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Abstract

Let & be a split reductive group, k be a field and w be an indeterminate. In order
to study &(k[w,w!]) and &(k(w)), one can make them act on their twin building
I = Ig x Fo, where I and S are related via a “codistance”.

Masures are generalizations of Bruhat-Tits buildings adapted to the study of Kac-
Moody groups over valued fields. Motivated by the work of Dinakar Muthiah on
Kazhdan-Lusztig polynomials associated with Kac-Moody groups, we study the action
of &(k[w,w™1]) and &(k(w)) on their “twin masure”, when & is a split Kac-Moody
group instead of a reductive group.
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1 Introduction

1.1 Context

Split reductive groups over valued fields and Bruhat-Tits buildings Let & be a
split reductive group with maximal split torus T. Let K be a field, G = &(K) and T' = T(K).
If w: K — RU{oo} is a nontrivial valuation of IC, one can construct a Bruhat-Tits building
I = F(6,K,w) on which G acts, and study G via its action on .#,. This building is a union
of apartments, which are all translates by an element of G of a standard apartment A,,.

The action of G on .7, takes into account the valuation w. More precisely, let ® be the root
system of (G, T), which can be regarded as a subset of the dual A, of the real vector space A,,.
Then G = (T, x4(u),a € ®,u € K), where for each a € @, z,, : (K, +) < (G,.) is an algebraic
group morphism. Let IV be the normalizer of T in G. Then N is the stabilizer of A, in G and
T acts by translation on A,. If ¢t € T, then ¢ acts by translation on A, by a vector depending
on the values of w(x(t)), where x runs over the characters of 7. If « € ® and u € K, z4(u)
fixes the half-apartment (or half-space) A, Nz (u).A, = {a € A, | a(a) + w(u) > 0}.

Twin building of &(k[w,w™!]) Suppose now that K = k(w), where k is a field and w is
an indeterminate. Let wg,wgs be the valuations on K, trivial over k and such that wg(w) =
1 =ws(w™h). Let O =k[w,w!]. In order to study G = &(K) and Gp = &(0), it is natural
to make them act on & = S X S, where Ig = S (6,K,wg) and I = I (6, K, ws). The
buildings .#g and .75 are related by a Gp-invariant codistance d* : C(Zg) x C(Ig) — W,
where C(#g),C(Fs) are the sets of local chambers of .5 and .Z5 and W is the affine Weyl
group of Ag := A, (which is isomorphic to the affine Weyl group of Ag := A, ). Equipped
with this codistance, g x Z5 is called a twin building (see [RT94] for the case of & = SLo
and for a general study of twin buildings).

This codistance is also called a twinning and it is deduced from some Birkhoff decomposi-
tion in G. We may describe it slightly differently. Let Cs be the “fundamental local chamber
of Ag”, Car be the “fundamental local chamber” C’J of Ag, I be the fixator of Cy in Go
and I be the fixator of Car in G. Then using the Birkhoff decomposition G = I NI, one can
prove that there exists a unique I-invariant retraction pc., : Fg — Ag (see . We can
then recover d* from pc__ .

Kazhdan-Lusztig polynomials Let (W’,S’) be a Coxeter group. In their fundamental
paper [KL79], Kazhdan and Lusztig associated to this data a family (Pyw )y wew’ of poly-
nomials of Z[q], where q is an indeterminate. These polynomials are now known as the
Kazhdan-Lusztig polynomials. In order to define them, they began by defining auxiliary
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polynomials - called “R-polynomials” - Ry w € Z[q], for v,w € W’. When W/ = W, these
polynomials are defined by the following equation (see [Mul9bl (1.2)])

Ryw(q) = |IwWINIxvI)/I|, for v,w € W, for all prime power g, (1.1.1)

with I = I(q) and I = I(q) defined as above in G = G, = &(F,(w)), with F, the field of

cardinality ¢, where v, w are liftings of v,w in N C G. This formula, is implicitly used by D.
Kazhdan and G. Lusztig in [KL79], and was proven by Z. Haddad ([Had85]).

Split Kac-Moody groups over valued field and masures Split Kac-Moody groups
are infinite dimensional generalizations of split reductive groups. There are many possible
definitions of such groups but in this paper, we are mainly interested in the minimal one
defined in [T87] (although we also use Mathieu’s completion). Let & be such a group, K be
a field equipped with a nontrivial valuation w : £ — RU {oo} and G = &(K). In |[Rol6l,
generalizing results of [GRO8|, Rousseau defined a “masure” .#, = .# (&, K, w) on which G acts.
This masure is a kind of Bruhat-Tits building adapted to the Kac-Moody framework. We still
have .7, = | e g.A,, where A = A, is the “fundamental apartment”. This apartment is an
affine space of the same dimension as ¥ equipped with an arrangement of hyperplanes. Using
4, one can define the Iwahori subgroup I = I, of G, which is the fixator of the fundamental
local chamber Cg of A. The Borel subgroup B¥ = T.U% is well known (cf. . In the
following, a Bruhat or Birkhoff decomposition will be called more precisely a Bruhat-Borel
or Birkhoff-Borel (resp., Bruhat-Iwahori or Birkhoff-Iwahori) decomposition, when it involves
BT (resp., I). As the Iwahori case is frequently used, we often omit this name Iwahori.

Let Y be the cocharacter lattice and WV be the vectorial Weyl group of (&,%T). Then,
W = N/T = WV x Y and the Bruhat decomposition does not hold in G: IWI C G (where
we regard W as a subset of N by choosing for each element of W a lifting in N). Because
of this, one often restricts attention to a subsemi-group G+ = G of G defined as follows.
Let C’}’ be the fundamental vectorial chamber of A, T := (J,cp w.@ be the Tits cone,
YT =YNT and WF =WV x Y. Then G* := IW™I is a set of elements of G admitting
a Bruhat decomposition. An equivalent definition of GT is as follows. If z,y € A, we write
r < yif y—x € T. Then < extends to a G-invariant preorder < on .# and we have
Gt ={g € G|g.0>0} (where 0 is the vertex of Cy").

Kazhdan-Lusztig polynomials in the Kac-Moody setting In general, neither W nor
W, which is not even a group (except if & is reductive), is a Coxeter group. In [Mul9b],
Muthiah suggests to take , for viw € W™, as a definition of the R-polynomials
associated with & and then to define the Kazhdan-Lusztig polynomials. With this approach,
two questions naturally arise: are the cardinalities in finite and how to compute them
if they are?

In [Mul9b], Muthiah partially solves these questions, when & is untwisted affine of type
A, D or E, under the assumption that the retraction pc. : 5 — Ag is well-defined (for
every prime power ¢, where Sg = % (8,F, (w),wg)), or at least that it is well-defined on a
sufficiently large subset of .Zg. These works are generalized to general Kac-Moody groups in
[HP24], under the same assumption on the retraction pc__, with similar techniques. Muthiah’s
method is as follows. Let v,w € W™. Then the set involved in is in bijection with
a set Fy w of local chambers of #g, which are in some “sphere”, and whose image by pc._
is in v.Cj". He proves that the image by pc. of a line segment of . (satisfying certain
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conditions) is an I,-Hecke path of Ag), i.e. it is a piecewise linear path satisfying certain
precise conditions. He proves finiteness results for the number of these I,,-Hecke paths in
Ag (in the untwisted affine case of type A, D or E) and proves that for a given I.-path, the
number of line segments of % retracting on it is finite and polynomial in ¢ (in the general
case, not necessarily affine). However, he does not study the existence of pc.,.

1.2 Content of this paper

Let k be a field (not necessarily finite) and & be a split Kac-Moody group. In this paper, we
study the action of G = &(k(w)) and Guyin := Go = &(0O) on Fg x L. As O is not a field,
the meaning of &(0) is not clear, but we give a definition of it as a subgroup of G in m
We begin by studying the action of Gp on a single masure .Zg or £o5. We actually study
the slightly more general situation where O is replaced by R, a dense subring of a field
equipped with a discrete valuation (satisfying the additional assumption (2.2.1)), i.e, such that
w(R*) = w(K*) = Z). We prove that Gg admits Bruhat and Iwasawa decompositions, using
the corresponding decompositions of &(K). For € € {—,+}, set U = (24(R) | a € ) C Gr
(where ®* and ®~ are the sets of positive and negative real roots respectively). Note that
greater groups Uy will be defined in 2.2.1] Set Ir = I N Gr and Ng = N N Gg. Then we
prove the following theorem (see Corollary and Corollary :

Theorem. We have
1. Gr = U%NRIR, for both € € {—, +},
2. Gr N Gt = IRW+IR.

We then go back to the situation where R = O = k[w, w '] and study the action of G
on Jg x . We do not prove the existence of pc._, but we prove that if (Go)d := {g € Go |
9.0, > 0g} admits a Birkhoff decomposition (see §4.4] for the precise meaning), then pc is
well-defined on jgo@ ={x e Ay | x> 0g} (see ‘ . Following the ideas of Muthiah,
we conjecture that this decomposition holds (see §4.4.1) and that the same decompositions
with (Go)§ replaced by (Go)g := {9 € Go | 9.0 < 0g} hold, which would be sufficient for
applying Muthiah’s method. With such Birkhoff decompositions, we might really say that .Zg
and .Z5 are twin masures. Unfortunately the decompositions proved by M. Patnaik in [Pa24]
concern a completion of &(0), see [1.4.1]

We then study the image by pc. of a line segment [x,y], with x < y or y < x and such
that pc.(z) is well-defined for every z € [z, y] (the second condition is always satisfied if our
conjecture is true). We prove that they are C,—Hecke paths. We then obtain a formula
counting the number of liftings of a given C,o—Hecke path, and proving that it is polynomial
in the cardinality of k (see Theorem [5.1)).

To get this number of liftings of a C,—Hecke path as a line segment, we first prove that,
after choosing some superdecorations, it is the product of the numbers of local liftings around
a finite number of points (the points where the path crosses a wall in some specific way).
Then we compute each of these numbers of local liftings. We get a precise formula, which
seems more explicit than Muthiah’s formula in [Mul9b| (where our paths are called I.-Hecke
paths).

Eventually, we study the case where & is affine SLy. We prove that G 2 I, NI: the
Birkhoff decomposition does not hold on the entire G. This was expected since this is already
the case for the Bruhat decomposition. We give an example of an element g € G \ IoocN1.
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Asg ¢ Gg U G, this does not contradict our conjecture. We also study explicit examples of
Coo—Hecke paths.

Remarks. 1. Our conventions differ from the one of [Mul9b]. Our Tits cone is the opposite
of the Tits cone for Muthiah, and thus what Muthiah denotes G* corresponds to G~
for us. For this reason, our definition of Co, —Hecke path and our formulas slightly differ
from the one of [Mul9b].

2. The fixators of objects in the masure (like I or I,) are subgroups of G or Go defined
by sets of generators. Even in the affine case, it is a delicate issue to describe them
explicitly. For example, if &(K) = SLa(k(w)[u,u"1]), where u is an indeterminate, then
the fixator of Og in G is SLa(Oglu,u™1]), where Og = {a € k(w) | wg(a) > 0} (see
Lemma . However, for I,, we prove that

I ( w ko uu  +ku™] @ k[ [u,u T Hu T kw1 )
o0 w k[~ [u,u ™ +k[u!] w k[~ [u,u ™ +k[u!] ’

(see Lemma [6.11]), but we do not know if it is an equality.

The paper is organized as follows.

In section [2| we introduce the general framework, in particular Kac-Moody groups and
masures.

In section [3] we study Gg for R a dense subring of a valued field K (satisfying Assump-
tion (2.2.1))). We prove the Bruhat and Iwasawa decompositions of Gx.

In section 4] we study the action of Gyyin := Go, where O = k[w, @ !] on I x S, We
define pc, under some conjecture.

In section |5 we study Cs,—Hecke paths and their liftings in Zg.

In section [6] we study the case where & is affine SLo.
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2 Split Kac-Moody groups over valued fields and masures

2.1 Standard apartment of a masure
2.1.1 Root generating system

A Kac-Moody matrix (or generalized Cartan matrix) is a square matrix A = (a; ;)i jer
indexed by a finite set I, with integral coefficients, and such that :

(’L) Viel, ai,i:2;
(1) V (i,) € I?,(i # j) = (ai; < 0);

(i4i) V (i,7) € I?, (a;; = 0) < (aj; = 0).
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A root generating system is a 5-tuple § = (A, X, Y, («;)ier, (o )ier) made of a Kac-Moody

matrix A indexed by the finite set I, of two dual free Z-modules X and Y of finite rank, and
of a free family (;)ier (resp. a free family («));er) of elements in X (resp. Y) called simple
roots (resp. simple coroots) that satisfy a;; = «;(a)) for all i,j in I. Elements of X
(respectively of Y') are called characters (resp. cocharacters).

Fix such a root generating system S = (A4, X,Y, (a;)ier, (o) )icr) and set A := Y @ R.
Each element of X induces a linear form on A, hence X can be seen as a subset of the dual
A*. In particular, the o;’s (with i € I) will be seen as linear forms on A. This allows us to
define, for any i € I, an involution r; of A by setting r;(v) := v — a;(v)e, for any v € A. One
defines the Weyl group of S as the subgroup WV of GL(A) generated by {r; | i € I'}. The
pair (WY, {r; | i € I'}) is a Coxeter system.

The following formula defines an action of the Weyl group WY on A*:

VoeehAweWY,achA", (wa)(z):=alw ).

Let @ := {w.; | (w,i) € WY x I} (resp. @V = {w.o | (w,7) € WY x I}) be the set of real
roots (resp. real coroots): then ® (resp. ®V) is a subset of the root lattice Q := @Zai
i€l
(resp. coroot lattice Q¥ = @, ;Zay). If o € ®, there exist i € I, w € WY such that
o = w.qg. One sets oV = w.az\/ and rq = rov = wryw™+ € WY. This does not depend on the
choice of ¢ and w. By [Ku02, 1.2.2 (2)], one has Ra¥ N ®V = {£a"} and Ra N ® = {+a}
for all ¥ € @V and o € . We set QT = P,.; Nay, Q¥ = @, Noy, &7 = 2N Q" and
P~ =dN-Q" =—0". We define ht : Q @ R — R by ht(}",; nic;) = Y, ni for (n;) € RY
and we call ht the height.

2.1.2 Local chambers, sectors, chimneys

(1) Vectorial facets. Let (a;)1<i<¢ be the above basis of the system & of roots. Then
Cy ={v € A | aj(v) > 0,Vi} is the canonical vectorial chamber. Its facets are the cones
FV(J) ={veA|aw) =0,Vie Jaj(v)>0,ViglJ}for JC{l,...,£} = I. The facet
FV(J) and J are said spherical if the group WV(.J) generated by the reflections r; = r,, for
1 € J is finite.

