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Abstract

We prove existence and uniqueness of strong solutions of the equation uux − uyy = f in
the vicinity of the linear shear flow, subject to perturbations of the source term and lateral
boundary conditions. Since the solutions we consider have opposite signs in the lower and
upper half of the domain, this is a forward-backward parabolic problem, which changes type
across a critical curved line within the domain. In particular, lateral boundary conditions can
be imposed only where the characteristics are inwards.

There are several difficulties associated with this problem. First, the forward-backward
geometry depends on the solution itself. This requires to be quite careful with the approx-
imation procedure used to construct solutions. Second, and maybe more importantly, the
linearized equations solved at each step of the iterative scheme admit a finite number of sin-
gular solutions. This is similar to well-known phenomena in elliptic problems in nonsmooth
domains. Hence, the solutions of the equation are regular if and only if the source terms satisfy
a finite number of orthogonality conditions. A key difficulty of this work is to cope with these
orthogonality conditions during the nonlinear fixed-point scheme. In particular, we are led to
prove their stability with respect to the underlying base flow.
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France

�Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

1



Contents

1 Introduction 3
1.1 Statement of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Comments and previous results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Motivation from recirculation problems in fluid mechanics . . . . . . . . . . . . . . 8
1.4 Scheme of proof and plan of the paper . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Functional spaces and interpolation results . . . . . . . . . . . . . . . . . . . . . . 10

2 The case of the linear shear flow 13
2.1 Existence and uniqueness of weak solutions . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Strong solutions with maximal regularity . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Orthogonality conditions for higher tangential regularity . . . . . . . . . . . . . . . 15
2.4 Hidden vertical regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 The linearized problem 21
3.1 A change of vertical coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Existence and uniqueness of weak solutions . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Strong solutions with maximal regularity . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Orthogonality conditions for higher tangential regularity . . . . . . . . . . . . . . . 24
3.5 Well-posedness results for the linearized problem . . . . . . . . . . . . . . . . . . . 38

4 Local stability of the orthogonality conditions 42
4.1 Stability of the change of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Bounds and stability of the coefficients α and γ . . . . . . . . . . . . . . . . . . . . 44
4.3 Uniform regular bounds on the dual profiles . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Stability of the dual profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Proof of the stability of the orthogonality conditions . . . . . . . . . . . . . . . . . 54

5 The nonlinear problem 54
5.1 Execution of the nonlinear scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Local uniqueness of solutions to the nonlinear problem . . . . . . . . . . . . . . . . 59
5.3 Necessity of the orthogonality conditions . . . . . . . . . . . . . . . . . . . . . . . . 59

A Uniqueness of weak solutions for linear problems 61

B Proofs of functional analysis results 62
B.1 An abstract existence principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B.2 Product and composition rules in Sobolev spaces . . . . . . . . . . . . . . . . . . . 63
B.3 Extension operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
B.4 Critical dualities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.5 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2



1 Introduction

We investigate the existence and uniqueness of sign-changing solutions to the equation

u∂xu− ∂yyu = f (1.1)

in the rectangular domain Ω := (x0, x1)× (−1, 1), where x0 < x1 are real parameters and f is an
external source term.

A natural solution to (1.1) with a null source term f = 0 is the linear shear flow u(x, y) := y,
which changes sign across the horizontal line {y = 0}. We are interested in strong solutions to (1.1)
which are close (with respect to an appropriate norm) to this linear shear flow u. Our purpose is to
construct such solutions by perturbing the lateral boundary data u|x=x0

(y) = y and u|x=x1
(y) = y

or the source term f = 0.
Since such solutions will change sign across a line {u = 0} lying within Ω, a key feature of

this work is that (1.1) must be seen as a nonlinear forward-backward parabolic problem in the
horizontal direction. Thus, to ensure the existence of a solution, one must be particularly careful
as to how one enforces these lateral perturbations.

1.1 Statement of the main results

Due to the forward-backward nature of the problem, we must choose the lateral perturbations and
the source term in a particular product space. We therefore introduce the vector space

E :=
{

(f, δ0, δ1) ∈ C∞c (Ω)× C∞([0, 1])× C∞([−1, 0]); δi(0) = ∂yδi(0) = ∂2
yδi(0) = 0

and δi((−1)i) = ∂2
yδi((−1)i) = 0 for i = 0, 1

} (1.2)

and H, the Hilbert space defined as the completion of E with respect to the following norm
(associated with the corresponding canonical scalar product),

‖(f, δ0, δ1)‖2H := ‖f‖2H1
xH

1
y

+ ‖∂3
yf‖2L2

+ ‖δ0‖2H5 + ‖δ1‖2H5

+

∫ 1

0

1

|y|
(∂2
yδ0(y))2 dy +

∫ 1

0

|y|

(
∂y
∂2
yδ0(y)

y

)2

dy

+

∫ 0

−1

1

|y|
(∂2
yδ1(y))2 dy +

∫ 0

−1

|y|

(
∂y
∂2
yδ1(y)

y

)2

dy.

(1.3)

We establish existence and uniqueness of solutions in the following anisotropic Sobolev space

Q1 := L2((x0, x1);H5(−1, 1)) ∩H5/3((x0, x1);L2(−1, 1)). (1.4)

In particular, for solutions with such regularity, (1.1) holds in a strong sense, almost everywhere
and the various boundary conditions hold in the usual sense of traces, almost everywhere. We first
state a result concerning the well-posedness in Q1 of the linear version of (1.1) at the linear shear
flow, up to two orthogonality conditions (see comments below). Although equation (1.5) below has
been thoroughly investigated, as we recall in Section 1.2 below, we could not find this statement
in the existing literature.
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Theorem 1. There exists a vector subspace H⊥sg ⊂ H of codimension two such that, for each
(f, δ0, δ1) ∈ H, there exists a solution u ∈ Q1 to the problem

y∂xu− ∂yyu = f,

u|Σi = δi,

u|y=±1 = 0,

(1.5)

where Σ0 := {x0} × (0, 1) and Σ1 := {x1} × (−1, 0), if and only if (f, δ0, δ1) ∈ H⊥sg.
Such a solution is unique and satisfies

‖u‖Q1 . ‖(f, δ0, δ1)‖H. (1.6)

We emphasize that this result implies that there exist triplets (f, δ0, δ1) that can be chosen
arbitrarily smooth and compactly supported, and for which there are no Q1 solutions of (1.5).

Our main result is the following nonlinear generalization for small enough perturbations.

Theorem 2. There exists a Lipschitz submanifoldM of H of codimension two, containing 0, such
that, for every (f, δ0, δ1) ∈M, there exists a strong solution u ∈ Q1 to

(y + u)∂xu− ∂yyu = f,

u|Σi = δi,

u|y=±1 = 0.

(1.7)

More precisely, M is modeled on H⊥sg and tangent to it at 0. Such solutions are unique in a small
neighborhood of 0 in Q1 and satisfy the estimate (1.6).

The nonlinear orthogonality conditions are necessary in the sense that there exists η > 0 such
that, if (f, δ0, δ1) ∈ H with ‖(f, δ0, δ1)‖H < η and u ∈ Q1 ∩H2

x(H1
y ) with ‖u‖Q1 + ‖u‖H2

xH
1
y
< η is

a solution to (1.7), then (f, δ0, δ1) ∈M.

In the statement above, the condition that the data (f, δ0, δ1) belong to the manifoldM is the
nonlinear equivalent of the orthogonality conditions from Theorem 1. We emphasize that this is by
no means a technical restriction which could be lifted, but actually a necessary condition to solve
the equation with smooth solutions, as the second part of Theorem 2 points out. A key difficulty
lies in the fact that these orthogonality conditions depend on the solution itself. Hence, tracking
the dependency of these conditions with respect to the unknown function u is a key part of our
result. We will comment more abundantly on these points in the following sections.

1.2 Comments and previous results

We start with a few comments on our main results and recall related known results.

Problem (1.5), involving the operator y∂x − ∂yy, can be seen as a particular case of the class
of “degenerate second-order elliptic-parabolic linear equations”, also referred to as “second-order
equations with nonnegative characteristic form” (as opposed to positive definite ones), “forward-
backward” or “mixed type” problems. They date back at least to Gevrey [16].

Problem (1.5) itself, as well as these wide classes of equations, has received a lot of attention
and has been investigated under different aspects: with variable coefficients or other geometries
[14, 34], higher-order operators [28, Ch. 3, 2.6], abstract operators [6, 35], explicit representation
formulas [15, 19] or with a focus on numerical analysis [2].
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On weak solutions for the linear problem. It is well-known since the work of Fichera [14]
that weak solutions to (1.5) with L2

xH
1
y regularity exist. For general boundary-value problems

for elliptic-parabolic second-order equations, one owes to Fichera the systematic separation of the
boundary of the domain in three parts: a “noncharacteristic” part, where one sets either Dirichlet
or Neumann boundary conditions (here y = ±1), an “inflow” part, where one sets a Dirichlet
boundary condition (here Σ0 ∪ Σ1) and an “outflow” part, where one cannot set a boundary
condition (here, the two sets {x0} × (−1, 0) and {x1} × (0, 1)).

Baouendi and Grisvard [5] proved the uniqueness of weak solutions to (1.5) with L2
xH

1
y regu-

larity, by means of a trace theorem and a Green identity (see Appendix A).

On strong solutions for the linear problem. There is an extensive literature on the regularity
of solutions to degenerate elliptic-parabolic linear equations, and the question of whether weak
solutions are strong. We refer the reader in particular to the book [30] by Olĕınik and Radkevič.
Generally speaking, depending on the exact setting considered, it is quite often possible to prove
that the solutions to such equations are regular far from the boundaries of the domain and/or
from the regions where the characteristic form is not positive definite. A nice example is Kohn
and Nirenberg’s work [24], which proves a very general regularity result. A key assumption of
their work is that the “outflow” part of the boundary does not meet the “noncharacteristic” and
“inflow” parts (i.e. they are in disjoint connected components of ∂Ω). Hence, it does not apply
to (1.5), and hints towards a difficulty near the points (x0, 0) and (x1, 0).

In a series of papers [32, 33, 34], Pagani proved the existence of strong solutions to (1.5) (and
related equations). More precisely, Pagani proved the existence of solutions such that y∂xu and
∂yyu belong to L2(Ω). Moreover, he determined the exact regularity of the various traces of such
solutions (trace of u at x = xi, at y = ±1 or y = 0, and trace of ∂yu at y = 0). These maximal
regularity results play a key role in our analysis and motivate the functional spaces we introduce
in Section 1.5.

On orthogonality conditions for higher regularity. As noted by Pyatkov in [36], for such
forward-backward problems: “as a rule, there is no existence theorems for smooth solutions with-
out some additional orthogonality-type conditions on the problem data”. Even for the linear prob-
lem (1.5), there have been very few works concerning higher regularity (than Pagani’s framework)
in the whole domain. Most of the works focused on higher regularity (such as [36]) involve weighted
estimates which entail regularity within the domain but not near the critical points (xi, 0). An
attempt for global regularity is Goldstein and Mazumdar’s work [17, Theorem 4.2] albeit the proof
seems incomplete (see Proposition 2.7 below and its proofs for more details).

A misleading aspect is that it is quite easy, assuming the existence of a smooth solution, to prove
a priori estimates at any order. Such phenomenons are usual in the theory of elliptic problems
in domains with corners or mixed Dirichlet-Neumann boundary conditions (see for instance [20]).
Let us give an illustration of such a phenomenon in a close context. For a source term f ∈ C∞c (Ω),
consider the elliptic problem 

−∆u = f in Ω,

u(xi, y) = 0 for (−1)iy > 0,

∂xu(xi, y) = 0 for (−1)iy < 0,

u(x,±1) = 0 for x ∈ (x0, x1).

(1.8)

It is classical that such a system has a unique weak solution u ∈ H1(Ω). Moreover, assuming that
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u is smooth enough, v := ∂xu satisfies
−∆v = ∂xf in Ω,

∂xv(xi, y) = 0 for (−1)iy > 0,

v(xi, y) = 0 for (−1)iy < 0,

v(x,±1) = 0 for x ∈ (x0, x1).

(1.9)

For such systems, one has ‖v‖H1 . ‖∂xf‖L2 . Hence ‖∂xxu‖ . ‖∂xf‖L2 , and, using the equation,
‖u‖H2 . ‖f‖H1 . So one has an a priori estimate. However, it is known that there exist source
terms for which the unique weak solution u ∈ H1 does not enjoy H2 regularity (see [20, Ch. 4]).
The key point is that, when reconstructing u from the solution v to (1.9), say by setting u(x, y) :=∫ x
x0
v(x′, y) dx′ for y > 0 and u(x, y) :=

∫ x
x1
v(x′, y) dx′ for y < 0, there might be a discontinuity of

u or ∂yu across the line y = 0. Such discontinuities prevent u from solving (1.8). Preventing these
discontinuities requires that the source term satisfies appropriate orthogonality conditions.

Of course, such orthogonality conditions make it very difficult to obtain results at a nonlinear
level. Even for elliptic problems in polygonal domains, we are not aware of nonlinear results
coping with orthogonality conditions. For instance [20, Section 8.1] focuses on a case where there
is no orthogonality condition. Tracking the evolution of the orthogonality conditions during the
nonlinear scheme is one of the main difficulties of this work (see Sections 4 and 5.1). At the
nonlinear level, these orthogonality conditions are translated in Theorem 2 as the fact that the
data must lie within the manifoldM, which can be pictured as a perturbation of the linear subspace
H⊥sg of data satisfying the orthogonality conditions for the linear problem.

Let us also emphasize that if one wishes to construct solutions with even stronger regularity,
say u ∈ Hk

xH
1
y with k ≥ 1, then generically, one needs to ensure that 2k orthogonality conditions

are satisfied by the source terms.

On entropy solutions. An entirely different approach to solve (1.1) is to look directly for weak
solutions to the nonlinear problem, for example using an entropy formulation. The regularity for
such solutions is u ∈ L∞x,y ∩ L2

xH
1
y and they are typically obtained as limits of solutions uε to

regularized versions of (1.1), e.g. uε∂xu
ε − ∂yyuε − ε∂xxuε = 0. Such solutions satisfy both the

equation and the lateral boundary conditions only in the weak sense of appropriate inequalities
linked with “entropy pairs”. Given δ0, δ1 ∈ L∞(−1, 1), the existence of an entropy solution to

u∂xu− ∂yyu = 0,

u|x=xi = δi,

u|y=±1 = 0

(1.10)

was first proved in [8]. More recently, Kuznetsov proved in [25] the uniqueness of the entropy
solution to (1.10), determined in which sense the lateral boundary conditions were satisfied and
proved a stability estimate of the form

‖u− ũ‖L1(Ω) . ‖δ0 − δ̃0‖L1(−1,1) + ‖δ1 − δ̃1‖L1(−1,1). (1.11)

In particular, this stability estimate guarantees that one can construct sign-changing solutions in
the vicinity of the linear shear flow.

However, an important drawback of the entropy formulation is that the boundary conditions
are only satisfied in a very weak sense. Although functions in L∞x,y ∩ L2

xH
1
y don’t have classical
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traces at x = xi, one can give a weak sense to the traces using the equation (see [26] for more
details). Unfortunately, it is expected that these weak traces do not coincide with the supplied
boundary data on sets of positive measure.

In contrast, since the solutions we construct in this work have (at least) H1
xL

2
y regularity, they

have usual traces u|Σi ∈ L2(Σi) and the equalities u|Σi = δi hold in L2(Σi), so almost everywhere.

On the choice of the linear shear flow. We choose to study the well-posedness of (1.1) in the
vicinity of the linear shear flow to lighten the computations. Nonetheless, we expect that our results
and proofs can be extended to study the well-posedness of (1.1) in the vicinity of any sufficiently
regular reference flow u changing sign across a single line {u = 0}, satisfying uy ≥ c0 > 0 in Ω (so
that (1.5) is the correct toy model) and with ‖ux‖∞ small enough (to ensure a priori estimates).

Moreover, taking a step further in the modelization of recirculation problems in fluid mechanics
(see Section 1.3), we also expect that our approach could be extended to an unbounded domain of
the form (x0, x1)× (0,+∞), with a reference flow such that u|y=0 = 0, u < 0 below some critical
line and then u > 0 above, with u having some appropriate asymptotic behavior as y → +∞. In
such a setting, the Poincaré inequalities in the vertical direction that we use here should probably
be replaced with well-suited Hardy inequalities.

On the conditions δ0(0) = δ1(0) = 0 for fixed end-points. It is an important feature of our
work that we are able to enforce precisely the exact endpoints of the (curved) line {u = 0} at
x = x0 and x = x1. Theorem 2 is stated for perturbations which satisfy δi(0) = 0 (see (1.2)),
so that the full boundary data y + δi(y) changes sign exactly at y = 0. This choice simplifies
the definition of the submanifoldM of boundary data for which we are able to solve the problem.
Nevertheless, given y0, y1 sufficiently close to 0 and δ0, δ1 such that y+δi(y) changes sign at y = yi,
we expect that a similar existence result holds, provided that the perturbations are chosen in an
appropriate modification of M, with suitable modifications to the norm (1.3) and where, in (1.7),
the definitions of Σi are generalized by setting Σi := {(xi, y); (−1)i(y + δi(y)) > 0}.

On the boundary conditions u|y=±1 = 0. These boundary conditions are merely chosen
to simplify the statements and lighten the computations, since they guarantee that (x, y) 7→
(x, y + u(x, y)) is a well-defined global change of variables mapping Ω to itself (see Section 3.1).
Straightforward modifications would ensure the well-posedness of the considered systems with
sufficiently regular non-zero boundary data for u|y=±1.

On the compatibility conditions δi((−1)i) = 0 and δ′′i (0) = δ′′i ((−1)i) = 0. These conditions
are classical compatibility conditions for solutions to elliptic-parabolic equations. For example,
the condition δ0(1) = 0 is intended to match the condition u|y=1 = 0. The condition δ′′0 (0) = 0
comes from the equation. Indeed, if u is a sufficiently regular solution with f(x0, 0) = 0, the
equality ∂zzu = z∂xu at (x0, 0) enforces ∂zzu(x0, 0) = 0, so δ′′0 (0) = 0. The condition δ′′0 (1) = 0
stems similarly from the equation and the fact that ∂xu|y=1 = 0. It corresponds to a classical
parabolic regularity compatibility condition. Note that we actually require the cancellation of
two additional boundary conditions, namely δ′0(0) = δ′1(0) = 0. We believe that these extra
assumptions are technical, and could be removed.
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1.3 Motivation from recirculation problems in fluid mechanics

Our original motivation stems from fluid mechanics. Indeed, the stationary Prandtl equation,
which describes the behavior of a fluid with small viscosity in the vicinity of a wall, reads

u∂xu+ v∂yu− ∂yyu = −∂xpE ,
u|y=0 = v|y=0 = 0,

limy→∞ u(x, y) = uE(x),

(1.12)

where uE(x) (resp. pE(x)) is the trace of an outer Euler flow (resp. pressure) on the wall, and
satisfies uE∂xuE = −∂xpE .

As long as u remains positive, (1.12) can be seen as a nonlocal, nonlinear diffusion type equa-
tion, the variable x being the evolution variable. Using this point of view, Oleinik (see e.g. [31,
Theorem 2.1.1]) proved the local well-posedness of a solution of (1.12) when the equation (1.12) is
supplemented with a boundary data u|x=0 = u0, where u0(y) > 0 for y > 0 and such that u′0(0) > 0.
Let us mention that such positive solutions exist globally when ∂xpE ≤ 0, but are only local when
∂xpE > 0. More precisely, when ∂xpE = 1 for instance, for a large class of boundary data u0, there
exists x∗ > 0 such that limx→x∗ uy(x, 0) = 0. Furthermore, the solution may develop a singularity
at x = x∗, known as Goldstein singularity. The point x∗ is called the separation point: intuitively,
if the solution of Prandtl exists beyond x∗, then it must have a negative sign close to the boundary
(and therefore change sign). We refer to the seminal works of [18] and Stewartson [39] for formal
computations on this problem. A first mathematical statement describing separation was given by
Weinan E in [13] in a joint work with Luis Cafarelli, but the complete proof was never published.
The first author and Nader Masmoudi then gave a complete description of the formation of the
Goldstein singularity [10]. The recent work [38] indicates that this singularity holds for a large
class of initial data.

Because of this singularity, it is actually unclear that the Prandtl system is a relevant physical
model in the vicinity of the separation point x∗, because the normal velocity v becomes unbounded
at x = x∗. Consequently, more refined models, such as the triple deck system (see [27] for a
presentation of this model, and [23, 11] for a recent mathematical analysis of its time-dependent
version), were designed specifically to replace the Prandtl system with a more intricate boundary
layer model in the vicinity of the separation point. However, beyond the separation point, i.e.
for x > x∗, it is expected that the Prandtl system becomes valid again, but with a changing sign
solution.

To the best of our knowledge, the well-posedness of (1.12) when the solution u is allowed to
change sign has seldom been investigated. Such solutions are called “recirculating solutions”, and
the zone where u < 0 is called a recirculation bubble, the usual convention being that uE(x) > 0,
so that the flow is going forward far from the boundary.

Let us mention however the very recent preprint [22] by Sameer Iyer and Nader Masmoudi, in
which the authors prove a priori estimates in high regularity norms for smooth solutions of the
Prandtl equation (1.12) in the vicinity of explicit self-similar recirculating flows, called Falkner-Skan
profiles. The latter are given by

u(x, y) = xmf ′(ζ), (1.13)

v(x, y) = −y−1ζf(ζ)− m− 1

m+ 1
y−1ζ2f ′(ζ), (1.14)

where ζ := (m+1
2 )

1
2 yx

m−1
2 is the self-similarity variable, m is a real parameter and f is the solution
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to the Falkner-Skan equation
f ′′′ + ff ′′ + β(1− (f ′)2) = 0, (1.15)

where β = 2m
m+1 , subject to the boundary conditions f(0) = f ′(0) = 0 and f ′(+∞) = 1. Such

flows correspond to an outer Euler velocity field uE(x) = xm. For some particular values of m
(or, equivalently, β), these formulas provide physical solutions to (1.12) which exhibit recirculation
(see [9]).

Obtaining a priori estimates for recirculating solutions of the Prandtl system (1.12) is very
difficult. This important step was achieved by Sameer Iyer and Nader Masmoudi in [22]. In the
present paper, we have chosen to focus on a different type of difficulty, and to consider the toy-
model (1.1), which differs from (1.12) through the lack of the nonlinear transport term v∂yu and
its associated difficulties (nonlocality, loss of derivative) and the exclusion of the zones close to
the wall and far from the wall. For the model (1.1), a priori estimates are easy to derive, see [37,
Chapter 4]. The difficulty lies elsewhere, as explained previously. Indeed, in order to construct
a sequence of approximate solutions satisfying the a priori estimates, we need to ensure that the
orthogonality conditions are satisfied all along the sequence. The core of the proof is to keep track
of these orthogonality conditions, and to analyze their dependency on the sequence itself.

1.4 Scheme of proof and plan of the paper

Uniqueness of solutions is fairly easy to prove. For the linear problem (1.5), uniqueness already
holds at the level of weak solutions (see Proposition 2.2 and Appendix A). For the nonlinear
problem, uniqueness is straightforward since we are considering strong solutions (see Section 5.2).
Therefore, the main subject of this paper is the proof of the existence of solutions for the nonlinear
problem (1.7).

A first natural idea would be to prove existence thanks to a nonlinear scheme relying on the
linear problem (1.5). For example, one could wish to construct a sequence of solutions (un)n∈N by
setting u0 := 0 (or any other initial guess) and solving

y∂xun+1 − ∂yyun+1 = f − un∂xun,
(un+1)|Σi = δi,

(un+1)|y=±1 = 0.

(1.16)

However, this strategy fails. The key point is that the right-hand side contains a full tangential
derivative of un, whereas the operator y∂x − ∂yy only yields a gain of 2/3 of a derivative in this
direction (more precisely, see Proposition 1.2 and Proposition 2.4). Hence, this nonlinear scheme
would exhibit a “loss of derivative”, preventing us to prove a uniform bound on the sequence
(un)n∈N.

Another drawback of this scheme is that it would not translate well to a setting where one does
not assume δi(0). Indeed, in such a case, the inflow boundaries of the problem with the perturbed
data y + δi(y) would not match the inflow boundaries of the linear problem (1.5).

Hence we will rather construct solutions of (1.1) through another iterative scheme, which does
not rely directly on (1.5). In a way, the issues stemming from the linear scheme (1.16) come from
the following fact: in equation (1.7), the geometry of the problem is dictated by the line where the
whole solution y + u changes sign. On the contrary, in (1.5), the geometry of the problem follows
the cancellation of y. Keeping this in mind, we will rather rely on the following linearized equation
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around a base flow perturbation ū, where ū is a small perturbation of the shear flow y in Q1
ū∂xu− ∂yyu = f,

u|Σi = δi,

u|y=±1 = 0.

(1.17)

The well-posedness of such linear systems is investigated in Section 3. Exactly as Theorem 1
requires orthogonality conditions to ensure the existence of regular solutions to (1.5), the existence
of regular solutions to (1.17) is subject to perturbed orthogonality conditions (see Section 3.4).

More precisely, we will construct a sequence (un)n∈N solving the following iterative scheme
(y + un)∂xun+1 − ∂yyun+1 = fn+1,

(un+1)|Σi = δn+1
i ,

(un+1)|y=±1 = 0.

(1.18)

For this scheme, we are able to prove a uniform bound for un in an appropriate space Q1 and the
convergence of the sequence in an interpolation space Q1/2 (see (1.29) and (1.30)). This scheme is
similar to the one used to construct solutions of quasilinear symmetric hyperbolic systems, see for
instance [4, Section 4.3].

In (1.18), (fn+1, δn+1
0 , δn+1

1 ) are appropriate perturbations of the data (f, δ0, δ1) tailored to
satisfy the orthogonality conditions associated with the problem (1.17) (for ū = un). This is a key
difficulty of this work (see Sections 4 and 5.1). In particular, in order to allow the sequence un to
converge, we must prove that these perturbations also converge, which amounts to prove that the
orthogonality conditions for (1.17) depend continuously (and even in a Lipschitz manner) on ū,
for the same topology as the one within which we will prove the convergence of the sequence un.

The plan of this work is as follows. As a preliminary, we introduce in Section 1.5 the functional
spaces we will use. First, we study the linear problem (1.5) in Section 2, leading to Theorem 1, and
prove that the two orthogonality conditions we expose are indeed nonvoid. Second, in Section 3, we
study linearized problems of the form (1.17). The main task is to derive the modified orthogonality
conditions and prove their existence. Third, we prove the stability with respect to the underlying
flow ū of the orthogonality conditions in Section 4. Then, in Section 5, we turn to the nonlinear
problem for which we prove the existence of solutions in Section 5.1 using the scheme mentioned
above, then uniqueness in Section 5.2 and the necessity of the nonlinear orthogonality conditions
in Section 5.3. This concludes the proof of Theorem 2.

Eventually, in Appendix A, we prove the uniqueness of weak solutions to various linear problems
involved in Section 3, by adapting an argument due to Baouendi and Grisvard [5]. In Appendix B,
we prove various technical results of functional analysis that we use throughout the paper.

