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Abstract

We prove existence and uniqueness of strong solutions of the equation uuz — uyy = f in
the vicinity of the linear shear flow, subject to perturbations of the source term and lateral
boundary conditions. Since the solutions we consider have opposite signs in the lower and
upper half of the domain, this is a forward-backward parabolic problem, which changes type
across a critical curved line within the domain. In particular, lateral boundary conditions can
be imposed only where the characteristics are inwards.

There are several difficulties associated with this problem. First, the forward-backward
geometry depends on the solution itself. This requires to be quite careful with the approx-
imation procedure used to construct solutions. Second, and maybe more importantly, the
linearized equations solved at each step of the iterative scheme admit a finite number of sin-
gular solutions. This is similar to well-known phenomena in elliptic problems in nonsmooth
domains. Hence, the solutions of the equation are regular if and only if the source terms satisfy
a finite number of orthogonality conditions. A key difficulty of this work is to cope with these
orthogonality conditions during the nonlinear fixed-point scheme. In particular, we are led to
prove their stability with respect to the underlying base flow.
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1 Introduction

We investigate the existence and uniqueness of sign-changing solutions to the equation
UOpu — Oyyu = f (1.1)

in the rectangular domain  := (zg,21) X (—1,1), where ¢y < x; are real parameters and f is an
external source term.

A natural solution to (1.1) with a null source term £ = 0 is the linear shear flow u(x,y) := y,
which changes sign across the horizontal line {y = 0}. We are interested in strong solutions to (1.1)
which are close (with respect to an appropriate norm) to this linear shear flow u. Our purpose is to
construct such solutions by perturbing the lateral boundary data 11j,—s, (y) =y and wj,—,, (y) = ¥
or the source term f = 0.

Since such solutions will change sign across a line {4 = 0} lying within Q, a key feature of
this work is that (1.1) must be seen as a nonlinear forward-backward parabolic problem in the
horizontal direction. Thus, to ensure the existence of a solution, one must be particularly careful
as to how one enforces these lateral perturbations.

1.1 Statement of the main results

Due to the forward-backward nature of the problem, we must choose the lateral perturbations and
the source term in a particular product space. We therefore introduce the vector space

€= {(f, 8o,01) € CZ°(2) x C*([0,1]) x C=([~1,0]);  6;(0) = 9,,6;(0) = 976:(0) = 0
1.2
and 6,((—1)") = 925;((—1)") = 0 for i = 0, 1} 2

and H, the Hilbert space defined as the completion of £ with respect to the following norm
(associated with the corresponding canonical scalar product),

17280, 80 B += 113y + 1951113
+ 180ll3s + 18113

L 1 9260(y) \°
+/0 m(aﬁo(y)) dy+/0 |yl <8y ” ) dy (1.3)

0 0 2 2
[ L@ [ <6y895;<y)> ay.

_1 1yl

We establish existence and uniqueness of solutions in the following anisotropic Sobolev space
Q' = L*((zo,21); H>(—1,1)) N ]{5/3((@)7 x1); L*(—1,1)). (1.4)

In particular, for solutions with such regularity, (1.1) holds in a strong sense, almost everywhere
and the various boundary conditions hold in the usual sense of traces, almost everywhere. We first
state a result concerning the well-posedness in Q! of the linear version of (1.1) at the linear shear
flow, up to two orthogonality conditions (see comments below). Although equation (1.5) below has
been thoroughly investigated, as we recall in Section 1.2 below, we could not find this statement
in the existing literature.



Theorem 1. There exists a vector subspace ng C H of codimension two such that, for each
(f,00,01) € H, there exists a solution u € Q* to the problem

YO, u — Oyyu = f,
Uz, = 0i, (1.5)

Uly=41 = 0,

where Yo := {0} x (0,1) and Xy := {x1} x (=1,0), if and only if (f,d,01) € Hg;.

Such a solution is unique and satisfies

l[ullgr < NI(f,d0, 81) - (1.6)

We emphasize that this result implies that there exist triplets (f,dg,d1) that can be chosen
arbitrarily smooth and compactly supported, and for which there are no Q! solutions of (1.5).
Our main result is the following nonlinear generalization for small enough perturbations.

Theorem 2. There exists a Lipschitz submanifold M of H of codimension two, containing 0, such
that, for every (f,00,01) € M, there exists a strong solution u € Q' to

(y + w)0pu — Oyyu = f,

u\y::ﬁ:l =0.

More precisely, M is modeled on "ng and tangent to it at 0. Such solutions are unique in a small
neighborhood of 0 in Q' and satisfy the estimate (1.6).

The nonlinear orthogonality conditions are necessary in the sense that there exists n > 0 such
that, if (f,00,01) € H with ||(f,00,01)|% <n and u € Q' N HZ(H,) with |lullgr + lull 2y <m is
a solution to (1.7), then (f,d0,81) € M. '

In the statement above, the condition that the data (f,dg,d1) belong to the manifold M is the
nonlinear equivalent of the orthogonality conditions from Theorem 1. We emphasize that this is by
no means a technical restriction which could be lifted, but actually a necessary condition to solve
the equation with smooth solutions, as the second part of Theorem 2 points out. A key difficulty
lies in the fact that these orthogonality conditions depend on the solution itself. Hence, tracking
the dependency of these conditions with respect to the unknown function u is a key part of our
result. We will comment more abundantly on these points in the following sections.

1.2 Comments and previous results

We start with a few comments on our main results and recall related known results.

Problem (1.5), involving the operator y0, — 0y, can be seen as a particular case of the class
of “degenerate second-order elliptic-parabolic linear equations”, also referred to as “second-order
equations with nonnegative characteristic form” (as opposed to positive definite ones), “forward-
backward” or “mixed type” problems. They date back at least to Gevrey [16].

Problem (1.5) itself, as well as these wide classes of equations, has received a lot of attention
and has been investigated under different aspects: with variable coefficients or other geometries
[14, 34], higher-order operators [28, Ch. 3, 2.6], abstract operators [6, 35], explicit representation
formulas [15, 19] or with a focus on numerical analysis [2].



On weak solutions for the linear problem. It is well-known since the work of Fichera [14]
that weak solutions to (1.5) with LiH; regularity exist. For general boundary-value problems
for elliptic-parabolic second-order equations, one owes to Fichera the systematic separation of the
boundary of the domain in three parts: a “noncharacteristic” part, where one sets either Dirichlet
or Neumann boundary conditions (here y = +1), an “inflow” part, where one sets a Dirichlet
boundary condition (here ¥y U ¥;) and an “outflow” part, where one cannot set a boundary
condition (here, the two sets {zo} x (—=1,0) and {z;} x (0,1)).

Baouendi and Grisvard [5] proved the uniqueness of weak solutions to (1.5) with LiH; regu-
larity, by means of a trace theorem and a Green identity (see Appendix A). '

On strong solutions for the linear problem. There is an extensive literature on the regularity
of solutions to degenerate elliptic-parabolic linear equations, and the question of whether weak
solutions are strong. We refer the reader in particular to the book [30] by Oleinik and Radkevic.
Generally speaking, depending on the exact setting considered, it is quite often possible to prove
that the solutions to such equations are regular far from the boundaries of the domain and/or
from the regions where the characteristic form is not positive definite. A nice example is Kohn
and Nirenberg’s work [24], which proves a very general regularity result. A key assumption of
their work is that the “outflow” part of the boundary does not meet the “noncharacteristic” and
“inflow” parts (i.e. they are in disjoint connected components of 9€2). Hence, it does not apply
to (1.5), and hints towards a difficulty near the points (x,0) and (x1,0).

In a series of papers [32, 33, 34], Pagani proved the existence of strong solutions to (1.5) (and
related equations). More precisely, Pagani proved the existence of solutions such that y0,u and
dyyu belong to L*(Q). Moreover, he determined the exact regularity of the various traces of such
solutions (trace of u at & = x;, at y = £1 or y = 0, and trace of Jyu at y = 0). These maximal
regularity results play a key role in our analysis and motivate the functional spaces we introduce
in Section 1.5.

On orthogonality conditions for higher regularity. As noted by Pyatkov in [36], for such
forward-backward problems: “as a rule, there is mo existence theorems for smooth solutions with-
out some additional orthogonality-type conditions on the problem data”. Even for the linear prob-
lem (1.5), there have been very few works concerning higher regularity (than Pagani’s framework)
in the whole domain. Most of the works focused on higher regularity (such as [36]) involve weighted
estimates which entail regularity within the domain but not near the critical points (z;,0). An
attempt for global regularity is Goldstein and Mazumdar’s work [17, Theorem 4.2] albeit the proof
seems incomplete (see Proposition 2.7 below and its proofs for more details).

A misleading aspect is that it is quite easy, assuming the existence of a smooth solution, to prove
a priori estimates at any order. Such phenomenons are usual in the theory of elliptic problems
in domains with corners or mixed Dirichlet-Neumann boundary conditions (see for instance [20]).
Let us give an illustration of such a phenomenon in a close context. For a source term f € C2°(£2),
consider the elliptic problem

—Au=f in £,

u(zi,y) =0 for (—1)'y > 0,
Opu(ziyy) =0 for (—1)iy <0,
u(z,£1) =0  for x € (zg, x1).

(1.8)

It is classical that such a system has a unique weak solution u € H'(2). Moreover, assuming that



u is smooth enough, v := 0, u satisfies

—Av=20,f in Q,

Opv(zi,y) =0 for (—1)'y > 0,
v(x;,y) =0 for (—1)%y < 0,
v(z,£1) =0 for z € (g, x1).

