variables associated with y + u,,, we have

‘ 6<Y<>>H - ‘ 3! (2)

- o sy (56)

22z Lﬂz(zi)
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and

O (Yulwi,2)) Yl 2)8! (Ya(wi, 2)) = 08 (Ya(wi, 2))
z > 22
+(Z - Yn(xia Z))W
B 8yun(9€z,yn(3€z72))
22(1 + Oy (i, Yo (i, 2)))

0 (Yo (i, 2)).

The first two terms are bounded in Z2(%;) by [|6/(2)/z]|s1(s;)- As for the last one, since
Dytun(2;,0) = Opun(2;,0) = 0, it satisfies

0 (Ya(ai, 2))]

Oytin (i, Yo (i, 2)) (3) < 1153
22(1Jrayun(xiayn(xiyz)))éi (Ya(i, 2)) N”ayu"”Lw(Eqﬁ)

and thus its .£2(3;) norm is bounded by Cn||6\¥ | 2.
We let £/ denote the boundary linear forms associated with the flow @, := y + u,, (see Defini-
tion 3.10). For u € Q*, we define the following 2 by 2 matrix:

My = (£6,,(£%,35,5%)) (5.7)

0<j k<1

In particular, since My = Id and u + £,,, is locally Lipschitz (by Proposition 4.1) from Q/? to
L(H), M, is invertible for u small enough, and u € Q*/2 + M, ' is Lipschitz. We set M,, := M, .
Then the coefficients v, 1 are defined by

0
Vg1 = =M, (28@ 2223) : (5.8)

It is easily checked that this choice ensures that
G (f 4 i I+ Vi I3 00 + V180 + Va0, 01 + Vpa &) + 144001) =0 i=0,1. (5.9)

Furthermore, since ||un|lg1 <7, [Vnt1] < C'||Z| s for some universal constant C’.
By Proposition 3.14 and Lemma 4.3, this choice ensures that the system has a solution in Q'
and the existence of a constant C' > 0 such that

ltnsillgr < ClIElls + Clvnsil S [Ellw < Cin (5.10)
for some universal constant C. In order to complete the induction, there only remains to check
that &gk)unﬂ(xi,O) = 0 and that [|9}un 415,

that (up+1))s, = 0; + 0,100 + vp 16} and from the properties 5§k)(0) =0for k=0,1,2.
We conclude that the sequence u,, is uniformly bounded in @' by a small constant m < C;7.

(s, S N These properties follow from the fact

Convergence of the sequence in Q'/2. We now turn to the convergence of the sequence.
Let wy, := upy1 — uy, for n > 1. Thanks to the previous paragraph, the sequence w,, is uniformly
bounded in Q' by 2Cn. Moreover, for each n € N*, w, is the strong solution to

(Y + un)Ozwy, — Oyywy, = —wy—10up + (V2+1 - Vg)fo + (V71L+1 - V’}L)flﬂ
(wn)\Ei = <V2+1 - VS)(S? + (V’Ill+1 - V’I’ll)(sil? (5.11)

(wn)\y:j:l =0.
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We already know that the solution w,, belongs to Q', as the difference between two Q' functions.
Hence there is no need to check that the orthogonality conditions are satisfied, and we can apply
Proposition 3.14, recalling that ||u, || is small thanks to (5.10). Note that the source terms fJ
vanish on the lateral boundaries. Moreover, using the boundary conditions and the assumptions
on §;, it can be easily proved that

Snlvn — vn-al-
F ()

1
7(wn—larun) i
[ oot

We obtain, by (3.92),

||wn||Q1/2 gHwn—lawun”H;/?L% + Hwn—lawunHLzHgﬂ + HXlwn—laxun”H;ﬂH;N (512)
+ ‘Vn+1 - V'n,| + n‘yn - Vn71‘~

Indeed, the elementary functions f7 and 6{ of Corollary 2.10 have fixed norms.
By (5.8) and Proposition 4.1,

Vi1 = va| = M7 0(Z) = M2 11 (3)]
<MY = M2 1 (E)] + 1M 241160 (E) = £o1()] (5.13)

S llun = un—1llQurzlIElln-

Let us now derive bounds on w,,_10,u,.
lin10utinll g3/2 50 S m ey utinll s S Nl omillgue, — (514)
and
onsBstinll o rors < Nonosll e gz [Ostinll o s S Ttnllr lwnallguia - (5.15)

1/2 is slightly more involved. Note that the Q' bound on u,,,

Y
.. . 1/2 441/2
in itself, does not allow us to bound 0 u,, in Hx/ Hy/ . However, we can use the same arguments

as in Proposition 3.14, and observe that on the support of xi1, u, satisfies a classical parabolic
equation. More precisely, recall that

The bound on ||X1wn_18IunHH1/zH

(Y + Up_1)0ptun = f+00f0 + ) 1 4 agun,

where f, f, f are smooth, and d3u,, € L?. Differentiating the equation with respect to y and
using the estimates |05ty —1loc S |lunllgr for k = 1,2, we infer that (y 4 u,)d,05u, € L?, and

1y + wn)OuOyunllzz < lvn] + (1 + llun—1llQr) unllor < .