1.5 Functional spaces and interpolation results

1.5.1 Notations

Throughout this work, an assumption of the form “A� 1” will mean that there exists a constant
c > 0, depending only on Ω such that, if A ≤ c, the result holds. Similarly, a conclusion of the
form “A . B” will mean that there exists a constant C > 0, depending only on Ω, such that the
estimate A ≤ CB holds. For ease of reading, we will not keep track of the value of these constants,
mostly linked with embeddings of functional spaces.

We will often use the notations Ω± := Ω ∩ {±z > 0}.
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1.5.2 Trace spaces for the lateral boundaries

For the traces of the solutions to (1.5) or (1.7) at x = x0 and x = x1, we will need the following
spaces, due to [33, 34]. We define L 2

z (−1, 1) as the completion of L2(−1, 1) with respect to the
following norm:

‖ψ‖L 2
z

:=

(∫ 1

−1

|z|ψ2(z) dz

) 1
2

(1.19)

and H 1
z (−1, 1) as the completion of H1

0 (−1, 1) with respect to the following norm:

‖ψ‖H 1
z

:= ‖ψ‖L 2
z

+ ‖∂zψ‖L 2
z
. (1.20)

1.5.3 Trace spaces for horizontal cuts

When considering the restriction of a solution to (1.5) or (1.7) at some altitude z ∈ (−1, 1), we
will sometimes need the following spaces in the horizontal direction.

The Lions-Magenes space H
1/2
00 (x0, x1) is defined as the completion of H1

0 (x0, x1) with respect
to the following norm

‖φ‖
H

1/2
00

:= ‖φ‖H1/2 +

(∫ x1

x0

|φ(x)|2

|x− x0||x1 − x|
dx

) 1
2

. (1.21)

It is also the interpolation space [H1
0 (x0, x1), L2(x0, x1)] 1

2
(see [29, Théorème 11.7, Chapter 1]),

or the subspace of functions of H1/2(x0, x1) of which the extension by 0 is in H1/2(R). By [29,

Proposition 12.1], ∂x is continuous from H1/2(x0, x1) to (H
1/2
00 (x0, x1))′.

We will also need one-sided versions of this space, for functions “vanishing” only at the left side

x = x0 (say H
1/2
00l

(x0, x1)) or only at the right side x = x1 (say H
1/2
00r

(x0, x1)). For example

‖φ‖
H

1/2
00r

:= ‖φ‖H1/2 +

(∫ x1

x0

|φ(x)|2

|x1 − x|
dx

) 1
2

. (1.22)

1.5.4 Pagani’s weighted Sobolev spaces

Let O be an open subset of R2. In the works [33, 34] (albeit with swapped variables with respect
to our setting), Pagani introduced the space Z(O) of scalar functions φ on O such that φ, ∂zφ,
∂zzφ and z∂xφ belong to L2(O) (in the sense of distributions). In this work, we will refer to this
space with the notation Z0(O). It is a Banach space for the following norm

‖φ‖Z0 := ‖z∂xφ‖L2 + ‖∂zzφ‖L2 + ‖∂zφ‖L2 + ‖φ‖L2 . (1.23)

We will also need the space Z1(O), which we define as the space of scalar functions φ on O such
that φ and ∂xφ belong to Z0(O), associated with the following norm

‖φ‖Z1 := ‖φ‖Z0 + ‖∂xφ‖Z0 . (1.24)

The omitted proofs of the results of this section are postponed to Appendix B. We start with a
straightforward extension result, which will allows to transfer results on Z0(R2) to Z0(Ω).

Lemma 1.1. There exists a continuous extension operator from Z0(Ω) to Z0(R2).
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The following embedding is the most important result concerning the space Z0. Since solutions
to (z∂x− ∂zz)u = f for f ∈ L2(Ω) belong to Z0(Ω) (see Proposition 2.4), the following embedding
entails that such solutions belong to H2/3(Ω)1.

Proposition 1.2. Z0(R2) is continuously embedded in H
2/3
x L2

z.

Proof. Let ψ ∈ C∞c (R). By Lemma B.10, one has

‖ψ‖L2 . ‖zψ‖L2 + ‖∂zzψ‖L2 . (1.25)

Using standard dimensional analysis arguments (e.g. by introducing the rescaled function ψλ : z 7→
ψ(λz) for λ > 0 and optimizing the choice of λ), one deduces from (1.25) that

‖ψ‖L2 . ‖zψ‖
2
3

L2‖∂zzψ‖
1
3

L2 . (1.26)

Let φ ∈ C∞c (R2). Let φ̂(ξ, z) denote the Fourier-transform of φ in the horizontal direction. Then
using (1.26) and Hölder’s inequality,

‖φ‖2
H

2/3
x L2

z

=

∫
R2

(1 + |ξ|2)
2
3 |φ̂(ξ, z)|2 dξ dz

. ‖φ‖2L2 +

∫
R
|ξ| 43 ‖zφ̂(ξ, z)‖

4
3

L2
z
‖∂zzφ̂(ξ, z)‖

2
3

L2
z

dξ

. ‖φ‖2L2 +

(∫
R2

|ξ|2z2|φ̂(ξ, z)|2 dz dξ

) 2
3
(∫

R2

|∂zzφ̂(ξ, z)|2 dz dξ

) 1
3

. ‖φ‖2L2 + ‖z∂xφ‖
4
3

L2‖∂zzφ‖
2
3

L2 .

(1.27)

Hence ‖φ‖
H

2/3
x L2

z
. ‖φ‖Z0 . This concludes the proof, by density of C∞c (R2) in Z0(R2).

Lemma 1.3. Z0(R2) is continuously embedded in C0
z (H

1/2
x ).

Proof. By definition, Z0(R2) ↪→ H2
z (L2

x). By Proposition 1.2, Z0(R2) ↪→ L2
z(H

2/3
x ). By the

“fractional trace theorem” [29, Equation (4.7), Chapter 1], Z0(R2) ↪→ C0
z (H

1/2
x ).

Lemma 1.4. Z0(Ω) is continuously embedded in C0([x0, x1]; H 1
z (−1, 1)).

Proof. This is contained in the trace result [34, Theorem 2.1].

Remark 1.5. Although it is “almost” the case, there does not hold Z0(R2) ↪→ C0(R2).

� Pagani [33, Theorem 2.1] proves that the operator φ 7→ φ(·, 0) is onto from Z0(R2) to H
1
2 (R).

But H
1
2 (R) contains unbounded functions of x.

� Pagani [33, Theorem 2.3] proves that the operator φ 7→ φ(0, ·) is onto from Z0(R2) to the space
H 1
z (R). But this spaces contains unbounded functions, for example ψ(z) := (− ln |z|/2)sχ(z)

for s < 1
2 and χ ∈ C∞c (R) with χ ≡ 1 in a neighborhood of z = 0.

1This can be seen as an hypoellipticity result for the operator L = ∂zz − z∂x in the full space, which is of the
form X2

1 + X0, where X1 = ∂z , X0 = −z∂x and [X0, X1] = ∂x, so the Lie brackets generate the full space and L
satisfies Hörmander’s sufficient condition of [21] for hypoellipticity.
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1.5.5 Anisotropic Sobolev spaces

In the sequel, we will construct solutions of (1.5) and (1.7) in the following anisotropic Sobolev
spaces. Within all these spaces, one has heuristically the correspondence ∂x ≈ ∂3

z , which corre-
sponds to the appropriate scaling due to the degeneracy of z∂x at z = 0. We consider

Q0 := L2
x(H2

y ) ∩H2/3
x (L2

y), (1.28)

Q1 := L2
x(H5

y ) ∩H5/3
x (L2

y). (1.29)

By Proposition 1.2, Z0 ↪→ Q0. This is the natural space for strong solutions to our equations. The
space Q1 corresponds to the situation where ∂xu is a strong solution to an equation of the same

structure, so ∂xu ∈ Q0, which yields the H
5/3
x (L2

y) estimate. The L2
x(H5

y ) estimate comes from a
sort of “hidden regularity” result (see e.g. Section 2.4).

Eventually, a key argument of our work is that we will prove the Lipschitz-stability of the
orthogonality conditions and the convergence of the nonlinear scheme within the following inter-
polation space:

Q1/2 := [Q0, Q1] 1
2

= L2
x(H7/2

y ) ∩H7/6
x (L2

y). (1.30)

Lemma 1.6. By interpolation, we have the following embeddings

� Q1 ⊂ Hσ
xH

σ′

y for all σ, σ′ ≥ 0 such that 3σ + σ′ = 5;

� Q1/2 ⊂ Hσ
xH

σ′

y for all σ, σ′ ≥ 0 such that 3σ + σ′ = 7/2;

� Q0 ⊂ Hσ
xH

σ′

y for all σ, σ′ ≥ 0 such that 3σ + σ′ = 2.

In particular, Q1 ⊂ L∞x (W 2,∞
y ).

2 The case of the linear shear flow

This section concerns the well-posedness of the linear system (1.5) which we restate here for
convenience and by using z as a vertical variable rather than y to prepare for the next sections.
We thus consider, in Ω = (x0, x1)× (−1, 1), the system

z∂xu− ∂zzu = f,

u|Σi = δi,

u|z=±1 = 0,

(2.1)

where Σ0 = {x0} × (0, 1) and Σ1 = {x1} × (−1, 0).
First, in Section 2.1, we recall the theory of weak solutions, due to Fichera, Baouendi and

Grisvard. Then, in Section 2.2, we recall the theory of strong solutions with maximal regularity,
due to Pagani. Our main contribution regarding this problem is contained in Section 2.3, where we
derive two orthogonality conditions which are necessary to obtain higher tangential regularity and
prove Theorem 1. Eventually, in Section 2.4, we prove a hidden regularity result for such solutions,
which allows to control five derivatives in the vertical directions, and will be useful for the sequel.
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2.1 Existence and uniqueness of weak solutions

Definition 2.1 (Weak solution). Let f ∈ L2((x0, x1);H−1(−1, 1)) and δ0, δ1 ∈ L 2
z (−1, 1). We

say that u ∈ L2((x0, x1);H1
0 (−1, 1)) is a weak solution to (2.1) when, for all v ∈ H1(Ω) vanishing

on ∂Ω \ (Σ0 ∪ Σ1), the following weak formulation holds

−
∫

Ω

zu∂xv +

∫
Ω

∂zu∂zv =

∫
Ω

fv +

∫
Σ0

zδ0v −
∫

Σ1

zδ1v. (2.2)

Weak solutions in the above sense are known to exist since the work Fichera [14, Theorem XX]
(which concerns generalized versions of (2.1), albeit with vanishing boundary data). Uniqueness
dates back to [5, Proposition 2] by Baouendi and Grisvard.

Proposition 2.2. Let f ∈ L2((x0, x1);H−1(−1, 1)) and δ0, δ1 ∈ L 2
z (−1, 1). There exists a unique

weak solution u ∈ L2((x0, x1);H1
0 (−1, 1)) to (2.1). Moreover,

‖u‖L2
x(H1

z ) . ‖f‖L2
x(H−1

z ) + ‖δ0‖L 2
z

+ ‖δ1‖L 2
z
. (2.3)

Proof. The proof of uniqueness is postponed to Appendix A were we adapt Baouendi and Grisvard’s
arguments to prove uniqueness of weak solutions to all the linear problems we encounter in this
paper. It relies on the proof of a trace theorem and a Green identity.

Let us prove the existence. We introduce two Hilbert spaces V ↪→ U ↪→ L2((x0, x1);H1
0 (0, 1))

as follows. Let V := {v ∈ H1(Ω); v = 0 on Ω \ (Σ0 ∪ Σ1)}. Let U be the completion of
H1(Ω) ∩ L2((x0, x1);H1

0 (−1, 1)) with respect to the scalar product

〈u, v〉U :=

∫
Ω

∂zu∂zv +

∫
Σ0

zuv −
∫

Σ1

zuv. (2.4)

For u, v ∈ U × V , let

a(u, v) := −
∫

Ω

zu∂xv +

∫
Ω

∂zu∂zv, (2.5)

b(v) :=

∫
Ω

fv +

∫
Σ0

zδ0v −
∫

Σ1

zδ1v. (2.6)

In particular, for every v ∈ V , integration by parts leads to a(v, v) = ‖v‖2U and

|b(v)| ≤
(
‖f‖L2(H−1) + ‖δ0‖L2

z
+ ‖δ1‖L2

z

)
‖v‖U . (2.7)

Hence, b ∈ L(U )2 and existence follows from the Lax-Milgram type existence principle Lemma B.2,
which also yields the energy estimate (2.3) thanks to (2.7) and Poincaré’s inequality.

Remark 2.3. Instead of using the weak Lax-Milgram existence principle Lemma B.2, an alternate
proof would be to regularize equation (2.1) by vanishing viscosity, and to obtain uniform L2

x(H1
z )

estimates on the approximation.

2Functions in U a priori do not have traces on Σi so one could wonder how definition (2.6) makes sense. The
integrals

∫
Σi
zδiv make sense precisely because U is defined as a completion with respect to (2.4). In fact, weak

solutions do have traces in a strong sense, as proved in Lemma A.1, thanks to the extra regularity in x provided by
the equation.
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2.2 Strong solutions with maximal regularity

We now turn to strong solutions, i.e. solutions for which (2.1) holds almost everywhere. The main
result on this topic are due to Pagani.

Proposition 2.4. Let f ∈ L2(Ω) and δ0, δ1 ∈ H 1
z (−1, 1) such that δ0(1) = δ1(−1) = 0. The

unique weak solution u to (2.1) belongs to Z0(Ω) and satisfies

‖u‖Z0 . ‖f‖L2 + ‖δ0‖H 1
z

+ ‖δ1‖H 1
z
. (2.8)

Moreover, the boundary conditions u|Σi = δi hold in the sense of traces in H 1
z (Σi) (see Lemma 1.4).

Proof. This is a particular case of [34, Theorem 5.2]. Pagani’s proof proceeds by localization. Far
from the critical points (x0, 0) and (x1, 0), the regularity is rather straightforward. Near these
critical points, the regularity stems from the regularity obtained for a similar problem set in a
half-space. Pagani studies such half-space problems in [33] where he derives explicit representation
formulas for the solutions, using the Mellin transform and the Wiener-Hopf method. We do not
reproduce these arguments here for brevity.

2.3 Orthogonality conditions for higher tangential regularity

We now investigate the question of whether solutions to (2.1) enjoy higher regularity in the tangen-
tial direction. As mentioned in Section 1.2, it is quite easy to obtain a priori estimates in the space
Z1(Ω) (see Proposition 2.5). However, we prove in Proposition 2.7 that the weak solution enjoys
such a regularity if only if the data satisfies appropriate orthogonality conditions. Eventually, we
give statements highlighting the fact that these conditions are non empty.

Proposition 2.5. Let f ∈ H1((x0, x1);H−1(−1, 1)) and δ0, δ1 ∈ H 1
z (−1, 1) such that δ0(1) =

δ1(−1) = 0 and such that ∆0,∆1 ∈ L 2
z (−1, 1), where

∆i(z) :=
f(xi, z) + δ′′i (z)

z
. (2.9)

If the unique weak solution u to (2.1) belongs to H1((x0, x1);H1
0 (−1, 1)), then one has the following

weak solution estimate for ∂xu:

‖∂xu‖L2
xH

1
z
. ‖∂xf‖L2

xH
−1
z

+ ‖∆0‖L 2
z

+ ‖∆1‖L 2
z
. (2.10)

If moreover, f ∈ H1((x0, x1);L2(−1, 1)), ∆0,∆1 ∈ H 1
z (−1, 1) and ∆0(1) = ∆1(−1) = 0, then

u ∈ Z1(Ω) and one has the following strong solution estimate for ∂xu:

‖∂xu‖Z0 . ‖∂xf‖L2 + ‖∆0‖H 1
z

+ ‖∆1‖H 1
z
. (2.11)

Proof. The key point is that the information that ∂xu enjoys L2
xH

1
z regularity allows us to prove

that ∂xu is the unique weak solution to
z∂xw − ∂zzw = fx,

w|Σi = ∆i,

w|z=±1 = 0.

(2.12)
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Then estimate (2.10) follows from (2.3) and estimate (2.11) follows from (2.8). Hence, let us prove
that ∂xu is a weak solution to (2.12). Let

V :=
{
v ∈ C∞(Ω); v = 0 on ∂Ω \ (Σ0 ∪ Σ1),

∂xv = 0 on {x0} × (−1, 0) and {x1} × (0, 1)}.
(2.13)

Let v ∈ V . Then ∂xv is an admissible test function for Definition 2.1. Hence, since u is the weak
solution to (2.1), one has

−
∫

Ω

zu∂x(∂xv) +

∫
Ω

∂zu∂z(∂xv) =

∫
Ω

f(∂xv) +

∫
Σ0

zδ0(∂xv)−
∫

Σ1

zδ1(∂xv). (2.14)

The H1
xH

1
z regularity of u legitimates integrations by parts in x in the left-hand side. Thus[

−
∫ 1

−1

zu∂xv

]x1

x0

+

∫
Ω

z(∂xu)∂xv +

[∫ 1

−1

∂zu∂zv

]x1

x0

−
∫

Ω

∂z(∂xu)∂zv

=

[∫ 1

−1

fv

]x1

x0

−
∫

Ω

fxv +

∫
Σ0

zδ0(∂xv)−
∫

Σ1

zδ1(∂xv),

(2.15)

which, after taking the boundary conditions into account, integrating by parts in z in the boundary

terms
∫ 1

−1
∂zu∂zv and recalling (2.9) yields

−
∫

Ω

z(∂xu)∂xv +

∫
Ω

∂z(∂xu)∂zv =

∫
Ω

fxv +

∫
Σ0

z∆0v −
∫

Σ1

z∆1v. (2.16)

Since V is dense in the set of test functions for Definition 2.1, this proves that ∂xu is the weak
solution to (2.12).

We start by defining “dual profiles” which are necessary to state our orthogonality conditions.

Lemma 2.6 (Dual profiles). We define Φ0, Φ1 ∈ Z0(Ω \ {z = 0}) as the unique solutions to
−z∂xΦj − ∂zzΦj = 0 in Ω \ {z = 0},[
Φj
]
|z=0

= 1j=1,[
∂zΦ

j
]
|z=0

= −1j=0,

Φj|∂Ω\(Σ0∪Σ1) = 0.

(2.17)

Proof. Uniqueness is straightforward. Given j ∈ {0, 1} and two solutions of (2.17), let φ denote
their difference. Then φ ∈ Z0(Ω \ {z = 0}) and both φ and ∂zφ are continuous across the line
{z = 0}. Hence φ ∈ Z0(Ω) and is the solution to a problem of the form (2.1) (with reversed
tangential direction). So φ = 0 since weak solutions of such problems are unique.

We prove the existence of Φ0. The profile Φ1 can be constructed similarly and is left to the
reader. We define Φ0(x, z) := −z+ζ(z) + Ψ0(x, z), where ζ ∈ C∞c (R) is such that ζ ≡ 1 in a
neighborhood of z = 0 and supp ζ ⊂ (−1/2, 1/2) and Ψ0 ∈ L2((x0, x1);H1(−1, 1)) is the unique
weak solution to 

−z∂xΨ0 − ∂zzΨ0 = −21z>0ζ
′(z)− z+ζ

′′(z) in Ω,

Ψ0(x0, z) = 0 for z ∈ (−1, 0),

Ψ0(x1, z) = zζ(z) for z ∈ (0, 1),

Ψ0
|z=±1 = 0.

(2.18)
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By Proposition 2.4, Ψ0 ∈ Z0(Ω). Hence ∂zzΦ
0 ∈ L2(Ω±) and z∂xΦ0 ∈ L2(Ω±).

We now turn to the main result of this section, which gives a necessary and sufficient condition
for the solutions to enjoy the mentioned tangential regularity. Strangely, we could not find a proof
of the above result in the literature, although some works mention orthogonality conditions (see
[14, Equation (4.2)] or [36]). Hence we provide here a full proof. This strategy will be extended in
the next section to equations with variable coefficients. We prove further that these orthogonality
conditions are not empty.

Proposition 2.7. For f ∈ H1((x0, x1);L2(−1, 1)), δ0, δ1 ∈ H 1
z (−1, 1) with δ0(1) = δ1(−1) = 0

and ∆0,∆1 ∈H 1
z (−1, 1) with ∆0(1) = ∆1(−1) = 0 (see (2.9)), the unique weak solution u to (2.1)

belongs to H1((x0, x1);H1
0 (−1, 1)) if and only if, for j = 0 and j = 1,∫

Ω

∂xfΦj +

∫
Σ0

z∆0Φj −
∫

Σ1

z∆1Φj = ∂jzδ1(0)− ∂jzδ0(0). (2.19)

Furthermore, under this condition, we actually have ∂xu ∈ Z0(Ω), so u ∈ Z1(Ω).

Proof. First step: We exhibit possible discontinuities. Let us consider the unique solution u ∈ Z0

to (2.1). Following the strategy sketched by Goldstein and Mazumdar3 [17, Theorem 4.2], we
introduce the unique strong solution w ∈ Z0(Ω) to (2.12), so that w is a good candidate for ∂xu.
The idea is then to introduce the function u1 defined by

u1(x, z) = δ0(z) +

∫ x

x0

w(x′, z) dx′ in Ω+ = (x0, x1)× (0, 1),

u1(x, z) = δ1(z)−
∫ x1

x

w(x′, z) dx′ in Ω− = (x0, x1)× (−1, 0)

(2.20)

so that ∂xu1 = w almost everywhere. Furthermore it can be easily proved that

z∂xu1 − ∂zzu1 = f (2.21)

in D′(Ω±). However this does not entail that u1 is a solution of this equation in the whole domain.
Indeed, u1 and ∂zu1 may have discontinuities across the line z = 0. Nevertheless, one checks that
u1 and ∂zu1 are continuous across z = 0 if and only if∫ x1

x0

w(x, 0) dx = δ1(0)− δ0(0),∫ x1

x0

wz(x, 0) dx = δ′1(0)− δ′0(0).

(2.22)

The two integrals are well defined since wz and wzz belong to L2(Ω).

Second step: We compute the mean value of w and wz using the dual profiles. Let φ ∈ Z0(Ω±)
such that φ|∂Ω\(Σ0∩Σ1) = 0. Since w ∈ Z0(Ω), it satisfies (2.12) almost everywhere, so that we can
multiply the equation by φ and integrate over Ω+. Hence∫

Ω+

fxφ =

∫
Ω+

(z∂xw − ∂zzw)φ, (2.23)

3Oddly, Goldstein and Mazumdar do not mention the orthogonality conditions (2.19). They merely state that
since ∂xu1 = w, u1 ∈ H1((x0, x1);H1

0 (−1, 1)). However, these orthogonality conditions are necessary and non-
empty, as we show below (see Proposition 2.9).
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where, on the one hand, ∫
Ω+

z(∂xw)φ =

∫
Σ1

z∆1φ−
∫

Ω+

zw∂xφ (2.24)

and on the other hand,

−
∫

Ω+

(∂zzw)φ =

∫ x1

x0

(∂zwφ− w∂zφ)(x, 0+) dx−
∫

Ω+

w∂zzφ. (2.25)

Thus, performing the same computation on Ω− and summing both contributions yields∫ x1

x0

(∂zw[φ]|z=0 − w[∂zφ]|z=0)(x, 0) dx =

∫
Ω

fxφ+

∫
Σ0

z∆0φ−
∫

Σ1

z∆1φ

+

∫
Ω±

w(z∂xφ+ ∂zzφ).

(2.26)

Hence, for j ∈ {0, 1},∫ x1

x0

∂jzw(x, 0) dx =

∫
Ω

fxΦj +

∫
Σ0

z∆0Φj −
∫

Σ1

z∆1Φj . (2.27)

Third step: Conclusion. Assume that the orthogonality conditions (2.19) are satisfied for
j = 0 and j = 1. Then (2.22) holds, and a consequence, [u1]|z=0 = [∂zu1]|z=0 = 0, and
u1 ∈ L2((x0, x1);H1

0 (−1, 1)) is a weak solution of (2.1). We infer from the uniqueness of weak
solutions solutions that u = u1, and therefore ∂xu = w ∈ L2((x0, x1);H1

0 (−1, 1)). Hence u ∈
H1((x0, x1);H1

0 (−1, 1)).
Conversely, if u is a solution to (2.1) with H1((x0, x1);H1

0 (−1, 1)) regularity, then ∂xu is a weak
solution to (2.12) (see the proof of Proposition 2.5) and u is given in terms of ∂xu by (2.20) almost
everywhere. Since [u1]|z=0 = [∂zu1]|z=0 = 0, one has

∫ x1

x0
ux(x, 0) dx =

∫ x1

x0
uxz(x, 0) dx = 0, and

thus the orthogonality conditions (2.19) are satisfied.

Definition 2.8. In the sequel, we denote by `j the linear forms associated with the orthogonality
conditions (2.19) for the linear shear flow problem, i.e. we set

`j(f, δ0, δ1) := ∂jzδ0(0)− ∂jzδ1(0) +

∫
Σ0

z∆0Φj −
∫

Σ1

z∆1Φj +

∫
Ω

∂xfΦj . (2.28)

We now prove that the orthogonality conditions (2.19) are non-empty and independent.

Proposition 2.9. The linear forms `0 and `1 are linearly independent on C∞c (Ω)×{0}× {0}. In
particular, this also holds on C∞c (Ω)× C∞c (Σ0)× C∞c (Σ1).

Proof. Proceeding by contradiction, let (c0, c1) ∈ R2 such that, for every f ∈ C∞c (Ω), c0`
0(f, 0, 0)+

c1`
1(f, 0, 0) = 0. Then Φc := c0Φ0 +c1Φ1 satisfies

∫
Ω
∂xfΦc = 0 for every f ∈ C∞c (Ω), so ∂xΦc = 0

in D′(Ω+). Since Φc(x1, z) = 0 for z ∈ (0, 1) and Φc ∈ Z0(Ω+), this implies that Φc = 0 in Ω+

(since Z0 functions have traces in the usual sense, see Lemma 1.4). The same holds in Ω−. Hence
[Φc]|z=0 = [∂zΦ

c]|z=0 = 0, which implies c0 = c1 = 0.
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Corollary 2.10 (Biorthogonal basis). There exist Ξk = (fk, δk0 , δ
k
1 ) ∈ H for k ∈ {0, 1} such that,

for every j, k ∈ {0, 1},
`j(Ξk) = `j(fk, δk0 , δ

k
1 ) = 1j=k (2.29)

and such that, within H,

H⊥sg :=
(
RΞ0 + RΞ1

)⊥
= ker `0 ∩ ker `1. (2.30)

Proof. Since `0 and `1 are continuous linear forms on H, by the Riesz representation theorem,
they can be written as scalar products with two given triplets, say Λ0,Λ1 ∈ H which are linearly
independent thanks to Proposition 2.9. Then one looks for Ξk = (fk, δk0 , δ

k
1 ) as akΛ0 + bkΛ1 where

ak, bk ∈ R2 are such that ak〈Λj ; Λ1〉 + bk〈Λj ; Λ2〉 = 1j=k. These systems can be solved since Λ0

and Λ1 are free. Moreover, this ensures (2.30) and their independence guarantees that H⊥sg is of
codimension 2 in H.