(1.9)

For such systems, one has ||v]|g: < ||0xf||r2- Hence ||Ozu| < ||0xf |12, and, using the equation,
lullgz S || f]lgr. So one has an a priori estimate. However, it is known that there exist source
terms for which the unique weak solution u € H' does not enjoy H? regularity (see [20, Ch. 4]).
The key point is that, when reconstructing v from the solution v to (1.9), say by setting u(z,y) :=
ffo v(z',y) dz’ for y > 0 and u(x,y) := f;l v(z’,y) dz’ for y < 0, there might be a discontinuity of
u or yu across the line y = 0. Such discontinuities prevent v from solving (1.8). Preventing these
discontinuities requires that the source term satisfies appropriate orthogonality conditions.

Of course, such orthogonality conditions make it very difficult to obtain results at a nonlinear
level. Even for elliptic problems in polygonal domains, we are not aware of nonlinear results
coping with orthogonality conditions. For instance [20, Section 8.1] focuses on a case where there
is no orthogonality condition. Tracking the evolution of the orthogonality conditions during the
nonlinear scheme is one of the main difficulties of this work (see Sections 4 and 5.1). At the
nonlinear level, these orthogonality conditions are translated in Theorem 2 as the fact that the
data must lie within the manifold M, which can be pictured as a perturbation of the linear subspace
Hi‘g of data satisfying the orthogonality conditions for the linear problem.

Let us also emphasize that if one wishes to construct solutions with even stronger regularity,
say u € Hg’fH; with k > 1, then generically, one needs to ensure that 2k orthogonality conditions
are satisfied by the source terms.

On entropy solutions. An entirely different approach to solve (1.1) is to look directly for weak
solutions to the nonlinear problem, for example using an entropy formulation. The regularity for
such solutions is w € L% N LiH; and they are typically obtained as limits of solutions u® to
regularized versions of (1.1), e.g. u0,u® — Oyyu® — €0z,u® = 0. Such solutions satisfy both the
equation and the lateral boundary conditions only in the weak sense of appropriate inequalities
linked with “entropy pairs”. Given dg,d; € L*°(—1,1), the existence of an entropy solution to

U0y u — Oyyu = 0,

Uly=+1 =10

was first proved in [8]. More recently, Kuznetsov proved in [25] the uniqueness of the entropy
solution to (1.10), determined in which sense the lateral boundary conditions were satisfied and
proved a stability estimate of the form

lw =@l Lr () S 160 = dollLr(—1.1) + 161 = &1l (~1.0)- (1.11)

In particular, this stability estimate guarantees that one can construct sign-changing solutions in
the vicinity of the linear shear flow.
However, an important drawback of the entropy formulation is that the boundary conditions

are only satisfied in a very weak sense. Although functions in L% N LiH; don’t have classical



traces at * = x;, one can give a weak sense to the traces using the equation (see [26] for more
details). Unfortunately, it is expected that these weak traces do not coincide with the supplied
boundary data on sets of positive measure.

In contrast, since the solutions we construct in this work have (at least) H;Lf/ regularity, they
have usual traces ujy, € L*(3;) and the equalities us;, = &; hold in L*(X;), so almost everywhere.

On the choice of the linear shear flow. We choose to study the well-posedness of (1.1) in the
vicinity of the linear shear flow to lighten the computations. Nonetheless, we expect that our results
and proofs can be extended to study the well-posedness of (1.1) in the vicinity of any sufficiently
regular reference flow u changing sign across a single line {u = 0}, satisfying u, > ¢o > 0 in Q (so
that (1.5) is the correct toy model) and with ||u,||eo small enough (to ensure a priori estimates).

Moreover, taking a step further in the modelization of recirculation problems in fluid mechanics
(see Section 1.3), we also expect that our approach could be extended to an unbounded domain of
the form (20, 21) x (0,400), with a reference flow such that uj,—q = 0, u < 0 below some critical
line and then u > 0 above, with u having some appropriate asymptotic behavior as y — 4o00. In
such a setting, the Poincaré inequalities in the vertical direction that we use here should probably
be replaced with well-suited Hardy inequalities.

On the conditions §y(0) = 6;(0) = 0 for fixed end-points. It is an important feature of our
work that we are able to enforce precisely the exact endpoints of the (curved) line {u = 0} at
x = z9 and x = 7. Theorem 2 is stated for perturbations which satisfy ¢;(0) = 0 (see (1.2)),
so that the full boundary data y + ;(y) changes sign exactly at y = 0. This choice simplifies
the definition of the submanifold M of boundary data for which we are able to solve the problem.
Nevertheless, given yo, y1 sufficiently close to 0 and dp, d; such that y+;(y) changes sign at y = y;,
we expect that a similar existence result holds, provided that the perturbations are chosen in an
appropriate modification of M, with suitable modifications to the norm (1.3) and where, in (1.7),
the definitions of 3J; are generalized by setting ¥; := {(x;,v); (=1)*(y + &(y)) > 0}.

On the boundary conditions wu,—+; = 0. These boundary conditions are merely chosen
to simplify the statements and lighten the computations, since they guarantee that (z,y) —
(z,y + u(x,y)) is a well-defined global change of variables mapping € to itself (see Section 3.1).
Straightforward modifications would ensure the well-posedness of the considered systems with
sufficiently regular non-zero boundary data for uj,—.

On the compatibility conditions §;((—1)%) = 0 and §7(0) = 6/((—1)?) = 0. These conditions
are classical compatibility conditions for solutions to elliptic-parabolic equations. For example,
the condition do(1) = 0 is intended to match the condition u,—; = 0. The condition dg(0) = 0
comes from the equation. Indeed, if u is a sufficiently regular solution with f(z,0) = 0, the
equality 0,,u = zd,u at (x0,0) enforces 9,,u(zo,0) = 0, so d;(0) = 0. The condition 67 (1) = 0
stems similarly from the equation and the fact that d,uj,—; = 0. It corresponds to a classical
parabolic regularity compatibility condition. Note that we actually require the cancellation of
two additional boundary conditions, namely §;(0) = ¢61(0) = 0. We believe that these extra
assumptions are technical, and could be removed.



1.3 Motivation from recirculation problems in fluid mechanics

Our original motivation stems from fluid mechanics. Indeed, the stationary Prandtl equation,
which describes the behavior of a fluid with small viscosity in the vicinity of a wall, reads

u0yu + vOyu — Oyyu = —0zPE,
Uy=0 = Vjy=0 = 0, (1.12)

limy o0 u(z,y) = ug(x),

where ug(x) (resp. pg(x)) is the trace of an outer Euler flow (resp. pressure) on the wall, and
satisfies updyup = —0:pPE-

As long as u remains positive, (1.12) can be seen as a nonlocal, nonlinear diffusion type equa-
tion, the variable z being the evolution variable. Using this point of view, Oleinik (see e.g. [31,
Theorem 2.1.1]) proved the local well-posedness of a solution of (1.12) when the equation (1.12) is
supplemented with a boundary data w,—¢ = ug, where ug(y) > 0 for y > 0 and such that u4(0) > 0.
Let us mention that such positive solutions exist globally when d,pgr < 0, but are only local when
O0.pg > 0. More precisely, when 0,pp = 1 for instance, for a large class of boundary data wug, there
exists z* > 0 such that lim,_,,« u,(z,0) = 0. Furthermore, the solution may develop a singularity
at x = x*, known as Goldstein singularity. The point z* is called the separation point: intuitively,
if the solution of Prandtl exists beyond z*, then it must have a negative sign close to the boundary
(and therefore change sign). We refer to the seminal works of [18] and Stewartson [39] for formal
computations on this problem. A first mathematical statement describing separation was given by
Weinan E in [13] in a joint work with Luis Cafarelli, but the complete proof was never published.
The first author and Nader Masmoudi then gave a complete description of the formation of the
Goldstein singularity [10]. The recent work [38] indicates that this singularity holds for a large
class of initial data.

Because of this singularity, it is actually unclear that the Prandtl system is a relevant physical
model in the vicinity of the separation point x*, because the normal velocity v becomes unbounded
at © = x*. Consequently, more refined models, such as the triple deck system (see [27] for a
presentation of this model, and [23, 11] for a recent mathematical analysis of its time-dependent
version), were designed specifically to replace the Prandtl system with a more intricate boundary
layer model in the vicinity of the separation point. However, beyond the separation point, i.e.
for > x*, it is expected that the Prandtl system becomes valid again, but with a changing sign
solution.

To the best of our knowledge, the well-posedness of (1.12) when the solution u is allowed to
change sign has seldom been investigated. Such solutions are called “recirculating solutions”, and
the zone where u < 0 is called a recirculation bubble, the usual convention being that ug(z) > 0,
so that the flow is going forward far from the boundary.

Let us mention however the very recent preprint [22] by Sameer Iyer and Nader Masmoudi, in
which the authors prove a priori estimates in high regularity norms for smooth solutions of the
Prandtl equation (1.12) in the vicinity of explicit self-similar recirculating flows, called Falkner-Skan
profiles. The latter are given by

U’(x’y) = xmf/(C)’ (1.13)

o) =~y I Q) — Ty R ), (1.14)

where ¢ := (m; 1)%y30mT71 is the self-similarity variable, m is a real parameter and f is the solution



to the Falkner-Skan equation
" L+ B (1)) =0, (1.15)

where 38 = 72—1“1, subject to the boundary conditions f(0) = f/(0) = 0 and f’(+o00) = 1. Such
flows correspond to an outer Euler velocity field ug(z) = ™. For some particular values of m
(or, equivalently, 3), these formulas provide physical solutions to (1.12) which exhibit recirculation
(see [9]).

Obtaining a priori estimates for recirculating solutions of the Prandtl system (1.12) is very
difficult. This important step was achieved by Sameer Iyer and Nader Masmoudi in [22]. In the
present paper, we have chosen to focus on a different type of difficulty, and to consider the toy-
model (1.1), which differs from (1.12) through the lack of the nonlinear transport term v9,u and
its associated difficulties (nonlocality, loss of derivative) and the exclusion of the zones close to
the wall and far from the wall. For the model (1.1), a priori estimates are easy to derive, see [37,
Chapter 4]. The difficulty lies elsewhere, as explained previously. Indeed, in order to construct
a sequence of approximate solutions satisfying the a priori estimates, we need to ensure that the
orthogonality conditions are satisfied all along the sequence. The core of the proof is to keep track
of these orthogonality conditions, and to analyze their dependency on the sequence itself.