A positive (resp., negative) vectorial facet of type J is a conjugate by WV of FV(J) (resp.,
—FV(J)). It is a chamber if J = () and a panel if |J| = 1.

The Tits cone T (resp., its interior 7°) is the union of all positive (resp., and spherical)
vectorial facets. It is a convex cone.

(2) Local facets and segment germs. A local facet in A is the germ F'(z, FY) = germg(xz +
FV) where x € A and FV is a vectorial facet (i.e. F/(x, F") is the filter of all neighbourhoods
of z in x + FY). It is a local chamber, a local panel, positive, or negative if FV has this
property, it is of type 0 if x € Y C A. We denote by C’SF the fundamental local chamber, i.e.
Cif = germo(C5).

Let z,y in A be such that x # y. The germ of [z, y] at z is the filter [z, y) = germs([x, y])
consisting of the subsets of the form Q N [x,y], where  is a neighbourhood of = in A. Tt is
said to be preordered if y — x € +7T.

(3) Sectors and sector germs. A sector in A is a subset q = .+ CV, for x a point in A and
CV a vectorial chamber. Its sector germ is the filter Q = germqo(q) of subsets of A containing
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another sector = + y + CV, with y € CV. It is entirely determined by its direction CV. This
sector or sector germ is said positive (resp., negative) if CV has this property.
For example, we consider Q4o = germoo(iC}’).

(4) A half-apartment (resp., an open-half-apartment, a wall) of A is a set of form D(«a —
k) = o Y([k,+oo[) (resp., D°(a — k) = a~L(Jk, +o0]), M(a — k) = a~1({k})), where k € Z
and o € 9.

A subset F of A is said to be enclosed if it is the intersection of a finite number of half-
apartments. The enclosure cl(F) of a subset (or filter) E of A is the filter consisting of the
subsets containing an enclosed set containing F.

(5) Chimneys. Let F' = F(x, FY') be alocal facet and F'V be a vectorial facet. The chimney
t(F,FV) = cl(F + FV) is the filter consisting of the sets containing an enclosed set containing
F + FV. A shortening of a chimney v(F, F"), with F = F(x, FY) is a chimney of the form
t(F(z+ &, FY), FY) for some £ € FY. The germ R = germeqo(t) of a chimney v is the filter of
subsets of A containing a shortening of t. The chimney t(F, FV) or its germ fR is said splayed
of sign ¢ if its direction F"V is a spherical facet of sign €. A sector is a splayed chimney.

2.2 Split Kac-Moody groups over valued fields
2.2.1 Minimal split Kac-Moody groups

Let & = &5 be the group functor associated in [T87] with the root generating system S, see
also [Re02] 8|. Let (K,w) be a valued field where w : K — Z U {400} is a normalized, discrete
valuation. Let G = &(K) be the split Kac-Moody group over K associated with S.
The group G is generated by the following subgroups:

e the fundamental torus 7' = T(K), where T = Spec(Z[X]),
e the root subgroups U, = i,(K), each isomorphic to (K, +) by an isomorphism z,.

The groups X and Y correspond to the character lattice and cocharacter lattice of T
respectively. One writes {* the subgroup of & generated by the ., for a € ®* and
U+t = 45 (K).

Let R be a subring of K (with 1 € R). In this paper, we are interested in the group
of R-points of &. It seems that there is currently no consensus on what this should mean.
We mainly study the case where R = O = k[w,w '] C K = k(w), for k a field and w an
indeterminate. When & is a split reductive group over k, one knows that &(Q) is given by
some well known generators. This is a consequence of O being a principal ideal domain by
[Ti85] top of page 205. So in this paper, we take the same kind of generators and set

Gr = (za(R),T(R) | a € &) C B(K) = G.

Fore € {—,+}, weset Uy, = GrRNU® = Gr N (za(K) | o € ). Let U = (zo(u) | u €
R,a € ). We have Uy C Ug. However, this inclusion is strict in general, see [T87] 3.10.d
page 555 for a counter-example.

Timothée Marquis [Marl8, Def. 8.126| defines a minimal Kac-Moody group functor 6?”‘
and proves [l.c. proof of Prop. 8.128] that the morphism &2 (k1) — &% (ks) is injective
when k1 < ko is an injective morphism of rings. Moreover when R is a Euclidean ring
(e.g. R = O = k[w,w!]), we know that SLy(R) is generated by its torus and root subgroups
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[Mar18, Exer 7.2 (3)]. So our Gg is equal to the group &% (R) defined by Timothée Marquis.
It is perhaps not equal to &(R) as the morphisms ((R) : B(R) — &P™(R) (see below in
and &(R) — &(K) might be non injective.

Note that general Kac-Moody groups over rings are defined and studied in [All1Ga],
[AIIL6D], and [ACI6]. It seems more difficult to relate them with the group we study.

Remark 2.1. We chose to work with any discretely valued field (K,w). For our main purpose,
which is to develop a Kazhdan-Lusztig theory in the Kac-Moody setting, we only need the
case where the residual cardinality of C is finite, and even where K = k(w), where k is a finite
field. However, as it would not really simplify our proofs to impose these restrictions on /C,
we work in this more general frameworks.

2.2.2 Subgroups N and Ny

Let 91 be the group functor on rings such that if R’ is a ring, M(R’) is the subgroup of G(R')
generated by T(R') and the 3,,, for i € I, where §,, is defined in [Rol6l 1.6]. Then if R’ is a
field with at least 4 elements, 91(R’) is the normalizer of T(R') in &(R').

Let N = M(K) and Aut(A) be the group of affine automorphisms of A. Then by [Rol6),
4.2, there exists a group morphism v : N — Aut(A) such that:

1. for i € I, v(34,) is the simple reflection r; € WV, it fixes 0,

2. for t € T(K), v(t) is the translation on A by the vector v(t) defined by x(v(t)) =
—w(x(t)), for all x € X. This action is compatible with the action of WY on A,

3. we have v(N) =WV x Y :=W.
Let R be a dense subring of L. We often assume:
dJw e R* |w(w) = 1. (2.2.1)

This assumption is in particular satisfied by R = k[w, @ 1], K = k(@) or k((w@)), for k a
field and w an indeterminate or by R = Z[%], K = Q or Qp, for p a prime number.

Let Ng = M(R) C N. Then Ny normalizes Tg := T(R). For A € Y = Hom(9Mult, ¥),
we set @ := A\(@)€Z(R). Then v(w?) is the translation on A by the vector —\. Moreover,
5q; € Nr. In particular, we have:

v(Ng)=W'xY =W. (2.2.2)

2.2.3 The completion &P™* of the Kac-Moody group &

In order to study the group G = &(K) (for £ a field), we consider the group-functor
homomorphism ¢ : & — &P from & to the (positive) completion &P™* of & (we shall
also use the negative completion &™"%). We know that ((K) : &(K) — &P™¢(K) is injective
for any field K [Ro16), Prop. 3.13], so we consider G as a subgroup of &P™¢(K). Actually &P™?
is the Kac-Moody group defined by Olivier Mathieu in [Ma89| as a functor on the category
of rings; we refer here to [Rol6, §3]. This group is hard to define. However the following
important subgroups have simpler definitions.

One starts with the split Kac-Moody algebra gz over Z (see [Marl8, Definition 7.5] for
the definition of gz), with system of (real or imaginary) roots A = AT UA™ C Q (see [Ku02,
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1.2.2] for the definition of A). We have ® C A. The elements of ® = A, are called real roots
and the elements of A;;, = A\ ® are called imaginary roots. To each o € A is associated a
subgroup .

Let ¥ ¢ AT. We say that U is closed if for all a, 8 € ¥, for all p,q € N*, pa + ¢3 € AT
implies pa + ¢ € W. Let ¥ be a closed subset of AT and R a ring (commutative with unit),
then a pro-unipotent group scheme L7 is described as follows in [Rol6, Prop 3.2 + 3.4|:

ﬂg/w(R) = H Xa(ga,Z ® R). (2'2'3>
ac¥

One chooses an order on ¥, e.g. such that the height of « is increasing.

00,z is the eigenspace associated to o in gz and Xy : g0,z @ R = UG (R), > cp, Aa-T =
[.en, [exp]Az.x is one to one (where B, is a Z-basis of gaz).

When « is real (i.e. « € ® = A,.), then Yo (R) = Xo(gaz ® R). One chooses e, (one
of the two bases of go7) and one writes z,(a) = Xy(a.eq) for a € R. One gets thus an
isomorphism z4 : (R, +) = Us(R),a — z4(a) and 1y : A0 — Uy,

When « is imaginary (i.e. o € Ayp), then Uo(R) = [[,,51 Xna(@naz @ R).

7" may be seen as “topologically generated” by the U, for v € W.
One writes Ymat = e, It contains U, The positive Borel subgroup of &% is
T x Ymat = ggmat,

2.2.4 Parahoric subgroups

In [Ro16] and [GRO8|, the masure .# of G is constructed as follows. To each z € A is associated
a group P, = G,. Then .# is defined in such a way that G, is the fixator of z in G for the
action on .# (see . We actually associate to each filter  on A a subgroup Go C G (with
Gz = G for ¥ € A). Even though the masure is not yet defined, we use the terminology
“fixator” to speak of Gq, as this will be the fixator of 2 in G. The definition of G involves
the completed groups GP"* and G™"°.

1) Let 2 C A be a non empty set or filter. One defines a function fo : A — Z U {400},
fala) =inf{r €e Z | Q C D(a+7r)} =inf{r € Z | «(2) +r C [0,+0o0[} and, for r € Z,
Kosr = {x € K| w(x) > r}, K= = {x € K | w(xz) = r}. The filter  is said almost open
(resp. narrow) if for all & € @, fo(a)+ fao(—a) > 1 (resp. fa(a)+ fao(—a) < 1). For example,
segment germs and local facets are narrow and local chambers and sectors are almost open.

2) If Q is a set, we define the subgroup U™ = [[ocat Xa(8a,z @ Ky fo(a)), see [2.2.3
Actually, for o € @+ = Al Xo(8a,z @ Ku>fo(a) = Ta(Ku>fo(a) = Uan. We then define
US™™ = Ut 0 G = US*T N U™, see [Rol6, 4.5.2, 4.5.3 and 4.5.7]. When Q is a filter, we
set UG" 1= Ugeq Ug™" and Ungr =03 NG

We may also consider the negative completion G"* = &"™¢(K) of G, and define the
subgroup Ufrzna_ = HaEA* Xa(Qa,Z ® ICwaQ(O())' For a € 7 = Ar_ev XOC(QO&,Z ® szfg(a)) =
Ta(Ky>fo(a)) =t Ua,q. We then define Uy™™ = UG NG =Uy"" NU™.

3) Let Q be a filter on A. We denote by Nq the fixator of Q in N (for the action of N on A).
If € is not a set, we have No = (Jgc Ns. Note that we drop the hats used in [Rol6] to avoid
confusions with the hats related to the completion K, of K, that we shall consider in section
When € is almost open one has Ng = N = Tp := T(Ku>0) = T(Ky=0) (written H in lec.
, but we avoid this here), see [l.c. 4.3.1].
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Ifxe A, weset G, = U£m+.Ugm*.Nw. This is a subgroup of G. If Q2 C A is a set, we set
Go = \yeq Gz and if Q is a filter, we set Go = (Jgcq G's- Note that in [Rol6], the definition
of G, is much more complicated (see [Rol6l, Définition 4.13]). However it is equivalent to this
one by [Rol6l Proposition 4.14].

A filter is said to have a “good fixator” if it satisfies [Ro16, Définition 5.3]. There are many
examples of filters with good fixators [L.c. 5.7|: points, preordered segment germs, local facets,
sectors, sector germs, A, walls, half apartments, ... For such a filter €2, we have:

Go = UL .US™ Ng = U5™ .UE™ Ng.

We then have: UY™" = GoNUT =: UH(Q) and US™ = GoNU~ = U (Q), as
U - NUT.N=U*TNN = {1}, by |l.c. Remarque 3.17] and |[Re02] 1.2.1 (RT3)].

Note that for the sector germ Q = Q, U™ = {1}, No = Ny = Tp and Ungr =UT.
So Gq, . =ToU™T. Similarly, Go__ =ToU".

When  is a local facet, Gg is called a parahoric subgroup (this is a little more general
than in [BrT72]).

When Q = Cf = germo(C7}) is the (fundamental) positive local chamber in A, I = Gg is
called the (fundamental) Iwahori subgroup.

4) For Q a set or a filter, one defines:

Ug=(Uso|ac® , Us=UgnNU* and Uz™ = (U,q|ac ).
Then one has Uy = U, .Ug N = U3.Uy.N3, where N3 = Ug NN C Ng, see [Lc. 4.6.1].
And also Ug € U™, Uy € US™, see [l.c. 4.3.2 and 4.5.3).

The inclusion Ué[i C U§ is clear, but it is not always an equality, see [l.c. 4.3.2 and
4.12.3.a).

When  is narrow and has a good fixator, then G = U£m+.U§.NQ =US".US . Ng, see

[l.c. 4.13.4 and 5.3|.

2.3 Masure associated with G
2.3.1 Masure

We now define the masure . = .# (6, K, w). As a set, & = G x A/ ~, where ~ is defined as
follows:

Y(g,z), (h,y) € G x A, (g,2) ~ (h,y) < In €N |y=v(n)xand g 'hn € G,.

We regard A as a subset of .# by identifying x and (1,x), for x € A. The group G acts on
4 by g.(h,x) = (gh,x), for g,h € G and x € A. An apartment is a set of the form g.A, for
g € G. The stabilizer of A in G is N and if x € A, then the fixator of x in G is G;. More
generally, when €2 C A has a good fixator, then Gq is the fixator of 2 in G and G permutes
transitively the apartments containing 2. If A is an apartment, we transport all the notions
that are preserved by W (e.g segments, walls, facets, chimneys, etc.) to A. Then by [He22|
Corollary 3.7|, .# satisfies the following properties:

(MA II) : Let A, A’ be two apartments. Then A N A’ is a finite intersection of half-
apartments and there exists g € G such that g.A = A’ and g fixes AN A’

(MA TII): if R is the germ of a splayed chimney and if F' is a facet or a germ of a chimney,
then there exists an apartment containing R and F'.