2.4 Hidden vertical regularity

The goal of this paragraph is to prove that, if u is a solution to (2.1) such that ∂xzzu ∈ L2(Ω), then
one also has ∂5

zu ∈ L2(Ω), provided that the data is sufficiently regular. There is no additional
orthogonality condition. We start with the straightforward claim that ∂4

zu ∈ L2(Ω).

Lemma 2.11. Let f ∈ L2
xH
−1
z and δ0, δ1 ∈ L 2

z . Assume that δ0(1) = δ1(−1) = ∆0(1) =
∆1(−1) = 0. Let u be the unique weak solution to (2.1). Assume that u ∈ H1

xH
2
z and f ∈ L2

xH
2
z .

Then ∂2
zu ∈ Z0 and

‖u‖L2
xH

4
z

+ ‖z∂x∂2
zu‖L2 . ‖u‖H1

xH
2
z

+ ‖f‖L2
xH

2
z
.

Proof. Since u is a strong solution to (2.1), there holds ∂zzu = z∂xu−f in L2(Ω). Hence, in D′(Ω),
∂4
zu = z∂xzzu+ 2∂xzu− ∂zzf . Thus ∂4

zu ∈ L2(Ω) and ‖u‖L2
xH

4
z
. ‖f‖L2

xH
2
z

+ ‖u‖H1
xH

2
z
.

The Z0 regularity follows from the results of Proposition 2.4, noticing that the compatibility
conditions in the corners are satisfied.

Proposition 2.12. Let f ∈ L2
xH
−1
z and δ0, δ1 ∈ L 2

z . Let u be the unique weak solution to (2.1).
Assume that u ∈ H1

xH
2
z , f ∈ L2

xH
3
z and ∂3

zδ0, ∂
3
zδ1 ∈ H 1

z , with δ0(1) = δ1(−1) = ∆0(1) =
∆1(−1) = 0. Assume furthermore that ∂x∂

2
zf ∈ L2((x0, x1)× (1/2, 1))∩L2((x0, x1)× (−1,−1/2)).

Then ∂5
zu ∈ L2(Ω) and

‖u‖L2
xH

5
z
. ‖u‖H1

xH
2
z

+ ‖f‖L2
xH

3
z

+ ‖∂x∂2
zf1|z|≥1/2‖L2 +

∑
i∈{0,1}

‖∂3
zδi‖H 1

z
. (2.31)

Proof. In the course of the proof, we will need to distinguish between different regions:

� One “interior” region, close to the line z = 0. In this region, we will prove that ∂3
zu is such

that (z∂x − ∂2
z )∂3

zu ∈ L2, and use the results of Pagani to deduce that ∂5
zu ∈ L2.

� Two “boundary” regions, in the vicinity of the lines z = ±1. In these regions, since z is
bounded away from zero, we will use classical parabolic regularity arguments.

• Interior region: Let φ ∈ C∞(Ω) such that φ = 0 on {x0} × [−1, 0], φ = 0 on {x1} × [0, 1]
and φ vanishes identically on neighborhoods of z = ±1. Thanks to the regularity of u, we can
multiply the PDE for u by ∂3

zφ and integrate over Ω. Vertical integrations by parts yield vanishing
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boundary terms because φ vanishes identically in neighborhoods of z = ±1. We proceed with care
for the horizontal term so that all manipulations are licit:∫

Ω

z∂xu∂
3
zφ =

∫
Ω

(2∂xzu+ z∂xzzu)∂zφ

=

∫
Ω

2∂xzu∂zφ+

∫
Σ1

z∂zzδ1∂zφ−
∫

Σ0

z∂zzδ0∂zφ−
∫

Ω

z∂zzu∂xzφ.

(2.32)

We rewrite the last term as

−
∫

Ω

z∂zzu∂xzφ =

∫
Ω

z∂zzzu∂xφ+

∫
Ω

∂zzu∂xφ

=

∫
Ω

z∂zzzu∂xφ+

∫
Σ1

∂zzδ1φ−
∫

Σ0

∂zzδ0φ−
∫

Ω

∂xzzuφ.

(2.33)

Hence, ∫
Ω

z∂xu∂
3
zφ = −3

∫
Ω

∂xzzuφ+

∫
Ω

z∂3
zu∂xφ−

∑
i∈{0,1}

(−1)i
∫

Σi

∂zzδi(z∂zφ+ φ). (2.34)

We also integrate by parts the boundary term. For example, on Σ0:

−
∫

Σ0

∂zzδ0z∂zφ = −[z∂zzδ0φ|x=x0
]10 +

∫
Σ0

(z∂3
zδ0 + ∂zzδ0)φ. (2.35)

The pointwise term is null at z = 1 because φ vanishes identically near z = 1 and null at z = 0
since φ vanishes at 0 and ∂zzδ0 ∈H 2

z (Σ0).
Eventually, this proves that

−
∫

Ω

z(∂3
zu)∂xφ+

∫
Ω

∂z(∂
3
zu)∂zφ =

∑
i∈{0,1}

∫
Σi

z∂3
zδiφ+

∫
Ω

(∂3
zf − 3∂xzzu)φ. (2.36)

Since u ∈ L2
xH

4
z (by Lemma 2.11), u ∈ H1

xH
2
z , f ∈ L2

xH
3
z and δi ∈ H3

z , by density, this equality
still holds for φ ∈ H1(Ω) such that φ = 0 on {x0} × [−1, 0], {x1} × [0, 1] and z = ±1.

Now, let χ0 ∈ C∞c ((−1, 1)) such that χ0 ≡ 1 in a neighbourhood of z = 0. The above argument
shows that χ0∂

3
zu ∈ L2

xH
1
z is the unique weak solution to (2.1) with boundary data χ0∂

3
zδi and

source term χ0(∂3
zf − 3∂xzzu) − χ′′0∂

3
zu − χ′0∂

4
zu ∈ L2(Ω). We infer from Proposition 2.4 that

χ0∂
5
zu ∈ L2. Note that thanks to the truncation χ0, the compatibility conditions at (x0, 1) and

(x1,−1) are automatically satisfied. Furthermore, zχ0∂x∂
3
zu ∈ L2. As a consequence, using the

equation, we infer that z2χ0∂
2
x∂zu ∈ L2.

• Boundary regions:
By symmetry, we only treat the upper boundary region. We consider a function χ1 ∈ C∞(R)

such that χ1 ≡ 1 in a neighbourhood of z = 1, and Suppχ1 ⊂ (1/2, 1).
Then u1 := χ1u is a solution of

z∂xu1 − ∂zzu1 = f1 := fχ1 − χ′1∂zu1 − χ′′1u1, in (x0, x1)× (1/2, 1)

u1|z=1/2 = u1|z=1 = 0,

u1|x=x0
= χ1δ0.

(2.37)
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This is a standard parabolic equation, for which we can apply classical regularity results. Note
that the assumptions on f together with the observation that z∂x∂

2
zu ∈ L2, zχ0∂x∂

3
zu ∈ L2,

z2∂2
x∂zuχ0 ∈ L2 imply that ∂2

zf1 ∈ H1
x(L2

y). The compatibility conditions δ0(1) = ∆0(1) = 0
ensures that ∂x∂

2
zu1 ∈ L2((x0, x1), H1(−1, 1)). Therefore, using equation (2.37), we deduce that

∂5
zu1 ∈ L2.

3 The linearized problem

The goal of this section is to establish the well-posedness of the linearized problem
ū∂xu− ∂yyu = f in Ω,

u|Σi = δi,

u|y=±1 = 0,

(3.1)

where ū ∈ Q1 (see (1.29)) is a given perturbation of the linear shear flow, f is an external source
term and (δ0, δ1) are lateral boundary data. It is fairly straightforward to adapt the theory of
existence and uniqueness of weak solutions depicted in the previous section to the above equation.
However, writing the orthogonality conditions for a general shear flow ū is quite complicated. In-
deed, we recall that the strategy is to find the equation solved by ux in the upper region {ū > 0}
and in the lower region {ū < 0}, and to glue together these two solutions (provided the orthogo-
nality conditions, which ensure the continuity of u and uy across the line {ū = 0}, are satisfied).
When the line {ū = 0} is straight, this is a fairly simple process, which we described in the previous
section. However, when {ū = 0} is not a straight line, retrieving u from ux is not entirely obvious
(one needs to integrate ux on curved lines).

Therefore, we have chosen to first straighten the flow ū by changing the vertical coordinate. Of
course, this introduces variable coefficients in the equation. We then prove existence and uniqueness
of weak solutions for the equation in the new coordinates, and exhibit orthogonality conditions,
which are necessary and sufficient conditions ensuring that the weak solution has in fact H1

xH
1
y

regularity. Eventually, we go back to the original variables and infer the existence of strong Z1

solutions of (3.1) under orthogonality conditions.

3.1 A change of vertical coordinate

Throughout this section, we assume that ū is a Q1 function such that ‖ū − y‖Q1 is small. In
particular, ‖ūy − 1‖L∞ . ‖ūy − 1‖Q1 � 1 (see Lemma 1.6). It follows that there exists a line
y = ȳ(x) on which ū vanishes, and ū ≶ 0 on y ≶ ȳ(x).

As a consequence, we define an associated change of variables Y such that

∀z ∈ (−1, 1), ∀x ∈ (x0, x1), ū(x, Y (x, z)) = z. (3.2)

We then look for u under the form

u(x, y) = U(x, ū(x, y)), (3.3)

so that U = U(x, z) solves 
z∂xU + γ∂zU − α∂zzU = g in Ω,

U|Σi = δ̃i,

U|y=±1 = 0,

(3.4)

21



where

α(x, z) := (∂yū)2(x, Y (x, z)), (3.5)

γ(x, z) := (zūx − ūyy)(x, Y (x, z)), (3.6)

g(x, z) := f(x, Y (x, z)) (3.7)

and
δ̃i(z) := δi(Y (xi, z)). (3.8)

The next sub-sections are devoted to the analysis of equation (3.4): existence and uniqueness of
weak solutions, Z0 regularity, orthogonality conditions for Z1 regularity.

3.2 Existence and uniqueness of weak solutions

This section follows exactly the arguments of Section 2.1. The only slight difference lies in the
derivation of the a priori estimates, in which we use smallness assumptions to treat perturbatively
the additional drift term γ∂zU and the commutator coming from the diffusion.

Definition 3.1 (Weak solution). Let g ∈ L2((x0, x1);H−1(−1, 1)) and δ̃0, δ̃1 ∈ L 2
z (−1, 1). Let

α ∈ H1
z (L∞x ), γ ∈ L2

z(L
∞
x ).

We say that U ∈ L2((x0, x1);H1
0 (−1, 1)) is a weak solution to (3.4) when, for all V ∈ H1(Ω)

vanishing on ∂Ω \ (Σ0 ∪ Σ1), the following weak formulation holds

−
∫

Ω

zU∂xV +

∫
Ω

(γ + αz)∂zUV +

∫
Ω

α∂zU∂zV =

∫
Ω

gV −
∫

Σ1

zδ̃1V +

∫
Σ0

zδ̃0V. (3.9)

Proposition 3.2 (Existence and uniqueness of weak solutions). Assume that α and γ satisfy

‖α− 1‖L∞ + ‖γ‖L2
z(L∞x ) + ‖αz‖L2

z(L∞x ) � 1. (3.10)

Then, for every g ∈ L2((x0, x1), H−1(−1, 1)) and δ̃1, δ̃0 ∈ L 2
z (−1, 1), there exists a unique weak

solution U ∈ L2((x0, x1), H1
0 (−1, 1)) to (3.4). Moreover,

‖U‖L2
x(H1

z ) . ‖g‖L2
x(H−1

z ) + ‖δ̃0‖L 2
z

+ +‖δ̃1‖L 2
z
. (3.11)

Proof. We mimic the proof of Proposition 2.2. We take V = {V ∈ H1(Ω), V = 0 on ∂Ω\(Σ0∪Σ1)}
and U the completion of H1(Ω) ∩ L2((x0, x1);H1

0 (−1, 1)) with respect to the scalar product

〈U, V 〉U :=

∫
Ω

α∂zU∂zV +
1

2

∫
Σ0

zUV − 1

2

∫
Σ1

zUV. (3.12)

For (U, V ) ∈ U × V , let

a(U, V ) := −
∫

Ω

zU∂xV +

∫
Ω

(γ + αz)∂zUV +

∫
Ω

α∂zU∂zV, (3.13)

b(V ) :=

∫
Ω

gV −
∫

Σ1

zδ̃1V +

∫
Σ0

zδ̃0V. (3.14)

Now, for any V ∈ V , using (3.10) and the Poincaré inequality ‖V ‖L∞z (L2
x) ≤ 2‖∂zV ‖L2(Ω),

a(V, V ) = ‖V ‖2U +

∫
Ω

(γ + αz)V ∂zV ≥
1

2
‖V ‖2U (3.15)
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The linear form b satisfies (2.7). As in Proposition 2.2, the existence follows from the Lax-Milgram
type existence principle Lemma B.2, and we obtain the energy estimate (3.11).

As in the proof of Proposition 2.2, uniqueness follows from the result by Baouendi and Grisvard,
recalled in Appendix A.

Remark 3.3. Instead of using the weak Lax-Milgram existence principle Lemma B.2, an alternate
proof would be to regularize equation (3.4) by vanishing viscosity, and to obtain uniform L2

x(H1
z )

estimates on the approximation.

3.3 Strong solutions with maximal regularity

In this paragraph, we adapt the results of [34] to construct solutions to (3.4) with Z0 regularity,
with estimates independent of the coefficients α and γ, provided that (3.10) is satisfied.

Proposition 3.4. Assume that α and γ satisfy (3.10). Then, for every g ∈ L2(Ω) and δ̃0, δ̃1 ∈
H 1
z (−1, 1), the unique weak solution U to (3.4) satisfies U ∈ Z0(Ω) with the estimate

‖U‖Z0 . ‖g‖L2 + ‖δ̃0‖H 1
z

+ ‖δ̃1‖H 1
z
. (3.16)

Proof. Thanks to Proposition 3.2, there exists c0 > 0 such that, if

‖α− 1‖L∞ + ‖γ‖L2
z(L∞x ) + ‖αz‖L2

z(L∞x ) ≤ c0, (3.17)

the problem (3.4) is well-posed at the level of weak solutions. We proceed in four steps.

• Case of smooth coefficients with a large zero-order term. We start with coefficients α, γ that
are smooth, satisfy (3.17), and we consider the following variant of (3.4):

z∂xU + γ∂zU − α∂zzU + C0U = h in Ω,

U|Σi = 0,

U|y=±1 = 0,

(3.18)

where C0 ≥ 1
2αzz + 1

2γz. By Pagani [34, Theorem 5.2] (for the operator z∂x + γ∂z − α∂zz), for
every h ∈ L2(Ω), there exists a unique U ∈ Z0(Ω) solution to (3.18) and a constant C (possibly
depending on α, γ and C0 in a way that is not entirely explicit in the work of Pagani) such that

‖U‖Z0 ≤ C‖h‖L2 . (3.19)

Thus, we can define the bounded linear operator K : L2(Ω) → Z0(Ω) ⊂ L2(Ω) which maps h

to U , the solution to (3.18). Moreover, K ∈ L(L2(Ω)) is compact since Z0(Ω) ↪→ H
2/3
x,z (Ω) by

Proposition 1.2.

• Case of smooth coefficients. We still consider coefficients α, γ that are smooth, satisfy (3.17),
and we consider the equation 

z∂xU + γ∂zU − α∂zzU = h in Ω,

U|Σi = 0,

U|y=±1 = 0.

(3.20)

Applying Fredholm’s alternative to the operator K we obtain that
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� either, for every h ∈ L2, there exists a unique U ∈ Z0(Ω) solution to (3.20),

� or there exists a nontrivial solution U ∈ Z0(Ω) to (3.20) with h = 0.

The second possibility is excluded by the uniqueness of weak solutions stated in Proposition 3.2.
Rewriting (3.20) as

z∂xU − ∂zzU = h− γ∂zU + (α− 1)∂zzU (3.21)

and applying [34, Estimate (5.13)] (this time to the universal operator z∂x − ∂zz), we obtain

‖U‖Z0 ≤ CPagani

(
‖h‖L2 + ‖γ‖L2

z(L∞x )‖∂zU‖H1
z (L2

x) + ‖α− 1‖∞‖∂zzU‖L2

)
. (3.22)

Hence, under condition (3.17) (up to choosing c0 < 1/(2CPagani)), the last two terms can be treated
perturbatively and we obtain

‖U‖Z0 . ‖h‖L2 , (3.23)

with a constant depending only on the domain Ω.

• Case of smooth coefficients with boundary data. We still consider coefficients α, γ that are
smooth and satisfy (3.17). By [34, Theorem 2.1], there exists a bounded linear map from L :

H 1
z (Σ0) ×H 1

z (Σ1) → Z0(Ω) such that Uδ := L(δ̃0, δ̃1) satisfies (Uδ)|Σi = δ̃i and (Uδ)|y=±1 = 0.
Then we look for a solution U to (3.4) under the form U = Uδ +V , where V is a solution to (3.20)
with

h := g − z∂xUδ + α∂zzUδ − γ∂zUδ. (3.24)

Under assumption (3.17),

‖h‖L2 ≤ ‖g‖L2 + ‖z∂xUδ‖L2 + ‖α‖∞‖∂zzUδ‖L2 + ‖γ‖L2
z(L∞x )‖∂zU‖L∞z (L2

x)

. ‖g‖L2 + ‖Uδ‖Z0

(3.25)

so we obtain that U has Z0 regularity and satisfies (3.16) by boundedness of L.

• Case of general coefficients. We then address the case of general coefficients satisfying (3.17).
We take a smooth approximation sequence (αn, γn) of (α, γ), which satisfies the same smallness
assumptions and which converges towards (α, γ) in L∞ ∩ H1

z (L∞x ) × L2
z(L
∞
x ). For the sequence

(αn, γn), we construct a sequence of solutions Un ∈ Z0, which satisfy the estimate (3.16) with
uniform bounds. Extracting a subsequence if necessary, we can find a function U ∈ Z0(Ω) such
that Un ⇀ U in Z0. Passing to the limit in the equation, it can be easily checked that U is a
solution to (3.4). By Proposition 3.2, it is in fact the unique weak solution to (3.4), which completes
the proof.

3.4 Orthogonality conditions for higher tangential regularity

As in Section 2.3, we build solutions to (3.4) with higher regularity in the tangential direction,
provided that the data satisfy appropriate orthogonality conditions. The main goal of this para-
graph is to derive suitable expressions for these orthogonality conditions, analogous to the linear
shear flow case.

24



3.4.1 Derivation of the equations for the dual profiles

We start by formally differentiating (3.4) with respect to x and we find that, if U is regular in the
tangential direction, V := ∂xU is a solution to

z∂xV + γ∂zV − α∂zzV − αx∂zz
∫ x
x0
V + γx∂z

∫ x
x0
V = h0 in Ω+,

z∂xV + γ∂zV − α∂zzV + αx∂zz
∫ x1

x
V − γx∂z

∫ x1

x
V = h1 in Ω−,

[V ]z=0 = [∂zV ]z=0 = 0 on (x0, x1),

V (x0, z) = ∆̃0 for z ∈ (0, 1),

V (x1, z) = ∆̃1 for z ∈ (−1, 0),

V (x,±1) = 0 for x ∈ (x0, x1),

(3.26)

where, for i ∈ {0, 1},
hi := ∂xg + αx∂zz δ̃i − γx∂z δ̃i, (3.27)

and

∆̃i(z) :=
1

z

(
g(xi, z) + α(xi, z)∂zz δ̃i(z)− γ(xi, z)∂z δ̃i(z)

)
. (3.28)

Reciprocally, if V is a solution of the above system, then U defined by

U :=

{
δ̃0 +

∫ x
x0
V in Ω+,

δ̃1 +
∫ x
x1
V in Ω−

(3.29)

is a solution to (3.4) if and only if V satisfies∫ x1

x0

V (x, 0) dx = δ̃1(0)− δ̃0(0),∫ x1

x0

∂zV (x, 0) dx = ∂z δ̃1(0)− ∂z δ̃0(0).

(3.30)

For the time being, we do not worry about the regularity of the coefficients, and perform all
computations as if the coefficients were smooth. A suitable definition of weak solutions of (3.26),
which makes sense at the level of regularity available for the coefficients α and γ, will be given in
Definition 3.12. Taking any function ϕ, sufficiently smooth on Ω+ and Ω− (but not necessarily
continuous across the line z = 0) and vanishing on Ω\(Σ0∪Σ1), the weak formulation of the above
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system yields∫
Ω+

h0ϕ+

∫
Ω−

h1ϕ−
∫ 0

−1

z∆̃1(z)ϕ(x1, z) dz +

∫ 1

0

z∆̃0(z)ϕ(x0, z) dz

=

∫
Ω+∪Ω−

V (−z∂xϕ− ∂zz(αϕ)− ∂z(γϕ))

−
∫

Ω+

V

(
∂zz

∫ x1

x

αxϕ+ ∂z

∫ x1

x

γxϕ

)
+

∫
Ω−

V

(
∂zz

∫ x

x0

αxϕ+ ∂z

∫ x

x0

γxϕ

)
+

∫ x1

x0

∂zV (x, 0)
(∫ x1

x

αx(x′, 0)ϕ(x′, 0+) dx′ +

∫ x

x0

αx(x′, 0)ϕ(x′, 0−) dx′

+ α(x, 0)
(
ϕ(x, 0+)− ϕ(x, 0−)

) )
dx

−
∫ x1

x0

V (x, 0)
(∫ x1

x

(
∂z(αxϕ)(x′, 0+) + (γxϕ)(x′, 0+)

)
dx′

+

∫ x

x0

(
∂z(αxϕ)(x′, 0−) + (γxϕ)(x′, 0−)

)
dx′

+
(
∂z(αϕ)(x, 0+)− ∂z(αϕ)(x, 0−)

)
+ (γϕ)(x, 0+)− (γϕ)(x, 0−)

)
dx.

(3.31)

Following the reasoning of Section 2.3, this leads to the following generalization of Lemma 2.6.

Definition 3.5 (Dual profiles). We define Φ0 and Φ1 as the weak solutions to

−z∂xΦj − ∂z(γΦj)− ∂zz(αΦj)− ∂zz
∫ x1

x
αxΦj − ∂z

∫ x1

x
γxΦj = 0 in Ω+,

−z∂xΦj − ∂z(γΦj)− ∂zz(αΦj) + ∂zz
∫ x
x0
αxΦj + ∂z

∫ x
x0
γxΦj = 0 in Ω−,

Φj(x0, z) = 0 for z ∈ (−1, 0),

Φj(x1, z) = 0 for z ∈ (0, 1),

Φj(x,±1) = 0 on (x0, x1),

(3.32)

together with the jump conditions

[αΦj ]z=0(x) +

∫ x1

x

αx(x′, 0)Φj(x′, 0+) dx′ +

∫ x

x0

αx(x′, 0)Φj(x′, 0−) dx′ = 1j=1 (3.33)

and

[∂z(αΦj) + γΦj ]z=0(x) +

∫ x1

x

(
∂z(αxΦj) + γxΦj

)
(x′, 0+) dx′

+

∫ x

x0

(
∂z(αxΦj) + γxΦj

)
(x′, 0−) dx′ = −1j=0.

(3.34)

In the next paragraphs, we prove existence and uniqueness of solutions to these dual systems.

3.4.2 Existence and uniqueness of the dual profiles

This paragraph is devoted to the proof of existence and uniqueness of the functions Φj , which will
then allow us to state the orthogonality conditions for equation (3.4).
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Proposition 3.6 (Existence and uniqueness of weak solutions to (3.32)-(3.33)-(3.34)). Assume
that α satisfies

‖αz‖∞ + ‖α− 1‖∞ + ‖αxz‖L2 � 1. (3.35)

Assume that γ = zγ1 + γ2, where γ1 ∈ L2
z(L
∞
x ) ∩ L∞z (H

1/2
x ), γ2 ∈ H1

x(L2
z) and

‖γ1‖L2
z(L∞x ) + ‖γ1‖L∞z (H

1/2
x )

+ ‖γ2‖H1
x(L2

z) � 1. (3.36)

Then the system (3.32)-(3.33)-(3.34) has a unique weak solution Φj such that Φj ∈ L2
x(H1

z (Ω±))
and z∂xΦj ∈ L2

x(H−1
z (Ω±)) and∫ 1

0

zΦj(x0, z)
2 dz −

∫ 0

−1

zΦj(x1, z)
2 dz < +∞. (3.37)

Furthermore, introducing

Θj :=

{
αΦj +

∫ x1

x
αxΦj in Ω+,

αΦj −
∫ x
x0
αxΦj in Ω−,

(3.38)

one has ∫ 1

0

zΦj(x0, z)
2 dz −

∫ 0

−1

zΦj(x1, z)
2 dz +

∑
±
‖∂zΘj‖2L2(Ω±) . 1. (3.39)

Remark 3.7. Note that ‖αxz‖L2 � 1 implies ‖αx‖L∞z (L2
x) � 1. The latter bound will be used

several times in the proof.

Remark 3.8 (Preliminary observations). Before tackling the proof of Proposition 3.6, we introduce
some notations and tools which will be used throughout this section.

� Operators F and G, equation in terms of Θj:

First, let us consider the unknown Θj defined in (3.38). Formally, ∂xΘj = α∂xΦj, so that
Φj can be retrieved from Θj thanks to the inversion formula

Φj :=


Θj

α
−
∫ x1

x

αx
α2

Θj in Ω+,

Θj

α
+

∫ x

x0

αx
α2

Θj in Ω−.
(3.40)

It follows in particular that ‖Φj‖L2 . ‖Θj‖L2 and ‖∂zΦj‖L2(Ω±) . ‖∂zΘj‖L2(Ω±) thanks to
the bounds on α.

We also define an operator

F [Φ] := γΦ +

{∫ x1

x
γxΦ in Ω+,

−
∫ x
x0
γxΦ in Ω−.

(3.41)

Note that ∂xF = γ∂xΦ = γ
α∂xΘ. Therefore, setting Γ = γ/α, it will be convenient to define

the operator

G[Θ] := F [Φ] = ΓΘ +

{∫ x1

x
ΓxΘ in Ω+,

−
∫ x
x0

ΓxΘ in Ω−.
(3.42)
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Under the assumptions of Proposition 3.6, we can define Γ := zΓ1 +Γ2, with Γi := γi/α, and

‖Γ1‖L2
z(L∞x ) + ‖Γ1‖L∞z (H

1/2
x )

+ ‖Γ2‖H1
x(L2) � 1. (3.43)

The L∞z (H
1/2
x ) bound for Γ1 stems from the same bound for γ1, the L∞z (L2

x) bound for αx
and the pointwise multiplication result Lemma B.3.

We set F j := F [Φj ] = G[Θj ], so that (3.32) becomes, with these functions,

− z

α
∂xΘj − ∂zF j − ∂zzΘj = 0 in Ω+ ∪ Ω−, (3.44)

while the jump conditions (3.33)-(3.34) ensure that

[Θj ]|z=0 = 1j=1,

[∂zΘ
j + F j ]|z=0 = −1j=0.

(3.45)

� Lifts for Θj:

It will be convenient, in the course of the proof, to introduce a lift for Θj in order to remove the
jumps across the line {z = 0}. Actually, we will introduce two such lifts: one lift which will
remove the jump of Θj and of F j +∂zΘ

j (but which will authorize a jump in the z-derivative
of the lifted function), and one lift such that the lifted function will be H2 in z.