1.4 Scheme of proof and plan of the paper

Uniqueness of solutions is fairly easy to prove. For the linear problem (1.5), uniqueness already
holds at the level of weak solutions (see Proposition 2.2 and Appendix A). For the nonlinear
problem, uniqueness is straightforward since we are considering strong solutions (see Section 5.2).
Therefore, the main subject of this paper is the proof of the existence of solutions for the nonlinear
problem (1.7).

A first natural idea would be to prove existence thanks to a nonlinear scheme relying on the
linear problem (1.5). For example, one could wish to construct a sequence of solutions (un)nen by
setting ug := 0 (or any other initial guess) and solving

y@wum_l - 8yyun+1 = f - unaﬂ«'u"“
(Unt1)[; = 04 (1.16)
(un+1)|y:j:1 = 0.

However, this strategy fails. The key point is that the right-hand side contains a full tangential
derivative of u,, whereas the operator yd, — 0y, only yields a gain of 2/3 of a derivative in this
direction (more precisely, see Proposition 1.2 and Proposition 2.4). Hence, this nonlinear scheme
would exhibit a “loss of derivative”, preventing us to prove a uniform bound on the sequence
(un)n€N~

Another drawback of this scheme is that it would not translate well to a setting where one does
not assume 6;(0). Indeed, in such a case, the inflow boundaries of the problem with the perturbed
data y + 0;(y) would not match the inflow boundaries of the linear problem (1.5).

Hence we will rather construct solutions of (1.1) through another iterative scheme, which does
not rely directly on (1.5). In a way, the issues stemming from the linear scheme (1.16) come from
the following fact: in equation (1.7), the geometry of the problem is dictated by the line where the
whole solution y 4+ u changes sign. On the contrary, in (1.5), the geometry of the problem follows
the cancellation of y. Keeping this in mind, we will rather rely on the following linearized equation



around a base flow perturbation %, where @ is a small perturbation of the shear flow y in Q!

U0gu — Oyyu = f,
Uz, = 51', (1.17)
’U/|y::t1 =0.

The well-posedness of such linear systems is investigated in Section 3. Exactly as Theorem 1

requires orthogonality conditions to ensure the existence of regular solutions to (1.5), the existence

of regular solutions to (1.17) is subject to perturbed orthogonality conditions (see Section 3.4).
More precisely, we will construct a sequence (u,)nen solving the following iterative scheme

(y + Un)axun—i-l - ayyun+1 = fn+17
(Un+1)|s; = 5?“, (1.18)

(Uny1)jy=+1 = 0.

For this scheme, we are able to prove a uniform bound for u, in an appropriate space Q' and the
convergence of the sequence in an interpolation space Q'/2 (see (1.29) and (1.30)). This scheme is
similar to the one used to construct solutions of quasilinear symmetric hyperbolic systems, see for
instance [4, Section 4.3].

In (1.18), (f”“,ég“,éf“) are appropriate perturbations of the data (f,do,d1) tailored to
satisfy the orthogonality conditions associated with the problem (1.17) (for @ = u,). This is a key
difficulty of this work (see Sections 4 and 5.1). In particular, in order to allow the sequence u,, to
converge, we must prove that these perturbations also converge, which amounts to prove that the
orthogonality conditions for (1.17) depend continuously (and even in a Lipschitz manner) on 4,
for the same topology as the one within which we will prove the convergence of the sequence w.,.

The plan of this work is as follows. As a preliminary, we introduce in Section 1.5 the functional
spaces we will use. First, we study the linear problem (1.5) in Section 2, leading to Theorem 1, and
prove that the two orthogonality conditions we expose are indeed nonvoid. Second, in Section 3, we
study linearized problems of the form (1.17). The main task is to derive the modified orthogonality
conditions and prove their existence. Third, we prove the stability with respect to the underlying
flow @ of the orthogonality conditions in Section 4. Then, in Section 5, we turn to the nonlinear
problem for which we prove the existence of solutions in Section 5.1 using the scheme mentioned
above, then uniqueness in Section 5.2 and the necessity of the nonlinear orthogonality conditions
in Section 5.3. This concludes the proof of Theorem 2.

Eventually, in Appendix A, we prove the uniqueness of weak solutions to various linear problems
involved in Section 3, by adapting an argument due to Baouendi and Grisvard [5]. In Appendix B,
we prove various technical results of functional analysis that we use throughout the paper.

1.5 Functional spaces and interpolation results
1.5.1 Notations

Throughout this work, an assumption of the form “A <« 1”7 will mean that there exists a constant
¢ > 0, depending only on Q such that, if A < ¢, the result holds. Similarly, a conclusion of the
form “A < B” will mean that there exists a constant C' > 0, depending only on €2, such that the
estimate A < C'B holds. For ease of reading, we will not keep track of the value of these constants,
mostly linked with embeddings of functional spaces.

We will often use the notations Q1 := QN {£z > 0}.

10



1.5.2 Trace spaces for the lateral boundaries

For the traces of the solutions to (1.5) or (1.7) at & = zp and & = x1, we will need the following
spaces, due to [33, 34]. We define £2(—1,1) as the completion of L?(—1,1) with respect to the
following norm:

llls = ( / 11 2l (2) dz)é (1.19)

and 21 (—1,1) as the completion of H}(—1,1) with respect to the following norm:
[Pl = 1]z + [0:0] 2. (1.20)

1.5.3 Trace spaces for horizontal cuts

When considering the restriction of a solution to (1.5) or (1.7) at some altitude z € (—1,1), we
will sometimes need the following spaces in the horizontal direction.

The Lions-Magenes space Hééz (w0, 1) is defined as the completion of HE(zg,21) with respect
to the following norm

1 2 %
101l = 0l + ( e d:r) | (1.21)

., T —2oll21 — 2]

It is also the interpolation space [Hg(xo,21), L?(20,21)]3 (see [29, Théoreme 11.7, Chapter 1),
or the subspace of functions of H'/?(xg,x1) of which the extension by 0 is in HY/?(R). By [29,
Proposition 12.1], @, is continuous from H'/2(zo, z1) to (Hy,* (zo,21))".

We will also need one-sided versions of this space, for functions “vanishing” only at the left side

x =z (say Hééf (z0,21)) or only at the right side z = z;1 (say Hééf(xm x1)). For example

1 2 %
16l 2 = ||¢|H1/2+( [ dx) . (1.2

s |z —2]

1.5.4 Pagani’s weighted Sobolev spaces

Let O be an open subset of R?. In the works [33, 34] (albeit with swapped variables with respect
to our setting), Pagani introduced the space Z(O) of scalar functions ¢ on O such that ¢, 9,¢,
9,.¢ and 20, belong to L?(O) (in the sense of distributions). In this work, we will refer to this
space with the notation Z°(O). It is a Banach space for the following norm

[¢llzo == [20c@| 2 + 102202 + [|0:¢] 2 + ||| L2- (1.23)

We will also need the space Z'(0), which we define as the space of scalar functions ¢ on O such
that ¢ and 9,¢ belong to Z°(0), associated with the following norm

1@l z2 == l|@llzo + (|02l zo- (1.24)

The omitted proofs of the results of this section are postponed to Appendix B. We start with a
straightforward extension result, which will allows to transfer results on Z°(R?) to Z°(€).

Lemma 1.1. There exists a continuous extension operator from Z°(Q) to Z°(R?).

11



The following embedding is the most important result concerning the space Z°. Since solutions
to (20, — 0..)u = f for f € L%(Q) belong to Z°(2) (see Proposition 2.4), the following embedding
entails that such solutions belong to H?/3(Q)!.

Proposition 1.2. Z°(R?) is continuously embedded in H§/3L§.
Proof. Let ¢ € C°(R). By Lemma B.10, one has

[¥llee S lz9ll2 + (10229 L2 (1.25)

Using standard dimensional analysis arguments (e.g. by introducing the rescaled function ¢y : z —
Y(Az) for A > 0 and optimizing the choice of \), one deduces from (1.25) that

[Pllz2 S 2l 22102291l 72 (1.26)

Let ¢ € C°(R?). Let (£, z) denote the Fourier-transform of ¢ in the horizontal direction. Then
using (1.26) and Hélder’s inequality,

6lese, = [+ IgPHI6E, 2P déas

S WolE= + [ 16131006, 2 l0-:06, )1, e
R

. 1 (1.27)
. 3 . 3
Slolis + ([ lepsiite P azae) ([ 1onite o) asac)
1 2
Hence [|§| ,2/3,, < ||¢llzo. This concludes the proof, by density of C2°(R?) in Z°(R?).
’ O

Lemma 1.3. Z°(R?) is continuously embedded in C’B(H;m).

Proof. By definition, Z°(R?) — H2(L2?). By Proposition 1.2, Z°(R?) — L§(H§/3). By the
“fractional trace theorem” [29, Equation (4.7), Chapter 1], Z°(R?) — CS(H;/Q). O

Lemma 1.4. Z°(Q) is continuously embedded in C°([zq,x1]; 1 (—1,1)).
Proof. This is contained in the trace result [34, Theorem 2.1]. O
Remark 1.5. Although it is “almost” the case, there does not hold Z°(R?) — C°(R?).

e Pagani [33, Theorem 2.1] proves that the operator ¢ — ¢(-,0) is onto from Z°(R?) to Hz (R).
But H2(R) contains unbounded functions of x.

e Pagani [33, Theorem 2.3] proves that the operator ¢ — ¢(0,-) is onto from Z°(R?) to the space
AL (R). But this spaces contains unbounded functions, for example 1(z) := (—1In|z]/2)*x(2)
for s < % and x € C°(R) with x =1 in a neighborhood of z = 0.