Hence
IX10203un |2 < Cn,

uniformly in n. Using once again the same method, we infer that

IX102un|lr2 < Cn,  |[X1020yunl|r2 < Cn,
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uniformly in n. Hence x10,u, is bounded by Cn in HJ}H1 N L? HS, uniformly in n. We deduce
that

IX1Wn—10utinll y1r2 ire S llwnall g2 g X Ouun | mrmy S Cnllwn-1ligrre- (5.16)

Gathering (5.14), (5.15) and (5.16), we obtain

lwallgr/z < nllwn-llgr/2 + 1*lwn—2llgi- (5.17)

Classically, for 7 small enough, we infer that (u,)nen is a Cauchy sequence in Q/2. We recall
that it is also uniformly bounded in Q'. Hence there exists u = U, (Z) € Q! such that

Uy — u  strongly in QY?,
up — u  weakly in Q'.

The strong convergence is sufficient to pass to the limit in (5.5). Furthermore, thanks to the
continuity of the linear forms u € Q/2 + ¢!,, we can also pass to the limit in (5.8). We denote by
v(f,d0,01) = v(E) the limit of the sequence v,.

Lipschitz regularity of the constructed maps. In this paragraph we prove that the maps

E+— U, (E) and E — v(E) have Lipschitz regularity. Let Z,Z" € B,. We use the prime notation
t

o denote all the quantities associated with Z' during the nonlinear scheme
In particular, one has

(Y + un) Oz (Uny1 — ’u’;z+1) — Oyy(Unt1 — U”/I’LJrl)

=f—f = (un —uy,)0, U;H-l + ( 2+1 I?l+1)fo + (Vpg1 — /71H-1)f1 (5.18)
(U1 = i) s, = 6 — 0 + (vp oy — n+1)‘S + (Vi1 — n+1)51 .
(Unt1 — n+1)|y::|:1 =0.

Using the same estimates as previously,

|1 — U:H-lHQl/? Sl (un —

un)llQirz + 12 = E'lln + [vntr — vl (5.19)
And, using one again Proposition 4.1 together with the definition (5.8)
i1 = vl SIE =l +llun — upllgre (5.20)
Summing recursively these estimates this leads to the uniform estimates
[uns1 = tngallgre SIE =, (5.21)
[Vn41 = v llre S IIE = Zl (5.22)

This proves that = +— U, (E) is Lipschitz from Hslg to Q'/2 and v is Lipschitz from HL to R2

Value of 1° and v! at zero. One checks that, for 2 = 0 = (0,0,0), the constructed
initialization ug defined in (5.4) is null. Since 0 € Hg; and £ = £/, this leads to v; = 0 (by (5.8))

Hence, in (5.5) for n = 0, the system solved by w; has vanishing boundary data and vanishing source
term. Hence u; = 0. This property propagates for every n > 0. Hence 17(0) = limv4(0) =0. O
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5.2 Local uniqueness of solutions to the nonlinear problem

We prove the local uniqueness statement in Theorem 2.

The argument is straightforward: if two strong solutions u; and ug exist and are small in Q*,
their difference w := u; — us is the solution to a degenerate elliptic linear equation with null source
term and boundary values, so it vanishes identically.

More precisely, let u,u’ € Q' be two solutions to (1.7) satisfying lullgr < nand ||u'||gr < n for
some small 7. Then w := u — v/ € Q' and solves the system

Wiy =0, (5.23)

’U)‘Zi =0.
We follow the arguments of Section 3 and introduce a change of variables Y such that V(z, z) € Q,
Y(z,2) +u(z,Y(z,2)) =z

Let a(z,2) = (1 + uy) (x,Y(2,2)), v = (2us — uyy)(2,Y(2,2)), 71 = (z,Y(z,2)). Then
W(z,z) =w(x,Y(z,z)) is a solution of

20 W + 40, W + W — ad,,W =0,
W|z=i1 == 0, (524)
Wis, = 0.

Furthermore, «, v, 7| satisfy the estimates of Lemma 4.3. Using the results of Appendix A, we
infer that W = 0. This concludes the proof of the uniqueness within the ball of radius n in Q.