We also have:
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o The stabilizer of A in G is N and N acts on A C .¥ via v.
o If O has a good fixator, N.Gqg ={g € G | 9. C A}.

e The group Uy, := {2a(u) | u € K,w(u) > r}, for o € ®,r € Z, fixes the half-apartment
D(a+r) ={x € A| a(x) +r > 0}. It is actually the fixator in U, of any point in
the wall M(a+r) ={z € A| a(z) +r = 0}. It acts simply transitively on the set of
apartments in .# containing D(« + r).

For x,y € .Z, we write x < y (resp <y, x<y) if there exists g € G such that g.y,g.x € A
and g.y — g:cE'T(resp g.y — gmGT 9.y — ga:ETU{O}) Note that by (MA II), if x <y,
then for all ¢’ € G such that ¢’.z,¢'.y € A, we have ¢'.y — ¢’.x € T. The relation x < y (resp.,

[¢]
x < y) is G-invariant and is a preorder relation by [Rolll Théoréme 5.9]; in particular it is
transitive.

Let H be a subgroup of G. An H-apartment is a set of the form h.A, where h € H. We
denote by A(H) the set of H-apartments. Note that implicitly, an apartment is a G-apartment.
As we shall see (Corollary , every point of .# lies in a Gr-apartment. However, A(GRr)
can be strictly smaller than A(G).

Let Q1,5 be two filters on .#. We say that Q1 and Qs are H-friendly if there exists
A € A(H) containing O U Q.

Let H be a subgroup of G. Then one may consider the semigroups H' := {g € H | .0 >
0} and H™ :={g € H | g.0 < 0}. We will often apply this definition with H = G or H = G
and consider the semigroups G* and G;’i.

Remark 2.2. In we made the assumption that the family («);er is free. This is
more convenient and it enables us to use the results of [He22| for example. However this
assumption is not necessary to define Kac-Moody groups (see [Marl8| for example). For
example, G := SL,,(K[u,u~']) x K* is naturally equipped with the structure of a Kac-Moody
group associated with a root generating system S having nonfree coroots. This group is
particularly interesting for examples, since it is one of the only Kac-Moody groups in which
we can make explicit computations. To handle this kind of group, a solution is to consider a
central extension G of G having free coroots. Then if 7 is the masure associated with G, we
have a natural surjection 7 : .# — .# that is compatible with the actions of G and G. Then
we can deduce properties of .# and G from properties of 7 and G. We detail this reasoning
in section [6] for the case n = 2. It should be possible to study groups with non necessarily free
coroots in general with the same reasoning, using the results of [Marl8| 7.4.5].

2.3.2 Decompositions of subgroups of G, retractions

Let H be a subgroup of G and FEj, E2 be two subsets or filters in A. We write Ng(A)
the stabilizer of A in H and Hp, the (pointwise) fixator of E; in H. We are interested
in decompositions H = Hg, .Ny(A).Hg, or H" = Hp,.(Ng(A) N H").Hg,, where H" is a
subsemigroup of H. We say that it is a Bruhat (resp., Iwasawa; mixed Iwasawa) decomposition
if the pair (E1, E2) is made of two local chambers (resp., a local chamber and a sector germ;
a local chamber and a chimney germ).

There is a geometric translation of such a decomposition, when each Hg, is transitive on
the set of apartments in A(H) containing E; (here A(H) = {h.A | h € H}). Then such
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a decomposition (involving H and not H') means that, for any hi,he € H, the subsets or
filters h1E; and hoFEs are in a same apartment of A(H) (they are “H —friendly”). Actually,
the axiom (MA III) is a geometric translation of decompositions of G.

Let A be an apartment of .# and Q be a sector germ of A. Let x € .#. Then by (MA
III), there exists an apartment B containing x and Q. By (MA II), there exists h € G such
that h.B = A and h fixes AN B. Then h.x does not depend on the choices of B and h and
we set paq(x) = h.x. The map pa g : # — A is the retraction onto A centred at Q. When
0 = Nioo, i.6 when 9 is the germ at infinity of iC’;ﬁ and A = A, we write pLo instead of

PA QL+

2.4 A precise decomposition of Gg, for ) a local chamber.

Proposition. Let Q C A C .# be a non empty set or filter. Suppose that £ is narrow, almost
open and has a good fixator (for example Q is a local chamber). Then:

Go =U3.Uy Ty = Ug Ty.Ug, = Ua. Ty = (To, (Ua,0)aca),
actually U™ = UL =UTNGq=UH(Q) and U3 =U,; =U" NGq=:U"(Q).

Proof. Byand the fact that Ty normalizes Ug, Ungr, U5™™, onehas G = U£m+.U§.T0 =
U£m+.Tg.U§ = Uy" T Uy = U3 To. U™ . But G is a Kac-Moody group, so one has the
Birkhoff-Borel decomposition G = Uyeny UT.n.U~ and the uniqueness result U~ N N.UT =
Ut NN = {1}, see [Rol6, Remark 3.17] and [Re02 1.2.4 (i) + (RT3)]. In particular in the
subset UT.T.U~ of G, the decomposition is unique. So the third and fifth formula for Gg
above give UY"" = U3 and U™ = Uy . O

N.B. The proposition above is a simple improvement of Property 4.13.4 in [Rol6] when Q
is moreover almost open. But the trick below in Consequence 2), enables us to get the
decomposition of G, guessed in Property 4.13.5 of [Rol16].

2.4.1 Consequences

1) In particular the Iwahori group I = GC(T (fixator in G of the fundamental local chamber
Cy = germo(C7})) is (To, (U,

«

703-)a€q>>. This is the same definition as in [BrKP16] (given there
in the untwisted affine case). This result was also proved in [BaPGR16, 7.2.2], using the results
of [BrKP16]. We get here a direct proof and a more general result.

2) Let x € A and CF = germg(z + C}’) be the two opposite chambers at x with respective

directions +C¥. Then Ug;?+ = UMt hence UgZ:Jr = U™t S0 UPMT = Ug;f+ = Ug; C
Uf c UP™ and UE"T = U = G, nU*. Similarly UM~ =U; =G, NU".

So (as  has a good fixator) we get G, = UY"".U»~.N, = U}.U;.N, = U, .U}.N, =
Up.Ny = (Ng, (Ua,x)ae<1>>-

When z is a special point N, /Ty = WY and N, = N} Ty, so Gy = (To, (Uaz)acd)-
Moreover G, = P™" = PI™ = P™ with the notations of [Rol6, 4.6.a).

Lemma. Let Aj, = (\oeq ker(a) = Nerker(oy) and Q be a filter on A. Then we have
Go = Gata,-

Proof. We begin by the case where Q = {z}, for some x € A. Let y € x + A;;,. Then we have
Uay = Uy for all o € @, since a(z) = ay). Let n € N, and w € W be the automorphism
of A induced by n. Write w = a + w, where a € Y and w € WY. Then we have a = x — w.x.
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As WY fixes Ay, we deduce y — w.y = a and hence w fixes y. Otherwise said, n fixes y and
we have N, C N,. By symmetry, N, = N, and thus G, = G. Let now (2 be a nonempty set.
Then GQ = ﬂxeﬂ GIB = ﬂxeﬂ myEx—i—Am Gy = GQ-FAM'

Assume now that € is a filter. Let S be a subset of A. Then S € Q + A;, if and only if
there exists S’ € Q such that S = S’ + A;,,. Therefore

SeQ+A;, S'eq

a

3) In particular the fixator K = Gy of the origin point in A is K = Go = (To, (Ua,0)aca)-
This is the same definition as in [BrKP16] (given there in the untwisted affine case). This
result was also proved in [GR14, Remark 3.4], using the results of [BrKP16]. We get here a
direct proof and a more general result.

4) Let # € A and F,, C Ci be a segment germ or a local facet. Then Ugf+ = U;i;‘ca+ hence
Ugit = Ug'™. So UR'™" = UZY" = Ul c Uf, c U™ and UR™ = Uf, = Gp, NU™.
If £, C Cy, then we get Up™™ = Up = Gp, NU~. But we do not get the two series of
equalities in general.

2.4.2 Generalization of Proposition to the almost-split case

In we obtained a decomposition of the fixator G of certain filters 2 C A and deduced
a decomposition of G, for x € A. The advantage of these decompositions is that they
involve only the minimal Kac-Moody group G and not its completions. As this result could
be interesting on its own, we extend it to almost-split Kac-Moody groups below. This result
will not be used in the sequel.

We consider an almost split Kac-Moody group & over a field K endowed with a real
valuation w. We suppose that & is quasi-split over a tamely ramified extension and, if
® is not split, that the valuation w may be extended functorially and uniquely to any
separable extension of K (e.g. w is complete). Then, by |[Rol7, 6.9], there exists a masure
# with a strongly transitive action of G = &(K) and the fixators G, of the points in
the canonical apartment A are a very good family of parahorics. For  C A, we write
Ug = (Uspa|ae€®) CGq, Ug =UqNU* C Gq and Ng = N N Gq, where Gq is the fixator
of Qin G.

Proposition. For any point x € A, one has G, = US.U,.N, = U, .U}.N, = U,.N,,
U:;t =G,NU*. And for any local chamber €2 in A, one has Gq = Ua'.UQ.NQ = Ug.Ua'.NQ =
Uq.Ng, UZ = GonU*.

N.B. This result is also true if €2 C A is narrow, non empty, almost open, with good fixator.

Proof. When & is actually split, the proof is exactly the same as above in and
(1), (2), (3). In the general almost split case, we have mainly to replace T by the centralizer
Z of a maximal split subtorus of & [l.c. 2.7]. For any vectorial chamber CV = :I:wC}’ C A, we

write U(CV) = wU*w™! and Uq(C¥) = Ug N U(CY). When Q C A has a good fixator, we
have Gq = USY.US) N = UL .USH No, where USY) = GonU* 5 UZ [L.c. 4.4.b, 4.5]. We
shall use this for 2 a point or a local chamber.
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When € is a local chamber, Ng = Zy := Z N Gq, Gq = US(;).ZO.U(_) and the Iwasawa
decomposition [l.c. 4.3.3] gives G = UT.N.Ug, so Gq = (UT.N N Gq).Ug. Now, by the
uniqueness in the Birkhoff-Borel decomposition [Lc. 1.6.2], UT.N N Gq = Ug(;_).ZO.US()_) N
Ut.NA1} = US(;).ZO; so G = Ug(;r).Z().Uﬂ. But, for CY, C5 C A adjacent chambers along the
wall ker o (with a(CY) > 0), we get from [l.c. 4.4.a] Uq((CY)) := GaNU(CY) = Uy X (GoN
U(CY)NU(CY)). From this we deduce, as in [GROS, Prop. 3.4], that Uq(CY).Uq(—CY).Zo
is independent of the choice of the (positive) chamber CY and Uqg C Uq(CY).Ua(—CY).Zy =
UJ.ZO.U(;. So G = US({H.ZO.U(; and, symmetrically, G = U;{.ZO.U((Z_). The uniqueness in
the Birkhoff-Borel decomposition gives Uéi) = Ug, hence Gg = Ug.Ug.Ng = U5.U5.NQ =
Uq.Ngq.

For x € A and CF = germ,(z + C¥), we have Ul = Ugi) [Ro17, beginning of 4.5.3]. So

U =vlY = Uk, c UF ¢ USY and USY = UE. Now G, = UF.U; N, = Uy U N, is

equal to U;.N,, as U;t c U, C Gy. O

3 Study of Gg, for R a dense subring of a valued field K

Let R be a dense subring of I (for the main applications, we make the additional assump-
tion ) In this section, we study decompositions of Ggr. Our main results are the Bruhat
decomposition and the Iwasawa decompositions of G (see Corollaries and . To do
that, we study the action of G on the masure .# of G. Given a subset P of a K-apartment,
we study the existence of an R-apartment containing P (see Theorem . We then deduce
the desired decompositions from the corresponding decompositions of G.

3.1 Commutators in Y™t

Let B € ®. We want to understand the actions of 23(u) on .#, for u € K satisfying w(u) > 0.
To do so, we begin by studying commutators in Y™+,

For a, 8 € AT, one would like a formula for the commutators in [y, H3].

Assume a and 8 are not collinear. Let ¥ = {pa +¢B8 € AT | p > 1,q > 0} and
U = ¥ U ((NsoB) NA). They are closed subsets of AT. Moreover ¥’ is an ideal of ¥; so
UTHR) <LUF*(R) by [Rol6, Lemma 3.3].

In particular:

_ >1,4>0
Xp(up)-Xa(ua) - Xp(up) 1= Hﬁ;ﬂ?g@ Xpa+gs(Vpa+tes)-

One chooses an order such that e.g. the height of pa 4 ¢ is increasing and uq € ga,z @ R,
ug € gg,z ® R. Then vpatqs € Gpatqes,z @ R.

We now restrict to the case where § is real.

Proposition. Let « € AT, 3 € &1, ¢, € goz and u,v € R. Then

p>1,4>0

zg(u) Xa(v.ca)wpg(—u) = H Xpatqs (VP! Cpatqp);
pa+qBEA

for some Cpayqs € Bpatqp,z mdependent of u and v.

N.B. 1) For p =1,q = 0, cpa44¢g is certainly equal to cq, i.e. the factor on the left of the right
hand side is X, (v.co). This is suggested by the notation, but not proven here.



16 Twin masures

2) When « is imaginary and p > 2, ¢ = 0, one should have ¢, = 0. But we do not prove
this here.

Proof. If a and f8 are collinear, then o = B3, {(p,q) € N* x N | pa + ¢qB € AT} =
{(1,0)} and zg(u) and z,(v) commute so the formula is clear in this case. We now as-

sume that a and S are not collinear. From the above formula, zg(u).Xqo(v.ca).2g(—u) =

>1,4>0 .
Hﬁaﬂqﬁ@ Xpatap(Vpatqs(;v)), With Upaigs(,v) € Gpatgsz © R and the map R® —

Opa+qsz @ R, (u,v) — Upayqs(u,v) is polynomial (defined over Z), as we have unipotent
groups defined over Z by [Rol6l, §3.4]. One will determine this polynomial map by using
R =C and u,v € C* (we can assume u, v algebraically independent over Q).

There exists ¢t € ¥(C) such that a(t) = v and S(t) = wu, hence (pa + ¢B)(t) = vPul.
Following the first paragraph of [Rol6l §3.5], one has t.X, (v,).t 7t = X, (y(t).vy) for v € AT
and v, € g,. Hence:

25(u). Xo(v.ca) 2p(—1) = t.ag(1).Xa(ca) 2(—1) 471 = T2 10, £ X pasqs(Vpatgs(1,1)).47
Xpat+qs(VPul.Cpatqp), if one writes cpatqs = Vpatqp(1,1) € Bpa+es,z- O

Lemma 3.1. One writes T the closed Tits cone in A =Y @ R = by, T its analogue in the
dual A* = X @R = b}, and Z = conv(A} U{0}) the closed convex hull in A* (some notations
come from [Ka90, §5.8]). Then,

(a) If A is of indefinite type, for any o € ® = Aye, one has o & £T,

(b) If A is of indefinite type, for any o € ® = A,¢, one has o ¢ i?v,

(c)Zc-T",

(d) Ape N £Z = 0.