1This can be seen as an hypoellipticity result for the operator L = 0., — 20, in the full space, which is of the
form X12 + Xo, where X1 = 9,, Xo = —20; and [Xo, X1] = O, so the Lie brackets generate the full space and L
satisfies Hormander’s sufficient condition of [21] for hypoellipticity.

12



1.5.5 Anisotropic Sobolev spaces

In the sequel, we will construct solutions of (1.5) and (1.7) in the following anisotropic Sobolev
spaces. Within all these spaces, one has heuristically the correspondence 9, ~ 02, which corre-

z

sponds to the appropriate scaling due to the degeneracy of 29, at z = 0. We consider

Q"= L3(Hy)n HY (L), (1.28)
Q' = L2(H)) N HY*(L2). (1.29)

By Proposition 1.2, Z° < Q. This is the natural space for strong solutions to our equations. The
space Q' corresponds to the situation where d,u is a strong solution to an equation of the same
structure, so d,u € Q¥, which yields the Hg/s(LZ) estimate. The Li(HS) estimate comes from a
sort of “hidden regularity” result (see e.g. Section 2.4).

Eventually, a key argument of our work is that we will prove the Lipschitz-stability of the
orthogonality conditions and the convergence of the nonlinear scheme within the following inter-
polation space:

Q' =1Q% Q"

Lemma 1.6. By interpolation, we have the following embeddings

= L2(H}/*)n HY/S(L2). (1.30)

1
2

e Q' C HgHg/ for all 0,0’ > 0 such that 30 + o' = 5;
e QY2 C HgHy”/ for all 0,0’ > 0 such that 30 + o’/ =7/2;
e Q0 C HgHg/ for all 0,0’ > 0 such that 30 + o' = 2.

In particular, Q' C L (W),

2 The case of the linear shear flow

This section concerns the well-posedness of the linear system (1.5) which we restate here for
convenience and by using z as a vertical variable rather than y to prepare for the next sections.
We thus consider, in Q = (zg,21) x (=1, 1), the system

20,0 — Oy u = e
U\Ei = (51', (21)
Ulz=+1 = 0,

where 3o = {zo} x (0,1) and X1 = {z1} x (—1,0).

First, in Section 2.1, we recall the theory of weak solutions, due to Fichera, Baouendi and
Grisvard. Then, in Section 2.2, we recall the theory of strong solutions with maximal regularity,
due to Pagani. Our main contribution regarding this problem is contained in Section 2.3, where we
derive two orthogonality conditions which are necessary to obtain higher tangential regularity and
prove Theorem 1. Eventually, in Section 2.4, we prove a hidden regularity result for such solutions,
which allows to control five derivatives in the vertical directions, and will be useful for the sequel.
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2.1 Existence and uniqueness of weak solutions

Definition 2.1 (Weak solution). Let f € L*((wo,71); H *(=1,1)) and 6,01 € L2(—1,1). We
say that u € L?((wo,z1); HE(—1,1)) is a weak solution to (2.1) when, for all v € H*(Q) vanishing
on I\ (Zo UX4), the following weak formulation holds

—/zu@mv—l—/&zu@zv:/fv—i—/ 2601)—/ 2010. (2.2)
Q Q Q >o P

Weak solutions in the above sense are known to exist since the work Fichera [14, Theorem XX]
(which concerns generalized versions of (2.1), albeit with vanishing boundary data). Uniqueness
dates back to [5, Proposition 2] by Baouendi and Grisvard.

Proposition 2.2. Let f € L?((wg,z1); H~1(—1,1)) and 69,01 € L2(—1,1). There exists a unique
weak solution u € L?((zg,71); HY(=1,1)) to (2.1). Moreover,

lullcz sy S 11l g2 oty + 100ll22 + 1101 ]].22- (2.3)

Proof. The proof of uniqueness is postponed to Appendix A were we adapt Baouendi and Grisvard’s
arguments to prove uniqueness of weak solutions to all the linear problems we encounter in this
paper. It relies on the proof of a trace theorem and a Green identity.

Let us prove the existence. We introduce two Hilbert spaces ¥ < % < L?((z0,71); H}(0,1))
as follows. Let ¥ = {v € H*); v = 0on Q\ (3o UXy)}. Let % be the completion of
HY(Q) N L%((wo,z1); Hi (—1,1)) with respect to the scalar product

(u, v) oy ::/azuazv—i—/ zuv—/ ZU. (2.4)
Q o o

For u,v € % x ¥, let

a(u,v) = —/Qzuawv—l—/gazuazv, (2.5)

/szfv+/20 zéov—/zl z010. (2.6)

In particular, for every v € ¥, integration by parts leads to a(v,v) = ||v|%, and

S
—

<
=

I

b@) < (If 21y + 10ollzz + 1d1]22) 0]l - (2.7)

Hence, b € L(% )? and existence follows from the Lax-Milgram type existence principle Lemma B.2,
which also yields the energy estimate (2.3) thanks to (2.7) and Poincaré’s inequality. O

Remark 2.3. Instead of using the weak Lax-Milgram ezistence principle Lemma B.2, an alternate
proof would be to reqularize equation (2.1) by vanishing viscosity, and to obtain uniform L2(H}L)
estimates on the approximation.

2Functions in % a priori do not have traces on %; so one could wonder how definition (2.6) makes sense. The
integrals fEi z6;v make sense precisely because % is defined as a completion with respect to (2.4). In fact, weak
solutions do have traces in a strong sense, as proved in Lemma A.1, thanks to the extra regularity in & provided by
the equation.
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2.2 Strong solutions with maximal regularity

We now turn to strong solutions, i.e. solutions for which (2.1) holds almost everywhere. The main
result on this topic are due to Pagani.

Proposition 2.4. Let f € L*(Q) and 8,61 € 51 (—1,1) such that §o(1) = §1(—1) = 0. The
unique weak solution u to (2.1) belongs to Z°(Q) and satisfies

lullzo S NI fllz2 + doll ez + [101 ] 2 (2.8)
Moreover, the boundary conditions ujs, = 6; hold in the sense of traces in HL(X;) (see Lemma 1.4).

Proof. This is a particular case of [34, Theorem 5.2]. Pagani’s proof proceeds by localization. Far
from the critical points (z(,0) and (z1,0), the regularity is rather straightforward. Near these
critical points, the regularity stems from the regularity obtained for a similar problem set in a
half-space. Pagani studies such half-space problems in [33] where he derives explicit representation
formulas for the solutions, using the Mellin transform and the Wiener-Hopf method. We do not
reproduce these arguments here for brevity. O

2.3 Orthogonality conditions for higher tangential regularity

We now investigate the question of whether solutions to (2.1) enjoy higher regularity in the tangen-
tial direction. As mentioned in Section 1.2, it is quite easy to obtain a priori estimates in the space
ZY(9) (see Proposition 2.5). However, we prove in Proposition 2.7 that the weak solution enjoys
such a regularity if only if the data satisfies appropriate orthogonality conditions. Eventually, we
give statements highlighting the fact that these conditions are non empty.

Proposition 2.5. Let f € H'((zo,71); H 1(—1,1)) and 60,01 € S (—1,1) such that do(1) =
§1(=1) = 0 and such that Ay, Ay € L2(—1,1), where

f(i,2) +67(2)
. :

Ai(z) = (2.9)

If the unique weak solution u to (2.1) belongs to H'((wo,z1); Hi(—1,1)), then one has the following
weak solution estimate for Oyu:

[0zull L2y S N0 fll 2 =1 + [[Aollz2 + [[Ar]l.22. (2.10)

If moreover, f € H'((zo,71); L*(—1,1)), Ao, A1 € H(—1,1) and Ag(1) = A1(=1) = 0, then
u € Z1 () and one has the following strong solution estimate for Oyu:

10zullzo S 1102 fl[L2 + | Aoller + | A1]lses- (2.11)

Proof. The key point is that the information that d,u enjoys L2H} regularity allows us to prove
that d,u is the unique weak solution to

Zazw - azzw = fma
wys, = A, (2.12)
W)z=+1 = 0.
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Then estimate (2.10) follows from (2.3) and estimate (2.11) follows from (2.8). Hence, let us prove
that d,u is a weak solution to (2.12). Let

¥ i={velC® ); v=00n00)\ (ZoU%),

9,v=0on {zg} x (—=1,0) and {z1} x (0,1)}. (2.13)

Let v € ¥. Then 0,v is an admissible test function for Definition 2.1. Hence, since u is the weak
solution to (2.1), one has

_ /Q udn(By0) + /Q .40 (0y0) = /Q F(Ou0) + /E =(on0) - /Z =i (0h0). (2.14)

The H!H! regularity of u legitimates integrations by parts in x in the left-hand side. Thus

1 x1 1 1
{—/ zu@xv} —|—/ 2(0zu)0zv + {/ azuazv} — [ 0.(0yu)d,v
1 Q -1 Q

xo Zo

_ [/_11 fv]: _/waw/zo 250(83511)—/21 261(9,0),

which, after taking the boundary conditions into account, integrating by parts in z in the boundary
terms f_ll 0,ud,v and recalling (2.9) yields

7/ z(@xu)avar/ 82(3$u)8zv:/fxv+/ ZAOU—/ zAqv. (2.16)
Q Q Q o P

Since 7 is dense in the set of test functions for Definition 2.1, this proves that d,u is the weak
solution to (2.12). O

(2.15)

We start by defining “dual profiles” which are necessary to state our orthogonality conditions.