5.3 Necessity of the orthogonality conditions

At the linear level, Theorem 1 states that Z = (f, dg,01) € ”HSJ;g is a necessary condition to solve (2.1)
with tangential regularity @'. Our purpose in this paragraph is to prove that, at the nonlinear
level, if a solution has Q' N H? regularity, this necessary condition generalizes to & € M. In
particular, the nonlinear phenomena do not eliminate the need for orthogonality conditions, at
least when one tries to obtain solutions with such regularity.

More precisely, we prove the following claim (which is part of Theorem 2 but which we recall
here for the reader’s convenience).

Proposition 5.3. There exists ) > 0 such that, if £ € H with |E|ly <n and uw € Q' N HZH}(Q)
with ||ullgr + ||ul|g2 < n is a solution to (1.7), then 2 € M and u=U(E).

Proof. Let n > 0 to be chosen small enough later on in the proof. Let = € H with ||E||% < n and
assume that there exists u € Q' N H*(Q) with |lul|g + [ull gz < m such that u is a solution
o (1.7). We introduce

[T

=2t 40EHE 4 (EHE, (5.25)

which can be thought of as a good projection of = on M. Thanks to Proposition 5.1, we introduce
U :=U, (2+) € @', which is a solution to (1.7) with data = and ||u|lg: < 1 (by Lipschitz regularity
of the solution operator U, )

59



For k € {0,1}, we also introduce the coefficients o := v*(Z+) — (F; Z)4, which characterize
how far Z is from M. Then w := % — u belongs to Q' with

[wllgr < (5.26)
and is a solution to
(y 4+ ) 0w — Oyyw = —w(dyu) + %O + al f1,
wys, = a6 + a'é}, (5.27)
Wyy=+1 = 0.
Note that since we have assumed that v € HZ(H,), the right-hand side belongs to H} H} N L2 (H).

Furthermore, since we know that w € Q', we can use the estimates of Proposition 3.14, from which
we infer that

lwllgiz S lo? |+ l[wdsull /2 172 + w8l o2 (5.28)
S|+ wlguz(lulgr + llullmzcry) (5.29)
S o[+ nllwl g/ (5.30)

Thus, for n small enough, we obtain 4
[wllgi/z Sl (5.31)

By Proposition 3.14, the fact that w € Q' implies that, for j € {0, 1}, the following orthogo-
nality conditions are satisfied

0= E{Z(—wazu + %O +al f1,a%0 + a'6f, a6 + aler)

) . , (5.32)
= 2 (—wd,u,0,0) + o’ (%) + o' L ().
By Proposition 4.1, for n small enough
16, = Ol ey S Nl grre < llallgr S m, (5.33)

where (7 are the orthogonality conditions for the linear shear flow (see Definition 2.8). Hence,
recalling Corollary 2.10, we obtain from (5.32),

o7 < n(ja®| +la']) + ’/Q‘I’%(w,Z)azF(%Z) ; (5.34)

using Definition 3.10 and where
F(z,2) = (wiyu)(z,Y (z, 2)), (5.35)
where Y is the change of variable associated with @ (see (3.2)). Then, using Lemma B.4,
102 F |22 < 102 (wdpu)|| 2 + 1|05 (wdzu) | 2
S llwllgrzllullQram: (5.36)
S nllwllgre-
Hence, since ||<I>%HL2 < 1 by Proposition 3.6, we obtain, using (5.31),
o] S n(a®] + [al]). (5.37)
We infer that o/ = 0, and thus w = 0. O
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A Uniqueness of weak solutions for linear problems

The purpose of this section is to prove the uniqueness of weak solutions in L2(H3(—1,1)) to (3.4),
which is stated in Proposition 3.2. Such a uniqueness result is also proved in [17, Section 5].

The proof follows the arguments of Baouendi and Grisvard in [5], which concerns the case of
the model equation (2.1). For the reader’s convenience, we recall the main steps of the proof here,
and adapt them to the present (slightly different) context.

We assume that the coefficients «a, v satisfy the assumptions of Proposition 3.2, and we introduce

the sets
Bi={ue L3(H}(-1,1)), 20,u € L2(H,")},

A:=BnHY(N).

Note that if u € L2(H}(—1,1)) is a weak solution of (3.4), then u € B. Indeed, it follows from the
weak formulation (3.9) that for any V € Hg (),

(z@zU,V>L2H,17L2H1 :—/('y—i—az)VazU—/a@zU@zV—i—/gV.
Q Q Q

By density, this formula still holds for V' € L?(H'), and therefore 20,U € L?(H™1).
We then recall the following result from [5]:

Lemma A.1. The set A is dense in B. Furthermore, there exists a constant C' depending only on
Q, such that for i € {0, 1},

1
o e A, / 12| (s, 9)I? dy < Cllol3.
-1

As a consequence, the applications
VE A Vjyey, € L2(—1,1)
can be uniquely extended into continuous applications on B.