Proof. a) By [Ka90], 5.8.1 and Theorem 5.6.c, one has o ¢ T, Vi. Conjugating by the Weyl
group, we get (a). Now (b) is the result dual to (a).

¢) One may suppose A indecomposable. The result is clear if A is of finite type
(Z = {0}). In the affine or indefinite case, one considers K = {a € Y. Nqo; | aaf) <
0,V5 and supp(c) connected} [Ka90l 5.3]. By [Ka90, 5.8 ¢) or b)] K C ~7'. But Al =
Uwew~ w(K) by [Ka90, 5.4]; so Af C 7 and Zc -T".

d) One may suppose A indecomposable. The result is clear if A is of finite type (Z = {0})
or of affine type (Z = [0, +00[d and no real root is collinear to §). In the indefinite case (d) is
a consequence of (b) and (c). O

3.2 Study of the action of root subgroups on .

The aim of this subsection is to prove the following lemma. It will enable us to obtain
decompositions of G from decompositions of G. In the reductive case, this lemma is already
known, see [Br'T72, Prop. 7.4.33]. The difficulty here is that the number of roots is infinite.

Lemma 3.2. Let « € #. Then there exists a € A such that UY™ fizes x. In particular, if
a € ®F then for u € K such that w(u) > 0, xo(u) fizes x.

Recall that ht : @ ® R — R is defined as follows: if (n;) € R, then ht(},.; nios) =
D ier i

Lemma 3.3. Let 3 € ®*. Then inf{ht(7) | (¢,7) € N* x (Q+ \ {0}),7 +¢B € A} > 0.
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Proof. Suppose this is not the case and choose (¢q,) € (N*)N and (7,) € (Q+ \ {0}Y such
that for n € N, ¢,8 + 7, € A and qiht(Tn) —+> 0. Then +7, — 0. Up to choosing a
n n—+o00

dn " n—+too
subsequence of ((gn, T ))nen, we may assume that one of the following two possibilities holds:

e ¢.8+7, €A} foralln € N. In this case, B+ o Tn € Z = conv(Af, U{0}). So B € Z:
this is impossible since A,e N Z = () (see Lemma ,

o ¢+ 1, € Af, for all n € N. Then the rays
* * 1
R+ (Qnﬁ + Tn) = R+ <ﬁ + Tn) ,
n
which are generated by real roots, converge to the ray R .3. By [Ka90, Lemma 5.8| one
has 3 € Z: this is impossible (similarly as above).

a

Lemma 3.4. Let b € A, B € ®F and v € K. Then there exists a € b — C’; such that
2 (V)UE™ wg(—v) C UP™T.
Proof. Let a € A and h € UP™". By definition of U?™", we can write h = [Toea+ Xa(ua-ca),
where ¢y € ga.z, Ua € K and a(a) + w(us) > 0 for all @ € At, where A} is equipped with a
total order such that the height is an increasing map for <.
Let o € AT. Set
Eo={(p,q) EN"xN|pa+qB e}

We equip FE, with a total order < such that for all (p,q), (p,q') € FEa,
(p:q) < (¥, q") = ht(pa + ¢B) < ht(p'a+¢'8).
By Proposition, we have

2g(v) Xa(Ua-Ca)rs(— H patqs(Ubvic g a); (3.2.1)
(p Q)EEa
where ¢, ¢).a € Opatqes,z, for (p,q) € Eq.
Therefore
zg(v)heg(— H H Xpatqs(ubvicy g).a) (3.2.2)

aEAT (p,q)EE

(the right hand side of this product is well-defined, as for any m € N, there exist at most
finitely many triples (c, p,q) with « € AT and (p, q) € E, satisfying ht(pa + ¢B8) = m).
Let « € AT, Set

Qu(ug) = ﬂ {a' € A (pa+ ¢B)(d') + w(uBv?) > 0}.
(P.9)EE

By (3.2.2), z5(v) Xa(uq.ca)zg(—v) belongs to Uma(Jr )- Moreover,

Qa(ua) = () {d € Alpa(a)+qB(a’) + pw(ua) + qu(v) > 0}
(P,9)€EEa

D ﬂ {a' € A 7( (a') + w(ua)) > max (0, —B(a’) — w(v))}

(P,9)ELA

SQa):= () {d €Al q%(a(a') — a(a)) > max (0, —B(a’) — w(v)) }.

(p,9) €L



18 Twin masures

We are looking for a € A such that b € (" ca+ 2, (a). Otherwise said, we are looking for
a € A such that, for all & € AT we have

p

i1 (a(b) — a(a)) > max(0, —5(b) — w(v)), ¥(p,q) € Eq. (3.2.3)

Let A € A be such that a;(A) =1 for all ¢ € I. Then A € C}. We search for a in the form
b —n\, where n € Ry. Then (3.2.3) becomes

q_%nau) = nhqt(fo‘l) > max(0, —B(b) — w(v)), ¥(p,q) € Ea. (3.2.4)

If (p,q) € Eq, then hf](f;@ = ht(pa) if ¢ = 0 and "0 — h“g@q%l > %mf{@ |7 e
Qt,q e N7 +¢B8 € AT} > 0if ¢ > 0 (by Lemma . Therefore (3.2.4) is satisfied for

n > 0, which proves the lemma. m

Lemma 3.5. Let b € A and g € UT. Then there exists a € b — C’}’ such that gUfLmH'g*1 C
upmt.

Proof. Write g = zg,(v1)...2g,(vg), with k € N, B1,...,8, € @ and vy,...,v, € K. We
proceed by induction on k. If k = 1, this is Lemma[3:4] We assume that k£ > 2 and that there
exists a’ € b — C} such that zg, (v1).. .l‘ﬂk_l(Uk_l)Uf,m+l‘/gk_1(*Uk_1) oz (1) C U5m+.

By Lemma there exists a € a’ — C} such that 2, (vp) U™ g, (—vp) € UP™T. Then
gUfL’mJr gt c Uf m+7 which proves the lemma. O

We can now prove Lemma if z € #, then there exists a € A such that UP™" fixes x.
Indeed, we have z € U .p4 o0 (), where py o is defined in Therefore there exist g € U™,
b € A such that ¢ = ¢.b. By Lemma there exists a € A such that ¢ U™ "¢ U5m+.
Then UP™ fixes z.

3.3 Bruhat and Iwasawa decomposition

Theorem 3.6. Let A € A(G) and P be a bounded subset of A. Then there exists A e AGr)
such that A contains P. If moreover A contains Qeco, for some € € {—,+}, then we can
choose A = u.A, for some u € Ug.

Proof. Write A = g¢.A, with ¢ € G. By [Ro06, Proposition 1.5], we can write g =
xg, (u1) ...z, (ug)t, for some k € N, f1,....0k € ®, u1,...,up, € Cand t € T. As t.A = A,

we may assume that £ = 1. For 1 < ¢ < k, we choose a sequence (u(-n))neN € RY such that

(2
n

Let a € A. Then by Lemma for n >0, xg, (ugn))*lxgl (u1) fixes xg, (u2) ...z, (ug).a
and thus we have

2, (uf™) g, (ur)zs, (uz) ... wp, (up).a = xp, (u2) ... g, (up).a,

for n > 0. For n > 0, we have x4, (ugn))_la:ﬁQ (ug)wpg, (uz) ...z, (ur).a = xg,(uz) ... v, (uk).a.

By induction, we deduce that if g(n) = wg, (ugn))...$5k (u,(gn)), for n € N, then we have

g(n)~tg.a = a for n>> 0.
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Let ay,...,am € A be such that conv(a; | 1 <i <m) D g 1.P. Let n € N be sufficiently
large such that §(n)~'g fixes a;, for all i € {1,...,m}. Then a; € §(n)"1g.AN A for all i and
as §(n)~1g.A N A is convex, we have

g LPcANg(n)tg.A.

Let h € G be such that h.A = §(n)"'g.A and such that h fixes A N §(n)"'g.A. Then
h='G(n)~'g stabilizes A and induces an affine morphism on it. In particular h=1g(n)"1g
fixes conv(a; | 1 < i < m). Therefore §(n) lg.x = x, for all z € g~ 1.P and in particular,
P C g(n).A.

Suppose now that A contains Q. for some € € {—, +}. Then we can assume that g fixes
ANA and thus that g fixes Qco. Then g € Gg,_ and by 3) we can assume that 3; € ®€
for all i € {1,...,k}. Then g(n) € UgZ, which concludes the proof of the theorem. O

Corollary 3.7. (1) We have . = Gr.A.
(2) For any local chamber C in .7, there is u € Uy such that C' C u.A; in particular C
and Qeoe are in a same Gr—apartment.

Proof. Let x € & (resp., C C .#). Let A € A(G) containing = (resp., containing C'UQ.o, by

(MAIII) in 2.3.1)). Then by applying Theorem [3.6]to P = {z} (resp., P = C), we get g € Gr
(resp., u € U ) such that & € g.A (resp., C C u.A). O

We now assume that R* contains an element w such that w(w) = 1 (this is Assump-
tion [2.2.1)). Recall that we have v(Ng) = WY x Y. Let Wt = WV x YT C WY x Y, where
Yt=vnT.

Proposition 3.8. Let Ay, Ay € A(Gr). Then there exists g € Gr fizing A1 N Az such that
AQ = g.Al.

N.B. In this proposition, we may replace Gg by any subgroup G’ of G containing GR.

Proof. We may assume A; = A. Let g1 € Gr be such that As = g1.A. By (MA II), there
exists g2 € G fixing AN Ay such that Ay = go.A. Hence g7 1o stabilizes A and thus it belongs
to N. As v(N) = v(Ng) = W, there exists ng € Ng such that n;'g; 'gs fixes A. Then
g := ginpg satisfies the condition of the proposition. O

Recall that two filters €1,y are said to be Ggr-friendly if there exists A € A(Gr)
containing €2y U Q9. Recall that Car = germo(C’JY). The following result is probably not
new in the reductive case, but we could not find a reference in this case.

Corollary 3.9. (Bruhat decomposition)

1. Let x,y € & and Fy,F, be two facets based at x and y respectively. Then if x,y are
G-friendly, Fy, F, are Gr-friendly. This is in particular the case if x < y.

2. Let Ig be the fixator of C’S’ m Ggr. Then

Gr = IrWTIg.
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Proof. By [He20, Proposition 5.17|, there exists A € A(G) containing F, U Fy,. Let P C A be
a bounded element of F, U F},. Then by Theorem there exists A € A(Gg) containing P.
Then A contains F, U F,, which proves (1).

Let h € Gf. Then h.0 > 0 and thus there exists A € A(G) containing Cy and h.C; . Let
g € G be such that A = g.A and ¢ fixes AN A. Then by Theorem and Proposition [3.8
there exists § € Gr such that §.A contains C’J and h.C’6F and such that g fixes Cj. We have
h.0 > 0 and hence §~'h.0 > §=1.0 = 0. Therefore g_lh.Car C A is an element of WJF.C'Sr and
hence there exists n € Ng (inducing an element of W+ on A) such that §~1h.Cj = n.Cy .
Then n='§~'h € I and thus h € gnlg = IgWIx. 0

Recall the definition of “narrow” and of the fq from [2.2.4]

Corollary 3.10. (Iwasawa decomposition) Let € € {—,+} and Q be a narrow filter on A.
Then we have Gr = Ug .Nr.(Go N GR). In particular, we have Gr = U5 .Ng.Ig.

Proof. By definition of the fo, we have Q C D(a, fa(a)), for all @ € ®. In particular,
Q C MNier D, fala;)) N D(—ay, fa(—a;)), for all i € I. As € is narrow, we deduce that
Q C MNier D(eu, fa(oi))ND(=as, — fa(ai) +1). Therefore the image of  in A /A, is bounded,
where A, = [,c; ker(a;). Hence there exists a bounded filter ' C A such that Q C Q'+ Ayy,.
By Lemma [2.4.1] we have G = G and thus we can assume that {2 is bounded.

Let g € Gr. Then by the Iwasawa decomposition (JRol6, Proposition 4.7]), there exists
A € A(G) containing Q. and ¢.Q2. By Theorem there exists u € Uj such that u.A
contains ¢.€2. Then u='g.Q C A.

Let h € G be such that hu='g.A = A and h fixes ANu~'g.A, see Proposition Then
hu=1lg.A = A and thus n := hu~'g € Ng. We have n|q = u=1g|q, so n lu"lg € Gr N Gq.
u]

Remark 3.11. Let G’ be a subgroup of G containing G (or more generally a subgroup of
G containing Uy and Ng, for some € € {—,+}). Then the proof of Corollary actually
shows that G’ admits an Iwasawa decomposition:

G' =Ug .Ngr.(GoNG'), for e € {—,+}.

If we write an element of G', g = unh, with u € UZ (or uw € U¢), n € Ng (or n € N) and
h € Gq, then we have clearly that p.oo(g.€2) = n.Q. Sotheclassof nin W = Ng/H = N/T(R)
is well determined by g, up to the right multiplication by the fixator in W of 2.

3.4 The twin building at infinity, sector germs and Gz —apartments

(1) The Kac-Moody group G = &(K) acts on a twin building ¥#, see e.g. [Re02]. It is the
disjoint union of two buildings, the positive one YT and the negative one Y¥~. Actually Y¥/*
is covered by a family YAT(G) of vectorial G—apartments permuted transitively by G, more
precisely in bijection with G/N, hence also in bijection with the set A(G) of G—apartments
in the masure .#.

The canonical apartment of sign 4 is VAT = 7 C A, with its vectorial facets of sign +
(as defined in . The stabilizer (and fixator) of the canonical vectorial chamber £C7 is the
Borel subgroup Bt = TU*. As G acts transitively on the vectorial chambers of sign +, the
set of these chambers is G/B*.