Lemma 2.6 (Dual profiles). We define ®°, &' € Z°(Q\ {z = 0}) as the unique solutions to

—20,97 — 9, =0 inQ\ {z =0},

[q)j} |2=0 = 1j=1, (2.17)
[az(I)JLZ:O = 71‘7:03

J _
oo\ (zousy) = 0-

Proof. Uniqueness is straightforward. Given j € {0,1} and two solutions of (2.17), let ¢ denote
their difference. Then ¢ € Z°(Q2\ {z = 0}) and both ¢ and 9,¢ are continuous across the line
{z = 0}. Hence ¢ € Z°(Q) and is the solution to a problem of the form (2.1) (with reversed
tangential direction). So ¢ = 0 since weak solutions of such problems are unique.

We prove the existence of ®°. The profile ®' can be constructed similarly and is left to the
reader. We define ®°(z,2) := —2,((2) + ¥°(z, 2), where ¢ € C°(R) is such that ( = 1 in a
neighborhood of z = 0 and supp¢ C (—1/2,1/2) and ¥° € L?((zg,z1); H*(—1,1)) is the unique
weak solution to

_281,\110 - 8zlej0 = _21z>0</(z) - Z-‘rCH(Z) in Qv
U0 (z9,2) =0 for 2 € (—1,0),
UO(xy,2) = 2((2) for z € (0,1),

0 _
\I]|z::|:1 = 0.

(2.18)
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By Proposition 2.4, ¥° € Z9(Q). Hence 9.,9° € L?(Q4) and 29,9° € L?(Q). O

We now turn to the main result of this section, which gives a necessary and sufficient condition
for the solutions to enjoy the mentioned tangential regularity. Strangely, we could not find a proof
of the above result in the literature, although some works mention orthogonality conditions (see
[14, Equation (4.2)] or [36]). Hence we provide here a full proof. This strategy will be extended in
the next section to equations with variable coefficients. We prove further that these orthogonality
conditions are not empty.

Proposition 2.7. For f € H'((wo,x1); L*(—1,1)), 60,01 € 541 (—1,1) with §o(1) = 61(—1) = 0
and Ao, Ay € HL(—1,1) with Ag(1) = A1(=1) =0 (see (2.9)), the unique weak solution u to (2.1)
belongs to H ((zg,21); H(—1,1)) if and only if, for 5 =0 and j = 1,

8»qu>] +/ ZAoq)j —/ ZAl(I)j = 8151(0) - 6;50(0) (219)
Q Eo 3

Furthermore, under this condition, we actually have O,u € Z°(2), so u € Z*(Q).

Proof. First step: We exhibit possible discontinuities. Let us consider the unique solution v € Z°
to (2.1). Following the strategy sketched by Goldstein and Mazumdar® [17, Theorem 4.2], we
introduce the unique strong solution w € Z°(2) to (2.12), so that w is a good candidate for 9,u.
The idea is then to introduce the function u; defined by
uy(z, 2) = do(z) —|—/ w(z',2)dz’  in Qp = (w9, 71) x (0,1),
%0 (2.20)

T1

ui(x, z) = 61(2) 7/ w(z',z)dz’  in Q_ = (xg, 1) x (—1,0)

x

so that d,u; = w almost everywhere. Furthermore it can be easily proved that
20,u1 — Oyur = f (2.21)

in D’'(Q4). However this does not entail that u; is a solution of this equation in the whole domain.
Indeed, u; and 0,u; may have discontinuities across the line z = 0. Nevertheless, one checks that
w1 and O,up are continuous across z = 0 if and only if

/xl w(z,0) de = 61(0) — §p(0),
o (2.22)
/ w,(z,0) dz = §1(0) — &,(0).

0

The two integrals are well defined since w, and w.. belong to L? (Q).

Second step: We compute the mean value of w and w, using the dual profiles. Let ¢ € Z°(Q4)
such that ¢|s0\(s,nx,) = 0. Since w € Z9(Q), it satisfies (2.12) almost everywhere, so that we can
multiply the equation by ¢ and integrate over €2,. Hence

Q. Q,

30ddly, Goldstein and Mazumdar do not mention the orthogonality conditions (2.19). They merely state that
since 8pu1 = w, u1 € H((zo,z1); H3(—1,1)). However, these orthogonality conditions are necessary and non-
empty, as we show below (see Proposition 2.9).
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where, on the one hand,
/ 2(0,w)p = 2010 — 2w0y ¢ (2.24)
Qy o Q.
and on the other hand,

— 0. = " 0, — wo, ,+ dzx — 0., 0. .
/m( w)$ /mo( wi — wd.d)(z,0%) dx /w " (2.25)

Q.

Thus, performing the same computation on 2_ and summing both contributions yields

/ (0.0[@]js0 — w[D26]10—0) (2, 0) dz = /wa¢+ /E Do [ 2big

(2.26)
—|—/ w(205¢ + 0..0).
Q4

Hence, for j € {0,1},

/ M w(x,0) dx:/fmfbj—l—/ ontbj—/ 2N D (2.27)
o Q Yo p35

Third step: Conclusion. Assume that the orthogonality conditions (2.19) are satisfied for
j = 0and j = 1. Then (2.22) holds, and a consequence, [ui]j.—o = [D.u1].—0 = 0, and
uy € L?((wo,21); HY(—1,1)) is a weak solution of (2.1). We infer from the uniqueness of weak
solutions solutions that u = wuj, and therefore d,u = w € L?((zg,z1); H}(—1,1)). Hence u €
}11((3307 1‘1); H&(—l, 1))

Conversely, if u is a solution to (2.1) with H'((xq,z1); Hi(—1,1)) regularity, then d,u is a weak
solution to (2.12) (see the proof of Proposition 2.5) and w is given in terms of dyu by (2.20) almost
everywhere. Since [u1]|.—o = [0;u1]|.—0 = 0, one has f:ol uz(z,0) dor = f;ol Uz (2,0) dz = 0, and
thus the orthogonality conditions (2.19) are satisfied. O

Definition 2.8. In the sequel, we denote by ¢ the linear forms associated with the orthogonality
conditions (2.19) for the linear shear flow problem, i.e. we set

0(F,00,61) = 960(0) — 61 (0) +/

onqﬂ'—/ zA1q>j+/aqu>j. (2.28)
3o P Q

We now prove that the orthogonality conditions (2.19) are non-empty and independent.

Proposition 2.9. The linear forms €° and ¢* are linearly independent on C2°(2) x {0} x {0}. In
particular, this also holds on C°(Q) x CX(Xy) x C°(X1).

Proof. Proceeding by contradiction, let (co, c;) € R? such that, for every f € C°(), cof°(£,0,0)+
101 (f,0,0) = 0. Then ®° := ¢o®° + ¢, P! satisfies [, 0, f®° = 0 for every f € C°(), so 9, P =0
in D'(Q4). Since ®°(z1,2) = 0 for z € (0,1) and ¢ € Z°(€2,), this implies that ¢ = 0 in Q4
(since Z° functions have traces in the usual sense, see Lemma 1.4). The same holds in 2_. Hence
[@€]2=0 = [0-9]|2—0 = 0, which implies ¢y = ¢; = 0. O
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Corollary 2.10 (Biorthogonal basis). There exist =% = (f* 6k, 68) € H for k € {0,1} such that,
for every j, k € {0,1}, , 4
((2F) = (%, 6,688 = 1,0 (2.20)

and such that, within H,
HE = (RE+REY) " = ker £ Nker £, (2.30)

Proof. Since (° and ¢! are continuous linear forms on H, by the Riesz representation theorem,
they can be written as scalar products with two given triplets, say A®, Al € H which are linearly
independent thanks to Proposition 2.9. Then one looks for ZF = (f*, 6k, 6%) as axA® + by A' where
ay, by, € R? are such that ay(A7; A') + br(AJ;A%) = 1. These systems can be solved since A°
and A! are free. Moreover, this ensures (2.30) and their independence guarantees that Hng is of
codimension 2 in H. O

2.4 Hidden vertical regularity

The goal of this paragraph is to prove that, if u is a solution to (2.1) such that 9,,.u € L?(f2), then
one also has d5u € L?(Q), provided that the data is sufficiently regular. There is no additional
orthogonality condition. We start with the straightforward claim that 9%u € L?(2).

Lemma 2.11. Let f € L2H; ' and 69,01 € L2. Assume that 6o(1) = 61(—1) = Ap(l) =
A1(=1) = 0. Let u be the unique weak solution to (2.1). Assume that w € HLH? and f € L2H?2.
Then 0%u € Z° and

lullz2 s + [120:02ull 2 S llullry ez + |1 £l 22 a2

Proof. Since u is a strong solution to (2.1), there holds 0,.u = 20, u— f in L*(Q). Hence, in D’'(Q),
Otu = 20p22u + 20p.u — 0. f . Thus Otu € L2(Q) and |[ullz2ms < | fllc2m2 + llullgime.

The Z° regularity follows from the results of Proposition 2.4, noticing that the compatibility
conditions in the corners are satisfied. O

Proposition 2.12. Let f € L2H; ' and 80,61 € £2. Let u be the unique weak solution to (2.1).
Assume that w € HIH?, f € L2H? and 0260,0261 € A7, with do(1) = 51(—1) = Ag(1) =
A(—1) = 0. Assume furthermore that 9,0%f € L*((wo,z1) % (1/2,1)) N L?((wg, z1) X (=1, —1/2)).