As a consequence, Baouendi and Grisvard [5] obtain the following corollary:

Corollary A.2. For all u,v € B,

H H
(205w, v) L2 (-1, L2y + (2020, W) L2 (1), L2 (H1) :/ (zu0) ez, —/ (2U0) ez - (A1)
0 0

Proof. Thanks to Lemma A.1, it suffices to prove the identity when u,v € A. In that case, the

left-hand side is simply
/ 20,uv + zudyv = / 0z (zuv).
Q Q

The result follows by integration. O

Proof of uniqueness of weak solutions to (3.4). Let U € L2(H}) be a weak solution of (3.4) with
f=0and §; = 0. As mentioned above, U € B. According to Corollary A.2, for any V' € B such
that V=10 on 09\ (Xo U %),

—<Z@$VY,U>L2(H71)7L2(H[})+/(’}/-i-az)aZUV-i-/aazUan:O.
Q Q
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Now, let g € C2°(Q) be arbitrary, and let V € L?(H}) be a weak solution of
=20,V —0,(7V) — 0,.(aV) = g,
Visa\(zeus,) = 0.

(The existence of weak solutions for this adjoint problem is proved in the same way as existence
for the direct problem in Proposition 3.2).
Then V € B, and choosing U as a test function in the variational formulation for V', we obtain

/gu:O.
Q

Thus v = 0. Uniqueness of weak solutions of (3.1) follows. O

B Proofs of functional analysis results

B.1 An abstract existence principle

As Fichera in [14], we use the following abstract existence principle (see [12, Theorem 1]), which
allows to skip a viscous regularization scheme.

Lemma B.1. Let A4, 5 and S be three Hilbert spaces. Let F; € L(56; ) for i € {1,2}.
Then the following statements are equivalent:

e range Fy C range Fj,
e There exists a constant C > 0 such that

Vhe A", |[FThllwy < CIE5R - (B.1)

o There exists G € L(IA; H5) such that F1 = F>G.

Moreover, when these hold, there exists a unique G € L(I4;5) such that ker G = ker Fi,
range G C (range Fy)* and ||G|| = inf{C > 0; (B.1) holds}.

Indeed, this yields the following weak Lax-Migram result, where the linear right-hand side is
assumed to be continuous for the weaker norm.

Lemma B.2. Let % and ¥V be two Hilbert spaces with ¥ continuously embedded in % . Let a be
a continuous bilinear form on % XV and b be a continuous linear form on % . Assume that there
exists a constant ¢ > 0 such that, for everyv € ¥,

a(v,v) > cf|v]|%. (B.2)
Then, there exists w € % such that ||ullz < L|bllza) and, for everyv € ¥, a(u,v) = b(v).

Proof. Set A := L(V), 74 = L(%), Fy :=1d (from L(%) to L(V)), #, .= U and F5 : U —
L(¥) defined by Fou := a(u,-). Then F}f =1d (from ¥ to %) and Fyv = a(-,v). Moreover

15 0]l 22y = la(o, v)l/[vlla = cllvlla = ¢l Fiv]|2 - (B.3)
So (B.1) holds with C' = 1/c and Lemma B.1 yields the existence of G € L(L(% ); %) such that
Fy = F,G and ||G|| < L. The conclusions follow by setting u := Gb. O
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B.2 Product and composition rules in Sobolev spaces

Lemma B.3 (Pointwise multiplication). Pointwise multiplication is a continuous bilinear map
e from H3?(—1,1) x H3/?(—1,1) to H3/?(-1,1),
e from H'Y?(xg,21) x H*(xg,21) to HY?(20,21) for any s > 1/2.
Proof. These are particular cases of [7, Theorem 7.4]. O

Lemma B.4 (Composition of H° functions). Let Y € H(Q) such that 8.Y € L*(Q), 9,Y €
L2(H2®).

Assume that there exists a constant m > 0 such that 9,Y (z,2) € [m,m™1] a.e. and Y (z,£1) =
+1.

Then for any o,0’ € (0,1) such that o +0’ <1, for any g € Hg(H;’l) N Li(H;"*‘Q”/)

g, Y @ gz ey < C (1902 a5y + 190 g2 ) -
Proof. Throughout the proof, we set
Gz, 2) = g(z,Y(x, 2)).

First, note that for all g € L*(Q2),

T 1 T 1
Gt = [ [ Faveadzn [ ] @y e,
o —1 ) —1

so that |Gz < [lgllz-
Furthermore,
0:G(x,2) = 029(x,Y (2, 2)) + 0. Y (2, 2)0yg(x,Y (2, 2)).