One writes YA*(Gr) = Gr.YAT the set of vectorial G —apartments of sign +.
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(2) On another hand, G permutes transitively the sector germs of sign £ in .# and the
fixator of Qio0 = germoo(£C7) is Ga..,, = ToU? (see[2.2.43). Clearly B* = TU® stabilizes
0400, and the stabilizer is actually reduced to B*: as (BT, N) is a BN pair in G, a subgroup of
G strictly greater than B¥ should contain a simple reflection in WV, which does not stabilize
Q:I:oo-

So we get bijections {sector germs of sign +} <+ G//B* < {vectorial chambers of sign +},
9. Q100 & g € G/BT & g.(:I:C}’). These bijections are compatible with the above bijec-
tions between apartments: ¢.Q4oo C h.A <= h7lg € NGg, = NU*T = N.B* «—
9.(£C}) C hYA*, for any g, h € G.

Lemma 3.12. We assume that R is principal and that K is its ring of fractions. Then any
sector germ in & (resp., any vectorial chamber in Y¥* ) is contained in a Ggr—apartment
(resp., a vectorial Gr—apartment).

N.B. 1. The hypothesis that K is the field of fractions of R is clearly necessary, as we
know that some sector germs in the masure .# of & over the completion K of K are not
in a G—apartment.

2. Actually for this result, there is no need to assume that R is dense in K.

Proof. By 2, in particular the last equivalences, we may concentrate on the case of Y%,
We use induction on the distance of a vectorial chamber to a vectorial Gr —apartment. Using
galleries, we are reduced to prove that, if C;,Cy are adjacent chambers in Y+ and Cj is
in a vectorial Gr—apartment, then so is C5. The set of chambers containing the common
panel of C7 and Cs is isomorphic to the projective line P () and the induced action of the
fixator in G (resp., Gr) of this panel on P;(K) is induced by an action of SLy(K) C G (resp.,
SL2(R) C Gr). But, as R is a principal ideal domain with field of fractions K, we know that
SL2(R) acts transitively on Py (K) (see e.g. [BeMRO3|, 1.17] or [Marl8, 8.124 page 265]). Our
result follows. 0

Proposition 3.13. We assume that R is a principal ideal domain, that K is its field of
fractions (and that R is dense in K for the valuation w). We assume moreover that R satisfies
assumption . If a sector germ Q C # and a bounded set P C % are G—friendly (i.e.
contained in a same G—apartment), then they are also Gr—friendly (i.e. contained in a same
GRr—apartment)

Remarks. (a) A sector germ and a bounded subset of an apartment are not always contained
in a same apartment (even for the complete system of apartments of an affine building). Think
to the case of a tree.

(b) This proposition generalizes Theorem (for some R) in a framework similar to
Iwasawa decomposition. But it is actually a simple corollary of this theorem.

(c) As a particular case of this proposition, we have that any local chamber (or facet) and
any sector germ in .# are contained in a Gr-apartment.

Proof. By Lemma one may suppose (up to the action of Gg) that Q C A and even
9 = N1 (using the action of Nz ). Then the proposition is an easy consequence of Theorem
5.0l o
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4 Study of the action of G,,;, on the twin masure

Let k be any field, K = k(w) and O = k[w,w!], where w is an indeterminate. In this
section, we study the groups G = &(K), Guyin = Go (see for the definitions of G and
Go) and an other group Gp, lying between G and Giyin (see for the definition). Let
wg : k(w) - ZU {oo} (resp. ws : k(w) - Z U {oo}) be the valuation such that wg(w) =1
(resp. we(w™!) =1). Let S (resp. .#5) be the masure associated with (&,k(w),ws) (resp.
(8,k(w™!),wg)). We study the action of these three groups on the twin masure .Jg x 7.

In §4.7] we introduce the framework.

In we prove the existence, for any two apartments A1, As of Zo X I, of an element
g € Grwin (or Gper) such that g.A; = A and g fixes Ay N As.

In we study the existence of an apartment of .Zg X .Z5 containing Eg U Eg, for certain

pairs of filters Eq C Sy, Eg C J5. Equivalently, we are interested in certain decompositions
of Gtwin (01“ Gpol)~

4.1 The groups Gy, and Gy
4.1.1 The field

Let k be any field (e.g. a finite field) and w be an indeterminate. The field of rational functions
over k is written K = k(w). Then K is a global field when k is finite and is a function field
over k in any case. We refer to [St09) 1] for more details on this subject.

A valuation ring on K/k is a ring @' C K such that k C O C K and such that for all
z € O, we have either z € @’ or z~! € O’. Such a ring is local (i.e it has a unique maximal
ideal vy ). A set of the form v = vey, for a valuation ring (0, is called a place of K (over k).
Then @' is uniquely determined by v.

If P is a monic irreducible polynomial of k[cw], then there exists a unique valuation
wp : k(w) - Z U {oo} such that wp(k*P) = {1}. Then vp := {z € k(w) | wp(z) > 0}
is a place of K. We write wg, instead of wg. Let wg : k(w) — Z U {oco} be the valuation such
that we (k*ew™1) = {1}. Then we defines a place of K. We denote by @ (resp. ©) the place
associated with wg (resp. wg). By [St09, Theorem 1.1.2|, every place of K is either equal to
© or to vp for some monic irreducible element P of k[w]. Note that © is often called the
place at infinity of I, which explains why we sometimes index the objects related to © with
an “o0”. If v is a place of K, we denote by wy, (resp. Op = {z € K | wp(x) > 0}= Ku,>0)
the associated valuation (resp. valuation ring). We have Og = k[@][(1 + wk[w])~!] and
O = Og =k[w ][(1 + =~ 'k[='])'].

We also set O = k[w, @ !] = Mo-£0.00 Ov-

R One may write EU the completion of I with respect to w, and (/9\9\ its ring of integers;
Ko is a “local” field (a true local field if k is finite). In particular Ko = k((@)) (resp.,
Koo =Ko =k((@w™))) and Og = k[[w] (resp., Oxs = Og =k[[@™])).

Remark 4.1. Our main motivation for this work is the definition of Kazhdan-Lusztig poly-
nomials in the Kac-Moody setting. For this, we could restrict ourselves to the case where
k is finite. This assumption is important when we count the number of lifts of a path (to
obtain finiteness results) but for many results, it would not simplify our proofs to make this
assumption. This is why for most results we make no assumption on k.
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4.1.2 The Kac-Moody group, masures and the groups Gy, and G,y

(1) The masures

o Let S = (A, XY, (a)ier, (@) )ier) be a root generating system (as defined in and
® = G5 be the associated Kac-Moody group described in “ We set G = (‘5(IC)

e Let v be a place of . We denote by fu the masure associated with (&, ICn,wt,) and by
¥, the masure associated with (&, /C,wy) (see |2 . Let Gy = 6(K,). By |Rol7, 5.8 3], the
inclusion G' x Ay <= Gy x Ay induces a G-equivariant inclusion .%, — ju\ and we identify .#,
with its image in .. . .

e The apartments of .%, (resp., .%,) are the subsets g.A, C .%, for g € G, (resp., g € G).
One writes A, (Gy) (resp., Ay (G)) the set of these apartments. They are associated respectively
to the set of maximal split tori of & over I/C\U and K. By Corollary jn\ is the union of all
apartments in A, (G) (hence also in AU(GU)) Otherwise said, .%, = .%, as a set.

e The group G, = @(ICU) acts on fn The stabilizer of A, in Gy, (resp., G) is ‘)’I(ICU) (resp.,
N =N(K)).

e The group T(K,) acts by translations: to t € T(K,) is associated the translation of
vector v, where v € A is determined by x(v) = —wy(x(t)), for any x € X (hence x in the dual
of A). The group of vectors of all these translations is Y.

e The action of n € ‘ﬁ(leu) is affine with associated linear map the action of the class
of n in the Weyl group WY = N(Ky)/T(Ky) = NK)/T(K) = N(k)/T(k) (this group acts
Z—linearly on Y, hence R—linearly on A).

e One may choose an origin 0, of A, in such a way that 91(k) fixes 0,. Then the image
Wy of M(ICy) or MN(K) in the affine group of A, is identified with WY x Y.

elfve{o,a}, weset O, = {z € Ay | a;(z) >0, Vi € I}. Weset Cg = germo, (C}g) C
Ag and Co = Cg = germo,(—CY ) C Ag. These are the fundamental local chambers of
Se and S

(2) The twin group We want to study the group of O-points of & (where O =
k[, 1]). As mentioned before, this notion is not well defined. We studied the group
Go = (N(0), (Ua(O))acs) in section |3 We now denote this group by Giwin. As suggested
by Muthiah, it seems also natural to study the group G,,;, more “adelic” in nature, defined
below. We will use the fact that Gy.ip is a subgroup of G, in our study of Giuyin.

The group Gy, is the subgroup of G consisting of the elements g € G such that for every
place v of K different from @ and ©, we have g € Qi(@n).

As @D is not a field, there are several possible definitions for QS(@U). We define it as
the fixator of the point 0, for the action of G on the masure %, = .9 (&,K,w,). By [He23,
Proposition 3.1], we actually have &(0,) = &™"(0,), where ™" is the minimal group
defined by Marquis. The group G), contains Giuyin.

Actually Nyyin = N(O), Tipin = T(O) and Uq twin = Yo (O) are well defined as N, T, U,
are algebraic groups over k. We have Ny, = No, for the notation of 2.2.2]

We denote by Ig (resp. Ig) the fixator of Cg (resp. Cg) in G. We denote by Ity (resp.
I) the fixator of Cg (resp., Cg) in Giyin and by I, the fixator of Cg in Gpy.

Remark. When & is a split reductive group over k, it is a well defined functor over the
k—algebras and we saw in that Gp (as defined in 1.2.1) is equal to &(O). So Giyin =
B(0) = B(My£0,0000) = NMy£0,008(Op). And &(O,) is the fixator in G of 0, € %, by [BrI72,
6.13.b, 7.1 and 7.4.4]. So Gwin = Gpe in this reductive case.
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One may ask wether Gypin = Gpo in general. The answer is unknown. For affine SL,, and
n = 2, the answer is unknown, but for n > 3 there is equality, see Remark [6.8]

4.1.3 Affine roots

Following [BrKP16, Appendix B]| there is a system of affine roots:
O, =dxZ={a=a+7r{|aecd reclZ} where is a symbol (see also below).

of ={a+rélac®T,r>0t ; Of ={a+r{|acd@,r<0}
o, ={a+r{|lac®,r>0} ; &, ={a+r{|acd,r<0}
Do =0, UD,, and P, =-—Puy =D, U

So ®,4+ may be considered as a system of positive roots in ®,; but there is no associated
basis (as ®~ has no smallest root).

One may consider the vector space A¢yin = AGR. So P, is a set of linear forms on Asyin:
a € ® C X is a linear form on A and we set a(R) = {0}; £(A) = {0} and &|r = Id|r. Atwin
contains three interesting subspaces Ag = A @ {1}, Ac = A @ {—1} (affine subspaces) and
VA = Ao {0}.

If o =@ or v = 6, A, is the (canonical) apartment associated to ¥ in the masure
Iy = I (&, K, wy), see §4.1.2/2 above.
VA = A is, more or less, the (twin) apartment associated to T in the twin building

vV =VgT U™ of & over K. Actually the (twin) apartment is the union of VAt =7 c Yo+
and VA~ = —T C ¥¥~, where T is the Tits cone in A (see[2.1.21).

4.1.4 The affine Weyl group

To each a = o + 5§ € @, is associated a reflection r, in Ay, With respect to the hyperplane
(=wall) Myyin () with equation (a4 s€)(x,p) =0:  rotse(z,p) = (x — (a(z) + sp)a’, p).

On YA = A it acts as r, (reflection associated to the root «, with respect to the wall
kera). On Ag = A® {1} ~ A (resp., Ag = A® {—1} ~ A) it acts as the usual reflection
res (resp., 7"2,3) with respect to the affine hyperplane (=wall) Mg (a+ s) (resp., Mg(a—s))
with equation a(z) + s = 0 (resp., a(z) — s = 0); its associated linear map is r,.

Clearly the generated group is W, = WYV x QY where Q¥ = .4 Za¥ = @Zay acts by
transvections: aV x (x,p) = (x + pa",p). The group W, is not a Coxeter group in general.

4.1.5 The root groups in Gy,

For a = o+ s§ € @, there is a group embedding z, : (k, +) = Ua, a — zo(w®.a). Its image
is the group Ua+s§ = xa—i—sﬁ(k) C Gtwin C G. Then Ua,twin = Lloe((f)) = <Ua+s§ ’ s € Z) =
@SEZ UOH‘Sf'

The link with the groups °U,, of is as follows: ®U,, = (|Usrt1) X Unsre,
@Ua,r/(@Ua,r—&—l) = ch—i—T{- But @Ua,r = xa(Kw,ZT) = (@Ua,r—i-l) X Ua—rﬁa eUa,r/(eUa,r—i—l) =
Uag—re-

V\gfe may consider the action of G on g U I UVS DO Ag U Ag UYA. Then, by
the fixed point set of xys(k) (for £ € k*) in Ag U Ag U YA is the intersection
Dg(a+s)UDg(a—s)UDY(a) of the half-apartment Dyyin(a+3s§) = {a € A | (a+s€)(a) > 0}
with Ag UAg LIVA. (Recall that £ =1 (resp., £ = —1, £ = 0) on Ag (resp., Ag, VA).

Lemma. For any o € ®, one has Uy twin = Ua N Grwin = Ua N Gpor.-



Twin masures 25

Proof. One has Uy twin C Ua N Gwin C Ua N Gpor. If zo(a) € Uy N Gpy (with a € K), then,

Vo # 0,00, zq(a) fixes 0p in (&, C,wy), so wy(a) > 0 and a € O, z4(a) € Uq,twin- O
For e = 4 or € = —, one considers U;S, = U(%e = (Upgse |+ € ®;_UD ) C U
Let us define also Ufwm := U® N Gyin and pol =U*NGpo-

Clearly Uz, C Upyy C Upy. As we saw in | the first inclusion is strict in general. For

the second inclusion one does not know wether it may be an equality.

4.1.6 The group Nywin = N(O) (= Npot)

We have T(k) C T(0) = Typin € T = T(K). For A € Y = Hom(9Mult, T), we may define
A= Nw)€Z(0) = Thpin, as @ € OF.
Then one has: Tywin = T(0) = {h.@* | h € T(k),\ € Y},
Niwin = NWO) = {ng.@ | ng € N(k),\ € Y},

and the Weyl group is W = Niwin /T (k) = {w.w? [ we WY A€ Y} =WYKY.
Actually the image of 19.@ € Niwin in Niwin/T(k) is w.w? if the class of ng € N(k) in
N(k) /T (k) is w.