Then d3u € L*(Q) and

lull 2z S Null ez + 1z me + 10202 fLizmapallee + Y 10264 e (2.31)
1€{0,1}

Proof. In the course of the proof, we will need to distinguish between different regions:

e One “interior” region, close to the line z = 0. In this region, we will prove that d3u is such
that (20, — 02)02u € L?, and use the results of Pagani to deduce that 95u € L.

e Two “boundary” regions, in the vicinity of the lines z = +1. In these regions, since z is
bounded away from zero, we will use classical parabolic regularity arguments.

e Interior region: Let ¢ € C°°(Q) such that ¢ = 0 on {zo} x [-1,0], ¢ = 0 on {z1} x [0,1]
and ¢ vanishes identically on neighborhoods of z = £+1. Thanks to the regularity of u, we can
multiply the PDE for u by 93¢ and integrate over (2. Vertical integrations by parts yield vanishing
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boundary terms because ¢ vanishes identically in neighborhoods of z = +1. We proceed with care
for the horizontal term so that all manipulations are licit:

/ zazuaqu = /(28mu + 20,.,u)0,0
Q Q

(2.32)
- / 20,.ud. b + / 20.010.6 — | 20.-600-6 / 20
Q b 2o Q
We rewrite the last term as
_/ Zazzuawz¢:/zazzzuaw¢+/8zzuaw¢
¢ ¢ o (2.33)

= / Zazzzuaw¢ +/ azz(sld) - 82250¢ - 6a:zzu¢)'
Q Y Q

o

Hence,

/z@muaf(b:—?)/ amu¢+/ zaguawqb— Z
Q Q Q

1€{0,1}

(_1)i/ 0:20i(20.0 + ¢) (234)
3
We also integrate by parts the boundary term. For example, on ¥y:

— 8ZZ60z82¢ = —[Zazzao¢|a;:$0]é + / (26350 + 62250)¢. (235)

>0 o

The pointwise term is null at z = 1 because ¢ vanishes identically near z = 1 and null at z = 0
since ¢ vanishes at 0 and 9,.00 € H#72(Xp).
Eventually, this proves that

~ / 2(8%u)dp o + / 0.(Ru)d.0 = > / 2036, + / (82 f — 30,2.1)0. (2.36)

Q Q ic{o,1} /% Q
Since u € L2H? (by Lemma 2.11), v € HLH?, f € L2H? and 6; € H3, by density, this equality
still holds for ¢ € H'(Q2) such that ¢ = 0 on {z¢} x [~1,0], {z1} x [0,1] and 2z = £1.

Now, let xo € C3°((—1,1)) such that xo = 1 in a neighbourhood of z = 0. The above argument
shows that xod2u € L2H] is the unique weak solution to (2.1) with boundary data x93d; and
source term Xo(02f — 30,..u) — x§O2u — x402u € L*(Q). We infer from Proposition 2.4 that
x002u € L?. Note that thanks to the truncation yg, the compatibility conditions at (x¢,1) and
(21, —1) are automatically satisfied. Furthermore, 2x00,02u € L?. As a consequence, using the
equation, we infer that 22y020,u € L?.

e Boundary regions:

By symmetry, we only treat the upper boundary region. We consider a function x; € C*(R)
such that x; = 1 in a neighbourhood of z = 1, and Suppyx; C (1/2,1).

Then uq := x1u is a solution of

20,u1 — Oz,u1 = f1 = fx1 — X10,u1 — x{u1, in (wo, 1) x (1/2,1)
Up|z=1/2 = Ut|z=1 = 0, (2.37)

Ul |z=x¢ = X150-
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This is a standard parabolic equation, for which we can apply classical regularity results. Note
that the assumptions on f together with the observation that 20,0%u € L2, 2x00,0u € L2,
22020,uxo € L? imply that 92f; € Hy(L?). The compatibility conditions dp(1) = Ag(1) = 0
ensures that 8,0%u; € L?((xo, 1), H'(—1,1)). Therefore, using equation (2.37), we deduce that
32114 e 12 O

3 The linearized problem

The goal of this section is to establish the well-posedness of the linearized problem

U0yu — Oyyu = in €,

Uly=+1 = 0,

where @ € Q' (see (1.29)) is a given perturbation of the linear shear flow, f is an external source
term and (dp,d1) are lateral boundary data. It is fairly straightforward to adapt the theory of
existence and uniqueness of weak solutions depicted in the previous section to the above equation.
However, writing the orthogonality conditions for a general shear flow @ is quite complicated. In-
deed, we recall that the strategy is to find the equation solved by wu, in the upper region {@ > 0}
and in the lower region {t < 0}, and to glue together these two solutions (provided the orthogo-
nality conditions, which ensure the continuity of w and w, across the line {& = 0}, are satisfied).
When the line {z = 0} is straight, this is a fairly simple process, which we described in the previous
section. However, when {@ = 0} is not a straight line, retrieving u from u, is not entirely obvious
(one needs to integrate u, on curved lines).

Therefore, we have chosen to first straighten the flow @ by changing the vertical coordinate. Of
course, this introduces variable coefficients in the equation. We then prove existence and uniqueness
of weak solutions for the equation in the new coordinates, and exhibit orthogonality conditions,
which are necessary and sufficient conditions ensuring that the weak solution has in fact HjH,
regularity. Eventually, we go back to the original variables and infer the existence of strong Z'
solutions of (3.1) under orthogonality conditions.

3.1 A change of vertical coordinate

Throughout this section, we assume that @ is a Q' function such that ||& — y||g1 is small. In
particular, |ty — 1|z < [Juy — 1]|gr < 1 (see Lemma 1.6). It follows that there exists a line
y = y(z) on which @ vanishes, and 4 < 0 on y < g(x).

As a consequence, we define an associated change of variables Y such that

Vz € (—1,1), Vz e (zo,z1), u(z,Y(x,2)) ==z (3.2)
We then look for « under the form
u(z,y) = Uz, u(z,y)), (3-3)
so that U = U(z, z) solves

20, U +~v0,U — a0,,U =g in Q,
U\y:il =0,

21



where

a(z, z) = (9ya)*(z, Y (z, 2)), (3.5)
V@, 2) = (2Uy — Uyy) (2, Y (2, 2)), (3.6)
g(x,z) = f(x,Y(x,2)) (3.7)
and _
0i(2) == 6;(Y(y, 2)). (3.8)

The next sub-sections are devoted to the analysis of equation (3.4): existence and uniqueness of
weak solutions, Z" regularity, orthogonality conditions for Z' regularity.

3.2 Existence and uniqueness of weak solutions

This section follows exactly the arguments of Section 2.1. The only slight difference lies in the
derivation of the a priori estimates, in which we use smallness assumptions to treat perturbatively
the additional drift term v9,U and the commutator coming from the diffusion.

Definition 3.1 (Weak solution). Let g € L*((xq,z1); H 1(~1,1)) and do,01 € L2(—1,1). Let
o€ H(LY), 7 € L3(LE).

We say that U € L?((zo,71); Hi(—1,1)) is a weak solution to (3.4) when, for all V € H()
vanishing on O\ (Xg U X1), the following weak formulation holds

—/zU@xV+/(7+az)8zUV+/a@ZUan:/gV—/ z51V+/ 260V (3.9)
Q Q Q Q 1 Yo

Proposition 3.2 (Existence and uniqueness of weak solutions). Assume that o and v satisfy
lo = 1| poe + [Vl r2(pse) + llezllpz ey < 1. (3.10)

Then, for every g € L*((zo,x1), H 1(—1,1)) and 61,00 € L2(—1,1), there exists a unique weak
solution U € L?((wo, 1), Hi(—1,1)) to (3.4). Moreover,

1UN 2y S NMgll2 1y + 60l + +161] 22 (3.11)

Proof. We mimic the proof of Proposition 2.2. We take ¥ = {V € H*(Q),V = 0 on 0Q\ (XoUX1)}
and % the completion of H'(Q) N L2((xg,z1); H}(—1,1)) with respect to the scalar product

1 1
(U, V) ::/aazU(’?zV—i—f/ ZUV—*/ 2UV. (3.12)
Q 2 Js, 2 /s,
For (U, V) e % x ¥, let
a(U,V) ::—/ zU@xV—i—/(’y—kaz)azUV—k/a@zUazv, (3.13)
Q Q Q

:/gV—/ zglV—i-/ z6V. (3.14)
Q P o

Now, for any V' € 7, using (3.10) and the Poincaré inequality ||V||ze(z2) < 2[0.V [ 22(0),

1
aWV.V) = VI + [ O+ aVo.v = 51V (3.15)
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The linear form b satisfies (2.7). As in Proposition 2.2, the existence follows from the Lax-Milgram
type existence principle Lemma B.2, and we obtain the energy estimate (3.11).

As in the proof of Proposition 2.2, uniqueness follows from the result by Baouendi and Grisvard,
recalled in Appendix A. O

Remark 3.3. Instead of using the weak Lax-Milgram existence principle Lemma B.2, an alternate
proof would be to reqularize equation (3.4) by vanishing viscosity, and to obtain uniform L2(H}!)
estimates on the approrimation.

3.3 Strong solutions with maximal regularity

In this paragraph, we adapt the results of [34] to construct solutions to (3.4) with Z° regularity,
with estimates independent of the coefficients a and +, provided that (3.10) is satisfied.

Proposition 3.4. Assume that o and ~y satisfy (3.10). Then, for every g € L*(Q) and 80,01 €
A (—1,1), the unique weak solution U to (3.4) satisfies U € Z°(Y) with the estimate

[Ullzo < Nlgllez + 1dollozr + (101 ]2 - (3.16)
Proof. Thanks to Proposition 3.2, there exists ¢ > 0 such that, if
oo =z + [[Yllz2(zee) + lezllrz(re) < cos (3.17)

the problem (3.4) is well-posed at the level of weak solutions. We proceed in four steps.

e Case of smooth coefficients with a large zero-order term. We start with coefficients «;,y that
are smooth, satisfy (3.17), and we consider the following variant of (3.4):

20, U + 70, U — a0, U + CoU =h in Q,
Uy, =0, (3.18)

i

U\y::ﬁ:l = 07

where Cy > %azz + %’yz. By Pagani [34, Theorem 5.2] (for the operator 20, + v0, — ad,.), for

every h € L%*(Q), there exists a unique U € Z°(Q) solution to (3.18) and a constant C (possibly
depending on «, v and Cj in a way that is not entirely explicit in the work of Pagani) such that

1Ullzo < CllA] L2 (3.19)

Thus, we can define the bounded linear operator K : L?(Q) — Z°(Q) C L%*(Q) which maps h
to U, the solution to (3.18). Moreover, K € L£(L*(Q)) is compact since Z°(Q) < Hﬁ/j(ﬂ) by
Proposition 1.2.

e Case of smooth coefficients. We still consider coefficients a,y that are smooth, satisfy (3.17),
and we consider the equation

20, U +v0,U — ad,,U =h in Q,
Ups, =0, (3.20)
Upy=+1 = 0.