More precisely, we set
Θj = (δ0,j − zδ1,j)χ(z)1Ω+

+ Θj
] ,

where χ ∈ C∞c ((−1, 1)) is such that χ ≡ 1 in a neighbourhood of zero, so that Θj
] is such that

[Θj
] ]|z=0 = 0, [∂zΘ

j
] + F j ]|z=0 = 0. (3.46)

The lifted function Θj
] satisfies

− z
α
∂xΘj

] − ∂z(∂zΘ
j
] + F j) = 1z>0∂zz ((δ0,j − zδ1,j)χ(z)) ,

Θj
]|z=±1 = 0,

Θj
](x0, z) = 0 ∀z ∈ (−1, 0),

Θj
](x1, z) = −(δ0,j + zδ1,j)χ(z)∀z ∈ (0, 1).

(3.47)

We will also consider another lift Θj
[ , which we define in the following way. First, we set

Θj
] = Θj

l + Θj
[ ,

where the lifting term Θj
l is given by

Θj
l = zb+(x)χ(z)1Ω+

+ zb−(x)χ(z)1Ω−

with some coefficients b± to be determined. The role of Θj
l is to ensure that

[Θj
[ ] = 0, [∂zΘ

j
[ ] = 0.
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Note that the first condition is automatically satisfied with our choice above.

Furthermore,

∂x[F j(x, ·)]|z=0 = γ(x, 0)∂x[Φj(x, ·)]|z=0 =
γ(x, 0)

α(x, 0)
∂x[Θj(x, ·)] = 0.

Hence the jump of F j is constant across the line {z = 0}, and is equal to

1

x1 − x0

∫ x1

x0

[F j(x, ·)]|z=0 dx.

Consequently, we choose b± to be constant in x, and we define

b+ := − 1

x1 − x0

∫ x1

x0

F j(x, 0+) dx,

b− :=
1

x1 − x0

∫ x1

x0

F j(x, 0−) dx.

With this choice, [
F j + (b+1z>0 − b−1z<0)

]
|z=0

= 0,

and therefore [∂zΘ
j
[ ]|z=0 = 0, and [F j + ∂zΘ

j
l ]|z=0 = 0. Note also that ∂xΘj

l = 0. It follows
that

− z

α
∂xΘj

[ − ∂zzΘ
j
[ = Sj in Ω, (3.48)

where
Sj = 1z>0∂zz ((δ0,j − zδ1,j)χ(z)) + ∂z

(
∂zΘ

l
j + F j

)
.

The boundary conditions for Θj
[ are

Θj
[(x,±1) = 0,

Θj
[(x0, z) = −b−zχ(z) ∀z ∈ (−1, 0),

Θj
[(x1, z) = −(δ0j + z(−δ1,j + b+))χ(z) ∀z ∈ (0, 1).

Proof of Proposition 3.6. Throughout the proof, we will actually consider existence and uniqueness
in L2

x(H1
z ) of solutions of the system

−∂z(∂zΘ +G[Θ])− z

α
∂xΘ = f in Ω,

Θ(x,±1) = 0,

Θ(x1, z) = η1 ∀z > 0,

Θ(x0, z) = η0 ∀z < 0,

(3.49)

where η0 ∈ C2([−1, 0]), η1 ∈ C2([0, 1]) and f ∈ L2
x(H−1

z ). In the above equation, the operator G
is defined in (3.42).

According to Remark 3.8, it will then be sufficient to apply the existence and uniqueness result
to the case

f = 1z>0∂zz ((δ0,j + zδ1,j)χ(z)) ,

η0 = 0,

η1(z) = −(δ0,j + zδ1,j)χ(z).
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Classically, we say that Θ ∈ L2((x0, x1), H1
0 (−1, 1)) is a weak solution of (3.49) if the following

weak formulation holds: for any V ∈ H1(Ω) such that V|z=±1 = 0 and V|Σi = 0,∫
Ω

∂zΘ∂zV +

∫
Ω

G[Θ]∂zV +

∫
Ω

zΘ∂x

(
V

α

)
(3.50)

=

∫
Ω

fV +

∫ 1

0

η1
z

α(x1, z)
V (x1, z) dz −+

∫ 0

−1

η0
z

α(x0, z)
V (x0, z) dz. (3.51)

• First step: Bound on the operator G.
The purpose of this first step is to prove the following bound: if Θ ∈ L2

x(H1
z ) is such that

z∂xΘ ∈ L2
x(H−1

z ), and if Φ(x0, z) = 0 for all z < 0, Φ(x1, z) = 0 for all z > 0, then G[Θ] ∈ L2(Ω)
and

‖G[Θ]‖L2 ≤C
(
‖Γ2‖H1

xL
2
z

+ ‖Γ1‖L2
z(L∞x )

)
‖∂zΘ‖L2

+ C‖Γ1‖L∞z (H
1/2
x )

(‖z∂xΘ‖L2
x(H−1

z ) + ‖∂zΘ‖L2).
(3.52)

Concerning the term with Γ2, since ∂xΓ2 ∈ L2, we have∥∥∥∥Γ2Θ +

∫ x1

x

∂xΓ2Θ

∥∥∥∥
L2(Ω+)

. ‖Γ2‖H1
xL

2
z
‖Θ‖L∞z (L2

x) . ‖Γ2‖H1
xL

2
z
‖∂zΘ‖L2(Ω+). (3.53)

A similar bound holds in Ω−. The term with γ1 is more involved. First, we have

‖zΓ1Θ‖L2(Ω) . ‖Γ1‖L2
z(L∞x )‖Θ‖L∞z (L2

x) . ‖Γ1‖L2
z(L∞x )‖∂zΘ‖L2(Ω+). (3.54)

Concerning the integral term, we use Lemma B.15 in the Appendix, from which we deduce that

zΘ ∈ L2((0, 1), H
1/2
00r ). We then observe that by definition of the L2 norm,∥∥∥∥∫ x1

x

z∂xΓ1Θ

∥∥∥∥
L2(Ω+)

= sup
h∈L2(Ω+),‖h‖L2≤1

∫
Ω+

h

∫ x1

x

z∂xΓ1Θ

= sup
h∈L2(Ω+),‖h‖L2≤1

∫
Ω+

(∫ x

x0

h

)
zΘ∂xΓ1.

Now, using Lemma B.8, for any z > 0,∣∣∣∣∫ x1

x0

(∫ x

x0

h

)
zΘ∂xΓ1

∣∣∣∣ ≤ C‖Γ1‖H1/2
x
‖zΘ‖

H
1/2
00r
‖h‖L2((x0,x1). (3.55)

Integrating with respect to z and using a Cauchy-Schwarz inequality, we get∥∥∥∥∫ x1

x

z∂xΓ1Θ

∥∥∥∥
L2(Ω+)

. ‖Γ1‖L∞z (H
1/2
x )
‖zΘ‖

L2
x(H

1/2
00r )

(3.56)

. ‖Γ1‖L∞z (H
1/2
x )

(
‖z∂xΘ‖L2(H−1) + ‖∂zΘ‖L2(Ω+)

)
. (3.57)

Gathering (3.53), (3.54) and (3.56), we obtain (3.52).
In the rest of the proof, to lighten the notation, we set

µ0 := ‖Γ1‖L∞z (H
1/2
x )

+ ‖Γ1‖L2
z(L∞x ) + ‖Γ2‖H1

xL
2
z

+ ‖α− 1‖∞ + ‖αz‖∞ + ‖αx‖L∞z (L2
x).

• Second step: uniqueness:
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Let Θ ∈ L2((x0, x1), H1
0 (−1, 1)) such that α−1z∂xΘ ∈ L2(H−1) be a weak solution of (3.49)

with f = 0, ηi = 0. Note that since αz ∈ L∞(Ω), z∂xΘ ∈ L2(H−1).
We adapt the arguments of Baouendi and Grisvard (see Appendix A). For any V ∈ L2

x(H1
0 )

such that z∂xV ∈ L2
x(H−1

z ), the trace V|x=xi is well-defined in the sense of functions in L 2(−1, 1)
thanks to Lemma A.1, and we have

〈 z
α
∂xΘ, V 〉L2(H−1,L2(H1) =

∫
Ω

G[Θ]∂zV +

∫
Ω

∂zΘ∂zV. (3.58)

Furthermore,〈 z
α
∂xΘ, V

〉
L2(H−1),L2(H1

0 )
= 〈z∂xΘ, V 〉L2(H−1),L2(H1

0 ) + 〈z
(

1

α
− 1

)
∂xΘ, V 〉L2(H−1,L2(H1

0 )

= 〈z∂xΘ, V 〉L2(H−1),L2(H1
0 ) +

〈 z
α
∂xΘ, (α− 1)V

〉
L2(H−1),L2(H1

0 )

= 〈z∂xΘ, V 〉L2(H−1),L2(H1
0 ) (3.59)

+

∫
Ω

G[Θ]∂z((α− 1)V ) +

∫
Ω

∂zΘ∂z((α− 1)V ). (3.60)

From there, it follows that

‖z∂xΘ‖L2(H−1) = sup
V ∈L2(H1

0 ),‖V ‖L2H1≤1

〈z∂xΘ, V 〉L2(H−1),L2(H1) (3.61)

≤ (‖G[Θ]‖L2 + ‖∂zΘ‖L2) (1 + ‖α− 1‖∞ + ‖αz‖L2
z(L∞x )). (3.62)

Using (3.52) together with the smallness assumption on Γ1, we obtain

‖z∂xΘ‖L2(H−1) . ‖∂zΘ‖L2 ,

‖G[Θ]‖L2 ≤ µ0‖∂zΘ‖L2 .
(3.63)

Eventually, thanks to Corollary A.2, we observe that

〈z∂xΘ,Θ〉L2(H−1),L2(H1) =
1

2

(∫ 1

−1

zΘ(x1, z)
2 dz −

∫ 1

−1

zΘ(x0, z)
2 dz

)
(3.64)

=
1

2

(∫ 0

−1

zΘ(x1, z)
2 dz −

∫ 1

0

zΘ(x0, z)
2 dz

)
. (3.65)

Now, take V = Θ in (3.58). Using (3.60), (3.63) and (3.65), we obtain

1

2

(∫ 1

0

zΘ(x0, z)
2 dz −

∫ 0

−1

zΘ(x1, z)
2 dz

)
+

∫
Ω

∂zΘ
2

≤ ‖G[Θ]‖L2 (‖∂zΘ‖L2 + ‖∂z((α− 1)Θ)‖L2) + ‖∂zΘ‖L2‖∂z((α− 1)Θ‖L2

. µ0‖∂zΘ‖2L2 .

Hence, for µ0 < 1, we infer that Θ = 0.

• Third step: Energy estimates for equation (3.49)
First, since we have assumed that the boundary terms η0, η1 are smooth, note that we can

always lift them with a function Θη(x, z) = χ0(x)η0(z) + χ1(x)η1(z) for some cut-off functions
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χi ∈ C∞([x0, x1]) such that χi ≡ 1 in a neighborhood of xi and Suppχi ⊂ {|x−xi| ≤ (x1−x0)/2}.
This will add a smooth additional source term to the equation. Hence, in the following, we will
consider the case ηi = 0, without loss of generality.

Let us multiply formally (3.49) by Θ and integrate on Ω. We obtain∫
Ω

(∂zΘ)2 =
〈 z
α
∂xΘ,Θ

〉
L2(H−1),L2(H1)

+ 〈f,Θ〉L2(H−1),L2(H1) −
∫

Ω

G[Θ]∂zΘ. (3.66)

As in the previous step, we decompose the first term in the right-hand side as follows〈 z
α
∂xΘ,Θ

〉
L2(H−1),L2(H1)

= 〈z∂xΘ,Θ〉L2(H−1),L2(H1) (3.67)

+
〈 z
α
∂xΘ, (α− 1)Θ

〉
L2(H−1),L2(H1)

. (3.68)

The term (3.67) yields a positive contribution on Σ0 ∪ Σ1, namely

− 〈z∂xΘ,Θ〉L2(H−1),L2(H1) =
1

2

∫ 1

0

z(Θ(x0, z))
2 dz − 1

2

∫ 0

−1

z(Θ(x1, z))
2 dz. (3.69)

We bound (3.68) as follows∣∣∣∣〈 zα∂xΘ, (α− 1)Θ
〉
L2(H−1),L2(H1)

∣∣∣∣ ≤ ∥∥∥ zα∂xΘ
∥∥∥
L2
x(H−1

z )
‖(α− 1)Θ‖L2

x(H1
z ) . (3.70)

Using the equation (3.47) together with (3.52),∥∥∥ z
α
∂xΘ

∥∥∥
L2(H−1)

≤ C
(
‖f‖L2(H−1) + ‖∂zΘ‖L2 + ‖G[Θ]‖L2

)
≤ C

(
‖f‖L2(H−1) + ‖∂zΘ‖L2

)
+ µ0‖z∂xΘ‖L2(H−1)

, (3.71)

while

‖(α− 1)Θ‖L2
x(H1

z ) .
(
‖αz‖L2

z(L∞x ) + ‖α− 1‖∞
)
‖∂zΘ‖L2(Ω+) . µ0‖∂zΘ‖L2(Ω+).

Using the same type of computation as in (3.60), we also obtain that

‖z∂xΘ‖L2(H−1) ≤ C(‖∂zΘ‖L2 + ‖f‖L2(H−1)),

for some universal constant C, provided µ0 < 1. Hence

‖G[Θ]‖L2 . µ0(‖∂zΘ‖L2 + ‖f‖L2(H−1)).

Gathering the previous estimates, we obtain, if µ0 is small enough,

‖∂zΘ‖2L2(Ω) +
1

2

∫ 1

0

z(Θ(x0, z))
2 dz − 1

2

∫ 0

−1

z(Θ(x1, z))
2 dz ≤ C‖f‖2L2(H−1),

‖z∂xΘ‖L2
x(H−1

z ) ≤ C‖f‖L2(H−1).

(3.72)

• Fourth step: Existence of weak solutions for smooth coefficients, with a large zero order term.
We assume in this paragraph that the coefficients are smooth, say α, γi ∈ C2

b (Ω).
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The purpose is to prove that for C0 > 0 sufficiently large, depending on some norms of the
coefficients, the equation

− z
α
∂xΘ− ∂z(G[Θ] + ∂zΘ) + C0Θ = f in Ω,

Θ(x,±1) = 0,

Θ(x1, z) = 0 ∀z > 0,

Θ(x0, z) = 0 ∀z < 0

(3.73)

has a unique solution in L2
x(H1

z ).
We proceed by viscous regularization and consider, for every ε > 0, the system

− z
α
∂xΘε − ∂zG[Θε] + ∂zzΘε − ε∂xxΘj

ε + C0Θε = f in Ω±,

Θε = 0 on ∂Ω.
(3.74)

We then perform the same type of estimates as before. Since we allow the coefficients to be
smooth and the constant C0 to be large, the estimates are somewhat simpler. It can be easily
proved that if

C0 & ‖αx‖∞ + ‖γx‖∞,

the equation (3.74) has a unique solution in H1
0 (Ω), which satisfies uniform in ε bounds in L2

x(H1
z ).

Passing to the limit as ε → 0, we deduce that for the above choice of C0, there exists a solution
Θ ∈ L2(H1) of (3.73). Using the equation, we infer that this solution is such that z∂xΘ ∈ L2

x(H−1
z ).

Using the second step (or a variant including the term C0), we deduce that this solution is unique.

• Fifth step: Existence of weak solutions of (3.49) for smooth coefficients and L2 source.
Now, for any f ∈ L2(Ω), consider the solution of (3.73). As in Remark 3.8, we introduce

coefficients b± defined by

b± := ∓ 1

x1 − x0

∫ x1

x0

G[Θ](x, 0±) dx.

and a function Θ[ such that

Θ =
∑
±
zb±χ(z)1±z>0 + Θ[.

Note that
|b±| . ‖∂xγ2‖∞‖∂zΘ‖L2 ,

so that ‖∂zΘ[‖L2 . ‖∂zΘ‖L2 . The function Θ[ is a solution of

− z
α
∂xΘ[ − ∂zzΘ[ = S[,

where

S[ = f + ∂z

(
G[Θ]− ∂z

(∑
±
zb±χ(z)1±z>0

))
∈ L2(Ω).

According to the results of Pagani [34], Θ[ ∈ Z0. In particular, Θ[ ∈ H
2/3
x (L2

z). Since Θ[ is

constant in x, it follows that Θ ∈ H2/3
x (L2

z). As a consequence, the operator K : f ∈ L2 7→ Θ ∈
H

2/3
x (L2

z) ∩ L2
x(H1

z ), where Θ is the solution of (3.73), is compact.
We now apply the Fredholm alternative to the operator K, which implies the following:
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(i) either, for any f ∈ L2(Ω), there exists a unique solution in H
2/3
x (L2

z) ∩ L2
x(H1

z ) of (3.49);

(ii) or there exists a non-trivial solution Θ̄ of

−∂z(∂zΘ̄ +G[Θ̄])− z

α
∂xΘ̄ = 0 in Ω,

Θ̄(x,±1) = 0,

Θ̄(x1, z) = 0 ∀z > 0,

Θ̄(x0, z) = 0 ∀z < 0;

According to the second step (uniqueness for (3.49)), the second case never arises.
We deduce that when the coefficients α, γ are smooth and satisfy the smallness assumptions

above, for any source term f ∈ L2, there exists a unique solution of (3.49).

• Sixth step: Existence of weak solutions of (3.49) for general coefficients and source terms.
We argue by density and consider sequences of smooth coefficients αn, γn1 , γ

n
2 converging towards

α, γ1, γ2 in the relevant norms (i.e. in the norms in which we stated the smallness assumptions.)
We also consider a sequence (fn)n∈N of L2 functions such that fn → f in L2(H−1).

For any n ∈ N, there exists a solution Θn of (3.49) with the coefficients αn, γn1 , γ
n
2 and source

term fn. Furthermore, the third step shows that this solution is uniformly bounded in L2(H1),
and z∂xΘn is uniformly bounded in L2(H−1). Hence we can extract a subsequence such that

Θn ⇀ Θ in L2
x(H1

z ).

The limit is a weak solution of (3.49). This concludes the proof.

During the proof, we actually obtained the following result, which will be used hereafter.

Corollary 3.9. Assume that the coefficients α and γ satisfy the assumptions of Proposition 3.6.
For every f ∈ L2((x0, x1);H−1(−1, 1)), there exists a unique solution Θ ∈ L2

x(H1
z ) to

− z
α
∂xΘ− ∂z(G[Θ] + ∂zΘ) = f,

Θ(·,±1) = 0,

Θ(x1, z) = 0 ∀z > 0,

Θ(x0, z) = 0 ∀z < 0.

(3.75)

Furthermore, this solution satisfies

‖Θ‖L2(H1) + ‖z∂xΘ‖L2(H−1) . ‖f‖L2(H−1). (3.76)

3.4.3 Orthogonality conditions for regular solutions

Going back to conditions (3.30) and using the definition of the functions Φj , we infer that the
orthogonality conditions for (3.4) in order to have H1

xH
1
z regularity can be formally written as∫

Ω

(1z>0h0 + 1z<0h1)Φ0 +

∫
Σ0

z∆̃0Φ0 −
∫

Σ1

z∆̃1Φ0 = δ′1(0)− δ′0(0),∫
Ω

(1z>0h0 + 1z<0h1)Φ1 +

∫
Σ0

z∆̃0Φ1 −
∫

Σ1

z∆̃1Φ1 = δ1(0)− δ0(0).

(3.77)
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However, since ∂xγ1 does not belong to L2, the source terms hi do not belong to L2 in general.
Therefore we first perform formal transformations in order to re-write the terms involving γ1 in a
weaker form. We recall that

z∆̃i(z) = g(xi, z) + αx(xi, z)δ̃i
′′
(z)− γ(xi, z)δ̃i

′
(z).

When γ1 is smooth, we have

−
∫ 1

0

zγ1(x0, z)δ̃0
′
(z)Φj(x0, z) dz −

∫
Ω+

z∂xγ1(x, z)δ̃0
′
(z)Φj(x, z) dx dz

=

∫
Ω+

γ1(x, z)δ̃0
′
(z)z∂xΦj(x, z) dx dz

=

∫
Ω+

Γ1(x, z)δ̃0
′
(z)z∂xΘj(x, z) dx dz.

(3.78)

Similarly, ∫ 0

−1

zγ1(x1, z)δ̃1
′
(z)Φj(x1, z) dz −

∫
Ω−

z∂xγ1(x, z)δ̃1
′
(z)Φj(x, z) dx dz

=

∫
Ω−

Γ1(x, z)δ̃1
′
(z)z∂xΘj(x, z) dx dz.

(3.79)

Now, assume that δ̃′0(0) = δ̃′1(0) = 0 and ∂zγ1 ∈ L2. Then Γ1(1z<0δ
′
1 + 1z>0δ

′
0) ∈ L2

x(H1
0 ). And∫

Ω+

Γ1(x, z)δ̃0
′
(z)z∂xΘj(x, z) dx dz +

∫
Ω−

Γ1(x, z)δ̃1
′
(z)z∂xΘj(x, z) dx dz

=
〈
z∂xΘj ,Γ1(1z<0δ

′
1 + 1z>0δ

′
0)
〉
L2(H−1),L2(H1

0 )
.

(3.80)

Eventually, recalling the definition of Θj and hi, we re-write the orthogonality conditions (3.77)
as ∫

Ω

∂xgΦj +

∫
Σ0

(gΦj)|Σ0
+

∫
Σ0

(δ̃′′0 − Γ2|Σ0
δ̃′0)Θj

|Σ0

−
∫

Σ1

(gΦj)|Σ1
−
∫

Σ1

(δ̃′′1 − Γ2|Σ1
δ̃′1)Θj

|Σ1
+
〈
z∂xΘj ,Γ1(1z<0δ

′
1 + 1z>0δ

′
0)
〉
L2(H−1),L2(H1

0 )

= ∂jzδ1(0)− ∂jzδ0(0).

(3.81)

Definition 3.10 (Linear forms associated with equation (3.4)). Let (δ0, δ1, f) ∈ H. We define

g = f(x, Y (x, z)), δ̃i(z) = δi(Y (xi, z)). Assume that δ̃′0(0) = δ̃′1(0) = 0 and ∂zγ1 ∈ L2. Assume
furthermore that ∫

Σi

1

|z|

[ g
α

+
(
δ̃′′i (z)− δ̃′i(z)Γ2

)]2
< +∞.
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We define, for j = 0, 1,

`jū(f, δ0, δ1) :=

∫
Ω

∂xg
Θj

α
+

∫
Σ0

( g
α

+ δ̃′′0 − Γ2|Σ0
δ̃′0

)
)Θj
|Σ0

−
∫

Σ1

( g
α

+ δ̃′′1 − Γ2|Σ1
δ̃′1

)
Θj
|Σ1

+
〈
z∂xΘj ,Γ1(1z<0δ̃

′
1 + 1z>0δ̃

′
0)
〉
L2(H−1),L2(H1

0 )

− ∂jz δ̃1(0) + ∂jz δ̃0(0).

(3.82)

Remark 3.11. Assume that Y is such that ū(x, Y (x, z)) = z for all (x, z) ∈ Ω, and that
α(x, Y (x, z)) = ū2

y(x, Y (x, z)), γ2 = −ūyy(x, Y (x, z)).
Then it is easily checked that

δ̃′i(z) =
1

ūy(xi, Y (xi, z))
δ′i(Y (xi, z)),

δ̃′i(z) = Γ2(xi, z)δ̃
′
i(z) +

1

α(xi, z)
δ′′i (Y (xi, z)).

(3.83)

In this case, the boundary terms in the definition of `jū can be written as∫
Σi

( g
α

+ δ̃′′i − Γ2|Σi δ̃
′
i

)
Θj
|Σi =

∫
Σi

1

α(xi, z)
(f(xi, Y (xi, z)) + δ′′i (Y (xi, z))Θ

j(xi, z) dz. (3.84)

We are now ready to formulate our regularity results for solutions of (3.4). To that end, we
first give a definition of weak solutions of (3.26). This definition follows the computations from
(3.31) and Remark 3.8.

Definition 3.12. Assume that the coefficients α, γi satisfy the assumptions of Proposition 3.6.
Assume furthermore that that δ̃′0(0) = δ̃′1(0) = 0, ∂zγ1 ∈ L2, and∫

Σi

1

|z|

[ g
α

+
(
δ̃′′i (z)− δ̃′i(z)Γ2

)]2
< +∞.

Let V ∈ L2
x(H1

0 (−1, 1)). We say that V is a weak solution of (3.26) if and only if, for any
Θ ∈ L2

x(H1
0 (−1, 1)) such that z∂xΘ ∈ L2

x(H−1
z ) and such that Φ = 0 on ∂Ω \ (Σ0 ∪ Σ1),

−
〈 z
α
∂xΘ, V

〉
L2H−1,L2H1

0

+

∫
Ω

G[Θ]∂zV +

∫
Ω

∂zΘ∂zV

=

∫
Ω

∂xg
Θ

α

−
∫ 0

−1

[ g
α

(x1, z) +
(
δ̃′′0 (z)− δ̃′0(z)Γ2(x1, z)

)]
Θ(x1, z) dz

+

∫ 1

0

[ g
α

(x0, z) +
(
δ̃′′1 (z)− δ̃′1(z)Γ2(x0, z)

)]
Θ(x0, z) dz

+
〈 z
α
∂xΘ, γ1(1z<0δ

′
1 + 1z>0δ

′
0)
〉
L2(H−1),L2(H1

0 )
.

(3.85)
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Lemma 3.13. Assume that the coefficients α, γi satisfy the assumptions of Proposition 3.6. As-
sume furthermore that that δ̃′0(0) = δ̃′1(0) = 0, δ̃0(1) = δ̃1(−1) = 0, ∂zγ1 ∈ L2, and∫

Σi

1

|z|

[ g
α

+
(
δ̃′′i (z)− δ̃′i(z)Γ2

)]2
< +∞.

Consider the unique solution U ∈ Z0(Ω) of (3.4). Then U ∈ H1
xH

1
z (Ω) if and only if the

orthogonality conditions (3.81) are satisfied, and in this case

‖U‖2H1
xH

1
z
. ‖g‖2H1

xL
2
z

+
∑
i=0,1

∫
Σi

1

|z|

[ g
α

+
(
δ̃′′i (z)− δ̃′i(z)Γ2

)]2
+ ‖δ̃′i‖2H1 . (3.86)

Proof. • We first prove that under the assumptions of Proposition 3.6, equation (3.26) has a

unique solution in L2(H1
0 ). We start with uniqueness. Assume that g = 0, δ̃i. Let f ∈ L2(H−1)

be arbitrary and let Θ be the unique solution of (3.49). It follows from Definition 3.12 that

〈f, V 〉L2H−1,L2H1
0

= 0

Since the function f is arbitrary, we infer that V = 0.
The same argument allows us to prove a priori estimates. Indeed, assume that V ∈ L2(H1

0 ) is
a solution of (3.26) in the sense of Definition 3.12. Consider the unique solution Θ ∈ L2(H1

0 ) of
(3.49) with f = −∂zzV ∈ L2(H−1). Then∥∥∥ z

α
∂xΘ

∥∥∥
L2(H−1)

+ ‖Θ‖L2(H1
0 ) . ‖V ‖L2(H1

0 ).