All this may be seen e.g. from [Ti85] page 204: D(O) is generated by T(O) and elements
m; such that mgtm; ! = r;(t) (for t € ‘S(O)), the m; satisfy the braid relations and m? =, €
Hom(Y,C*) such that n;(\) = (=1)) | j.e. with classical notation 7; = (—=1)% (see e.g.
the relation 5(—1) = (5)~* = 5.(—1)* in [Re02] page 196).

N.B. 1) In particular, forv =® or v =, W, = N(K)/{t € T(L) | wo(x(t)) =0,Vx € X} =
MN(K)/Z(Oy) is also equal to W = Nyyin/T(k): any action of an element of 9(K) on A, is
induced by the action of an element of Niwin. The same things are true for the action on VA.
2) We shall see below in Lemma u that N N Giwin = Niwin = N N Gpot =: Npop
and T'N Gwin = Thwin =T N Gpol =
3) By the Iwasawa decomposition (Remark Giwin = Gpoi = Ttwin = Ipol

4.1.7 Stabilizers or fixators in Gy, or G, of canonical apartments A, or YA

Following [Re02), cor. 10.4.3], the fixator (resp., stabilizer) of YA in G = &(K) is T' (resp.,
N). Let now v = @ or v = ©. We know that YA is at infinity of A,, that ¥ is at infinity of
Z,, and that the action of G on .#, induces at infinity its action on ¥¥. So it follows that the
stabilizer of A, in G is N = 9M(K) and, then, that its fixator is T(Oy).

a) We prove below that the fixator (resp., stabilizer) in Gyin, or Gpor of VA is T(K)NGrwin =
T(K) N Gpot = T(O) = Thain (resp., N(K) N Gruwin = N(K) N Gpor = N(O) = Niwin)-

b) We have the inclusions T(K) N Gpor O T(K) N Grwin O T(O) = Thwin- Let us prove
T(K) N Gpot € F(O). We have T ~ Mult? and (p1,...,ps) € T(K) = (K*)? fixes 0, in
F (B, K, wy) for all v # 0,00 if, and only if, Vj,Vb,w,(p;) = 0 if, and only if, Vj,p; €
k[ew, @ 1]*. We get that the above inclusions are equalities.

c) We remarked above (in that 9(K)/Z(K) is equal to M(O)/FT(O) and N(O) is
in Giwin C Gpor- S0 N(K) N Grapin = N(K) N Gpot = N(O) = Nywin follows from b). And a) is
proved.

d) Now, for v = @ or v = ©, the fixator (resp., stabilizer) in Giyin or Gpe of A, is
g(C)U) N T(O) = ‘I(k) (resp., *)I(IC) N Gtwin = m(’C) N Gpol = 9?((9) = Ntwin)-

Lemma 4.2. (45 (K).9K)) N Gruom = UL, NO) and N(K) N Grin = N(O) = Nyin.

win
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N.B. We write Ut:i:uin = U (K) N Gwin. The same things are true with Gpol instead of Giuin

(just replacing Up,,,,, by 4*(K) N Gpor = U,,)) and with T instead of 9.

twin

Proof. The last equality is proved above in .d. Let g = u.n with g € Gpo,n € N and
u € UF. Let v be a place of K, v # 0,00. As g € Gpol, it fixes 0, for the action of G on
F (6, K, wy). Let us consider the retraction p onto the canonical apartment A, of .7 (&, K, wy)
associated to UT i.e. to Q1o (see2.3.2)). Then the maps from A, to itself given by x — n.x
and x — p(g.x) coincide. So n fixes 0yp; we have proved that n € N N Gpoy = Niwin (d
above) and thus v € UT N Gpol (and u € UL N Guin =UZL, ifge Gwin)- O

twin

4.1.8 (Linear) action of 9M(O) = Nyyin on Apyin

We shall define an action v : Nyyin — Aut(Apyin)-
By Niwin = {no.@* | ng € N(k), A € Y}, we ask that:
e ng acts linearly on Ay, = A @ R, trivially on R and by its linear action vV on A (as
WY =9(k)/%(k)).
o t € Tpin = T(O) acts by transvections: v(t) = try @ Awpin — Apwin, ¢ — = + v€(x),
with v € A determined by x(v) = —wg(x(t)), Vx € X.
In particular for t = @, v =-A €Y CY @R = A (see e.g. [BaPGR19, 2.9]).
This action induces the known actions of Ny, € N on YA, Ag and Ag. For Ag, one
has to remark that w?* acts by a translation of vector v/ given by x(v') = —we(x(w?)) =
we (x(@) = x(\), Vx € X. This agrees with the fact that £ = —1 on Ag,.

4.1.9 Root datum in Gyyin or Gpy ?

We want to indicate some other relations between the groups defined above. For this we
consider the definition of root datum given in [Ro06, 1.5 p. 505|. This is close to the definition
of Bruhat and Tits in [BrT72| or of Rémy (as “donnée radicielle jumelée”) in [Re02]. We shall
not get all the axioms and moreover, mainly as ®, is associated to W, which is not a Coxeter
group, the known results for these more classical root data would not be available.

One considers the triple (Gtwin, Uagre)atrecw,, H = T(k)).

(1) (DR1) H is a subgroup of Giwin C Gpol, the Uy re are non trivial subgroups normalized
by H.
This is clear.

(2) (DR2) For {«, B} C ® prenilpotent and r, s € Z, the commutator subgroup [Usr¢, U]
is contained in the group generated by the Upaq g5+ (pr4qs)c for p,¢ € N\ {0} and pa+ ¢S € .
This comes from the explicit commutation relations of I, and g (cf. [Re02, 9.2.2 p.207]):

[z (u), 25(0)] = [1,, Tpatqs(uPv?.Chy) with Cpy’ € Z.
(3) There is no need of (DR3) as the system ®, is reduced.

(4) (DR4) For a = a+ s§ € ®, and u € Upqse,u # 1, there exist v/, u” € U_q—g5¢ = U_q
such that m(u) = w'uu” conjugates Uy into U, . (y+te), for all v + € € ®,. Moreover,
Vu,v € Upqse,u,v # 1, one asks m(u)H = m(v)H.

We prove this in three steps:

a) Let u = zqqs¢(a) = zo(w®.a) € Upqse \ {1} C Ua \ {1} (i-e. a € k*). To calculate in
(Uq, 44 ), one may use the group SLgy and the classical formula:
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D D )= G =6 ) e D6 D),

So one defines v’ = u” = z_o(—(@%a) ') = 2_q_se(—a™1). Then maise(u) = ma(u) =
vuu” € MN(O) = Nywin. Clearly mayse(u).H = maise(v).H in the above situation, for
v € Ugyse \ {1} (by a calculation in SLg).

b) One has to identify the action of ma4s¢(u) € Nywin on Agyin by the action v of

Let v =®,e =4 orv=0,e =—. On Ay, v(mayse(u)) = v(ma(u)) is the reflection of W
with respect to the following wall of Ay: M (a+wy(w®.a)) = M(a+es) = Ay N Mpyin(a+ s),
where Myyin (o + s§) is ker(a + s§). On YA, v(mayse(u)) = v(ma(u)) = ra.

So the action of mayse(t) € Npwin 00 Agyin is the reflection ro4 4¢ defined in

c) One has to deduce from this that ma.s¢(u) conjugates Uy e into U, | (y+16)-

Actually, using the known results for G acting on Sy = J(6,K,wg), one gets that
Mt se(u) conjugates U, 14¢ into a subgroup of U, ()., N Grwin (if Tatse(7+1§) = ra(B) +nf),
where (7,,&(5),” = [Lnsn Ura(8)+me = Era(8) (w”@@). Now, if we calculate with G acting on
Fo = F(6,K,ws), one gets that mas¢(u) conjugates Uy ¢ into a subgroup of Gy, and
eﬁm(ﬂ)m = [Ln<n Ura(8)+me = Era(8) (w”@\oo). As w"Og N O N " Oy = w"k, one gets the
expected result using Lemma

Remarks. 1) It is easy to prove that m(u') = m(u”) acting on Ayyin is also Tatse = T—q—s¢-
2) One would like to say that u (resp., u/,u”) fixes the half-apartment Dy (v + s§) =
{(z,p) € Apwin | (a+ s&)(x,p) = a(z) + sp > 0} (resp., Dyyin(—a — s€)). The boundary of
these half-apartments is the wall M (a + s§) = ker(a + s§), fixed point set of 7o 4.
Actually this is satisfied if we consider the restricted actions on A, C %, and YA C V.7.

(5) (DR5 ?) Fore ==, let U, := (Upqre | a+7& € Ppe). Is it true that HU. NU_. = {1} ?

It seems difficult to answer these two questions (which are actually equivalent).

If we look at G acting on %, then H.U, fixes the fundamental local chamber Cq C Ag
(i.e. HUy C Liwin, “positive” Iwahori subgroup of Gyyin). But, if a + 7€ € @, = & UD,
and u € Uyqr¢ \ {1}, then u does not fix Cg; so we get only the following weaker axiom.

(DR5”)  H.U: NUgyre = {1}, for any a + 1§ € $q(_y).

N.B. 1) The axiom (DR5’) of [Ro06] (weaker than (DR5”)) has no meaning here, as it involves
“simple roots”, which do not exist in ®,.

2) To deduce (DR5) from (DR5”), one should generalize Theorem 3.5.4 in [Re02]. This is
not at all clear (at least up to now).

3) A good question may be: is H.U; equal to Iy, 7 (see

(6) (DRG ?) Is Giuin equal to (H, (Unre)atrecd,) ?

This fails in general, even if this looks like the definition of Giyin: Grwin O Ghypin =
(H, (Uatre)atrecd,)- But in Gy, one has, a priori, only a subgroup of M(O) = Nyyin, due
to the fact that one finds only a subgroup of ¥(O) = Tiyin. It seems that G}, ;, N Tiwin is
generated by H and the mgre(u)matse(v)™!. In particular the Weyl group associated to
G, . is certainly W, = WV x QV.

twin
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4.1.10 Twin and twinnable apartments

We saw that the system of apartments Ag(G) = G.Ag = B(K).Ag of .Fg is smaller than the
system of apartments Ag(Gg) = Gg.Ag = Qi(le@)A@ of ,ﬂ/é associated to the completion
Ke = k((w)). As in section [3| we also consider the still smaller system of apartments (called
twinnable apartments) Ag(Giwin) = Astwin = Gwin-Ag. By A (Gryin) is in bijection
with Giwin/Nwin or with the set Z, of maximal split tori in G conjugated to T by Giyin
(that we may call “twin maximal split tori”).

There are analogous things on the negative side: Ag(Grwin) = Giwin-Ae. The bijections
As(Grwin) © Grwin/Nwin < Tiwin < As(Grwin) tell that a positive (resp., negative)
twinnable apartment has a unique twin in Agyin (7esp., Agtwin). Classically a twin apartment
is a pair (Ag, Ac) = g.(Ag, Ag) € Ag(Giwin) X Ac(Giwin) (for g € Gryin). We denote by
Apwin the set of twin apartments: Awpin = Grwin-(Ag,As). If v € {©,®}, we call the
apartments of Ay(Gyyin) “twinnable apartments”.

There is also a notion of twinnable apartment in the twin building ¥ = Y+ 1Y~ of G:
Y Avwin = Gruwin-Y A (cf. and, as v Awpin = Gwin/Ntwin (cf. , the three sets ¥ Agwin,
A (Giwin), As(Grwin) are in one to one correspondance.

Note that the apartments of ¥ are often called twin in the classical litterature (see .
Of course we shall (now) avoid this terminology.

There are also analogous systems of apartments for G),;. We define similarly Ag (Gpor) =
Gpol-Ag ~ As(Gpor) = Gpor-Ag and Ay, = Gpor.(Ag,Ag). This is similar to the case of
G'win since Gpol/Npol = %ol‘ As Agwin ~ Gtwin/Ntwina Apol = Gpol/Npol and Nyyin = Npol
(7 one has Ayyin = pol < Gitwin = Gpol-

Implicitly, we will refer to Gyyin instead of G, a twin apartment is a Giyin-twin
apartment. We will sometimes refer to G -twin apartments (or Gpq-twinnable apartments).

We say that two sets or filters Q1,9 in S U I are twin-friendly (resp., pol-friendly) if
there exists A € Apyin (resp., A € Apo) containing 3 U Q.

Proposition 4.3. Let (z,y) € Sg X Fo be a twin-friendly pair (i.e. there is a twin apartment
Ag X Ag such that x € Ag and y € Ag). One considers local chambers C, C g,
Cy C S with respective vertices x,y. Then (Cy,Cy) is a twin-friendly pair (i.e. there is
a twin apartment Ay x Al such that C, € Ay and Cy € Af).

N.B. We may replace the local chambers by local facets or preordered segment germs.

Proof. We are easily reduced to prove that, if (x,y) (resp., (x, Cy)) is twin friendly, then (Cy, y)
(resp., (Cy,Cy)) is twin-friendly. And we may suppose x € Ag, and y € Ag (resp., Cy C Ag).
Let Cy be a local chamber in Ag at z, with the same sign as C, and (C1,Cy,...,C, = Cy)
be a gallery of local chambers (in the tangent space T,(.%g)). We argue by induction on n,
the case n = 1 is clear and we are reduced to prove the case n = 2: Cj and C, are adjacent.
One writes F' the local panel common to C; and Cy. If F' is in no wall, then Cy C cl(Ch) is
in Ag, and we are done. Otherwise F' is in a wall Mg(a + r) = Mypin(a + 7€) N Ag. One
of the two half-apartments Dyyin(£(cv + 7€)) contains y (resp., Cy), we may suppose it is
Diyin(a+ 7€) D Dg(a + ). Now there is an apartment A of .#g containing Dg(a + 1) U Cy,
and u € ®U,, such that A = u.Ag (see [BaPGR19, 1.4.3] and [Rol6] 5.7.7]). Now ®U, ;41
fixes u™1.Cy and Uy, = Upire X ®Uprt1 (by . So there is u' € Uqype such that
Cr CU'.(Ag). As Uptre C Gruin fixes Dyyin (o + r€) N g, we are done. O
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4.2 Existence of an isomorphism fixing the intersection of two apartments

In this subsection, we prove that if A and B are twin apartments, then there exists ¢ € Gyin
such that g.A = B and g fixes AN B (i.e, g fixes (Ap N Bg) U (As N Bg)) (see Theorem [4.8)).
This result is crucial in order to define a retraction centered at Co, for example.

To that end, we begin by studying, for any place v on K, the properties of Go, "\UTU™N,
where G, is the fixator in G of 0, € .%,. We then deduce a description of G, N U#*. Using
these results, we prove a weak version of Theorem [4.8} we prove it in the case where Ag N By
and Ag N Bg contain a chamber based at vertices of type 0 (i.e elements of G.0g, or G.0g).
We then deduce the theorem.