Applying Fredholm’s alternative to the operator K we obtain that
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e cither, for every h € L?, there exists a unique U € Z%(Q) solution to (3.20),
e or there exists a nontrivial solution U € Z°(2) to (3.20) with h = 0.

The second possibility is excluded by the uniqueness of weak solutions stated in Proposition 3.2.
Rewriting (3.20) as
20,U — 0,,U = h —~v0,U + (a — 1)9,,U (3.21)

and applying [34, Estimate (5.13)] (this time to the universal operator z9, — 9.,), we obtain
[Ullzo < Cpagani ([1Pllz2 + 17l 222y [0:U Nl (22 + [l = oo |02:U | 22) - (3.22)

Hence, under condition (3.17) (up to choosing ¢y < 1/(2CPpagani)), the last two terms can be treated
perturbatively and we obtain
[Ullzo < (1Rl Lz, (3.23)

with a constant depending only on the domain 2.

e Case of smooth coefficients with boundary data. We still consider coefficients o, that are
smooth and satisfy (3.17). By [34, Theorem 2.1], there exists a bounded linear map from L :
AN (o) x AN(S1) — Z°(Q) such that Us := L(Jo, 1) satisfies (Us)ys, = &; and (Us)jy=s1 = 0.
Then we look for a solution U to (3.4) under the form U = Us + V', where V is a solution to (3.20)
with

h:=g—20,Us +ad,,Us —~v0,Us. (3.24)

Under assumption (3.17),

[1Pllze <llglle> + 1202Us| 2 + lllloo|022Usll 2 + [Vl 22222y 102U Nl Lo £2)

(3.25)
S lallzz + [1Usl 20

so we obtain that U has Z° regularity and satisfies (3.16) by boundedness of L.

e Case of general coefficients. We then address the case of general coefficients satisfying (3.17).
We take a smooth approximation sequence (o™, ™) of (a,7), which satisfies the same smallness
assumptions and which converges towards (a,y) in L™ N HL(L) x L2(LS°). For the sequence
(a™,4™), we construct a sequence of solutions U™ € Z°, which satisfy the estimate (3.16) with
uniform bounds. Extracting a subsequence if necessary, we can find a function U € Z°(Q2) such
that U™ — U in ZY. Passing to the limit in the equation, it can be easily checked that U is a
solution to (3.4). By Proposition 3.2, it is in fact the unique weak solution to (3.4), which completes
the proof. O

3.4 Orthogonality conditions for higher tangential regularity

As in Section 2.3, we build solutions to (3.4) with higher regularity in the tangential direction,
provided that the data satisfy appropriate orthogonality conditions. The main goal of this para-
graph is to derive suitable expressions for these orthogonality conditions, analogous to the linear
shear flow case.
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3.4.1 Derivation of the equations for the dual profiles

We start by formally differentiating (3.4) with respect to « and we find that, if U is regular in the
tangential direction, V' := 0, U is a solution to

20,V 470,V = 0.V — g0 [ V47,0, [; V=ho inQy,
20,V +70.V — 0.,V + 0,0, [['V —7,0. [V =hy inQ_,
[V]z:() = [aiV]Z:O = 0 on (l‘o, 33‘1), (326)
V(xo,z) = A0 for z € (0,1),
V(z1,2) = for z € (—1,0),
V(z,£1) = for x € (xo, 1),
where, for i € {0, 1},
and 1
AA@::;@@u@+a@h@@ﬁx) @“>35(0 (3.28)
Reciprocally, if V' is a solution of the above system, then U defined by
o+ [TV inQ
ot g, Vi€ (3.29)
o + le V in Q_
is a solution to (3.4) if and only if V satisfies
/ V(z,0) dz = &, (0) — d(0),
(3.30)

avuoyufaag) .60(0).

Zo

For the time being, we do not worry about the regularity of the coefficients, and perform all
computations as if the coefficients were smooth. A suitable definition of weak solutions of (3.26),
which makes sense at the level of regularity available for the coefficients a and ~, will be given in
Definition 3.12. Taking any function ¢, sufficiently smooth on Q; and Q_ (but not necessarily
continuous across the line z = 0) and vanishing on Q\ (£oUX), the weak formulation of the above
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system yields
0o _ T
/ h0<p+/ hlgof/ 2A1(2)p(z1, 2) der/ 2A0(2)p(xo,2) dz
QL Q_ 0

-1

— / V(=2050 — 0..(ap) — 0:(7))
QLU0

Q4 T T _ x0 )

T

’ s / ! 0™ !

Zo

T1

o [ ovof /

xo x

+a(2,0) (p(x,0%) — ¢(2,07) ) dz

[ veo ([ @00 + (ue0) a

0 x

T1

+ / " (0. (00 0)(.07) + () (e’ 07)) da’

0

+ (9:(ap)(2,0") = 0 (ap)(z,07)) + (yp)(z,07) — (W)(x»of)) dz.
Following the reasoning of Section 2.3, this leads to the following generalization of Lemma 2.6.

Definition 3.5 (Dual profiles). We define ®° and ®' as the weak solutions to

20,97 — 0. (YD) — 0. (a®9) = 0. [ ® — 0, [ 7 ® =0 in Qy,

—20,97 — 0, (v®7) — 0,.(a®?) + 0, ffo a; ®7 + 0, f;o P =0 inQ_,

I (x0,2) =0 for z € (—1,0), (3.32)
DI (21,2) =0 for z € (0,1),

QI (x,+1) =0 on (o, 1),

together with the jump conditions

. 1 . x )
[a®?],—o(x) + / az(2',0)®7 (2/,07) dz’ + / ag(z',0)®7 (2',07)da’ = 1,4 (3.33)
x xo

and

Z1

[0.(a®7) + D] ,_o(x) + / (0:(az @) + 7, ®7) (2/,07) da’
e (3.34)
—|—/ (0:(ap®’) + 7, @) (2/,07) da’ = —1;.

0

In the next paragraphs, we prove existence and uniqueness of solutions to these dual systems.

3.4.2 Existence and uniqueness of the dual profiles

This paragraph is devoted to the proof of existence and uniqueness of the functions ®7, which will
then allow us to state the orthogonality conditions for equation (3.4).
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Proposition 3.6 (Existence and uniqueness of weak solutions to (3.32)-(3.33)-(3.34)). Assume
that « satisfies
||azHoo + ||a - 1”00 + ||0430z||L2 < 1. (335)
Assume that v = 2y1 + 72, where y1 € L2(L) N Lg"(H;m), 2 € HY(L?) and
Imllzzws) + 1l o 22y + 12l < 1. (3.36)

Then the system (3.32)-(3.33)-(3.34) has a unique weak solution ® such that ® € L2(HL(Q4))
and 20,97 € L2(H;1(Q4)) and

1 0
/ 2®7 (20, 2)> dz — / 2®7 (11, 2)* dz < +oo. (3.37)
0

-1

Furthermore, introducing

i 04<I>3: + [ az@f in Q,
©7:= { adl — ffo o, ® in Q_, (3.38)
one has . 0
t/ z@j@m,Qde—l/ 2 (21, 2)2 dz + 30,6720, S 1. (3.39)

Remark 3.7. Note that |lo..|[r2 < 1 implies ||| o2y < 1. The latter bound will be used
several times in the proof.

Remark 3.8 (Preliminary observations). Before tackling the proof of Proposition 3.6, we introduce
some notations and tools which will be used throughout this section.

e Operators F and G, equation in terms of ©7:

First, let us consider the unknown ©7 defined in (3.38). Formally, 0,07 = ad,®’, so that
®7 can be retrieved from ©J thanks to the inversion formula

Sy Ty o
— - —;@7 in Qq,
a
x

P = aj . (3.40)
& +/ el Q.
e wo O

It follows in particular that |7 2 < [|©7||p2 and (0,97 120,y S 0:07] 20y thanks to
the bounds on a.

We also define an operator

[y @ in Q.

x 3.41
— féI?o Y@ in Q_. ( )

F[9] ::7@4—{

Note that 0, F = 70, ® = 20,0. Therefore, setting I' = v/, it will be convenient to define
the operator
f;l ].—‘19 m Q+7

3.42
—[IT.0 inQ_. (3-42)

G@L:ﬂ@:r@+{
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Under the assumptions of Proposition 3.6, we can define I' :== zI'y + 'y, with T'; := ~;/a, and

ITullzz ooy + 00l oo gravzy + T2l 22y < 1. (3.43)

The LZO(H;/Q) bound for T'y stems from the same bound for 1, the L°(L2) bound for o
and the pointwise multiplication result Lemma B.S3.

We set FI .= F[®7] = G[O7], so that (3.32) becomes, with these functions,
— 20,00 —9,F1 0,00 =0 inQ,UQ_, (3.44)
a

while the jump conditions (3.33)-(3.34) ensure that

[@j]\z:o =1;-,

o (3.45)
(0.6 + FI]._g = —1;0.

e Lifts for ©7:

It will be convenient, in the course of the proof, to introduce a lift for ©7 in order to remove the
Jumps across the line {z = 0}. Actually, we will introduce two such lifts: one lift which will
remove the jump of ©9 and of F7 +0,07 (but which will authorize a jump in the z-derivative
of the lifted function), and one lift such that the lifted function will be H? in z.