Furthermore, combining the weak formulation from Definition 3.12 together with the one of equa-
tion (3.49), we deduce that∫

Ω

(∂zV )2 =

∫
Ω

∂xg
Θ

α

−
∫ 0

−1

( g
α

(x1, z) + δ̃′′0 (z)− δ̃′0(z)Γ2(x1, z)
)

Θ(x1, z) dz

+

∫ 1

0

( g
α

(x0, z) + δ̃′′1 (z)− δ̃′1(z)Γ2(x0, z)
)

Θ(x0, z) dz

+
〈 z
α
∂xΘ, γ1(1z<0δ̃

′
1 + 1z>0δ̃

′
0)
〉
L2(H−1),L2(H1

0 )
.

(3.87)

Using the assumptions on the coefficients α, γi together with Lemma A.1, we see that the right-hand
side is lower than

C

(
‖∂xg‖L2 +

∑
i

(∫
Σi

1

|z|

[ g
α

+
(
δ̃′′i (z)− δ̃′i(z)Γ2

)]2)1/2

+ ‖δ̃′i‖H1

)

×
(∥∥∥ z

α
∂xΘ

∥∥∥
L2(H−1)

+ ‖Θ‖L2(H1
0 )

)
.

Combining the two estimates and using a Cauchy-Schwarz inequality, we deduce that

‖V ‖L2(H1
0 ) . ‖∂xg‖L2 +

∑
i

(∫
Σi

1

|z|

[ g
α

+
(
δ̃′′i (z)− δ̃′i(z)Γ2

)]2)1/2

+ ‖δ̃′i‖H1 .
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Once a priori estimates are available, we can adapt the arguments of Proposition 3.6 to prove
existence of solutions in L2(H1).
• The rest of the proof goes along the same lines as the one of Proposition 2.7. Assuming that

the orthogonality conditions (3.81) are satisfied, and defining Ũ by

Ũ :=

{
δ̃0 +

∫ x
x0
V in Ω+,

δ̃1 +
∫ x
x1
V in Ω−

(3.88)

we see that Ũ is a solution of (3.4), and belongs to L2(H1). Hence Ũ = U , and therefore ∂xU ∈
L2
x(H1

z ). Conversely, if U ∈ H1
xH

1
z , then ∂xU is the only solution of (3.26). Since the jumps of U

and ∂zU across the line z = 0 is zero, the orthogonality conditions (3.81) are satisfied.

3.5 Well-posedness results for the linearized problem

Proposition 3.14. Let ū ∈ Q1 such that the coefficients α, γ defined by

α(x, z) = ū2
y(x, Y (x, z)), γ1(x, z) = ūx(x, Y (x, z)), γ2(x, z) = −ūyy(x, Y (x, z))

satisfy the assumptions of Proposition 3.6. Assume also that ∂zγ1 ∈ L2, ū(x,±1) = ±1, and
‖ū− y‖Q1 � 1.

Let δ0, δ1 ∈ H4([−1, 1]), f ∈ H1
x(L2

y), and define δ̃i by (3.8).
Assume that δ0(1) = δ0(−1) = 0. Then there exists a unique solution u ∈ Q0 to (3.1). It

satisfies
‖u‖Q0 . ‖f‖L2 + ‖δ0‖H1 + ‖δ1‖H1 . (3.89)

Moreover, when additionally δ̃′i(0) = 0 for i = 0, 1 and (f(xi) + δ′′i )(Y (xi, z))/z ∈ H 1
z (Σi), this

solution has H1
xH

1
y regularity if and only if `jū(f, δ0, δ1) = 0 for j ∈ {0, 1} (recall Definition 3.10).

In this case, and if f(x0, 1)+δ′′0 (1) = f(x1,−1)+δ′′0 (−1) = 0 and ∂x∂yf ∈ L2((−1,−1/4)∪(1/4, 1)),
u actually enjoys Q1 regularity and one has the estimates

‖u‖Q1 . ‖f‖H1
xL

2
y

+ ‖f‖L2
xH

3
y

+ ‖∂x∂yf‖L2((−1,−1/4)∪(1/4,1)) (3.90)

+
∑
i=0,1

‖δi‖H4 +

∥∥∥∥1

z
(f(xi) + δ′′i )(Y (xi, z))

∥∥∥∥
H 1
z (Σi)

(3.91)

‖u‖Q1/2 . ‖f‖
H

1/2
x L2

y
+ ‖f‖

L2
xH

3/2
y

+ ‖f‖
H

1/2
x H

1/2
y ((−1,−1/4)∪(1/4,1))

(3.92)

+
∑
i=0,1

‖δi‖H5/2 +

∥∥∥∥1

z
(f(xi) + δ′′i )(Y (xi, z))

∥∥∥∥
H 1
z (Σi)

. (3.93)

Proof. The first part of the statement is an immediate consequence of the equivalence between u
and U : u is a solution of (3.1) if and only if U is a solution of (3.4). Furthermore, using Lemma B.4,
we see that

‖u‖
H

2/3
x L2

y
. ‖U‖

H
2/3
x L2

z
+ ‖U‖

L2
xH

4/3
z
,

‖U‖
H

2/3
x L2

z
. ‖u‖

H
2/3
x L2

y
+ ‖u‖

L2
xH

4/3
y
.

Additionally, since u(x, y) = U(x, ū(x, y)),

uy(x, y) = ūyUz(x, ū(x, y)), uyy(x, y) = ūyyUz(x, ū(x, y)) + ū2
yUzz(x, ū(x, y)),
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and since ūy, ūyy ∈ L∞ (see Lemma 1.6)

‖u‖L2
x(H2

y) . ‖U‖L2
x(H2

z ),

and conversely,
‖U‖L2

x(H2
z ) . ‖u‖L2

x(H2
y).

We infer that
‖u‖Q0 . ‖U‖Q0 . ‖u‖Q0 .

Hence Proposition 3.4 implies that equation (3.1) has a unique solution u ∈ Q0.

Furthermore, assuming that δ̃′i(0) = 0 and using the identities

ux(x, y) = Ux(x, ū(x, y)) + ūxUz(x, ū(x, y)),

uxy(x, y) = ūyUxz(x, ū(x, y)) + ūxyUz(x, ū(x, y)) + ūxūyUzz(x, ū(x, y)),

we see that ux ∈ L2(H1
y ) if and only if Ux ∈ L2(H1

z ), which occurs if and only if the two orthogo-
nality conditions (3.81) are satisfied.

Let us now prove that in this case, we have ū ∈ Q1. Note that we do not try to prove that
U ∈ Q1. Indeed, Ux is a solution of

(z∂x + γ∂z − α∂zz)U = g − γxUz + αxUzz.

In the right-hand side of the above formula, there is a term −z∂xγ1Uz, which does not belong to
L2 a priori. Instead, we go back to the equation in u and we notice that ux ∈ L2(H1) is the unique
weak solution of

(ū∂x − ∂yy)ux = −ūxux + ∂xf =: g1,

ux|Σi =
f(xi, y) + δ′′i (y)

ū
,

ux|±1 = 0.

Furthermore, since ūx ∈ Q0, we have ūx ∈ L2
x(L∞y ), so that the right-hand side g1 belongs to L2.

Hence we can write
ux(x, y) = W (x, ū(x, y)).

Note that W and Ux are slightly different: indeed,

W (x, z)− Ux(x, z) = γ1Uz(x, z).

Since the term ∂xγ1Uz is precisely the one preventing us that U belongs to L2 when the coefficients
are not smooth, we see that the purpose of this new change of variables is to remove a potential
singular part in U .

Then W is a solution of

z∂xW + γ∂zW − α∂zzW = g1(x, Y (x, z)) ∈ L2(Ω),

Wz=±1 = 0,

W|Σi =
g(xi, z) + δ′′i (Y (xi, z))

z
.

Hence we can apply the results of Proposition 3.4. Note that the compatibility conditions at (x0, 1)

and at (x1,−1) are satisfied. We infer that W ∈ Z0, and thus ux ∈ Z0. It follows that u ∈ H5/3
x L2

y.
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We now prove that ∂5
yu ∈ L2. As in the proof of Proposition 2.12, we will need to distinguish

between an “interior regularity”, close to the line z = 0, and a “boundary regularity”, close to the
lines z = ±1.
• Interior regularity.
Assume that the orthogonality conditions (3.81) are satisfied, so that ux ∈ Q0, and that

∂3
yf ∈ L2. In that case, writing

uyy = ūux − f,

we immediately infer that u ∈ L2
x(H4

y ). Indeed, since ux ∈ Q0, ux ∈ L2
y(H

2/3
x ) ⊂ L2

y(L∞x ), and
ūyy ∈ L2

x(H1
y ) ⊂ L∞y (L2

x). Note also that ū, ūy ∈ L∞.
In order to prove that ∂5

yu ∈ L2((x0, x1) × (−1 + δ, 1 + δ) for any δ > 0, we mimick the proof

of Proposition 2.12. Multiplying (3.1) by a test function ∂3
yφ, for some φ ∈ C∞(Ω̄) such that φ

identically vanishes in a neighbourhood of ±1 and on {x0} × (−1, 0) ∪ {x1} × (0, 1), we obtain∫
ūux∂

3
yφ =

∫
∂2
y(ūux)∂yφ

=

∫
(ūyyux + 2ūyuxy)∂yφ+

∫
ūuxyy∂yφ

=

∫
(ūyyux + 2ūyuxy)∂yφ−

∫
∂x(ū∂yφ)uyy −

∑
i=0,1

(−1)i
∫

Σi

(ū∂yφ)(xi, y)δ′′i dy.

We integrate by parts both the boundary terms and the interior terms and we are led to∫
ūux∂

3
yφ =

∫
(−∂3

y ūux − 3ūyyuxy − 2ūyuxyy + ūxyuyy + ūx∂
3
yu)φ+

∫
∂xφ∂y(ūuyy)

+
∑
i=0,1

(−1)i
∫

Σi

φ(xi, y)∂y(ū(xi, y)δ′′i (y)) dy

=

∫
(−∂3

y ūux − 3ūyyuxy − 2ūyuxyy + ūxyuyy + ūx∂
3
yu)φ−

∫
φ∂x(ūyuyy)

+

∫
∂xφū∂

3
yu

+
∑
i=0,1

(−1)i
∫

Σi

φ(xi, y) [∂y(ū(xi, y)δ′′i (y))− ūyδ′′i (y)] dy.

But we also have ∫
ūux∂

3
yφ =

∫
(f + ∂2

y)u∂3
yφ = −

∫
∂3
yfφ+

∫
∂4
yu∂yφ.

Gathering all the terms and using a density argument, we deduce that for any function φ ∈ H1(Ω)
vanishing on ∂Ω \ (Σ0 ∪ Σ1),

−
∫

Ω

(ū∂3
yu∂xφ+ ūx∂

3
yuφ) +

∫
∂4
yu∂yφ

=

∫ [
∂3
yf −

(
∂3
y ūux + 3∂2

y ūuxy + 3∂yuuxyy
)]
φ

+
∑
i=0,1

(−1)i
∫

Σi

φ(xi, y)ū(xi, y)δ
(3)
i (y)).
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This proves that for any test function χ0 ∈ C∞c (] − 1, 1[) such that χ ≡ 1 in a neighbourhood of
z = 0, say χ0 ≡ 1 on (−1/2, 1/2) and Suppχ0 ⊂ (−3/4, 3/4), χ0∂

3
yu is the unique weak solution of

ū∂x(χ0∂
3
yu)− ∂2

y(χ0∂
3
yu) = χ0

(
∂3
yf − ∂3

y ūux − 3∂2
y ūuxy − 3∂yuuxyy

)
− χ′′0∂3

yu− 2χ′0∂
4
yu.

The right-hand side belongs to L2(Ω), and the compatibility conditions at the corners (x0, 1) and
(x1,−1) are automatically satisfied because of the truncation χ0. Hence Proposition 3.4 ensures
that χ0(Y (x, z))∂3

yu(x, Y (x, z)) ∈ Z0. We infer that χ0∂
5
yu ∈ L2, and ūχ0∂x∂

3
yu ∈ L2. Using the

equation satisfied by u, it follows that χ0ū
2∂2
x∂yu ∈ L2.

• Boundary regularity:
We now take χ1 ∈ C∞c (R), with χ ≡ 1 on [1/2, 1], and Suppχ1 ⊂ [1/4, 1]. Note that with the

choice above, Suppχ′1 ⊂ χ−1
0 ({1}). Let u1 = uχ1. Then u1 satisfies

ū∂xu1 − ∂yyu1 = S1 := fχ1 − 2χ′1∂yu− χ′′1u in (x0, x1)× (1/4, 1),

u1(·, 1/4) = u1(·, 1) = 0,

u1(x0, y) = χ1δ0.

(3.94)

By assumption, ‖ū − y‖∞ ≤ m for some m � 1. Without loss of generality, we assume that
m ≤ 1/8 so that ū ≥ 1/8 on (x0, x1)× (1/4, 1). Hence the equation is parabolic. Note also that

ū∂2
xu1 = ∂xS1 + ∂2

y∂xu1 − ∂xū∂xu1,

and the right-hand side is in L2. Thus ∂2
xu1 ∈ L2, ∂2

y∂xu1 ∈ L2, from where it follows that
∂xu1 ∈ L∞, with a bound ‖∂xu1‖∞ . (‖ux‖Q0 + ‖u‖Q0 + ‖∂xfχ1‖L2).

We now differentiate (3.94) twice with respect to y. Since (χ0δ0)(1) = (χ0δ0)(1/4) = 0, ∂2
yu1

is a solution of
(ū∂x − ∂yy)∂2

yu1 = ∂2
yS1 − ūyy∂xu1 − 2ūy∂xyu1,

∂2
yu1(·, 1/4) = ∂2

yu1(·, 1) = 0,

∂2
yu1(x0, y) = ∂2

y(χ1δ0).

(3.95)

And since ∂2
y(χ1δ0)(1/4) = ∂2

y(χ1δ0)(1) = 0, we have

(ū∂x − ∂yy)∂x∂
2
yu1 = ∂x∂

2
yS1 − ūxyy∂xu1 − ūyy∂2

xu1 − 2∂y(ūx∂xyu1),

∂x∂
2
yu1(·, 1/4) = ∂x∂

2
yu1(·, 1) = 0,

∂x∂
2
yu1(x0, y) = ∂2

y(χ1∆0).

(3.96)

Now, let us perform energy estimates for the above parabolic system. We multiply by ū−1∂x∂
2
yu1

and integrate over (x0, x1) × (1/4, 1). According to the previous regularity estimates on u and
u1, we know that ∂x∂

2
yS1 ∈ L2(H−1), ūxyy∂xu1 ∈ L2, ūyy∂

2
xu1 ∈ L2. We estimate the terms

∂y(ūx∂xyu1) in L2((x0, x1), H−1((1/4, 1)). It is easily proved that it is bounded in this space. We
infer that ∂x∂

3
yu1 ∈ L2((x0, x1), (1/4, 1)). Eventually, writing

∂2
yu1 = ū∂xu1 − S1,

we deduce that ∂5
yu1 ∈ L2((x0, x1), (1/4, 1)).

• Interpolation:
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We have proved that

‖χ0u‖Q0 .‖f‖L2 + ‖δ0‖H1 + ‖δ1‖H1 ,

‖χ0u‖Q1 .‖f‖H1
xL

2
y

+ ‖f‖L2
xH

3
y

+
∑
i=0,1

‖δi‖H4 +

∥∥∥∥1

z
(f(xi) + δ′′i )(Y (xi, z))

∥∥∥∥
H 1
z (Σi)

.

By interpolation, it follows that

‖χ0u‖Q1/2 . ‖f‖
H

1/2
x L2

y
+ ‖f‖

L2
xH

3/2
y

+
∑
i=0,1

‖δi‖H5/2 +

∥∥∥∥1

z
(f(xi) + δ′′i )(Y (xi, z))

∥∥∥∥
H 1
z (Σi)

.

Similarly,
‖χ1u‖Q0 .‖f‖L2 + ‖δ0‖H1 + ‖δ1‖H1 ,

‖χ1u‖Q1 .‖f‖H1
xL

2
y

+ ‖f‖L2
xH

3
y

+ ‖∂x∂yf‖L2((x0,x1)×(1/4,1))

+
∑
i=0,1

‖δi‖H4 +

∥∥∥∥1

z
(f(xi) + δ′′i )(Y (xi, z))

∥∥∥∥
H 1
z (Σi)

.

By interpolation,

‖χ1u‖Q1/2 .‖f‖
H

1/2
x L2

y
+ ‖f‖

L2
xH

3/2
y

+ ‖f‖
H

1/2
x H

1/2
y ((x0,x1)×(1/4,1))

+
∑
i=0,1

‖δi‖H5/2 +

∥∥∥∥1

z
(f(xi) + δ′′i )(Y (xi, z))

∥∥∥∥
H 1
z (Σi)

.

Gathering the two estimates, we obtain the desired result.

4 Local stability of the orthogonality conditions

This section is devoted to the derivation of some key estimates for the nonlinear scheme we will
perform in Section 5. Indeed, as explained in Section 1.4, a crucial point of our proof lies in the
fact that the linear forms associated with the orthogonality conditions depend continuously on the
data ū, in a suitable norm. This is proved in Proposition 4.1 below.

In this section, we consider two flows ū, ū′ in a Z1 neighborhood of the linear profile (x, y) 7→ y.
We define changes of variables Y, Y ′ such that

∀z ∈ (−1, 1) ∀x ∈ (x0, x1), ū(x, Y (x, z)) = ū′(x, Y ′(x, z)) = z. (4.1)

We define

α(x, z) = (∂yū)2(x, Y (x, z)), (4.2)

γ1(x, z) = ūx(x, Y (x, z)), (4.3)

γ2(x, z) = ūyy(x, Y (x, z)), (4.4)

and analogously, we define α′, γ′i. We set γ = zγ1 + γ2.
We then consider the profiles Φj , (Φj)′ constructed in Proposition 3.6, and the associated linear

forms `ū, `ū′ introduced in Definition 3.10. The main result of this section is the following.
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Proposition 4.1. There exists c̄ > 0 such that, for every ū, ū′ ∈ Q1 with ‖ū − y‖Q1 ≤ c̄, ‖ū′ −
y‖Q1 ≤ c̄ and ū(xi, 0) = 0, ū(x,±1) = ±1, there holds

‖`jū − `
j
ū′‖L(H) . ‖ū− ū′‖Q1/2 . (4.5)

We decompose the proof of the Proposition into several Lemmas. We first investigate bounds
on the coefficients α − α′, γ − γ′ in terms of ‖ū − ū′‖Q1/2 . Then, we prove that the solutions
Φj of (3.32) depend continuously on the coefficients. Putting together these two results leads to
Proposition 4.1.

4.1 Stability of the change of variables

We start with a technical lemma which will be used abundantly throughout this section.

Lemma 4.2. There exists m ∈ (0, 1) and C > 0 such that, for any ū, ū′ ∈ Q1 such that ū(±1) =
ū′(±1) = ±1 and ‖ū− y‖Q1 ≤ m and ‖ū′ − y‖Q1 ≤ m, if Y, Y ′ are defined by (4.1),

‖Y − Y ′‖L∞(Ω) . ‖Y − Y ′‖H7/12
x H

3/4
z
≤ C‖ū− ū′‖Q1/2 . (4.6)

Proof. From the definition of Y , one infers that

Y (x, z) = −1 +

∫ z

−1

ds

ūy(x, Y (x, s))
. (4.7)

Hence, combined with the corresponding relation for Y ′, one has

Y (x, z)− Y ′(x, z) =

∫ z

−1

ū′y(Y ′(x, s))− ūy(x, Y (x, s))

ūy(x, Y (x, s))ū′y(x, Y ′(x, s))
ds. (4.8)

From there, it follows that for a.e. x ∈ (x0, x1),

‖Y (x, ·)− Y ′(x, ·)‖H1
z
≤
∥∥∥∥ ū′y(Y ′(x, ·))− ūy(x, Y (x, ·))
ūy(x, Y (x, ·))ū′y(x, Y ′(x, ·))

∥∥∥∥
L2
z

. (4.9)

We decompose the right-hand side as

ū′y(x, Y ′(x, ·))− ūy(x, Y (x, ·))
ūy(x, Y (x, ·))ū′y(x, Y ′(x, ·))

=
(ū′y − ūy)(x, Y ′(x, ·))

ūy(x, Y (x, ·))ū′y(x, Y ′(x, ·))
+
ūy(x, Y ′(x, ·))− ūy(x, Y (x, ·))
ūy(x, Y (x, ·))ū′y(x, Y ′(x, ·))

.

(4.10)

The first term is bounded in H
7/12
x L2

z as follows, using Lemma B.4 together with the Sobolev

embeddings H
2/5
x ⊂ L10

x , H
1/10
x ⊂ L5/2

x ,∥∥∥∥ (ū′y − ūy)(x, Y ′(x, ·)
ūy(x, Y (x, ·))ū′y(x, Y ′(x, ·))

∥∥∥∥
H

7/12
x L2

z

≤ ‖(ū′y − ūy)(x, Y (x, ·))‖
H

7/12
x L2

z

∥∥∥∥ 1

ūy(x, Y (x, ·))

∥∥∥∥
L∞z (H1

x)

∥∥∥∥ 1

ū′y(x, Y ′(x, ·))

∥∥∥∥
L∞z (H1

x)

.
(
‖ūy − ū′y‖H7/12

x L2
y

+ ‖ūy − ū′y‖L2
xH

7/6
y

) (
1 + ‖ūxūxy‖L∞z (L2

x)

) (
1 + ‖ūxūxy‖L∞z (L2

x)

)
. ‖ū− ū′‖Q1/2

(
1 + ‖ūx‖L∞y (H

2/5
x )
‖ūxy‖L∞y (H

1/10
x )

)(
1 + ‖ū′x‖L∞y (H

2/5
x )
‖ū′xy‖L∞y (H

1/10
x )

)
. ‖ū− ū′‖Q1/2(1 + ‖ū‖2Q1)(1 + ‖ū′‖2Q1).

(4.11)
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Concerning the second term in the right-hand side of (4.10), we write a Taylor formula, namely

ūy(x, Y ′(x, z))− ūy(x, Y (x, z)) = (Y ′(x, z)− Y (x, z))

∫ 1

0

∂2
y ū(x, τY ′(x, z) + (1− τ)Y (x, z)) dτ.

(4.12)
Hence ∥∥∥∥ ūy(x, Y ′(x, ·)− ūy(x, Y (x, ·)

ūy(x, Y (x, ·))ū′y(x, Y ′(x, ·))

∥∥∥∥
H

7/12
x L2

z

≤ ‖Y ′ − Y ‖
L∞z (H

7/12
x )

∥∥∥∥∫ 1

0

∂2
y ū(x, τY ′(x, z) + (1− τ)Y (x, z)) dτ

∥∥∥∥
H

7/12
x L2

z

×
∥∥∥∥ 1

ūy(x, Y (x, ·))

∥∥∥∥
L∞z (H1

x)

∥∥∥∥ 1

ū′y(x, Y ′(x, ·))

∥∥∥∥
L∞z (H1

x)

.

(4.13)

As previously, we have ∥∥∥∥ 1

ūy(x, Y (x, ·))

∥∥∥∥
L∞z (H1

x)

. 1 + ‖ū‖2Q1 ,∥∥∥∥ 1

ū′y(x, Y ′(x, ·))

∥∥∥∥
L∞z (H1

x)

. 1 + ‖ū′‖2Q1 .

Furthermore,
‖Y ′ − Y ‖

L∞z (H
7/12
x )

. ‖Y − Y ′‖
H

7/12
x H

3/4
z
. (4.14)

And using Lemma B.4,∥∥∥∥∫ 1

0

∂2
y ū(x, τY ′(x, z) + (1− τ)Y (x, z)) dτ

∥∥∥∥
H

7/12
x L2

z

. ‖∂2
y ū‖H7/12

x L2
z

+ ‖∂2
y ū‖L2

xH
7/6
z

. ‖ū− y‖Q1 .

(4.15)
Therefore, since m ≤ 1, we infer that there exists a universal constant C̄ such that

‖Y − Y ′‖
H

7/12
x H

3/4
z
≤ C̄

(
‖ū− ū′‖Q1/2 +m‖Y − Y ′‖

H
7/12
x H

3/4
z

)
. (4.16)

For m sufficiently small, we can absorb the second term in the right-hand side into the left-hand
side, and we obtain the result announced in the Lemma.

4.2 Bounds and stability of the coefficients α and γ

We now state two lemmas allowing us to estimate the coefficients and their difference in terms of
the Q1 and Q1/2 norms of the functions ū, ū′:

Lemma 4.3 (Bounds on the coefficients in terms of theQ1 norm). Let ū ∈ Q1 such that ‖ū−y‖Q1 ≤
m. Let α, γ1, γ2 be given by (4.2), (4.3), (4.4).

Then the following estimates hold:

‖αz‖∞ + ‖α− 1‖∞ + ‖αx‖L∞z (L2
x) . ‖ū− y‖Q1 ,

‖γ1‖L2
z(H

2/3
x )

+ ‖γ1‖L∞z (H
1/2
x )

+ ‖∂zγ1‖L∞z (L2
x) . ‖ū− y‖Q1 ,

‖γ2‖L2
z(H1

x) + ‖γ2‖L2
z(H

3/5
x )

. ‖ū− y‖Q1 .

(4.17)
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Lemma 4.4 (Bounds on differences between coefficients in terms of the Q1/2 norm). Let ū, ū′ ∈ Q1

such that ‖ū− y‖Q1 ≤ m, ‖ū′ − y‖Q1 ≤ m. Let α, α′, γi, γ
′
i be given by (4.2), (4.3), (4.4).

Then the following estimates hold:

‖α− α′‖
L∞z (H

7/12
x )

. ‖ū− ū′‖Q1/2 , (4.18)

‖γ1 − γ′1‖L∞z (L2
x) . ‖ū− ū′‖Q1/2 , (4.19)

‖γ2 − γ′2‖L2
z(H

1/2
x )

. ‖ū− ū′‖Q1/2 (4.20)

Proof of Lemma 4.3. Concerning the bounds on α, we recall that α(x, z) = ū2
y(x, Y (x, z)), so that

αz = 2ūyy(x, Y (x, z))ūy(x, Y (x, z))
∂Y

∂z
= 2ūyy(x, Y (x, z)).

Hence ‖αz‖∞ = 2‖ūyy‖∞, and ūyy ∈ H2/3
x H1

y . Thus ‖ūyy‖∞ . ‖ū − y‖Q1 . Furthermore, ‖α −
1‖∞ . ‖ūy − 1‖∞, and since

∫ 1

−1
(ūy(x, y)− y) dy = 0, ‖ūy − 1‖∞ ≤ ‖ūyy‖∞.

In a similar fashion,

αx(x, z) = 2ūxy(x, Y )ūy(x, Y )+2ūyy(x, Y )ūy(x, Y )
∂Y

∂x
= 2ūxy(x, Y )ūy(x, Y )−2ūyy(x, Y )ūx(x, Y ).