Hence
10:Gllz20) < Com (192012200 + 11007 1| 1 gg272, 1029122 -

Now, note that the application g — G is linear. By interpolation, we obtain, for any o € (0, 1),
1Gllsgz2) < Con (Ilgllirgazy + g2z -
We now prove the same type of estimates for the z derivatives. We have
0.G(x,z) = 0,Y (x,2)0yg(z,Y (x, 2)),
and thus [|Gllrzm: < ||9llrz a3 - By interpolation, we infer that for any o € (0, 1),
1GllL2me < Cllgllz -

Combining the two estimates and interpolating once again, we infer that for any 0,0’ € (0,1)
such that ¢ + ¢’ <1,

1G stz 12y < Carm (1905 2157 + 191 g2 ) -
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Corollary B.5. Let i € Q' such that |u — y||gr < 1, and u(z,+£1) = £1. Let Y =Y (z,2) such
that u(x,Y (z,2)) = z for all (z,2) € Q.

Then ||V, — 1||s < 1, Y, € L2(H2'®), and 1Yol o gy2rmy < 1.

)
Proof. First, observe that Y, = 1/a,(x,Y (z, 2)), so that the first estimate follows from Lemma 1.6.

Concerning the estimate on Y, we observe that

Uy

Y., = (:v,Y(x,z))

Uy

Let us first assume that @ is smooth (say C*), and then argue by density. If @ is smooth, then
the above formula first shows that Y, € L°. Differentiating the identity with respect to x once
again, we infer that Y € W2, Furthermore, according to Lemma B.4,
< o2 Ua
||YIHH§/3L3 ~ + ||Y$||H§/3L§ Y ’L_Liy

u$‘

y g2/ L2 L2

% (%)
‘ Y\ y

Treating the last term in the right-hand side perturbatively, we obtain

When |z — yllgr < 1,
< 1.

L2

Ug

<

||Y1HH3/3L§ ~ < ||ﬂm||H§/3L§||ﬂy||L20(Hg/3) <1

y lla2/3 L2

Hence we obtain the desired result when @ is smooth and ||a — y||g: < 1. We then conclude by
density. O
B.3 Extension operators

We start with Lemma 1.1, which allows to extend functions from Z°(Q) to Z°(R?).

Proof of Lemma 1.1. Up to translation and rescaling, we can assume that (zg,z1) = (0,1).

We start by constructing a continuous horizontal extension operator P, from Z°((0,1)x (—1,1))
to Z°(R x (—1,1)). Let x € C*(R;[0,1]) such that y = 1 on (0,1) and suppx C (—1,2). Let
¢ e Z°(0,1) x (=1,1)). For z € (—1,2) and z € (—1,1), let

o(—x, 2) if z € (—1,0)

(Quo)(x, 2) =< Pz, 2) if z € (0,1), (B.4)
o2 —uz,2) ifze(1,2),
(Prg)(z,2) := x(2)(Qaz0)(, 2). (B.5)

First, || Prllpz .2 . < 3. Moreover, OF (Pyp) = POk ¢ for k € {1,2}. Hence ||Py| L2222 < 3.
Eventually, 20,(P,¢) = Pp(20,0) + X' Qz¢. Hence [|20, (Pud)|lr2 < 3||20:9| 2 + 2|1x |l L= ||@]l22-
Thus P, defines a continuous extension operator from Z°((0,1) x (—1,1)) to Z°(R x (—1,1)).
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We now construct a continuous upwards vertical extension operator P, from Z°(R x (—1,1))
to Z°%(R x (—1,+00)). We proceed, as classical (see e.g. [3]), by considering a weighted linear
combination of rescaled reflections. For ¢ € Z°(R x (—1,1)), z € R and z € (—1,00), let

o(x,2) if ze€ (—1,1),
(Q+9)(@,2) 1= {3(]5(95, 2—2z)—2¢(x,3—2z) ifz€(1,2), (B:6)
(Pro)(x, 2) = x+(2)(Q+9)(x, 2), (B.7)

where y; € C*(R; [0,1]) is such that x4 =1 on (—1,1) and supp x4+ C (2,1 + 1). The chosen
coefficients ensure that both Q4 ¢ and 9, (Q. ¢) are continuous at z = 1. Hence P, ¢ € L2H? and

IPréllp2 (mim2(—1,400)) = 1P+ @ll2 mimz(—1,1)) + 1Py @l a2z (1400)) < CrllPllLzmz,  (B.8)
for some constant C. depending only on || x4+ |lwz. Moreover, using that y(z) =0 for z > 1+ i,
1202 (Py-0) [ 2 (R; 2 (1,400)) = 1200 (P &) || L2 ;22 (1,14 1))

SN0l L2 rsr2 (1.1 (B.9)

S ”Zax(b”Li(]R;L?(%,l))'

Hence P, is a continuous extension operator from Z°(R x (—1,1)) to Z°(R x (=1, +c0)).
The extension for z < —1 is performed in a similar fashion and left to the reader. O

We will also need the following extension result in this appendix.