4.2.1 Intersections of Gy, (fixator of 0, in G) with UTU~N or UtU~

Let v be a place on K with associated valuation w. We work in .%.

One defines Q , = &f_; R>oa; C A, and, for u = S aa), ht(p) = S2%_ @i One
also chooses an element ¢ € C¥ NY C A,.

The action of T'= T(K) on A, is given by translations. More precisely ¢t € T acts by the
translation v(t) = v,(t) of vector v(t) = v,(t) € Ay =Y @R given by: x(v(t)) = —w(x(t))
for any x € X. In particular v(w;) = —\ (if @, is a uniformizing parameter for w).

We define Tw(Q]}\éH'_) = VJI(QI\@Q-F)

Lemma. 1) (U*U~N)NGy, C UtU-T(QY )W and (UU~T)NGo, C UMUT.(QY,)-
2) We have (UTU™) NGy, = (UT N Go,) (U™ NGo,) = U U, .

Proof. 1) Let u™ € UT,u~ € U~ and n € N be such that uTu~n € Goy,. We write n = tw,
with ¢ € T and @w any representative of w € WY = N/T fixing 0, (e.g. w € N(k)). So
utu~t € Go,. We write u = t.0, € A, (i.e. p = v(t) € A,). We consider the retractions
ptoo of F onto A, with center Qioo = germoo(£CY). Now x 1= u"t(0y) = u™(p) satisfies
P—oo(x) = p and pioo(x) = 0y (as u™(x) = 0,). By [Hel8f, 7.6.1]=[Hel8¢, 6.5.1] or [Hel7,
3.1], one has —p € —Qy , so v(t) = p € Qg , and t € T,(Q ;).

2) Let ut € Ut,u~ € U~ be such that utu~ € Go,. Let x = u~.0,. Then we have
P—oo(T) = 0p and pioo(z) = uTu™.0, = Oy, since pioo(x) is the unique element of Ut.z N A,.
Using [Hel, Corollary 4.4], we deduce = € A,, and hence x = p_(z) = v~ .0, = 0, =
utu~.0,, which proves the lemma. 0

4.2.2 Application to Gy
We consider now all the places of K and the associated valuations.

We are first looking at U* N Gpol =: U;l D Utim.
From WQ we know that, for w = wy, v # @,0, U":‘” = [Taear Xa(8a,z ® Ku>o),
where Ku>0 = {2 € K | w(z) > 0} = O, and UF"" = U™+ N G is the fixator of 0, in U+
for the action on .7, (cf. 3). As the product decomposition of U™ is unique (cf.

and O = Nyxg o Ku>0, one gets:

U*n Gpol = ( H Xa(Qa,Z ® 0))NG.

acAT+
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And clearly, if Q@ C %, (v = @ or ©), its fixator in Utn Gpol is:

U N Gpot = ( [] Xa(8az @ Ous o)) NG.

aeAt

where O,> 1) = {7 € O |w(z) > fa(a)}.
One may also write a formula for U*(Qg U Qs) N Gpe when Qg C S, Qs C So.

4.2.3 A particular case of Theorem

1) We may include ay,...,a) in a Q—basis of ¥ ® Q. So, taking a “dual basis” there
is (x1,...,xq) € X% that is an R—basis of A* (i.e. a Q—basis of X ® Q) and satisfies
Xz‘(Oé}/) =m;d;j for 1 <i<d,1 < j < ¢withm; € N5g. Actually in the simply connected case
(i.e. when @¢_,Za) is a direct factor in Y'), one may suppose that (x1, ..., Xq) is a Z—basis of
X and m; = 1. We have Qg , = {z € A | x;(x) > 0 for 1 <i <4 x;(x) =0 fori > (}. And
for p = Ele a;a), we have a; = x;(p)/m; and ht(p) = Zle Xi(1)/m; (notation of.
2) Let v be a place on K (typically v # @,0), and w = w,. We write v, the action of
T on A, C . associated v and T,(Qy ) = v, (Q ). As xi(1(t)) = —w(xi(t)), we have

ve(t) = =%, May for any t € T. Sot € T,(Qg ) <= w(xi(t)) <0for 1 <i </

and w(x;(t)) =0 for ¢ > ¢. And then ht(v,(t)) = — Zle %@

3) Let us now consider u™ € UM, u~ € U™ and ¢ € T such that uTu~t € Gy, (actually by
the proof of Lemma 1, the study of UTU~N N G,y may be reduced to this case). By
Lemma MI, we have then t € T,(Qy | ), Vw # wg,ws. So wixi(t™1) >0for1 <i </
and w(x;(t~")) = 0 for i > £. This means that x;(¢t™!) € O for 1 <i < £ and y;(t7!) € O*
for ¢ > £.

Lemma 4.4. Let C, C Y5 and Cy C Iy be local chambers with respective vertices x and y.
We suppose x and y of type 0, i.e they are conjugated by G to Og and Og respectively . We
consider two twin apartments Ay, Az € Agwin containing Cp U Cy. Then there is g € Gyin
fizing Cp and Cy such that Ay = g.A;.

Proof. The action of Gypin permutes transitively the twin apartments and the action of
the stabilizer Ny of A in Gy permutes transitively the local chambers in Ag, of a
given sign and with a vertex of type 0. So one may suppose (41, A2) = (A, A), y = 0g,
Cy = Cg C Ag,C; C Ag, both contained in AN A. Then, by Proposition [3.§ and

there exist t¢g € GtwinNGoy and ~g € Gryin NG, such that A = TgA = ~gA. We would like
that Tg = ~g or, more generally, that Tg = ~gt with ¢t € T fixing A. But from tgA = ~gA
and T¢, g € Giwin, we get only Tg = “gn, with n € Niwin = N N Grwin.

One writes Tg = ufut; and g = “gn = uuythn = ujuyng, with uf,uf € U,
uy,uy € U™, th,ty € T, ny = thn € N and moreover u; u; t1 € Gupin NGy (s0 uf,uy € Geg
and t; fixes Ag by Proposition [2.4) and ujuy th = g € G, N Giyin (50 uz,u; € G, and
t;, fixes Ag by Proposition [2.4). We want to prove that ng fixes C; and C,.

One writes ng = tow with ¢t € T and w any representative of w € WY = N/T in
N(k) C Gyin- In particular w fixes 0p in any masure .%.

(a) But tg = ujujt; = Uz Juy tow is in Gpe and fixes Og in g, 80 go = uguyto is in
Gpoi- By ‘- 3, we get x; t2 HYeo, vi=1,. d Moreover g = Tgw ™! fixes Og in Zg,
s0 wo(xi(3 1) > 0 (by §.2.111 and [12.3]2), x:(t51) € {w] and we(xi(t;1)) < 0.
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(b) Now uj and u, fix C; C Fg, so one may write ug u; = ugujts with uy € U~,ug €
Ut,ts € T, all fixing C; (by 2.4). In particular ws(x;(t3)) = 0, Vi = 1,...,d by §4.2.3/2
(formula for v,(t)).

(c) But go = uzujtsts € Gpoi, 50, by $4.2.313 and [1.2.1]b, xi(tsta) € O, Vi = 1,...,d.
We also know that go fixes Og in Zg. So, by §4.2.11b, t3ts € Tw@(_Qﬂv&Jr)» i.e. (by @2)
we (xi(tstz)) > 0. We deduce from this that x;(¢3t2) € k[w], hence wg(x;(tst2)) < 0. But
we (xi(t3)) = 0 (by (b) above), so we (xi(t2)) < 0. Comparing with (a), we get we (x;(t5')) =
0. But xi(t; ) € k[w] by (a), so xi(t2) € k. Hence t fixes Ag, and Ag, ng = to@ fixes 0g and
Os-

(d) Now T = Mult?, we write 0; the j'* coordinate map. As x1,...,xq € X is a Q—basis of
X ®7Q, we have n; € Z~¢ and bj,i € 7Z with anj = Zz bj,iXi~ So ej(tg)nj = Hz Xi(tQ)bj*i € k.
As Qj(tg) e k= lk(w), we get ej(tg) ek, ie ty € T(k) C Giuwin and no = tow € Gpin. SO
uguy; = +gn2_1 € Giwin and th € Gpyin; one may replace ~g = uj u, th by ug uy i.e. suppose
th, = 1. Symmetrically we get also t1 € Giyin N T(K) and one may replace Tg by uful_ i.e.
suppose t1 = 1.

(e) We argue now in the tangent twin building 7o, (-#s) and use that Tg = ufu] =
U3 Uy tow with uf fixing Cg, tp fixing Ag. But uguy = Tg(tow)~? fixes Op in g, and so do
uy, uy by 4.2.1!2. Hence uj fixes Cg = germy, (C}) and uy fixes Cp = germog, (—C}) C
Ag. We have Cy = uy.Cy = (uf ) Lufuj (taw) 1.0y = (uf)tufuy @~ 1.Cy. We consider
now the retraction p* of Ty, (F) onto To, (Ag) with center Ca. As ug,uf and u; fix Cg,
we get Cy = pT(Cy) = w.C; . We have proved that the class w of w in WY is trivial. We
could have taken w = 1 and then ny = t5 fixes A as expected. i

4.2.4 Conclusion

We now extend the result of Lemma [£.4] to arbitrary pairs A, B of Ayin. We begin with the
case where Ag N Bg and Ag N Bg have nonempty interior and then drop this condition.

Lemma 4.5. Let A, B € Apwin be such that Ag N Bg, and Ac N Bg have non-empty interior.
Then there exists g € Guyin Such that g.A = B and g fixes AN B (i.e g fixes pointwise
(A N Bg) U (Ae N Bg)).

Proof. Using isomorphism of apartments, we may assume that A = A. We fix an element of
y € Ag N Bg. As Ag N Bg (resp., Ag N Bg) has non-empty interior, there exists n € N*
such that Ag N Bg (resp., Ag N Bg) contains an element Cy of Giwin. (LY + Cg) (resp.,
Cy of Guuin-(2Y + Cg)). Let K™ = k(w'/™), where @w'/™ is an indeterminate such that
(w!/™" = w. Let G = &(K™). We add an exponent (n) when we consider an object
corresponding to G(™ (for example we have .7, (n), fén), el Ag ) ,...). We have fegn) D Sy

twin?

and fe(n) D 5. As an affine space, AgL ) can be identified with Ag. However, it contains
more walls, and we have Y (™ = 1Y Therefore by Lemma applied with G™ instead of

—n twin

Gwin, there exists g, € G(") fixing C; U Cy and such that g,.A = B. By Proposition

twin

there exists hy € Giuin such that hy.Ag = Bg (hence hy.A = B) and h, fixes Ag N Bg.

Then g, Lh, stabilizes Ag and is an element of Ggg)m Therefore g, 1h, is an element of Nt(gl).n.
Moreover g, lhy fixes Cy and thus g,/ 1hy fixes Ag. Using we deduce that g, 1hy fixes
Ag. Hence hy fixes (Ag N Bg) U Cy. By Proposition there exists h, € Giwin such that
hy. A = B and h, fixes Ag N Bg. So hyth, stabilizes Ag and fixes Cy: it is the identity on

Ag. This proves that h, fixes Ag N Bg and completes the proof of the lemma. O
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The following proposition corresponds to [Rolll Proposition 2.9 1)] in the twin case.

Proposition 4.6. Let v € {©,®}. Let A, be a twinnable apartment in the masure %,. Let
M be a wall of Ay and C be a (local) chamber of F, not in Ay, but dominating a (local) panel
of M. Then there exist two twinnable apartments A1, and Az of S, such that:

1. Aip and Ay contain C,

2. A1y NAy and Ag oy N Ay (resp., Al NAy and Ay w NAgy, A NAy and Ay ﬂAQ,U/)
are two opposite half-apartments of Ay (resp., A1y, Asy) for both v’ € {&, &}

Proof. Using apartment isomorphisms, we may assume that A, = A,. Let D, be a half-
apartment of A, delimited by M. By [Rolll Proposition 2.9 1)|, there exists an apartment
B, of .%, containing D, and C. By we can write B, = Zo(y).Ay, for some o € ¢ and
y € K, with z,(y) fixing Dy. Let z € k*w? be such that wy(y — 2) > wy(y).

Let Ajp = 24(2).Ay. Then

AN Bn = Za(Y)-(Ta(—y)- A1 N xa(—y).Bu)
=2a(y).(za(z —y).Ap N Ay).

As C ¢ Ay, we have B, N A, = D,. Moreover D, = {a € A, | a(a) + wy(y) > 0} and
Ay Nag(z —y)Ay = {a € Ay | ala) + wy(z —y) > 0}. Therefore Ay N zo(z — y).Ay 2
D, and thus A, N z,(z — y).A, contains any local chamber of A, which dominates some
local panel of M. Therefore A;, contains D, and C. Moreover if v € {©,®}, then

A1 wNAy =t Dy is a half-apartment. Let now Ay = 2_4(271).A. Then Ay yNAy = Ay \ Dy

and 7 := o_o(—2" ) 20(2)T_o(—271) € Nywin induces reflections with respect to the wall
{a € Ay | a(a) + wy(z) = 0}. Hence we have (2) and thus we have (1), which proves the
proposition. i

Lemma 4.7. Let A, B € Apyin. Then for all (x,y) € (Ag N Bg) X (Ae N Bg), there exists
g € Gwin fixzing x,y and such that g. A = B.

Proof. Considering local chambers C, C Bg, Cy C Ao and a third twin apartment B’
containing C, U Cy (by Proposition , we are reduced to consider the case where Ag N Bg
or Ag N Bg contains a local chamber. We choose the case Ag N Bg D Cy; the other case
is similar. Let C (resp. C’) be a positive local chamber of Ag (resp Bg) based at x and
I'=(Cy,...,Cy) be a minimal gallery of local chambers at x from C = Cy to C' = C,,. Let
P be the panel dominated by both € and C5. There are two cases: either the panel P is not
contained in any wall of Ag, or the panel P is contained in exactly one wall of Ag.

In the first case, any half-apartment containing C; contains Cs and thus the enclosure of
C4 contains Cy. By (MA II) we deduce that Ag contains Cy so we can replace I' by the gallery
(Coy...,Cp).