Hence
‖αx‖L∞z (L2

x) . ‖ūy‖∞‖ūxy‖L2
x(L∞y ) + ‖ūyy‖∞‖ūx‖L2

x(L∞y )

. ‖ū‖Q1‖ūxyy‖L2

. ‖ū‖Q1‖ū− y‖Q1 .

We now address the bounds on γ1 = ūx(x, Y (x, z)). We have, using Lemma B.4

‖γ1‖H2/3
x L2

z
. ‖ūx‖H2/3

x L2
y

+ ‖ūx‖L2
x(H

4/3
y )

. ‖ū− y‖Q1 .

Furthermore,

∂zγ1 =
∂Y

∂z
ūxy(x, Y (x, z)),

so that
‖∂zγ1‖L∞z (L2

x) ≤ ‖∂zγ1‖L2
x(L∞z ) . ‖ūxy‖L2

x(L∞z ) . ‖ūxy‖L2
x(H1

y).

Hence ‖∂zγ1‖L∞z (L2
x) . ‖ū− y‖Q1 .

Concerning the L∞z (H
1/2
x ) bound on γ1, we use Lemma B.16 in the Appendix, which yields

‖γ1‖L∞z (H
1/2
x )

. ‖γ1‖H2/3
x L2

z
+ ‖∂zγ1‖H1/3

x L2
z
. (4.21)

We then bound the two terms in the right-hand side, using Lemma B.4. We have

‖γ1‖H2/3
x L2

z
. ‖ūx‖H2/3

x L2
y

+ ‖ūx‖L2
xH

4/3
y

. ‖ū− y‖Q1 .

Furthermore,

∂zγ1(x, z) =
∂Y

∂z
(x, z)ūxy(x, Y (x, z)) =

ūxy
ūy

(x, Y (x, z)), (4.22)
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so that, using Lemma B.4,

‖∂zγ1‖H1/3
x L2

z
.

∥∥∥∥ ūxyūy
∥∥∥∥
H

1/3
x L2

y

+

∥∥∥∥ ūxyūy
∥∥∥∥
L2
xH

2/3
y

. (4.23)

Concerning the first term, we write∥∥∥∥ ūxyūy
∥∥∥∥
H

1/3
x L2

y

. ‖ūxy‖H1/3
x L2

y

∥∥∥∥ 1

ūy

∥∥∥∥
L∞y (H1

x)

. ‖ū− y‖Q1‖ūy‖H1
y(H1

x).

Concerning the second term, we have∥∥∥∥ ūxyūy
∥∥∥∥
L2
xH

2/3
y

. ‖ūxy‖L2
xH

2/3
y

∥∥∥∥ 1

ūy

∥∥∥∥
L∞x (H1

y)

. ‖ū− y‖Q1‖ūyy‖∞.

Eventually, we get
‖γ1‖L∞z (H

1/2
x )

. ‖ū‖Q1‖ū− y‖Q1 .

Concerning the term γ2 = −ūyy(x, Y (x, z)), we write

−∂xγ2(x, z) = ūxyy(x, Y (x, z)) +
∂Y

∂x
∂3
y ū(x, Y (x, z)).

The first term is bounded in L2 by ‖ūxyy‖L2 . ‖ū−y‖Q1 (see Lemma B.4). Concerning the second
one, we recall that ∂xY = −(ūx/ūy)(x, Y (x, z)), and therefore ∂xY ∈ Lp(Ω) for all p < ∞ (note
that the jacobian of the change of variables y = Y (x, z) is bounded from above and below by a
uniform constant). And since ∂3

y ū ∈ H2/3(Ω) ⊂ L6(Ω), we obtain, thanks to the Hölder inequality,

‖∂xγ2‖L2 . (1 + ‖ū‖Q1)‖ū− y‖Q1 .

Eventually, using once again Lemma B.4,

‖γ2‖L2
z(H

3/5
x )

. ‖ūyy‖L2
z(H

3/5
x )

+ ‖ūyy‖L2
x(H

6/5
y )

. ‖ū− y‖Q1 .

Proof of Lemma 4.4. We use the same type of techniques as in the previous Lemma. Recalling
the definition of α, α′, we write

α(x, z)− α′(x, z) = ū2
y(x, Y (x, z))− (ū′y)2(x, Y (x, z)) (4.24)

+(ū′y)2(x, Y (x, z))− (ū′y)2(x, Y ′(x, z)). (4.25)

Using the results of Lemma B.4, the term (4.24) is bounded as follows

‖ū2
y(x, Y (x, z))− (ū′y)2(x, Y (x, z))‖

L∞z (H
7/12
x )

.‖ū2
y(x, Y (x, z))− (ū′y)2(x, Y (x, z))‖

H
3/4
z (H

7/12
x )

.‖ū2
y − (ū′y)2‖

H
7/12
x H

3/4
y

+ ‖ū2
y − (ū′y)2‖

L2
xH

23/12
y

.

Note that H
7/12
x H

3/4
y ⊂ L∞, and therefore it is an algebra. Hence

‖ū2
y − (ū′y)2‖

H
7/12
x H

3/4
y

. ‖ūy − ū′y‖H7/12
x H

3/4
y )

(
‖ūy‖H7/12

x H
3/4
y )

+ ‖ū′y‖H7/12
x H

3/4
y )

)
. ‖ū− ū′‖Q1/2 .

(4.26)
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Concerning the other term, we have

‖ū2
y − (ū′y)2‖

H
23/12
y

≤ ‖ūyūyy − ū′yū′yy‖H11/12
y

≤ ‖ūy − ū′y‖H11/12
y
‖ūyy‖H11/12

y
+ ‖ūyy − ū′yy‖H11/12

y
‖ū′y‖H11/12

y
.

Note that
‖ūyy‖L∞x (H

11/12
y )

. ‖ūyy‖H2/3
x (H

11/12
y )

. ‖ū− y‖Q1 ,

and
‖ūyy − ū′yy‖L2

xH
11/12
y

. ‖ū− ū′‖Q1/2 .

We deduce that

‖ū2
y(x, Y (x, z))− (ū′y)2(x, Y (x, z))‖

L∞z (H
7/12
x )

. ‖ū− ū′‖Q1/2 .

We now address the term (4.25), which we write as

(ū′y)2(x, Y (x, z))− (ū′y)2(x, Y ′(x, z)) = 2(Y (x, z)− Y ′(x, z))
∫ 1

0

(ū′yū
′
yy)(x, τY + (1− τ)Y ′) dτ.

Hence, using Lemma B.4

‖(4.25)‖
H

3/4
y H

7/12
x

.
(
‖Y − Y ′‖

H
3/4
y H

7/12
x

+ ‖Y − Y ′‖
L2
xH

23/12
y

)
×
(
‖ūy‖H3/4

y H
7/12
x

+ ‖ūy‖L2
xH

23/12
y

)
×
(
‖ūyy‖H3/4

y H
7/12
x

+ ‖ūyy‖L2
xH

23/12
y

)
. ‖ū− ū′‖Q1/2 .

(4.27)

Gathering (4.26) and (4.27), we infer that

‖α− α′‖
L∞z (H

7/12
x )

. ‖ū− ū′‖Q1/2 .

We then address the bounds on γ1 − γ′1. As previously, we write

(γ1 − γ′1)(x, z) = (ūx(x, Y (x, z))− ūx(x, Y ′(x, z))) + (ūx(x, Y ′(x, z))− ū′x(x, Y ′(x, z))) .

Using Lemma 4.2, the first term is bounded in the following way

‖ūx(x, Y (x, z))− ūx(x, Y ′(x, z))‖L∞z (L2
x) ≤ ‖ūxy‖L2

x(L∞y )‖Y − Y ′‖∞ ≤ Cm‖ū− ū′‖Q1/2 .

As for the second term,

‖ūx(x, Y ′(x, z))− ū′x(x, Y ′(x, z))‖L∞z (L2
x) ≤ ‖ūx(x, Y ′(x, z))− ū′x(x, Y ′(x, z))‖L2

x(L∞z )

≤ ‖ūx − ū′x‖L2
x(L∞y )

≤ ‖ū− ū′‖Q1/2 .

Consequently,
‖γ1 − γ′1‖L∞z (L2

x) ≤ Cm‖ū− ū′‖Q1/2 .
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Eventually, we address the bounds on γ2 − γ′2, which we decompose as previously as

(γ2− γ′2)(x, z) =
(
ūyy(x, Y (x, z))− ū′yy(x, Y (x, z))

)
+
(
ū′yy(x, Y (x, z))− ū′yy(x, Y ′(x, z))

)
. (4.28)

Concerning the second term, we use a Taylor formula

ū′yy(x, Y )− ū′yy(x, Y ′) = (Y − Y ′)
∫ 1

0

∂3
y ū
′(x, τY + (1− τ)Y ′)dτ. (4.29)

From there, it follows that for some σ > 1/2,

‖ū′yy(x, Y )− ū′yy(x, Y ′)‖
L2
z(H

1/2
x )
≤ ‖Y − Y ′‖

L∞z (H
1/2
x )

∥∥∥∥∫ 1

0

∂3
y ū
′(x, τY + (1− τ)Y ′)dτ

∥∥∥∥
L2
z(Hσx )

≤ ‖Y − Y ′‖
L∞z (H

1/2
x )

(
‖∂3
y ū
′‖L2

z(Hσx ) + ‖∂3
y ū
′‖H2σ

z (L2
x)

)
. ‖ū− ū′‖Q1/2‖ū′‖Q1 .

(4.30)

We then address the first term in (4.28). Using Lemma B.4, we obtain

‖(ūyy − ū′yy)(x, Y (x, z))‖
L2
z(H

1/2
x )
≤ Cm

(
‖ūyy − ū′yy‖L2

z(H
1/2
x )

+ ‖ūyy − ū′yy‖L2
xH

1
y

)
≤ Cm‖ū− ū′‖Q1/2 .

(4.31)

4.3 Uniform regular bounds on the dual profiles

In Proposition 3.6, we proved uniform bounds in L2
xH

1
z for the profiles Θj (defined in (3.38)). We

now prove uniform bounds in Z0 which will be useful to prove the stability of the dual profiles.

Lemma 4.5 (Z0 estimates for Θj). Assume that the coefficients α, γ satisfy the hypotheses of

Proposition 3.6. Assume furthermore that α ∈ H1
x(H1

z ) and ∂zzα ∈ L2
z(H

3/5
x ), and that γ1 ∈

L2
z(H

2/3
x ) ∩ L∞z (H

1/3
x ) ∩W 1,∞

z (L2
x), γ2 ∈ L2

z(L
∞
x ) ∩H1

x(L2
z) ∩H1

z (H
3/5
x ).

There exists a constant µ0 > 0, depending only on Ω, such that if

‖α− 1‖H1
x(H1

z ) + ‖∂zzα‖L2
z(H

3/5
x )
≤ µ0,

‖γ1‖L2
z(H

2/3
x )

+ ‖γ1‖L∞z (H
1/3
x )

+ ‖∂zγ1‖L∞z (L2
x) ≤ µ0,

‖γ2‖L2
z(L∞x ) + ‖∂xγ2‖L2 + ‖∂zγ2‖L2

z(H
3/5
x )
≤ µ0

then the solution constructed in Proposition 3.6 belongs to Z0(Ω±), and satisfies the estimate

‖Θj‖Z0(Ω+) + ‖Θj‖Z0(Ω−) . 1.

Proof. For the proof of the Z0 estimates, it will be convenient to work with the lift Θj
[ defined in

Remark 3.8. We recall that Θj
[ satisfies equation (3.48).

• First step: existence of a solution in Z0 for smooth coefficients.
We still assume that α and γ are smooth, and we now derive Z0 estimates for our L2(H1)

solution. In this case, we notice that Sj belongs to L2(Ω).
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It follows from the work of Pagani that

‖z∂xΘj
[‖L2(Ω) + ‖∂zzΘj

[‖L2(Ω) + ‖Θj
[‖L∞z (H

1/2
x )

(4.32)

. ‖Sj‖L2(Ω) + 1 + |b+|+ |b−|+ ‖Θj
[‖L2(Ω). (4.33)

Thus there remains to evaluate each of the terms in the right-hand side. We start with ‖Sj‖L2(Ω).

According to the definition of Θj
l , we have

‖Sj‖L2(Ω±) ≤ C (1 + |b+|+ |b−|)
+
(
‖γ‖∞ + ‖∂zγ‖L2

z(L∞x )

)
‖∂zΘj‖L2(Ω±)

+
(
‖γx‖∞ + ‖∂xzγ‖L2

z(L∞x )

)
‖∂zΘj‖L2(Ω±).

Note also that

|b±| ≤ C (‖Γ‖∞ + ‖Γx‖∞) ‖Θj(·, 0+)‖L2(x0,x1) ≤ (‖γ‖∞ + ‖Γx‖∞) ‖∂zΘj‖L2(Ω+),

and
‖Θj

[‖L2 . ‖Θj
]‖L2 + |b+|+ |b−|

Since Proposition 3.6 ensures that ‖∂zΘj‖L2(Ω±) . 1, we obtain a bound on ‖Sj‖L2(Ω+) and b±
(depending on some high order norms of the coefficients). We therefore obtain a first Z0 estimate
on Θ̃j .
• Second step: Z0 estimates for smooth coefficients.
We still assume that the coefficients α, γ are smooth, but our purpose is now to derive a Z0

bound on the solution that only depends on norms of the coefficients γi, α in lower order norms.
More precisely, we now assume that

γ = zγ1 + γ2,

where γi ∈W 2,∞, α ∈W 2,∞, and with

‖γ1‖L2
z(H

2/3
x )

+ ‖γ1‖L∞z (H
1/3
x )

+ ‖∂zγ1‖L∞z (L2
x) � 1,

‖γ2‖L2
z(L∞x ) + ‖∂xγ2‖L2 + ‖∂zγ2‖L2

z(H
3/5
x )
� 1.

We also assume that
∂zα ∈ L2

z(H
1
x), ∂zzα ∈ L2

z(H
3/5
x ).

It can be easily checked that these assumptions, together with the ones of Proposition 3.6, ensure
that the coefficients Γi satisfy the same smallness assumptions as the coefficients γi. We first
rewrite the equation for Θj

[ as

−z∂xΘj
] − ∂zzΘ

j
] = (α− 1)∂zzΘ

j
] + Sj ,

so that there exists a universal constant C̄ such that

‖z∂xΘj
]‖L2 + ‖∂zzΘj

]‖L2 ≤ C̄
(
‖α− 1‖∞‖∂zzΘj

]‖L2 + ‖Sj‖L2 + |b+|+ |b−|+ ‖Θj
]‖L2

)
.

For ‖α− 1‖∞ � 1, we absorb the first term into the left-hand side. Furthermore,

‖Sj‖L2(Ω) . |b+|+ |b−|+ ‖∂zG[Θj ]‖L2(Ω+) + ‖∂zG[Θj ]‖L2(Ω−).
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Note also that b± are the (integrals of the) traces of G[Θj ] at z = 0±. It follows that if the coef-
ficients α, γ satisfy the smallness assumptions of Proposition 3.6, there exists a universal constant
C̄ such that

‖z∂xΘj
]‖L2 + ‖∂zzΘj

]‖L2 ≤ C̄
(
1 + ‖∂zG[Θj ]‖L2(Ω+) + ‖∂zG[Θj ]‖L2(Ω−)

)
. (4.34)

Therefore we now focus on the derivation of a bound for ∂zG[Θj ] in L2(Ω±). By symmetry, we
only treat the case of Ω+.

Differentiating the definition of G[Θj ] (3.42) with respect to z, we have, in Ω+,

∂zG[Θj ] = Γ2∂zΘ
j +

∫ x1

x

∂xΓ2∂zΘ
j (4.35)

+∂zΓ2Θj +

∫ x1

x

∂xzΓ2Θj (4.36)

+zΓ1∂zΘ
j +

∫ x1

x

∂xΓ1z∂zΘ
j (4.37)

+Γ1Θj +

∫ x1

x

∂xΓ1Θj (4.38)

−
∫ x1

x

z∂zΓ1∂xΘj . (4.39)

We then evaluate each term of the right-hand side separately.

� The term (4.35) is the easiest. Recalling that ‖∂zΘj‖L∞(0,1)(L2
x) . ‖Θj‖Z0(Ω+), we have

‖(4.35)‖L2(Ω+) ≤ C‖Θj‖Z0(Ω+)

(
‖Γ2‖L2

z(L∞x ) + ‖∂xΓ2‖L2(Ω)

)
� For the term (4.36), we recall that ‖Θj‖

L∞z (H
1/2
x )

. ‖Θj‖Z0 . Using a H
−2/5
x −H2/5

x duality,

we obtain

‖(4.36)‖L2(Ω+) ≤ C‖Θj‖
L∞z (H

2/5
x )
‖∂zΓ2‖L2

z(H
3/5
x )
≤ C‖Θj‖Z0(Ω+)‖∂zΓ2‖L2

z(H
3/5
x )

.

The term (4.38) is treated in a similar fashion, using a H−1/3 −H1/3 duality

‖(4.38)‖L2(Ω+) ≤ C‖Θj‖
L∞z (H

1/3
x )
‖Γ1‖L2

z(H
2/3
x )

.

� For the term (4.37), the first part is easily bounded, using the embeddings H1/2 ↪→ L4 in 1D
and Lemma B.12, as

‖Γ1z∂zΘ
j‖L2(Ω+) . ‖Γ1‖L∞z H1/2

x

∥∥|z| 12 ∂zΘj
∥∥
L2
zH

1/2
x

. ‖Γ1‖L∞z H1/2
x
‖Θj‖Z0(Ω+). (4.40)

We write the L2 norm of the second part in the following way:∥∥∥∥∫ x1

x

∂xΓ1z∂zΘ
j

∥∥∥∥
L2(Ω+)

= sup
h∈L2(Ω+),‖h‖L2≤1

∫
Ω+

h

∫ x1

x

∂xΓ1z∂zΘ
j

= sup
h∈L2(Ω+),‖h‖L2≤1

∫ 1

0

∫ x1

x0

(∫ x

x0

h

)
∂xΓ1z∂zΘ

j .

(4.41)
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By Lemma B.8, for each z ∈ (0, 1),∣∣∣∣∫ x1

x0

(∫ x

x0

h

)
∂xΓ1z∂zΘ

j

∣∣∣∣ . ‖h(·, z)‖L2
x
‖Γ1(·, z)‖

H
1/2
x
‖z∂zΘj(·, z)‖

H
1/2
00r

(x0,x1)
. (4.42)

Integrating over z ∈ (0, 1) yields∫ 1

0

∣∣∣∣∫ x1

x0

(∫ x

x0

h

)
∂xΓ1z∂zΘ

j

∣∣∣∣ . ‖h‖L2
x,z
‖Γ1‖L∞z H1/2

x
‖z∂zΘj‖

L2
zH

1/2
00r

(x0,x1)
. (4.43)

Thus, using the embedding of Lemma B.14,∥∥∥∥∫ x1

x

∂xΓ1z∂zΘ
j

∥∥∥∥
L2(Ω+)

. ‖Γ1‖L∞z H1/2
x
‖Θj‖Z0(Ω+). (4.44)

Combining (4.40) and (4.44) yields

‖(4.37)‖L2(Ω+) . ‖Γ1‖L∞z H1/2
x
‖Θj‖Z0(Ω+). (4.45)

� At last, we bound (4.39) by

‖(4.37)‖L2(Ω+) ≤ C‖z∂xΘj‖L2(Ω+)‖∂zΓ1‖L∞z (L2
z) ≤ C‖Θj‖Z0(Ω+)‖∂zΓ1‖L∞z (L2

z).

In conclusion, setting

µ0 := ‖Γ1‖L∞z H1/2
x
‖+ ‖∂zΓ1‖L∞z (L2

z) + ‖Γ1‖L2
z(H

2/3
x )

+ ‖Γ2‖L2
z(H1

x) + ‖∂zΓ2‖L2
z(H

3/5
x )

we infer that there exists a universal constant C̄ such that

‖∂zG[Θj ]‖L2(Ω±) ≤ C̄µ0‖Θj‖Z0(Ω±).

Hence
|b±|C̄µ0‖Θj‖Z0(Ω±),

and
‖Θj‖Z0(Ω±) ≤ C̄‖Θj

[‖Z0(Ω±).

Plugging these estimates into (4.34), we get

‖Θj
[‖Z0 ≤ C̄(1 + µ0‖Θj

[‖Z0),

and thus
‖Θj

[‖Z0 ≤ C̄. (4.46)

• Third step: Z0 estimates for general coefficients.
We take a sequence αn, γ

n of smooth coefficients such that γn = zγn1 + γn2 and γni (resp. αn)
converges towards γi (resp. α) in the relevant norms, namely

‖γ1 − γn1 ‖L2
z(H

2/3
x )

+ ‖γ1 − γn1 ‖L∞z (H
1/3
x )

+ ‖∂z(γ1 − γn1 )‖L∞z (L2
x) → 0,

‖γ2 − γn2 ‖L2
z(L∞x ) + ‖∂x(γ2 − γn2 )‖L2 + ‖∂z(γ2 − γn2 )‖

L2
z(H

3/5
x )
→ 0,

‖α− αn‖H1
z (H1

x) + ‖∂zz(α− αn)‖
L2
z(H

3/5
x )
→ 0.

We consider the profiles Θj
n associated with αn, γn. According to the previous step, for all

n ∈ N, Θj
n[ ∈ Z

0, and we have the estimate (4.46). Therefore we can extract a subsequence and
pass to the limit in the equation. It can be easily checked that the limit is a solution of (3.47),
and satisfies (4.46). This concludes the proof of the Lemma.
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4.4 Stability of the dual profiles

We consider the profiles Θj and (Θj)′ constructed in Proposition 3.6.

Lemma 4.6. Assume that the hypotheses of Proposition 3.6 and Lemma 4.5 are satisfied for the
coefficients α, α′, γ, γ′.

Then
‖Θj − (Θj)′‖L2

x(H1
z ) + ‖z∂x(Θj − (Θj)′)‖L2

x(H−1
z )

. ‖α− α′‖
L∞z (H

7/12
x )

+ ‖γ1 − γ′1‖L∞z (L2
x) + ‖γ2 − γ′2‖L2

z(H
1/2
x )

.

As a consequence,

‖Φj − (Φj)′‖L2(Ω) +

∫ 1

0

z(Φj − (Φj)′)2(x0, z) dz +

∫ 0

−1

|z|(Φj − (Φj)′)2(x1, z) dz

. ‖α− α′‖
L∞z (H

7/12
x )

+ ‖γ1 − γ′1‖L∞z (L2
x) + ‖γ2 − γ′2‖L2

z(H
1/2
x )

.

Proof. In order to alleviate the notation, we drop the superscripts j, choosing one of the cases
j = 0 or j = 1 (the two cases are similar.) Following Proposition 3.6, we introduce Θ,Θ′ defined
by (3.38), and we define θ = Θ − Θ′. Note that [θ]|z=0 = 0, so that θ ∈ L2

x(H1
z ). We also denote

by G,G′ the operators defined in (3.42) associated with (α, γ), (α′, γ′).
It follows that θ satisfies

−∂z(∂zθ +G[θ])− z

α
∂xθ =

(
1

α
− 1

α′

)
z∂xΘ′ + ∂z(G−G′)[Θ′],

θ(·,±1) = 0,

θ(x1, z) = 0 ∀z > 0,

θ(x0, z) = 0 ∀z < 0.

(4.47)

Then, according to Corollary 3.9, it suffices to estimate the right-hand side in L2(H−1).
• Estimate of (1/α− 1/α′)z∂xΘ′ in L2(H−1):
Using the Sobolev embedding Lq(−1, 1) ⊂ H−1(−1, 1) for all q > 1, we obtain∥∥∥∥z( 1

α
− 1

α′

)
∂xΘ′

∥∥∥∥
L2
x(H−1

z )

≤
∥∥∥∥z( 1

α
− 1

α′

)
∂xΘ′

∥∥∥∥
L2
x(L

4/3
z )

≤ C‖α− α′‖L∞x (L4
z)‖z∂xΘ′‖2L2(Ω).

Using the Z0 bounds on Θ′ from Lemma 4.5, we get∥∥∥∥z( 1

α
− 1

α′

)
∂xΘ′

∥∥∥∥
L2
x(H−1

z )

. ‖α− α′‖L∞ . ‖α− α′‖
L∞z (H

7/12
x )

. (4.48)

• Estimate of (G−G′)[Θ′] in L2(Ω):
As in the proof of Proposition 3.6, we write Γ = zΓ1+Γ2. We focus on the bound of (G−G′)[Θ′]

in L2(Ω+), since the bound in Ω− is identical. Note that

(Γ− Γ′)Θ′ +

∫ x1

x

∂x(Γ− Γ′)Θ′ = −
∫ x1

x

(Γ− Γ′)∂xΘ′.
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We start with the terms involving Γ1 and Γ′1. We have∥∥∥∥∫ x1

x

z(Γ1 − Γ′1)∂xΘ′
∥∥∥∥
L2(Ω+)

≤ ‖z∂xΘ′‖L2(Ω+)‖Γ1 − Γ′1‖L∞z (L2
x). (4.49)

Since

Γ1 − Γ′1 =
γ1 − γ′1
α

+ γ′1
α′ − α
αα′

,

we get
‖Γ1 − Γ′1‖L∞z (L2

x) . ‖γ1 − γ′1‖L∞z (L2
x) + ‖γ′1‖L∞z (L2

x)‖α− α′‖∞
. ‖γ1 − γ′1‖L∞z (L2

x) + ‖α− α′‖
L∞z (H

7/12
x )

.

Hence ∥∥∥∥∫ x1

x

z(Γ1 − Γ′1)∂xΘ′
∥∥∥∥
L2(Ω+)

. ‖γ1 − γ′1‖L∞z (L2
x) + ‖α− α′‖

L∞z (H
7/12
x )

. (4.50)

We now address the terms with Γ2,Γ
′
2. Integrating by parts, we have∥∥∥∥∫ x1

x

(Γ2 − Γ′2)∂xΘ′
∥∥∥∥
L2(Ω+)

= sup
h∈L2(Ω+),‖h‖L2≤1

∫
Ω+

h

∫ x1

x

(Γ2 − Γ′2)∂xΘ′

= sup
h∈L2(Ω+),‖h‖L2≤1

∫
Ω+

(∫ x

x0

h

)
(Γ2 − Γ′2)∂xΘ′.

Then, for any z ∈ (0, 1), using Lemma B.9, we have∣∣∣∣∫ x1

x0

(∫ x

x0

h

)
(Γ2 − Γ′2)∂xΘ′

∣∣∣∣ . ‖h‖L2
x
‖Γ2 − Γ′2‖H1/2

x
‖Θ′‖

H
1/2
00r

(x0,x1)
. (4.51)

Integrating over z ∈ (0, 1) and using the embedding of Lemma B.13, we obtain, for any h ∈ L2(Ω+),∣∣∣∣∣
∫

Ω+

h

∫ x1

x

(Γ2 − Γ′2)∂xΘ′

∣∣∣∣∣ . ‖h‖L2
x,z
‖Γ2 − Γ′2‖L2

zH
1/2
x
‖Θ′‖

L∞z H
1/2
00r

(x0,x1)

. ‖h‖L2
x,z
‖Γ2 − Γ′2‖L2

zH
1/2
x
‖Θ′‖Z0(Ω+).