More precisely, we set ‘ _
©7 = (0o,; — 201,7)x(2)1a, + 6O},

where x € C°((—1,1)) is such that x = 1 in a neighbourhood of zero, so that ®§ is such that
[©]j:=0 =0, [0:0] + F']|._o = 0. (3.46)
The lifted function @g satisfies
~20,0] ~ 0.(9.0] + FY) = 1500:: (60,5 — 261,,)x(2))
CH—
@g(:no,z) =0 Vze(-1,0),
@g(ml, z) = —(0o0,; + 201,5)x(2)Vz € (0,1)

=0 (3.47)

We will also consider another lift O, which we define in the following way. First, we set
e = 0] + 0],
where the lifting term @{ s given by
@{ = 2zby (2)x(2)1a, + 2b_(x)x(2)1la_
with some coefficients b to be determined. The role of 6){ is to ensure that

©/]=0, [0.6]]=0.
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Note that the first condition is automatically satisfied with our choice above.
Furthermore,

(=, 0)
a(z,0)
Hence the jump of F7 is constant across the line {z = 0}, and is equal to

L [P

T1 — X x0

61[Fj(x, ')]\z:O = ’7(9:7 0)8T[q)j(xa ')]\Z:O = 61[("‘)](:8, )] =0.

Consequently, we choose by to be constant in x, and we define

1
by = — / Fi(z,07)dx,
1 — X0 z0
IR
b_ = F/(z,07) dz.
1 — Xo xo

With this choice, '
[F7 4+ (b1150 = b-1.c0)] ,_o = 0,

and therefore [azG)g]‘Z:O =0, and [F7 + azG){]‘Z:O = 0. Note also that 3@@@{ = 0. It follows
that . 4 ' _
— aﬁx@ﬁ -0..0) =57 inQ, (3.48)

where
57 =1.500.2 ((80,; — 261,5)x(2)) + 9: (0.0} + F) .
The boundary conditions for @g are
0/ (z,£1) =0,
O] (z0,2) = —b_zx(z) Vz e (-1,0),
0] (w1,2) = —(0o; + 2(=61,; + b1))x(2) ¥z € (0,1).

Proof of Proposition 3.6. Throughout the proof, we will actually consider existence and uniqueness
in L2(H!) of solutions of the system

—0.(0.0 + G[O]) — 2875@ —f mQ

O(z1,2) =m Vz>0,
@(%0, Z) =To Vz < 07
where 19 € C?([-1,0]), m € C?([0,1]) and f € L2(H_!). In the above equation, the operator G

is defined in (3.42).
According to Remark 3.8, it will then be sufficient to apply the existence and uniqueness result

to the case
f=1.500.. ((do,; + 201,5)x(2)),
o = 07
m(z) = — (00,5 + 261,5)x(2).
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Classically, we say that © € L?((zq, 1), H}(—1,1)) is a weak solution of (3.49) if the following
weak formulation holds: for any V € H(Q) such that V,_4; = 0 and Vis, =0,

v
/Qaz@azv+/ﬂc:[@]azv+/ﬂz@am <a> (3.50)

1 0
= /QfVJr/O n1MV(x1,z)dz+/ Mo z V(zo, 2) dz. (3.51)

_1 " a(xo, 2)

e First step: Bound on the operator G.

The purpose of this first step is to prove the following bound: if ©® € L2(H}) is such that
20,0 € L2(H; 1Y), and if ®(xg,2) = 0 for all z < 0, ®(z1,2) = 0 for all z > 0, then G[O] € L*(Q)
and

IG[O]llz2 <C (IT2llmrrz + T4l 22(L2x)) [10:O| 2

(3.52)
O 172, (12050 2 2, + 110:0)]12).
Concerning the term with I'y, since 0,T's € L?, we have
1
‘ I',0 +/ 9.120 STzl neer2) S I2llm1r2(10:0] L2 (0 )- (3.53)
z L2(Qy4)

A similar bound holds in 2_. The term with 7, is more involved. First, we have

2101 L2(0) S IT1llz2 ooy [Oll e 22y S IT1llz2(22) 02O L2 (0, )- (3.54)

Concerning the integral term, we use Lemma B.15 in the Appendix, from which we deduce that
20 € L?((0,1), Hééf) We then observe that by definition of the L? norm,

1 o1
‘ / 20,110 sup / h/ 20,110
z L2(24) heL2(Q4),llhll2<1 /0y Ja

sup / (/ h) 200,I';.
heL2(Qy),lIhll 2 <1JQy \Jag

Now, using Lemma B.8, for any z > 0,

/ (/ h) 200,
xo Zxo

Integrating with respect to z and using a Cauchy-Schwarz inequality, we get

Gathering (3.53), (3.54) and (3.56), we obtain (3.52).
In the rest of the proof, to lighten the notation, we set

< CIT 372120 gz 122 G- (3.59)

ST oo 272 12O 12 172
L) oo (a2 1FPN L2 (g )

S HFlHLgO(H;“) (||28I@HL2(H71) + ||6z@||L2(Q+)) . (357)

(3.56)

po = Tl oo grvzy + ITallL2 ey + T2l azez + o= oo + llazlloo + ol e (22)-

e Second step: uniqueness:
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Let © € L?((z0,71), Hi(—1,1)) such that a=120,0 € L*(H~!) be a weak solution of (3.49)
with f = 0, n; = 0. Note that since a, € L>(f), 20,0 € L>(H™1).

We adapt the arguments of Baouendi and Grisvard (see Appendix A). For any V € L2(Hg)
such that 20,V € L2(H; '), the trace Vj,—,, is well-defined in the sense of functions in .£?(—1,1)
thanks to Lemma A 1, and we have

<§8w@,V>L2(H71,L2(H1) = G[@]&ZV—F 0,00,V. (3.58)
Q Q

Furthermore,

<fa$@,v>
a L2(H-1),L2(H})

1
<Za$@,V>L2(H—1)7L2(Hé) + <Z ( — 1> 830@, V>L2(H_1,L2(H8)

(0%

z
<z@w@, V>L2(H—1),L2(H5) + <5816), (a — 1)V>L2(H*1),L2(Hé)

= <Za @ V>L2(H 1), L2(H}) (359)
+/G[@]a (a—1)V /a@a (a—1)V). (3.60)
Q
From there, it follows that
Hzax@HLz(H—l) = sup <Zaz@,V>L2(H—1),L2(H1) (3.61)
VeL2(Hp),|VIip2 g1 <1
< (IGO]llze +19:0]22) (1 + [la = Ujoo + [zl 2 z))-  (3:62)

Using (3.52) together with the smallness assumption on I'y, we obtain

1202021y < 110202,

(3.63)
IGO]llz2 < 10l|0:O] 2
Eventually, thanks to Corollary A.2, we observe that
1 1 1
(20:0,0) 1251y 121y = 3 (/ 20(x1,2)? dz—/ 20(x9, 2)? dz) (3.64)
-1 -1

_ % </01 z@(xl,z)2dz—/olz@(x0,z)2 dz) . (3.65)

Now, take V' = O in (3.58). Using (3.60), (3.63) and (3.65), we obtain

1 0

1 (/ 20(xg, 2)* dz —/ 20(x1, 2)* dz) + [ 0,07

2 \Jo —1 Q

1G[O]][L2 (10:OllL> + [|0=((a = 1)©)|[£2) + [[0:0]| 2|0 ((a = 1)O| 2

<
< holl0:0]Z-.

Hence, for g < 1, we infer that © = 0.

e Third step: Energy estimates for equation (3.49)
First, since we have assumed that the boundary terms 79, 11 are smooth, note that we can
always lift them with a function ©,(z,2) = xo(x)no(2) + x1(x)n1(2) for some cut-off functions
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Xi € C*([zo,x1]) such that x; = 1 in a neighborhood of z; and Suppy; C {|z — ;| < (z1 —x0)/2}.
This will add a smooth additional source term to the equation. Hence, in the following, we will
consider the case n; = 0, without loss of generality.

Let us multiply formally (3.49) by © and integrate on 2. We obtain

0.0)> = (20,0, ,©) L2z —/ G[0]9.0. 3.66
/Q( ) <a >L2(H71)7L2(H1) +{f,©) r2(ar—1),L2(m1) . [©] (3.66)
As in the previous step, we decompose the first term in the right-hand side as follows
z
<58”®’®>L2(H71),L2(H1) = (2020, 0) 21 20 (3.67)
+(20,6,(a-1)0) (3.68)
a " L2(H-1),L2(H) ’
The term (3.67) yields a positive contribution on X U X7, namely
1 1 /0
—(20:0,0) 2 (g-1) 201y = 7/ 2(0(z0,2))? dz — f/ 2(0(x1, 2))? dz. (3.69)
, 2 J; 2/,
We bound (3.68) as follows
(20,6,(a-1)0) < Hia @’ I(a—1)8) (3.70)
a ' @ L2(H-1),L2HY)| ~ o ® L2(H; Y o Li(HY) " :
Using the equation (3.47) together with (3.52),
z
Z0,6| <cC L+ 0.0 Gle
|Z0:0] . ,po0, < C Uz +10:8012 + 1O 2) -

<C(Iflle2—) +110:8ll2) + ,UOHZ&E@HLZ(H*),
while
(=102 a1y S (lazllzz(pee) + o = o) 10:© |2,y S H0ll0:O L2 (0,
Using the same type of computation as in (3.60), we also obtain that
120202 (zr-1) < C([|0:Ol| L2 + (| fll L2 (1-1)),
for some universal constant C', provided pg < 1. Hence
IGO]llz2 < po(l10:OllL2 + [ fllL2(r-1))-

Gathering the previous estimates, we obtain, if pg is small enough,

1 [t 1 /0
8.0 —&—f/z@at,z 2dz—f/ z2(0(x1, 2 2dz < Cl ]2, 1y,
10:01z2() + 5 ; (©(20,2)) 5/, (O(z1,2)) 11220 