Lemma B.6. There ezists a continuous extension operator P from Z°(Qy) to Z°((xg,z1) X R)
such that, if ¢|z—p, = 0 on (0,1), (Pd)|g=s, = 0.

Proof. We proceed, as in the proof of Lemma 1.1, by extension by reflections and truncation. The
reflection at z = 1 is done in the proof of Lemma 1.1. The truncation is left to the reader. We
only check here the reflection at z = 0 due to the degeneracy of the Z° norm at z = 0.

Let ¢ € Z9(Q2,). We define an extension Q¢ on Q by

) ol 2) if z € (0,1),
(@9)(@,2) := {3¢>(x, —2/2) = 2w, —2) if 2z € (—1,0). (B-10)
In particular (Q¢)(z,07) = (Q¢)(z,0") and 9.(Q¢)(x,07) = 9,(Q¢)(x,0T), so
Q0|2 m2(—1,1) S [1Q9lL2r2(—1,0) + |QP L2 1120,1) S @Ml L2 H2 < [[8] 20 (B.11)

Moreover,

120:(Q) L2 L2(-1,0) < 312(2/2)02p(w, 2/2) |2 L2(0,1) + 2/|2020(2, 2) 222 (0,1) S |l 20~ (B.12)

Eventually, if ¢|,—,, = 0 on (0,1) (B.10) implies (Q¢)|z—=z, = 0 on (—1,1). O
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B.4 Critical dualities
Lemma B.7. For a,b € H'(zg,21) such that a(x¢) = b(z1) = 0,
< N2 . .
Jablgoge S a0l (B.13)
Proof. On the one hand, by Lemma B.3,

labll gz S Nlall e 1Bz S o[l 101 yage- (B.14)
On the other hand, since for every = € (zo,21), |a(z)| < |z — zo|2||d'|| 12,

" Ja(z)b(z)]? "2 /””1 |b(2)?
dz < Slla 12216012 15 B.15
L ‘.73—1‘0||$—J)1| x—”a’ HL2 2o |$—.I‘1‘ N||a ||L2|| ”Hé({f ( )

Gathering both estimates concludes the proof. O

0

Lemma B.8. For q,v,w € H'(zo,x1) such that q(z¢) =0 and w(z1) = 0,

1
[ a@.000] S W hasloln ol e (B.16)
xo s

Proof. By [29, Proposition 12.1], 8, is continuous from H'/?(zg, 1) to (Hé({Q(xo,xl))’. Hence

z1
[ a0.000] 5 Wllallwl e (B7)

0

The conclusion follows from Lemma B.7. O

Lemma B.9. For q,v,w € H(xg, 1) such that q(zo) = 0 and w(zy) =0,

2
/ quizw
o

Proof. Let x € C°([zg,1];[0,1]) such that x = 1 in a neighborhood of 2y and x = 0 in a
neighborhood of x;. Let us write

/ qv@xw=/ (xqv)axw—/ (1—X)w3w(qv)+/ X wqu. (B.19)

0 Zo Zo Zo

S lzzllvllmzllwll e (B.18)

By [29, Proposition 12.1], 8, is continuous from H'/?(z¢,z;) to (Hol({Q(xo,xl))’. Thus

Z1
/ qvaxw\ < Ixgol el oz + 10 = x)wlgosellgolaose + X gl ol zzllwll . (B.20)
T

0

By Lemma B.3, [[xqullmie S [Ixlla gl [z, (1= X)wllgiz S 11 = ) ar[wllg/z and
lqvll gz S lgll e l[vll gasz. First, since x = 1 near g, (1 — x(2))? < |z — 20|. Thus

T 1— 2 2 1 2
/ (1 —x(@))*w(z)] dzg/ deg H“’”Z;O/T (B.21)

|z — zo||z — 21] |z — 1]

0 0

Similarly, since x*(z) < |z — z1| and ¢*(z) < |z — zo|||¢’||2> by Cauchy-Schwarz, there holds

" x(@)q(x)v(z)? P 2
e~ da S vl|72. B.22
AO ‘-T_xOHx_xll ~ ”q HLzH ||L2 ( )

This concludes the proof, since ||q|| g < ||¢'||L2 thanks to the condition ¢(zg) = 0. O
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B.5 Embeddings

We collect in this paragraph various embedding results used throughout the paper.