(4.52)

Hence ∥∥∥∥∫ x1

x

(Γ2 − Γ′2)∂xΘ′
∥∥∥∥
L2(Ω+)

. ‖Γ2 − Γ′2‖L2
zH

1/2
x
‖Θ′‖Z0(Ω+). (4.53)

Now, writing

Γ2 − Γ′2 =
γ2 − γ′2
α

+ γ′2
α′ − α
αα′

,

we obtain

‖Γ2 − Γ′2‖L2
zH

1/2
x

.‖γ2 − γ′2‖L2
zH

1/2
x
‖α‖L∞z (H1

x)

+ ‖γ′2‖L∞z (H
3/5
x )

(‖α‖L∞z (H1
x) + ‖α′‖L∞z (H1

x))‖α− α′‖L∞z (H
1/2
x )

.
(4.54)

Therefore ∥∥∥∥∫ x1

x

(Γ2 − Γ′2)∂xΘ′
∥∥∥∥
L2(Ω+)

. ‖γ2 − γ′2‖L2
zH

1/2
x

+ ‖α− α′‖
L∞z (H

1/2
x )

. (4.55)

Gathering (4.48), (4.50) and (4.55), we obtain the result announced in the Lemma.
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4.5 Proof of the stability of the orthogonality conditions

Let us now say a few words about the proof of Proposition 4.1. Let ū, ū′ be two profiles such that
‖ū− y‖Q1 ≤ m, ‖ū′ − y‖Q1 ≤ m. According to Lemma 4.3, the coefficients α, α′ γi, γ

′
i satisfy the

smallness assumptions of Proposition 3.6 and Lemma 4.5. Hence we can construct the profiles Θj ,
(Θj) associated with α, γ α′, γ′ respectively. Furthermore, according to Lemma 4.5, these profiles
belong to Z0(Ω±).

We now use Lemma 4.4 together with Lemma 4.6, from which we infer that

‖Θj − (Θj)′‖L2(Ω) +

∫ 1

0

z(Θj − (Θj)′)2(x0, z) dz +

∫ 0

−1

|z|(Θj − (Θj)′)2(x1, z) dz

. ‖ū− ū′‖Q1/2 .

(4.56)

Now, let Ξ = (f, δ0, δ1) ∈ H. In this case, note that f(xi, ·) = 0. Furthermore, since ū(xi, 0) = 0,

we have Y (xi, 0) = 0 and thus δ̃i(0) = δ̃i
′
(0) = 0. Additionally, z . Y (xi, z) . z.

Therefore the linear forms `jū(Ξ) can be written as

`jū(Ξ) :=

∫
Ω

∂x(f(x, Y (x, z)))
Θj

α
+

∫ 1

0

1

α(x0, z)
δ′′0 (Y (x0, z))Θ

j(x0, z) dz

−
∫ 0

−1

1

α(x1, z)
δ′′1 (Y (x1, z))Θ

j(x1, z) dz

+

∫
z∂xΘjΓ1

(
1z<0

δ′1(Y (x1, z))

ūy(x1, Y (x1, z))
+ 1z>0

δ′0(Y (x0, z))

ūy(x0, Y (x0, z))

)
.

(4.57)

Using the definition of the H norm together with (4.56) and with the estimates from Lemma 4.2
and Lemma 4.4, we infer that ∣∣∣`jū(Ξ)− `jū′(Ξ)

∣∣∣ . ‖ū− ū′‖Q1/2‖Ξ‖H. (4.58)

This completes the proof of Proposition 4.1.

5 The nonlinear problem

In this section, we prove Theorem 2. The most difficult part is the existence statement, which
relies on the scheme described in Section 1.4.

5.1 Execution of the nonlinear scheme

For η > 0 denote by Bη the open ball of radius η and centered at 0 in H⊥sg (the subspace of H of
data for which the model problem (2.1) can be solved with Z1 regularity, see (2.30)). For every
Ξ = (f, δ0, δ1) ∈ H, one has the decomposition

Ξ = Ξ⊥ + 〈Ξ0; Ξ〉HΞ0 + 〈Ξ1; Ξ〉HΞ1, (5.1)

where Ξ⊥ ∈ H⊥sg, Ξ0,Ξ1 are defined in Corollary 2.10, and the linear maps Ξ→ Ξ⊥ and 〈Ξk; Ξ〉 are
continuous. We will deduce the existence statement of Theorem 2 from the following proposition.
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Proposition 5.1. There exist η > 0, two Lipschitz maps νk for k ∈ {0, 1} from Bη to R with
ν0(0) = ν1(0) = 0 and a map U⊥ : Bη → Q1, which is Lipschitz from Bη to Q1/2, such that, for
every triplet Ξ ∈ Bη, U⊥(Ξ) is a solution to (1.7) with data Ξ + ν0(Ξ)Ξ0 + ν1(Ξ)Ξ1 (where Ξ0,Ξ1

are defined in Corollary 2.10).

Proof of the existence statement of Theorem 2. The existence statement of Theorem 2 is a direct
consequence of Proposition 5.1. Indeed, with the notations of Proposition 5.1, define

M :=
{

Ξ ∈ H; ‖Ξ‖H < η and 〈Ξk; Ξ〉H = νk(Ξ⊥) for k = 0, 1
}

(5.2)

and set, for Ξ ∈M,
U(Ξ) := U⊥(Ξ⊥). (5.3)

ThenM is a Lipschitz manifold modeled on H⊥sg since ν0 and ν1 are Lipschitz maps. It contains 0H
since ν0(0H⊥sg) = ν1(0H⊥sg) = 0R. Moreover,M is “tangent” to H⊥sg at 0 in the sense of Remark 5.2.

Eventually, for every Ξ ∈M, U(Ξ) ∈ Q1 is a strong solution to (1.7). So the conclusions of the
existence statement of Theorem 2 are satisfied.

Remark 5.2. Since we only proved Lipschitz regularity for the maps ν1 and ν2, (5.2) a priori only
defines a Lipschitz manifold. Hence, it is difficult to define tangent spaces to M. Nevertheless,
one can say that H⊥sg is tangent to M at 0 in the following senses:

� For Ξ ∈M, d(Ξ,H⊥sg) . ‖Ξ‖2H.

� For every Ξ ∈ H⊥sg, for t ∈ R small enough, tΞ +O(t2) ∈M.

Proof of Proposition 5.1. Construction of the sequence and uniform Q1 bound.
Let η > 0 small enough to be chosen later. Let Ξ = (f, δ0, δ1) ∈ H⊥sg with ‖Ξ‖H < η.

Let χ ∈ C∞(R, [0, 1]), identically equal to one on [− 1
3 ,

1
3 ] and compactly supported in [− 1

2 ,
1
2 ].

We define the initialization profile of our iterative scheme as

u0(x, y) := δ0(y)χ

(
x− x0

x1 − x0

)
+ δ1(y)χ

(
x1 − x
x1 − x0

)
. (5.4)

Hence, there exists Cχ > 0 such that u0 ∈ Q1 and ‖u0‖Q1 ≤ Cχ(‖δ0‖H + ‖δ1‖H) ≤ 2ηCχ.
Furthermore, ∂xu0 identically vanishes on the boundaries.

For each n ∈ N, we let un+1 be the solution to
(y + un)∂xun+1 − ∂yyun+1 = f + ν0

n+1f
0 + ν1

n+1f
1,

(un+1)|Σi = δi + ν0
n+1δ

0
i + ν1

n+1δ
1
i ,

(un+1)|y=±1 = 0,

(5.5)

where the coefficients νkn+1 are defined below, and where the triplets (fk, δk0 , δ
k
1 ) are defined in

Corollary 2.10. Let us assume that un ∈ Q1 is such that ‖un‖Q1 ≤ C̄η for some universal constant
C̄, and that ∂kyun(xi, 0) = 0 for k = 0, 1, 2, so that y . y + un(xi, y) . y. Assume furthermore
that ‖∂3

yun‖L∞(Σi) . η.
As a consequence, denoting by Yn the change of variables associated with y + un, we have∥∥∥∥δ′′i (Yn(xi, z))

z

∥∥∥∥
L 2(Σi)

.

∥∥∥∥δ′′i (z)

z

∥∥∥∥
L 2(Σi)

, (5.6)
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and

∂z
δ′′i (Yn(xi, z))

z
=

Yn(xi, z)δ
′′
i (Yn(xi, z))− δ(3)

i (Yn(xi, z))

z2

+(z − Yn(xi, z))
δ′′i (Yn(xi, z))

z2

− ∂yun(xi, Yn(xi, z))

z2(1 + ∂yun(xi, Yn(xi, z)))
δ

(3)
i (Yn(xi, z)).

The first two terms are bounded in L 2(Σi) by ‖δ′′i (z)/z‖H 1(Σi). As for the last one, since
∂yun(xi, 0) = ∂2

yun(xi, 0) = 0, it satisfies∣∣∣∣ ∂yun(xi, Yn(xi, z))

z2(1 + ∂yun(xi, Yn(xi, z)))
δ

(3)
i (Yn(xi, z))

∣∣∣∣ . ‖∂3
yun‖L∞(Σi)|δ

(3)
i (Yn(xi, z))|

and thus its L 2(Σi) norm is bounded by Cη‖δ(3)
i ‖L2 .

We let `jn denote the boundary linear forms associated with the flow ūn := y + un (see Defini-
tion 3.10). For u ∈ Q1, we define the following 2 by 2 matrix:

Mu :=
(
`jy+u(fk, δk0 , δ

k
1 )
)

0≤j,k≤1
. (5.7)

In particular, since M0 = Id and u 7→ `y+u is locally Lipschitz (by Proposition 4.1) from Q1/2 to
L(H), Mu is invertible for u small enough, and u ∈ Q1/2 7→M−1

u is Lipschitz. We set Mn := Mun .
Then the coefficients νn+1 are defined by

νn+1 := −M−1
n

(
`0n(f, δ0, δ1)
`1n(f, δ0, δ1)

)
. (5.8)

It is easily checked that this choice ensures that

`jn
(
f + ν0

n+1f
0 + ν1

n+1f
1, δ0 + ν0

n+1δ
0
0 + ν1

n+1δ
1
0 , δ1 + ν0

n+1δ
0
1 + ν1

n+1δ
1
1

)
= 0 i = 0, 1. (5.9)

Furthermore, since ‖un‖Q1 . η, |νn+1| ≤ C̄ ′‖Ξ‖H for some universal constant C̄ ′.
By Proposition 3.14 and Lemma 4.3, this choice ensures that the system has a solution in Q1

and the existence of a constant C > 0 such that

‖un+1‖Q1 ≤ C‖Ξ‖H + C|νn+1| . ‖Ξ‖H ≤ C1η (5.10)

for some universal constant C1. In order to complete the induction, there only remains to check

that ∂
(k)
y un+1(xi, 0) = 0 and that ‖∂3

yun+1|Σi‖L∞(Σi . η. These properties follow from the fact

that (un+1)|Σi = δi + ν0
n+1δ

0
i + ν1

n+1δ
1
i and from the properties δ

(k)
i (0) = 0 for k = 0, 1, 2.

We conclude that the sequence un is uniformly bounded in Q1 by a small constant m ≤ C1η.

Convergence of the sequence in Q1/2. We now turn to the convergence of the sequence.
Let wn := un+1 − un for n ≥ 1. Thanks to the previous paragraph, the sequence wn is uniformly
bounded in Q1 by 2C1η. Moreover, for each n ∈ N∗, wn is the strong solution to

(y + un)∂xwn − ∂yywn = −wn−1∂xun + (ν0
n+1 − ν0

n)f0 + (ν1
n+1 − ν1

n)f1,

(wn)|Σi = (ν0
n+1 − ν0

n)δ0
i + (ν1

n+1 − ν1
n)δ1

i ,

(wn)|y=±1 = 0.

(5.11)
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We already know that the solution wn belongs to Q1, as the difference between two Q1 functions.
Hence there is no need to check that the orthogonality conditions are satisfied, and we can apply
Proposition 3.14, recalling that ‖un‖Q1 is small thanks to (5.10). Note that the source terms f j

vanish on the lateral boundaries. Moreover, using the boundary conditions and the assumptions
on δi, it can be easily proved that∥∥∥∥1

y
(wn−1∂xun)|Σi

∥∥∥∥
H 1(Σi)

. η|νn − νn−1|.

We obtain, by (3.92),

‖wn‖Q1/2 .‖wn−1∂xun‖H1/2
x L2

y
+ ‖wn−1∂xun‖L2

xH
3/2
y

+ ‖χ1wn−1∂xun‖H1/2
x H

1/2
y

+ |νn+1 − νn|+ η|νn − νn−1|.
(5.12)

Indeed, the elementary functions f j and δji of Corollary 2.10 have fixed norms.
By (5.8) and Proposition 4.1,

|νn+1 − νn| = |M−1
n `n(Ξ)−M−1

n−1`n−1(Ξ)|
≤ ‖M−1

n −M−1
n−1‖|`n(Ξ)|+ ‖M−1

n−1‖|`n(Ξ)− `n−1(Ξ)|
. ‖un − un−1‖Q1/2‖Ξ‖H.

(5.13)

Let us now derive bounds on wn−1∂xun.

‖wn−1∂xun‖H1/2
x L2

y
. ‖wn−1‖L∞y H1/2

x
‖∂xun‖L2

yH
2/3
x

. ‖un‖Q1‖wn−1‖Q1/2 , (5.14)

and

‖wn−1∂xun‖L2
xH

3/2
y

. ‖wn−1‖L∞x (H
3/2
y )
‖∂xun‖L2

xH
3/2
y

. ‖un‖Q1‖wn−1‖Q1/2 , . (5.15)

The bound on ‖χ1wn−1∂xun‖H1/2
x H

1/2
y

is slightly more involved. Note that the Q1 bound on un,

in itself, does not allow us to bound ∂xun in H
1/2
x H

1/2
y . However, we can use the same arguments

as in Proposition 3.14, and observe that on the support of χ1, un satisfies a classical parabolic
equation. More precisely, recall that

(y + un−1)∂xun = f + ν0
nf

0 + ν1
nf

1 + ∂2
yun,

where f , f0, f1 are smooth, and ∂3
yun ∈ L2. Differentiating the equation with respect to y and

using the estimates ‖∂kyun−1‖∞ . ‖un‖Q1 for k = 1, 2, we infer that (y + un)∂x∂
3
yun ∈ L2, and

‖(y + un)∂x∂
3
yun‖L2 . |νn|+ (1 + ‖un−1‖Q1)‖un‖Q1 . η.

Hence
‖χ1∂x∂

3
yun‖L2 ≤ Cη,

uniformly in n. Using once again the same method, we infer that

‖χ1∂
2
xun‖L2 ≤ Cη, ‖χ1∂

2
x∂yun‖L2 ≤ Cη,
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uniformly in n. Hence χ1∂xun is bounded by Cη in H1
xH

1
y ∩ L2

xH
3
y , uniformly in n. We deduce

that

‖χ1wn−1∂xun‖H1/2
x H

1/2
y

. ‖wn−1‖H1/2
x H

1/2
y
‖χ1∂xun‖H1

xH
1
y
. Cη‖wn−1‖Q1/2 . (5.16)

Gathering (5.14), (5.15) and (5.16), we obtain

‖wn‖Q1/2 . η‖wn−1‖Q1/2 + η2‖wn−2‖Q1/2 . (5.17)

Classically, for η small enough, we infer that (un)n∈N is a Cauchy sequence in Q1/2. We recall
that it is also uniformly bounded in Q1. Hence there exists u = U⊥(Ξ) ∈ Q1 such that

un → u strongly in Q1/2,

un ⇀ u weakly in Q1.

The strong convergence is sufficient to pass to the limit in (5.5). Furthermore, thanks to the
continuity of the linear forms u ∈ Q1/2 7→ `iu, we can also pass to the limit in (5.8). We denote by
ν(f, δ0, δ1) = ν(Ξ) the limit of the sequence νn.

Lipschitz regularity of the constructed maps. In this paragraph, we prove that the maps
Ξ 7→ U⊥(Ξ) and Ξ 7→ ν(Ξ) have Lipschitz regularity. Let Ξ,Ξ′ ∈ Bη. We use the prime notation
to denote all the quantities associated with Ξ′ during the nonlinear scheme.

In particular, one has
(y + un)∂x(un+1 − u′n+1)− ∂yy(un+1 − u′n+1)

= f − f ′ − (un − u′n)∂xu
′
n+1 + (ν0

n+1 − ν′
0
n+1)f0 + (ν1

n+1 − ν′
1
n+1)f1

(un+1 − u′n+1)|Σi = δi − δ′i + (ν0
n+1 − ν′

0
n+1)δ0

i + (ν1
n+1 − ν′

1
n+1)δ1

i ,

(un+1 − u′n+1)|y=±1 = 0.

(5.18)

Using the same estimates as previously,

‖un+1 − u′n+1‖Q1/2 . η‖(un − u′n)‖Q1/2 + ‖Ξ− Ξ′‖H + |νn+1 − ν′n+1|. (5.19)

And, using one again Proposition 4.1 together with the definition (5.8),

|νn+1 − ν′n+1| . ‖Ξ− Ξ′‖H + η‖un − u′n‖Q1/2 (5.20)

Summing recursively these estimates this leads to the uniform estimates

‖un+1 − u′n+1‖Q1/2 . ‖Ξ− Ξ′‖H, (5.21)

‖νn+1 − ν′n+1‖R2 . ‖Ξ− Ξ′‖H. (5.22)

This proves that Ξ 7→ U⊥(Ξ) is Lipschitz from H⊥sg to Q1/2 and ν is Lipschitz from H⊥sg to R2.

Value of ν0 and ν1 at zero. One checks that, for Ξ = 0 = (0, 0, 0), the constructed
initialization u0 defined in (5.4) is null. Since 0 ∈ H⊥sg and `j0 = `j , this leads to ν1 = 0 (by (5.8)).
Hence, in (5.5) for n = 0, the system solved by u1 has vanishing boundary data and vanishing source
term. Hence u1 = 0. This property propagates for every n ≥ 0. Hence νj(0) = lim νjn(0) = 0.
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5.2 Local uniqueness of solutions to the nonlinear problem

We prove the local uniqueness statement in Theorem 2.

The argument is straightforward: if two strong solutions u1 and u2 exist and are small in Q1,
their difference w := u1−u2 is the solution to a degenerate elliptic linear equation with null source
term and boundary values, so it vanishes identically.

More precisely, let u, u′ ∈ Q1 be two solutions to (1.7) satisfying ‖u‖Q1 ≤ η and ‖u′‖Q1 ≤ η for
some small η. Then w := u− u′ ∈ Q1 and solves the system

(y + u)∂xw + (∂xu
′)w − ∂2

yw = 0,

w|y=±1 = 0,

w|Σi = 0.

(5.23)

We follow the arguments of Section 3 and introduce a change of variables Y such that ∀(x, z) ∈ Ω,

Y (x, z) + u(x, Y (x, z)) = z.

Let α(x, z) = (1 + uy)2(x, Y (x, z)), γ = (zux − uyy)(x, Y (x, z)), γ′1 = ū′x(x, Y (x, z)). Then
W (x, z) = w(x, Y (x, z)) is a solution of

z∂xW + γ∂zW + γ′1W − α∂zzW = 0,

W|z=±1 = 0,

W|Σi = 0.

(5.24)

Furthermore, α, γ, γ′1 satisfy the estimates of Lemma 4.3. Using the results of Appendix A, we
infer that W = 0. This concludes the proof of the uniqueness within the ball of radius η in Q1.

5.3 Necessity of the orthogonality conditions

At the linear level, Theorem 1 states that Ξ = (f, δ0, δ1) ∈ H⊥sg is a necessary condition to solve (2.1)
with tangential regularity Q1. Our purpose in this paragraph is to prove that, at the nonlinear
level, if a solution has Q1 ∩ H2 regularity, this necessary condition generalizes to Ξ ∈ M. In
particular, the nonlinear phenomena do not eliminate the need for orthogonality conditions, at
least when one tries to obtain solutions with such regularity.

More precisely, we prove the following claim (which is part of Theorem 2 but which we recall
here for the reader’s convenience).

Proposition 5.3. There exists η > 0 such that, if Ξ ∈ H with ‖Ξ‖H < η and u ∈ Q1 ∩H2
xH

1
y (Ω)

with ‖u‖Q1 + ‖u‖H2 < η is a solution to (1.7), then Ξ ∈M and u = U(Ξ).

Proof. Let η > 0 to be chosen small enough later on in the proof. Let Ξ ∈ H with ‖Ξ‖H < η and
assume that there exists u ∈ Q1 ∩ H2(Ω) with ‖u‖Q1 + ‖u‖H2

xH
1
y
< η such that u is a solution

to (1.7). We introduce

Ξ̃ := Ξ⊥ + ν0(Ξ⊥)Ξ0 + ν1(Ξ⊥)Ξ1, (5.25)

which can be thought of as a good projection of Ξ onM. Thanks to Proposition 5.1, we introduce
ũ := U⊥(Ξ⊥) ∈ Q1, which is a solution to (1.7) with data Ξ̃ and ‖ũ‖Q1 . η (by Lipschitz regularity
of the solution operator U⊥)
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For k ∈ {0, 1}, we also introduce the coefficients αk := νk(Ξ⊥)− 〈Ξk; Ξ〉H, which characterize
how far Ξ is from M. Then w := ũ− u belongs to Q1 with

‖w‖Q1 . η (5.26)

and is a solution to 
(y + ũ)∂xw − ∂yyw = −w(∂xu) + α0f0 + α1f1,

w|Σi = α0δ0
i + α1δ1

i ,

w|y=±1 = 0.

(5.27)

Note that since we have assumed that u ∈ H2
x(H1

y ), the right-hand side belongs to H1
xH

1
y ∩L2

x(H3
y ).

Furthermore, since we know that w ∈ Q1, we can use the estimates of Proposition 3.14, from which
we infer that

‖w‖Q1/2 . |αj |+ ‖w∂xu‖H1/2
x H

1/2
y

+ ‖w∂xu‖L2
xH

3/2
y

(5.28)

. |αj |+ ‖w‖Q1/2(‖u‖Q1 + ‖u‖H2
x(H1

y)) (5.29)

. |αj |+ η‖w‖Q1/2 . (5.30)

Thus, for η small enough, we obtain
‖w‖Q1/2 . |αj | (5.31)

By Proposition 3.14, the fact that w ∈ Q1 implies that, for j ∈ {0, 1}, the following orthogo-
nality conditions are satisfied

0 = `jũ(−w∂xu+ α0f0 + α1f1, α0δ0
0 + α1δ1

0 , α
0δ0

1 + α1δ1
1)

= `jũ(−w∂xu, 0, 0) + α0`jũ(Ξ0) + α1`jũ(Ξ1).
(5.32)

By Proposition 4.1, for η small enough

‖`jũ − `
j‖L(H) . ‖ũ‖Q1/2 ≤ ‖ũ‖Q1 . η, (5.33)

where `j are the orthogonality conditions for the linear shear flow (see Definition 2.8). Hence,
recalling Corollary 2.10, we obtain from (5.32),

|αj | . η(|α0|+ |α1|) +

∣∣∣∣∫
Ω

Φjũ(x, z)∂xF (x, z)

∣∣∣∣ , (5.34)

using Definition 3.10 and where

F (x, z) := (w∂xu)(x, Ỹ (x, z)), (5.35)

where Ỹ is the change of variable associated with ũ (see (3.2)). Then, using Lemma B.4,

‖∂xF‖L2 . ‖∂x(w∂xu)‖L2 + ‖∂2
y(w∂xu)‖L2

. ‖w‖Q1/2‖u‖Q1∩H2

. η‖w‖Q1/2 .

(5.36)

Hence, since ‖Φjũ‖L2 . 1 by Proposition 3.6, we obtain, using (5.31),

|αj | . η(|α0|+ |α1|). (5.37)

We infer that αj = 0, and thus w = 0.
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A Uniqueness of weak solutions for linear problems

The purpose of this section is to prove the uniqueness of weak solutions in L2
x(H1

0 (−1, 1)) to (3.4),
which is stated in Proposition 3.2. Such a uniqueness result is also proved in [17, Section 5].

The proof follows the arguments of Baouendi and Grisvard in [5], which concerns the case of
the model equation (2.1). For the reader’s convenience, we recall the main steps of the proof here,
and adapt them to the present (slightly different) context.

We assume that the coefficients α, γ satisfy the assumptions of Proposition 3.2, and we introduce
the sets

B := {u ∈ L2
x(H1

0 (−1, 1)), z∂xu ∈ L2
x(H−1

y )},
A := B ∩H1(Ω).

Note that if u ∈ L2
x(H1

0 (−1, 1)) is a weak solution of (3.4), then u ∈ B. Indeed, it follows from the
weak formulation (3.9) that for any V ∈ H1

0 (Ω),

〈z∂xU, V 〉L2H−1,L2H1 = −
∫

Ω

(γ + αz)V ∂zU −
∫

Ω

α∂zU∂zV +

∫
Ω

gV.

By density, this formula still holds for V ∈ L2(H1), and therefore z∂xU ∈ L2(H−1).
We then recall the following result from [5]:

Lemma A.1. The set A is dense in B. Furthermore, there exists a constant C depending only on
Ω, such that for i ∈ {0, 1},

∀v ∈ A,
∫ 1

−1

|z| |v(xi, y)|2 dy ≤ C‖v‖2B.

As a consequence, the applications

v ∈ A 7→ v|x=xi ∈ L 2
z (−1, 1)

can be uniquely extended into continuous applications on B.

As a consequence, Baouendi and Grisvard [5] obtain the following corollary:

Corollary A.2. For all u, v ∈ B,

〈z∂xu, v〉L2(H−1),L2(H1
0 ) + 〈z∂xv, u〉L2(H−1),L2(H1

0 ) =

∫ H

0

(zuv)x=x1
−
∫ H

0

(zuv)x=x0
. (A.1)

Proof. Thanks to Lemma A.1, it suffices to prove the identity when u, v ∈ A. In that case, the
left-hand side is simply ∫

Ω

z∂xuv + zu∂xv =

∫
Ω

∂x(zuv).

The result follows by integration.

Proof of uniqueness of weak solutions to (3.4). Let U ∈ L2
x(H1

0 ) be a weak solution of (3.4) with
f = 0 and δi = 0. As mentioned above, U ∈ B. According to Corollary A.2, for any V ∈ B such
that V = 0 on ∂Ω \ (Σ0 ∪ Σ1),

−〈z∂xV,U〉L2(H−1),L2(H1
0 ) +

∫
Ω

(γ + αz)∂zUV +

∫
Ω

α∂zU∂zV = 0.

61



Now, let g ∈ C∞c (Ω) be arbitrary, and let V ∈ L2(H1
0 ) be a weak solution of{

−z∂xV − ∂z(γV )− ∂zz(αV ) = g,

V|∂Ω\(Σ0∪Σ1) = 0.

(The existence of weak solutions for this adjoint problem is proved in the same way as existence
for the direct problem in Proposition 3.2).

Then V ∈ B, and choosing U as a test function in the variational formulation for V , we obtain∫
Ω

gu = 0.

Thus u = 0. Uniqueness of weak solutions of (3.1) follows.

B Proofs of functional analysis results

B.1 An abstract existence principle

As Fichera in [14], we use the following abstract existence principle (see [12, Theorem 1]), which
allows to skip a viscous regularization scheme.

Lemma B.1. Let H1, H2 and H be three Hilbert spaces. Let Fi ∈ L(Hi; H ) for i ∈ {1, 2}.
Then the following statements are equivalent:

� rangeF1 ⊂ rangeF2,

� There exists a constant C > 0 such that

∀h ∈H ′, ‖F ∗1 h‖H ′
1
≤ C‖F ∗2 h‖H ′

2
. (B.1)

� There exists G ∈ L(H1; H2) such that F1 = F2G.

Moreover, when these hold, there exists a unique G ∈ L(H1; H2) such that kerG = kerF1,
rangeG ⊂ (rangeF ∗2 )⊥ and ‖G‖ = inf{C > 0; (B.1) holds}.

Indeed, this yields the following weak Lax-Migram result, where the linear right-hand side is
assumed to be continuous for the weaker norm.

Lemma B.2. Let U and V be two Hilbert spaces with V continuously embedded in U . Let a be
a continuous bilinear form on U ×V and b be a continuous linear form on U . Assume that there
exists a constant c > 0 such that, for every v ∈ V ,

a(v, v) ≥ c‖v‖2U . (B.2)

Then, there exists u ∈ U such that ‖u‖U ≤ 1
c‖b‖L(U ) and, for every v ∈ V , a(u, v) = b(v).

Proof. Set H := L(V ), H1 := L(U ), F1 := Id (from L(U ) to L(V )), H2 := U and F2 : U →
L(V ) defined by F2u := a(u, ·). Then F ∗1 = Id (from V to U ) and F ∗2 v = a(·, v). Moreover

‖F ∗2 v‖L(U ) ≥ |a(v, v)|/‖v‖U ≥ c‖v‖U = c‖F ∗1 v‖U . (B.3)

So (B.1) holds with C = 1/c and Lemma B.1 yields the existence of G ∈ L(L(U ); U ) such that
F1 = F2G and ‖G‖ ≤ 1

c . The conclusions follow by setting u := Gb.
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B.2 Product and composition rules in Sobolev spaces

Lemma B.3 (Pointwise multiplication). Pointwise multiplication is a continuous bilinear map

� from H3/2(−1, 1)×H3/2(−1, 1) to H3/2(−1, 1),

� from H1/2(x0, x1)×Hs(x0, x1) to H1/2(x0, x1) for any s > 1/2.

Proof. These are particular cases of [7, Theorem 7.4].

Lemma B.4 (Composition of Hσ functions). Let Y ∈ H1(Ω) such that ∂zY ∈ L∞(Ω), ∂xY ∈
L2
z(H

2/3
x ).

Assume that there exists a constant m > 0 such that ∂zY (x, z) ∈ [m,m−1] a.e. and Y (x,±1) =
±1.

Then for any σ, σ′ ∈ (0, 1) such that σ + σ′ ≤ 1, for any g ∈ Hσ
x (Hσ′

y ) ∩ L2
x(Hσ+2σ′

y )

‖g(x, Y (x, z))‖Hσx (Hσ′z ) ≤ C
(
‖g‖Hσx (Hσ′y ) + ‖g‖

L2
x(Hσ+2σ′

y

)
.

Proof. Throughout the proof, we set

G(x, z) = g(x, Y (x, z)).

First, note that for all g ∈ L2(Ω),

‖G‖2L2(Ω) =

∫ x1

x0

∫ 1

−1

g2(x, Y (x, z)) dx dz ≤ m−1

∫ x1

x0

∫ 1

−1

g2(x, y) dx dy,

so that ‖G‖L2 ≤ ‖g‖L2 .
Furthermore,

∂xG(x, z) = ∂xg(x, Y (x, z)) + ∂xY (x, z)∂yg(x, Y (x, z)).

Hence
‖∂xG‖L2(Ω) ≤ Cm

(
‖∂xg‖L2(Ω) + ‖∂xY ‖L2(H

2/3
x )
‖∂2
yg‖L2

)
.

Now, note that the application g 7→ G is linear. By interpolation, we obtain, for any σ ∈ (0, 1),

‖G‖Hσx (L2
z) ≤ Cm

(
‖g‖Hσx (L2

z) + ‖g‖L2(H2σ
y )

)
.

We now prove the same type of estimates for the z derivatives. We have

∂zG(x, z) = ∂zY (x, z)∂yg(x, Y (x, z)),

and thus ‖G‖L2
xH

1
z
. ‖g‖L2

xH
1
y
. By interpolation, we infer that for any σ ∈ (0, 1),

‖G‖L2
xH

σ
z
≤ Cm‖g‖L2

xH
σ
y
.

Combining the two estimates and interpolating once again, we infer that for any σ, σ′ ∈ (0, 1)
such that σ + σ′ ≤ 1,

‖G‖Hσx (Hσ′z ) ≤ Cα,m
(
‖g‖Hσx (Hσ′y ) + ‖g‖

L2
x(Hσ+2σ′

y

)
.
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Corollary B.5. Let ū ∈ Q1 such that ‖ū− y‖Q1 � 1, and ū(x,±1) = ±1. Let Y = Y (x, z) such
that ū(x, Y (x, z)) = z for all (x, z) ∈ Ω.

Then ‖Yz − 1‖∞ � 1, Yx ∈ L2
z(H

2/3
x ), and ‖Yx‖L2

z(H
2/3
x )
� 1.

Proof. First, observe that Yz = 1/ūy(x, Y (x, z)), so that the first estimate follows from Lemma 1.6.
Concerning the estimate on Yx, we observe that

Yx = − ūx
ūy

(x, Y (x, z)).

Let us first assume that ū is smooth (say C∞), and then argue by density. If ū is smooth, then
the above formula first shows that Yx ∈ L∞. Differentiating the identity with respect to x once
again, we infer that Y ∈W 2,∞. Furthermore, according to Lemma B.4,

‖Yx‖H2/3
x L2

z
.

∥∥∥∥ ūxūy
∥∥∥∥
H

2/3
x L2

z

+ ‖Yx‖H2/3
x L2

z

∥∥∥∥∂2
y

(
ūx
ūy

)∥∥∥∥
L2

.

When ‖ū− y‖Q1 � 1, ∥∥∥∥∂2
y

(
ūx
ūy

)∥∥∥∥
L2

� 1.

Treating the last term in the right-hand side perturbatively, we obtain

‖Yx‖H2/3
x L2

z
.

∥∥∥∥ ūxūy
∥∥∥∥
H

2/3
x L2

z

≤ ‖ūx‖H2/3
x L2

z
‖ūy‖L∞z (H

2/3
x )
� 1.

Hence we obtain the desired result when ū is smooth and ‖ū − y‖Q1 � 1. We then conclude by
density.

B.3 Extension operators

We start with Lemma 1.1, which allows to extend functions from Z0(Ω) to Z0(R2).

Proof of Lemma 1.1. Up to translation and rescaling, we can assume that (x0, x1) = (0, 1).
We start by constructing a continuous horizontal extension operator Px from Z0((0, 1)×(−1, 1))

to Z0(R × (−1, 1)). Let χ ∈ C∞(R; [0, 1]) such that χ ≡ 1 on (0, 1) and suppχ ⊂ (−1, 2). Let
φ ∈ Z0((0, 1)× (−1, 1)). For x ∈ (−1, 2) and z ∈ (−1, 1), let

(Qxφ)(x, z) :=


φ(−x, z) if x ∈ (−1, 0)

φ(x, z) if x ∈ (0, 1),

φ(2− x, z) if x ∈ (1, 2),

(B.4)

(Pxφ)(x, z) := χ(x)(Qxφ)(x, z). (B.5)

First, ‖Px‖L2
x,z→L2

x,z
≤ 3. Moreover, ∂kz (Pxφ) = Px∂

k
zφ for k ∈ {1, 2}. Hence ‖Px‖L2

xH
2
z→L2

xH
2
z
≤ 3.

Eventually, z∂x(Pxφ) = Px(z∂xφ) + χ′Qxφ. Hence ‖z∂x(Pxφ)‖L2 ≤ 3‖z∂xφ‖L2 + 2‖χ′‖L∞‖φ‖L2 .
Thus Px defines a continuous extension operator from Z0((0, 1)× (−1, 1)) to Z0(R× (−1, 1)).
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We now construct a continuous upwards vertical extension operator P+ from Z0(R × (−1, 1))
to Z0(R × (−1,+∞)). We proceed, as classical (see e.g. [3]), by considering a weighted linear
combination of rescaled reflections. For φ ∈ Z0(R× (−1, 1)), x ∈ R and z ∈ (−1,∞), let

(Q+φ)(x, z) :=

{
φ(x, z) if z ∈ (−1, 1),

3φ(x, 2− z)− 2φ(x, 3− 2z) if z ∈ (1, 2),
(B.6)

(P+φ)(x, z) := χ+(z)(Q+φ)(x, z), (B.7)

where χ+ ∈ C∞(R; [0, 1]) is such that χ+ ≡ 1 on (−1, 1) and suppχ+ ⊂ (−2, 1 + 1
4 ). The chosen

coefficients ensure that both Q+φ and ∂z(Q+φ) are continuous at z = 1. Hence P+φ ∈ L2
xH

2
z and

‖P+φ‖L2
x(R;H2

z (−1,+∞)) = ‖P+φ‖L2
x(R;H2

z (−1,1)) + ‖P+φ‖L2
x(R;H2

z (1,+∞)) ≤ C+‖φ‖L2
xH

2
z
, (B.8)

for some constant C+ depending only on ‖χ+‖W 2,∞ . Moreover, using that χ(z) = 0 for z > 1 + 1
4 ,

‖z∂x(P+φ)‖L2
x(R;L2(1,+∞)) = ‖z∂x(P+φ)‖L2

x(R;L2(1,1+ 1
4 ))

. ‖∂xφ‖L2
x(R;L2( 1

2 ,1))

. ‖z∂xφ‖L2
x(R;L2( 1

2 ,1)).

(B.9)

Hence P+ is a continuous extension operator from Z0(R× (−1, 1)) to Z0(R× (−1,+∞)).
The extension for z < −1 is performed in a similar fashion and left to the reader.

We will also need the following extension result in this appendix.

Lemma B.6. There exists a continuous extension operator P from Z0(Ω+) to Z0((x0, x1) × R)
such that, if φ|x=x1

= 0 on (0, 1), (Pφ)|x=x1
= 0.

Proof. We proceed, as in the proof of Lemma 1.1, by extension by reflections and truncation. The
reflection at z = 1 is done in the proof of Lemma 1.1. The truncation is left to the reader. We
only check here the reflection at z = 0 due to the degeneracy of the Z0 norm at z = 0.

Let φ ∈ Z0(Ω+). We define an extension Qφ on Ω by

(Qφ)(x, z) :=

{
φ(x, z) if z ∈ (0, 1),

3φ(x,−z/2)− 2φ(x,−z) if z ∈ (−1, 0).
(B.10)

In particular (Qφ)(x, 0−) = (Qφ)(x, 0+) and ∂z(Qφ)(x, 0−) = ∂z(Qφ)(x, 0+), so

‖Qφ‖L2
xH

2
z (−1,1) . ‖Qφ‖L2

xH
2
z (−1,0) + ‖Qφ‖L2

xH
2
z (0,1) . ‖φ‖L2

xH
2
z
≤ ‖φ‖Z0 . (B.11)

Moreover,

‖z∂x(Qφ)‖L2
xL

2
z(−1,0) ≤ 3‖2(z/2)∂xφ(x, z/2)‖L2

xL
2
z(0,1) + 2‖z∂xφ(x, z)‖L2

xL
2
z(0,1) . ‖φ‖Z0 . (B.12)

Eventually, if φ|x=x1
= 0 on (0, 1) (B.10) implies (Qφ)|x=x1

= 0 on (−1, 1).
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B.4 Critical dualities

Lemma B.7. For a, b ∈ H1(x0, x1) such that a(x0) = b(x1) = 0,

‖ab‖
H

1/2
00

. ‖a′‖L2‖b‖
H

1/2
00r

. (B.13)

Proof. On the one hand, by Lemma B.3,

‖ab‖H1/2 . ‖a‖H1‖b‖H1/2 . ‖a′‖L2‖b‖
H

1/2
00r

. (B.14)

On the other hand, since for every x ∈ (x0, x1), |a(x)| ≤ |x− x0|
1
2 ‖a′‖L2 ,∫ x1

x0

|a(x)b(x)|2

|x− x0||x− x1|
dx ≤ ‖a′‖2L2

∫ x1

x0

|b(x)|2

|x− x1|
. ‖a′‖2L2‖b‖2

H
1/2
00r

. (B.15)

Gathering both estimates concludes the proof.

Lemma B.8. For q, v, w ∈ H1(x0, x1) such that q(x0) = 0 and w(x1) = 0,∣∣∣∣∫ x1

x0

q(∂xv)w

∣∣∣∣ . ‖q′‖L2‖v‖H1/2‖w‖
H

1/2
00r

. (B.16)

Proof. By [29, Proposition 12.1], ∂x is continuous from H1/2(x0, x1) to (H
1/2
00 (x0, x1))′. Hence∣∣∣∣∫ x1

x0

q(∂xv)w

∣∣∣∣ . ‖v‖H1/2‖qw‖
H

1/2
00
. (B.17)

The conclusion follows from Lemma B.7.

Lemma B.9. For q, v, w ∈ H1(x0, x1) such that q(x0) = 0 and w(x1) = 0,∣∣∣∣∫ x1

x0

qv∂xw

∣∣∣∣ . ‖q′‖L2‖v‖H1/2‖w‖
H

1/2
00r

. (B.18)

Proof. Let χ ∈ C∞([x0, x1]; [0, 1]) such that χ ≡ 1 in a neighborhood of x0 and χ ≡ 0 in a
neighborhood of xi. Let us write∫ x1

x0

qv∂xw =

∫ x1

x0

(χqv)∂xw −
∫ x1

x0

(1− χ)w∂x(qv) +

∫ x1

x0

χ′wqv. (B.19)

By [29, Proposition 12.1], ∂x is continuous from H1/2(x0, x1) to (H
1/2
00 (x0, x1))′. Thus∣∣∣∣∫ x1

x0

qv∂xw

∣∣∣∣ . ‖χqv‖H1/2
00
‖w‖H1/2 + ‖(1− χ)w‖

H
1/2
00
‖qv‖H1/2 + ‖χ′q‖L∞‖v‖L2‖w‖L2 . (B.20)

By Lemma B.3, ‖χqv‖H1/2 . ‖χ‖H1‖q‖H1‖v‖H1/2 , ‖(1 − χ)w‖H1/2 . ‖(1 − χ)‖H1‖w‖H1/2 and
‖qv‖H1/2 . ‖q‖H1‖v‖H1/2 . First, since χ ≡ 1 near x0, (1− χ(x))2 . |x− x0|. Thus∫ x1

x0

(1− χ(x))2|w(x)|2

|x− x0||x− x1|
dx .

∫ x1

x0

|w(x)|2

|x− x1|
dx . ‖w‖2

H
1/2
00r

. (B.21)

Similarly, since χ2(x) . |x− x1| and q2(x) . |x− x0|‖q′‖2L2 by Cauchy-Schwarz, there holds∫ x1

x0

|χ(x)q(x)v(x)|2

|x− x0||x− x1|
dx . ‖q′‖2L2‖v‖2L2 . (B.22)

This concludes the proof, since ‖q‖H1 . ‖q′‖L2 thanks to the condition q(x0) = 0.
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B.5 Embeddings

We collect in this paragraph various embedding results used throughout the paper.

B.5.1 Full domain embeddings

The following inequality is used in the proof of the key result Proposition 1.2.

Lemma B.10. For ψ ∈ C∞c (R),

‖ψ‖L2 . ‖zψ‖L2 + ‖∂zzψ‖L2 . (B.23)

Proof. On the one hand, for |z| ≥ 1, ∫
|z|≥1

ψ2 ≤ ‖zψ‖2L2 . (B.24)

On the other hand, for every (z0, z) ∈ (−2, 2),

|∂zψ(z)| ≤ |∂zψ(z0)|+ 2‖∂zzψ‖L2 . (B.25)

Moreover, by classical Sobolev embeddings,

‖∂zψ‖L2(1,2) . ‖ψ‖L2(1,2) + ‖∂zzψ‖L2(1,2) ≤ ‖zψ‖L2(R) + ‖∂zzψ‖L2(R). (B.26)

Thus, integrating (B.25) for z0 ∈ (1, 2),

‖∂zψ‖L∞(−2,2) . ‖zψ‖L2(R) + ‖∂zzψ‖L2(R). (B.27)

Now, writing ψ(z) = ψ(z0) +
∫ z
z0
ψ′ and integrating for z0 ∈ (1, 2) yields

‖ψ‖L2(−1,1) . ‖ψ‖L2(1,2) + ‖zψ‖L2(R) + ‖∂zzψ‖L2(R) . ‖zψ‖L2(R) + ‖∂zzψ‖L2(R), (B.28)

which concludes the proof.

Lemma B.11. For ψ ∈ C∞c (R),

‖|z| 12 ∂zψ‖L2 . ‖zψ‖L2 + ‖∂zzψ‖L2 . (B.29)

Proof. For |z| ≤ 2, (B.27) yields directly

‖|z| 12 ∂zψ‖L2(−2,2) . ‖zψ‖L2 + ‖∂zzψ‖L2 . (B.30)

Let χ ∈ C∞(R+; [0, 1]) with χ ≡ 0 on [0, 1], χ ≡ 1 on [2; +∞) and |∂zχ| ≤ 2. Then∫ +∞

2

z|∂zψ(z)|2 dz ≤
∫ +∞

0

zχ(z)|∂zψ(z)|2 dz

= −
∫ +∞

0

zχ(z)ψ(z)∂zzψ(z) dz −
∫ +∞

0

z∂zχ(z)ψ(z)∂zψ(z) dz

≤ ‖zψ‖L2‖∂zzψ‖L2 + 2‖zψ‖L2(‖∂zψ‖L2(2;+∞) + ‖∂zψ‖L2(0,2))

(B.31)

The ‖∂zψ‖L2(0,2) term can be bounded by (B.27) and the ‖∂zψ‖L2(2;+∞) term can be treated
perturbatively via the Peter-Paul inequality. This yields

‖|z| 12 ∂zψ‖L2(2,+∞) . ‖zψ‖L2 + ‖∂zzψ‖L2 . (B.32)

By symmetry, the same holds on (−∞,−2), which concludes the proof.
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Lemma B.12. For φ ∈ Z0(Ω),

‖|z| 12 ∂zφ‖L2
z(H

1/2
x )

. ‖φ‖Z0 (B.33)

Proof. Thanks to Lemma 1.1, it is sufficient to prove the embedding and (B.33) for φ ∈ Z0(R2)
with bounded support in the vertical direction, say suppφ ⊂ R× (−5, 5) (as one can always take a
smooth truncation of the extended function). We proceed as in the proof of Proposition 1.2. Let
ψ ∈ C∞c (R). By Lemma B.11, and using standard dimensional analysis arguments, one deduces
that

‖|z| 12 ∂zψ‖L2 . ‖zψ‖
1
2

L2‖∂zzψ‖
1
2

L2 . (B.34)

Let φ ∈ C∞c (R2). Let φ̂(ξ, z) denote the Fourier-transform of φ in the horizontal direction. Then
using (B.34) and Hölder’s inequality,

‖|z| 12 ∂zφ‖2L2
z(H

1/2
x )

=

∫
R2

(1 + |ξ|2)
1
2 |z||∂zφ̂(ξ, z)|2 dξ dz

. ‖|z| 12 ∂zφ‖2L2 +

∫
R
|ξ|‖zφ̂(ξ, z)‖L2

z
‖∂zzφ̂(ξ, z)‖L2

z
dξ

. ‖|z| 12 ∂zφ‖2L2 +

(∫
R2

|ξ|2z2|φ̂(ξ, z)|2 dz dξ

) 1
2
(∫

R2

|∂zzφ̂(ξ, z)|2 dz dξ

) 1
2

. ‖|z| 12 ∂zφ‖2L2 + ‖z∂xφ‖
1
2

L2‖∂zzφ‖
1
2

L2 .

(B.35)

Moreover, since φ(·, z) = 0 for |z| ≥ 5,

‖|z| 12 ∂zφ‖L2 . ‖∂zzφ‖L2 (B.36)

Hence gathering both inequalities proves that ‖|z| 12 ∂zφ‖2
L2
z(H

1/2
x )

. ‖φ‖Z0 . This concludes the

proof, by density of C∞c (R2) in Z0(R2).

B.5.2 Embeddings involving the Lions-Magenes space

Lemma B.13. Let φ ∈ Z0(Ω+) such that φ|x=x1
= 0. Then φ ∈ C0

z ([0, 1];H
1/2
00r

(x0, x1)) and

‖φ‖
L∞z H

1/2
00r

. ‖φ‖Z0 . (B.37)

Proof. Thanks to the extension result Lemma B.6, it is sufficient to prove this result with Ω+

replaced by O := (x0, x1) × R. Therefore let φ ∈ Z0(O) such that φ|x=x1
= 0 on R. By

Proposition 1.2, φ ∈ L2
z(R;H1

0r (x0, x1)) ∩H2
z (R;L2(x0, x1)), where H1

0r (x0, x1) denotes H1 func-
tions vanishing at x = x1. By the fractional trace theorem [29, Chapter 1, Theorem 4.2 and
equation (4.7)], this implies that φ ∈ C0

z (R;G) where G is the interpolation space denoted by

[H1
0r (x0, x1), L2(x0, x1)] 1

4
in this reference. By [29, Chapter 1, Theorem 11.7]4, G = H

1/2
00r

(x0, x1).
The claimed norm estimate readily follows.

4This reference considers the case of vanishing conditions on the full boundary of the domain (so at x = x0 and
at x = x1), but the adaptation to functions vanishing only at x1 is straightforward.
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Lemma B.14. Let φ ∈ Z0(Ω+) such that φ|x=x1
= 0. Then z∂zφ ∈ L2

zH
1/2
00r

and

‖z∂zφ‖L2
zH

1/2
00r

. ‖φ‖Z0 . (B.38)

Proof. Let φ ∈ Z0(Ω+) such that φ|x=x1
= 0. We extend φ to Z0(O), where O := (x0, x1) × R,

thanks to the extension result Lemma B.6. We then truncate the extension for |z| ≥ 2 thanks to a
C∞c function, so that the extension is now supported in (x0, x1)× (−3, 3), coincides with φ on Ω,
and belongs to Z0(O). With a slight abuse of notation, we still denote the extension by φ. Note
that φ|x=x1

= 0 on R.
Let ψ := zφ. Then ψ ∈ L2

z(R;H1
0r (x0, x1)) ∩ H2

z (R;L2(x0, x1)) with ‖ψ‖ . ‖φ‖Z0 for the
associated norm. By the intermediate derivative theorem [29, Chapter 1, Theorem 2.3], ψ ∈
H1
z (R;G) where G is the interpolation space denoted by [H1

0r (x0, x1), L2(x0, x1)] 1
2

in this reference.

By [29, Chapter 1, Theorem 11.7], G = H
1/2
00r

(x0, x1) (see Footnote 4, Page 68). This yields

‖∂zψ‖L2
zH

1/2
00r

. ‖φ‖Z0 . (B.39)

The conclusion follows since ∂zψ = z∂zφ + φ and φ ∈ L2
zH

2/3
x by Proposition 1.2 (with trace

φ|x=x1
= 0, which makes sense in H

2/3
x ).

Lemma B.15. Let φ ∈ L2((x0, x1);H1
0 (−1, 1)) such that z∂xφ ∈ L2((x0, x1);H−1(−1, 1)). As-

sume that φ = 0 on {x1} × (0, 1) ∪ {x0} × (−1, 0) (in the sense of traces in L 2
z (−1, 1), see

Lemma A.1). Then zφ ∈ L2((0, 1);H
1/2
00r

) ∩ L2((−1, 0);H
1/2
00l

).

Proof. Let ψ := zφ. Then ψ ∈ H1
0 ((−1, 1);L2(x0, x1)) ∩ H−1((−1, 1);H1(x0, x1)) with ψ = 0

on {x1} × (0, 1) ∪ {x0} × (−1, 0) (in the same sense). Moreover, letting ψ̄ denote the restriction
to (x0, x1) × (0, 1) of ψ, we have ψ̄ ∈ H1((0, 1);L2(x0, x1)) ∩ H−1((0, 1);H1

0r (x0, x1)). We then
construct an extension to (x0, x1)× R, still denoted by ψ̄ which satisfies ψ̄ ∈ H1(R;L2(x0, x1)) ∩
H−1(R;H1

0r (x0, x1)). By [1, Theorem 4.5.5] (which applies since both L2(x0, x1) and H1
0r (x0, x1)

are Hilbert spaces so enjoy the UMD property), ψ̄ ∈ L2(R;G) where G is the interpolation space

denoted by [H1
0r (x0, x1), L2(x0, x1)] 1

2
. By [29, Chapter 1, Theorem 11.7], G = H

1/2
00r

(x0, x1) (see

Footnote 4, Page 68). This proves the right part of the statement. The left part is proved
similarly.

B.5.3 A derivative estimate

Lemma B.16. Let φ ∈ H2/3
x L2

z(Ω) with ∂zφ ∈ H1/3
x L2

z(Ω). Then φ ∈ C0
z ([−1, 1];H1/2(x0, x1)).

Furthermore, for a.e. z ∈ (−1, 1),

d

dz
‖φ(z)‖2H1/2(x0,x1) = 2

∫ x1

x0

φ(x, z)∂zφ(x, z) dx

+ 2

∫
(x0,x1)2

(φ(x, z)− φ(x′, z))(φz(x, z)− φz(x′, z))
|x− x′|2

dx dx′ ∈ L1(−1, 1).

Proof. First, we observe that, if f ∈ H2/3(x0, x1) and g ∈ H1/3(x0, x1), then∫
(x0,x1)2

|f(x)− f(x′)| |g(x)− g(x′)|
|x− x′|2

dx dx′ =

∫
(x0,x1)2

|f(x)− f(x′)|
|x− x′|7/6

|g(x)− g(x′)|
|x− x′|5/6

dx dx′

≤ ‖f‖H2/3‖g‖H1/3 .

(B.40)
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Then, we prove the result for φ ∈ C2(Ω). In that case, differentiating under the integral and using
the definition of the H1/2 norm, we have

d

dz
‖φ(z)‖2H1/2(x0,x1) =

d

dz

(∫ x1

x0

φ(x, z)2 dx+

∫
(x0,x1)2

|φ(x, z)− φ(x′, z)|2

|x− x′|2
dx dx′

)

= 2

∫ x1

x0

φ(x, z)∂zφ(x, z) dx

+2

∫
(x0,x1)2

(φ(x, z)− φ(x′, z))(φz(x, z)− φz(x′, z))
|x− x′|2

dx dx′.

Using (B.40), we infer that the right-hand side is bounded by

2‖φ(z)‖H2/3(x0,x1)‖φz(z)‖H1/3(x0,x1),

and, by the Cauchy-Schwarz inequality,∫ 1

−1

‖φ(z)‖H2/3(x0,x1)‖φz(z)‖H1/3(x0,x1) dz ≤ ‖φ‖
H

2/3
x L2

z
‖φz‖H1/3

x L2
z
.

Arguing by density, we eventually obtain the result announced in the Lemma.
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