B.5.1 Full domain embeddings
The following inequality is used in the proof of the key result Proposition 1.2.
Lemma B.10. For ¢ € C*(R),

[¥llze S lz¢0l L2 + 10229 L2
Proof. On the one hand, for |z| > 1,

/ 0 < |2
|z|>1

On the other hand, for every (29, 2) € (—2,2),
10:10(2)] < 0:4(20)] + 2[|0:21) | L2
Moreover, by classical Sobolev embeddings,
||az¢“L2(1,2) < ||¢||L2(1,2) + Hazzwnmu,z) < ||Z¢||L2(R) + ||6zz¢||L2(R)~
Thus, integrating (B.25) for zy € (1,2),
109 Lo (—2,2) S 29l L2y + 102291 L2 (m) -
Now, writing ¥(z) = ¥(z0) + fzzo 1" and integrating for zg € (1,2) yields

lollLz—1,0) S M0llza,2) + 129l L2 @) + 110229 L2y S 1290l L2y + 10229 || L2 (R) s

which concludes the proof.

Lemma B.11. For ¢ € C*(R),

11212 8:0 L2 S 129l 2 + 110229 L2
Proof. For |z| < 2, (B.27) yields directly
1
I12120:9 1|22 (~2,2) S 2]l 2 + 102290 22
Let x € C*°(R4;[0,1]) with x =0 on [0,1], x =1 on [2;+00) and |0, x| < 2. Then

+oo +oo
/ 0.0 (2) dz < / ()02 2 dz
2 0

+oo +oo
= —/0 z2x(2)Y(2)0:.0(2) dz — /0 20, x(2)¥(2)0,¢(2) dz
< |lz9l 2110229 2 + 2l 290 2 (19290 L2 (214 00) + 1921 £2(0,2))

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

(B.31)

The [|0.%| 12(0,2) term can be bounded by (B.27) and the [|0.v|12(2;400) term can be treated

perturbatively via the Peter-Paul inequality. This yields

1
122090l L2(2,400) S [12¢0] L2 + (102290 L2

By symmetry, the same holds on (—oo, —2), which concludes the proof.
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Lemma B.12. For ¢ € Z°(Q),
1
1130600 gp1rn, S 2 (B.33)

Proof. Thanks to Lemma 1.1, it is sufficient to prove the embedding and (B.33) for ¢ € Z°(R?)
with bounded support in the vertical direction, say supp ¢ C R x (—5,5) (as one can always take a
smooth truncation of the extended function). We proceed as in the proof of Proposition 1.2. Let
1 € CP(R). By Lemma B.11, and using standard dimensional analysis arguments, one deduces
that

1 1 1
11212041 2 S 1290117211022l 7 (B.34)

Let ¢ € C°(R2?). Let ¢(¢,z) denote the Fourier-transform of ¢ in the horizontal direction. Then
using (B.34) and Hélder’s inequality,

121 20: 8135 gy1/2) = / (L[5 |2)10: (6, 2)[* d dz

< 1212 0.0]% + / 1206, 2112 192206, )| 2 e

Sllstfooli+ ([ lepoe P asae)” ([ ot asag)

1 1 1
S Nz120:9ll72 + 1200012210220 .-
(B.35)

Moreover, since ¢(-,z) =0 for |z] > 5,

12130.0l1 22 S 10--0112 (B.36)

Hence gathering both inequalities proves that |||z|%82¢||iz(Hl/2) < ||@]|zo. This concludes the
proof, by density of C°(R?) in Z°(R?). O

B.5.2 Embeddings involving the Lions-Magenes space
Lemma B.13. Let ¢ € Z°(Qy) such that ¢j,—,, = 0. Then ¢ € C([0, 1]; Hééf(xo,xl)) and

190l gz S 1l 20- (B.37)

Proof. Thanks to the extension result Lemma B.6, it is sufficient to prove this result with Q.
replaced by O := (zg,21) x R. Therefore let ¢ € Z°(O) such that o=z, = 0 on R. By
Proposition 1.2, ¢ € L2(R; H} (x0,21)) N H2(R; L?(xo, x1)), where Hg (xo, 1) denotes H' func-
tions vanishing at @ = z;. By the fractional trace theorem [29, Chapter 1, Theorem 4.2 and
equation (4.7)], this implies that ¢ € C%(R;G) where G is the interpolation space denoted by
[Hj, (xo,xl),LQ(zo,xl)}% in this reference. By [29, Chapter 1, Theorem 11.7]4, G = Hééf(xo,xl).
The claimed norm estimate readily follows. O

4This reference considers the case of vanishing conditions on the full boundary of the domain (so at = = x¢ and
at * = x1), but the adaptation to functions vanishing only at z; is straightforward.
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Lemma B.14. Let ¢ € Z°(Q,) such that Olo=a, = 0. Then 20.¢ € LEH&&? and
120-6ll a2 < 10120 (B.38)

Proof. Let ¢ € Z°(£2y) such that Plz=z, = 0. We extend ¢ to Z%(0), where O := (xg, 1) x R,
thanks to the extension result Lemma B.6. We then truncate the extension for |z| > 2 thanks to a
C2° function, so that the extension is now supported in (xg,z1) x (=3, 3), coincides with ¢ on €,
and belongs to Z°(0). With a slight abuse of notation, we still denote the extension by ¢. Note
that qi)m:gp1 =0on R.

Let ¢ i= 6. Then ¢ € L2(R; Hi (w0,21)) N H2(R; L3 (29, 21)) with [[6]] S 6]z for the
associated norm. By the intermediate derivative theorem [29, Chapter 1, Theorem 2.3], ¢ €
H(R; G) where G is the interpolation space denoted by [H{ (x0,21), L? (w0, 1)]1 in this reference.

By [29, Chapter 1, Theorem 11.7], G = Holo/f(xo, x1) (see Footnote 4, Page 68). This yields
106130302 S N6l 0 (B.39)

The conclusion follows since 9.1 = 20,6 + ¢ and ¢ € L2HZ® by Proposition 1.2 (with trace
®|e=z;, = 0, which makes sense in H§/3)_ o

Lemma B.15. Let ¢ € L?((xo,21); HE(—1,1)) such that 20,¢ € L*((wo,x1); H-1(—1,1)). As-
sume that ¢ = 0 on {x1} x (0,1) U {zo} x (=1,0) (in the sense of traces in L2(—1,1), see
Lemma A.1). Then z¢ € L*((0,1); Hyy?) N L*((—1,0); Hyy?).

Proof. Let ¢ := z¢. Then ¢ € H}((—1,1); L*(zo,71)) N H=1((=1,1); H (20, z1)) with ¥ = 0
on {x1} x (0,1) U {zo} x (=1,0) (in the same sense). Moreover, letting 1/ denote the restriction
to (zo,x1) x (0,1) of 1, we have ¢ € H'((0,1); L*(zo,21)) N H1((0,1); H} (x0,21)). We then
construct an extension to (zg,21) x R, still denoted by 1) which satisfies ¢ € H'(R; L?(zg,21)) N
H~Y(R; Hj (x0,21)). By [1, Theorem 4.5.5] (which applies since both L*(xo, 1) and Hj (2o, 1)
are Hilbert spaces so enjoy the UMD property), 1 € L?(R; G) where G is the interpolation space
denoted by [H (mo,xl),Lz(mo,xl)]%. By [29, Chapter 1, Theorem 11.7], G = Hééf(mo,wl) (see
Footnote 4, Page 68). This proves the right part of the statement. The left part is proved
similarly. 0

B.5.3 A derivative estimate
Lemma B.16. Let ¢ € H2/*L2(Q) with 0.¢ € HY*L2(Q). Then ¢ € CO([—1,1]; HY/?(zq,21)).
Furthermore, for a.e. z € (—1,1),

d 9 o1
Ny = 2 [ Ol 2)0-0(,2) do

o
_ / _ /
(wo,21)?

+ |z — /|2

Proof. First, we observe that, if f € H*/3(zo,2;) and g € HY3(x0, ), then
_ ! _ / _ / _ !
[ OO gy g [ DIl
(wo,21)? (wo,21)?

|$—1‘/‘2 |x7x/‘7/6 |x7x/|5/6

< N lzrs gl s
(B.40)
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Then, we prove the result for ¢ € C?(€2). In that case, differentiating under the integral and using
the definition of the H'/2 norm, we have

i 2 — i o 2 \¢($az)—¢(m/’z)|2 /
dz||¢(Z)I|H1/2(a:o,:E1) - dz </z0 (b(x,z) dx—i_/(rovmly dx dz

| — 2|2

2 [ 6w, 2)0.0(e, =) de

o

+2/ (6(z,2) = 9(a",2))(9:(2,2) = ¢2(2",2)) 4 4or
(z0,21)2

|z — /|2

Using (B.40), we infer that the right-hand side is bounded by

2||¢(z)||H2/3(xo,x1)quz(z)HHl/S(mo,ml)’
and, by the Cauchy-Schwarz inequality,

1
/ H(b(Z)HHQ/L‘(;vO,xl)||¢Z(Z)||H1/3(wo,11) dz < H(b”HS/sL?”qZ)ZHH;/SL?'
—1 z z

Arguing by density, we eventually obtain the result announced in the Lemma. O
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