We now assume that we are in the second case. Let Dy g, Da g be the two half-apartments
of Ag delimited by P. By Proposition [.6] there exist twin apartments A; and Ay such that
Ag NAje = D;g for both i € {1,2}. Then Ag N A5 and Ag N Az o are two opposite
half-apartments of Ag. Therefore A; o or As o contains C, and there exists ¢ € {1,2} such
that AN A; D D; g UCy. By Lemma there exists g € Gyyin such that g.A = A; and ¢
fixes z and Cy. By induction, we deduce that we can assume that AN B contains C), and C}.
Then by Lemma there exists g € Guin fixing z,y and such that g.A = B, which proves
the lemma. O
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Theorem 4.8. Let A, B € Awyin. Then there exists g € Gryin such that g. A = B and such
that g fires AN B (i.e g fizes pointwise (Ag N Bg) U (Ag N Bg)).

Proof. We identify A and A. We assume that Ag N Bg and Ag N Bg are non-empty, since
otherwise we can use Proposition Fix y € Ag N B. By (MAII) in Ag N Bg is a finite
intersection of half-apartments in Ag. In particular it is convex and the closure of its relative
interior (Ag N Bg)*® (the interior of Ag N Bg considered inside the support Vo of Ag N By
in Ag). We regard A@ as an R-vector space and Vo as an affine 5ubbpace of A. Let Vj be
the direction of Vy. If V is a vector subspace of Vo, we say that V satisfies the property &

if for all z € (Ag N Bg)®, there exists h_ ; € Gpin such that h ;. A = B and h_  fixes

(z+ V)N Ag N Bg and y. Then {0y} satisfies & by Lemma Let V be a vector subspace
of Vp satisfying &2. Assume V # Vp and take v € V) \ V. Let h € Gy be such that h.A = B
and such that h fixes Ag N Bg (the existence of such an h is provided by Proposition .

For # € (Ag N Bg)*, define n, = h™'h_p; it is in Nyyin and fixes (z + V)N Ag N By

(hence all x + 17) Let w, be the image of n, in the Weyl group W = Nyyin/T(k), that we
regard as a group of automorphisms of the affine space Ag. As W is countable, there exist
= (A@ N Bg)® such that 2/, 2" € z + Rv, 2’ # 2" and w, = wyr. Then wy fixes 2’ + 1%
and 2’ 4+ V and thus it fixes z + (V + Rv). So h, v fixes (z +V +Ruv) N Ag N Bg. Therefore

V +Ru satisfies 2 and by induction we deduce that V satisfies 2. In particular, there exists
hy € Gtwin such that hy,.A = B and such that h, fixes Ag N Bg and y. We conclude the proof
of the theorem by a similar reasoning. m

Remark. The theorem above is true if we replace Agwin and Giyin by Aper and Gpe respec-
tively. The proof is similar since we mainly used that Gyin C Gpe and our preliminary study
of Gpol-

4.3 Decompositions of Gy, and Gy
4.3.1 Twin Iwasawa decomposition

Recall that Cg = germg, (C’V) is the fundamental positive local chamber in Ag and I = Ig
(resp., Itwin) is the fixator of Cg in G = &(K) (resp., Grwin = Go). From Corollary m 3.10] and
Remark we get:

Proposition. Let e € {—,+}. Then we have:
Gwin = twm Niwin -Ltwin and Gpol = Utwm Niwin.- (IGB N Gpol)

N.B. In A5 C .75, one considers the fundamental negative local chamber Co, =germo, (—C}’)
and its fixator or stabilizer the negative Iwahori subgroup I of G (acting on .#5). One writes
I = I N Gypin and the (negative) Iwasawa decomposition may be written:

Grwin = Ugyipn-Niwin-Ioo and Cypol = Ui - Ntwin- (I@ N Gpol)

twin® twin®

Lemma. Lete =+ ore = — and A € Agiwin such that A D Q.. Then thereis aw € Uy,
such that A = u.Ag.

N.B. 1) u is unique and Corollary .2 tells, more or less, that U;%. is “dense” in U7,

twin twin*
2) Such results are also true for all pairs “sector germ C twinnable apartment of .75 or

J5” with u € G fixing the sector germ, by 3 and
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Proof. There are g1 € Gyyin, g2 € U® such that A = g1.Ag = ¢g2.Ag. So g;lgl € Stabg(Ag) =
N and g1 € Guin N (U.N) = U¢,....Niwin by Lemma One writes g1 = u.n with u € U;

twin twin

and n € N (stabilizing Ag), so A = u.Ag and the lemma is proved. O

4.3.2 Decomposition of twin Iwahori subgroups ?

We saw in that the fixator in G of the fundamental positive local chamber Cg in Fg,,
may be written I = Ug@.Ua@.‘I(ICw@:()), with Uéf@ = I NU*. We would like such a
decomposition of Iiyin = Ig N Grwin O Ipoy = Ig N Gper. But this is impossible in general as
shown by the following counterexample for & = SLy (semi-simple).
Then Ig is the group of the products (é 1{) (11) (1]> (g 201> with u, v, z € K, wg(u) >
0, wg(v) > 0 and wg(z) = 0. But the fixator in SLy(K) of 0, € %, is SLa(O,) [BrT72], so such
a product fixes 0y if, and only if, wy(2) < 0, wy(2v) > 0, we(z71u) > 0 and wy(2(1 +uv)) > 0;
hence it is in Gp if, and only if, 271 € O, zv € O, z7'u € O and 2(1 + ww) € O. Actually
1 u 1 0\/z O 2(1+uwv) 2z '
then <0 1) (U 1) (0 z1> _ < () zl) € SLy(0), and SLy(0) = (SLa)uin as
O is a principal ideal domain and SLs is semisimple.
One chooses P € k[w| an irreducible polynomial, P # w and writes Bezout 1 =
—wu' + Pv', with v/,v" € k[w], we may choose v/ € k. One chooses 271 := P, 27ty :=

', 2v = w, iie. u = W/P, v = Pw, so z(1 +w) = P71 +u'w) = v/. Hence

R o R [T

in the Iwahori subgroup of SLy and in (SLg)swin, but its (unique) decomposition in UTU T
involves factors not in (SLg2)po. Nevertheless the last decomposition shows that g is in
UrH = (H,(Uatre)atreed,. ). This agrees with the fact that, in reductive cases, the an-
swer to the question in §L.1.9/ DR5, NB3 is yes.

4.3.3 Groups associated with spherical vectorial facets

We choose now to work in Zg, but the similar results in .#5 are also true.

So we consider a spherical vectorial facet FV C Ag.

(1) Following [Re02) 6.2.1, 6.2.2, 6.2.3, 12.5.2] we associate to the facet F a parabolic
subgroup of G = &(K) with a Levi decomposition: P(FV) = M(FV)xU(F"). Actually M (F")
is a K—split reductive subgroup with maximal K—split torus T and root system ®™(FV) =
{a € & | a(FY) = 0}. It is generated by T" and the U, for o € ®™(FY). And U(F"V) is the
smallest normal subgroup of P(F") containing all U, for a € ®*(FY) ={a € ® | a(F") > 0}.

(2) Parabolics and Giyin. One defines Upyin(FY) := U(FY) N Gwin, Muwin(FY) =
(Tywin; 40 (0),a € P™(FV)) and Pryin(FY) := Mpwin(FY) X Uppin(FY).

One has clearly Upyin(FY) D (Ua(O) | a € PY(FY)), Mppin(FY) € M(FY) N Gryin and
Pryin(FY) C P(FY) N Gyin- These three inclusions may certainly be strict in general.

From the definition in one gets easily that U;ﬁn C Puyin(FY) when FV C Ci}’

One may also define Uy (FY) := U(FV)NGpot, Mpoi(FY) := M(FV)NGpo and Py (FY) ==
Mpol(FV) X Upol(FV)'

(3) Twin Iwasawa decomposition. Let Cj be a local facet in Ag or Ag. As in or
.2 one defines Iy (C1) or Ipo(C1) as the stabilizer (or fixator) in Giwim or Gpe of C1.
So, from Remark one gets the following Iwasawa decompositions:
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Gtwin - R&win(FV) Ntwm Itwm(cl)
and Gpol = thin(F ) Niwin.- pol(Cl) pol(FV)-Npol'Ipol(CI)~

4.3.4 Parabolo-parahoric subgroups

We consider now a splayed chimney tg = cl(F, FY) in Ag (with direction FV) and its germ
Ro.

(1) Following |[Rolll 6.5], we define PH(tg) = PH*(Ro) = MH*(vo) x U(FY), where M*(vy) =
MH*(Ryp) is the parahoric subgroup of the reductive group M (F"V), fixator of the local facet F'
(or of tp, R, as g is in the enclosure of F for the reductive group M (FY)). From [Rolll, 6.5,
6.6], we get that the group P*(tg) fixes the chimney germ Rg. It depends only on Ry, but it
is not clear that it is the whole fixator of Ry in G.

(2) We consider also the subgroup P, . (vo) = Pl . (Ro) = MY, . (vo) x U(EY) of PF(xo)N
Grwin, where ML . (vg) = (T(K); Upsre, € P*(EY), (e + r€)(F) > 0) C M*H(ro) N Gain.

Actually M} . (vo) is the parabolic subgroup of the affine Kac-Moody group Miyin(F")
associated to the local facet F' C Ag. To see precisely Myyin(FY) as an affine Kac-Moody
group, one has to write it 9M(FY)(k[w, " !]) where 9(FV) is the split reductive algebraic
group (or group-scheme) with root system ®™(F") and split maximal torus ¥.

Theorem 4.9. With the above notations in §4.5.5 and §4.5.4), we have:

Gtwin - thm(tO)-Ntwin-Itwin(Cl)

N.B. (a) This is the mixed twin Iwasawa decomposition. It mixes an Iwasawa decomposition
in Gyin and a Bruhat decomposition (if C7 C Ag) or a Birkhoff decomposition (if C; C Ag)
in the Kac-Moody group Min(F"Y) (which is actually reductive).

(b) One has also Gpor = P} ... (v0)-Niwin-Ipot (C1).

Proof. Let g € Gryin (resp., g € Gpor). From one gets p € Puyin(FY), n € Nwin,
q € Itwin(cl) (resp,, q € Ipol(cl)) and u € Utwin(Fv)> m € Mtwin(FV) with g = png and
p = um.

Then one uses the Bruhat (resp., Birkhoff) decomposition in the affine Kac-Moody group
Miwin(FV) associated to the local facets F' C Ag and n(C1) C Ag (resp., n(C1) C Ag). So:

m = piniqr  with p1 € Mf,;,.(vo) 11 € Nywin N Mywin(FV)
and 1 € (S(K); Unsre, o € B7(FY). (0 -+ 1) (n(C) > 0)

Now n~tqin € Liwin(C1) and g = upininn~tqing is in PL . (v0).Newin-Ttwin(C1) (resp.,

Ptl:mn(tO) Ntw’m pol(cl)) o

Corollary 4.10. Let C be a local facet in Sg (resp., in Is) and R a splayed chimney germ in
Fo. Then C and R are always contained in a same twin apartment A: R C Ag and C C Ag
(resp., C C Ag).

N.B. Mutatis mutandis, one may also clearly suppose R C 5.

Proof. There are g,h € Giyin with C; = ¢g7'C C Ag (resp., C1 = g~'C C Ag) and
Ro = h 'R C Ag. From Theorem one gets p 6 twm(i}io) n € Niwin and q € Lyin(C1)
such that h='g = png. Now p fixes Ro (by and ¢ fixes C; (by definition). So
C = gC1 = hpnCy C hp(Ag) (resp., C hp(Ag)) and R = hRo = hpRo C hp(Ag). We
conclude now with A = hp(A) as hp € Gryin- O
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Remarks 4.11. When fR is a sector germ and C' C Zg, this corollary is a consequence of
Corollary 3.72. When R is still a sector germ and C' C .9, then this corollary may also be
deduced from Corollary [3.712: actually we have bijections between the sets of sector germs in
Jg or in g (and with the set of chambers in ¥¥).

When fR is no longer a sector germ and C C Zg, this corollary or theorem gives a
kind of non trivial link between %5 and 5. It may be considered as a weak twinning of .Zg
and Z5. The twinning that may be hoped is a Birkhoff decomposition looking like with
C1 C Ag and v replaced by a local facet in Ag (well chosen with respect to C1). See
below.

4.4 Expected Birkhoff decompositions and retraction centered at C

Let H be Giyin (resp., Gpor), let Ex C Ag, E_ C Ag be either points or local facets and
let Hp, be their fixators in H. Then a Birkhoff decomposition in H is a decomposition H =
Hp, .Staby(A).Hg_; one may also consider a decomposition H' = Hg_ .(Staby(A)NH').Hp_
for a subsemigroup H' of H. As in the existence of such a decomposition means that
any hy.Fy and h_.E_ (for hy,h_ € H, with some conditions in the case of H') are in a same
twin apartment A € Agyin, if H C Gpypin (or in a same Gpy—twin apartment A € Ay, if
H C Gpy). In the case where & is a reductive group, then % = (S, #5) is a twin building
with a strongly transitive action of the affine Kac-Moody group Giwin = Gpor (see Remark
2). Then the Birkhoff decomposition, for Giyin, is well known (see e.g. [Re02]).

4.4.1 Conjectures

One would perhaps have liked that any pair of chambers C, C #, Cy C F is twin-friendly,
i.e. there exists a twin apartment (Ag, Ag) with C, C Ag, Cy C Ag. This would correspond
to a Birkhoff decomposition H = Hg, .Ny(A).Hg_ for H = Gy and Ey, E_ as in

But the experience of masures leads to think that this is not true in general. A counterex-
ample is actually given below in Section[6] From this it is reasonable to think that a condition
like z < y or y < z has to be added.

For Muthiah’s purposes, we may restrict to the case Cy C Ag C S, Cy = Cx =
germo(—C7) is the fundamental chamber in .#5. Then we write Og the element 0 € Ag.

We give below two conjectures, the first one closely related to Muthiah’s framework.

Conjecture. For x € 9 such that z < 0g, or x > Og, then (Cy, Cw) is twin friendly.

Actually Muthiah needs a weaker result: For x € g, with x < 0Og and (z,05) twin
friendly, then, for any z € [0g, z], the pair (z,0g) is twin friendly.
But, using Proposition [£.3] and the following Proposition [£.12] we get from such a result

o
the general conjecture above (at least for z < 0Og).

Enhanced conjecture For = € % and y € Y5, we write © < y (resp., © > y) if there is
a twin apartment A = (Ag, Ac) with x € Ag,y € Ae and opa(y) > x (resp., opa(y) < z),
where op4(y) is the point in Ag opposite y.

Then, for 2/ € I and ¢ € S with 2/ <x and y <4/ (resp., ' > z and y > ¢/) one has
' <y (resp., ' >1v').

This second conjecture seems to be a reasonable generalization of the result known in
masures.
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Note that these two conjectures are certainly more reasonable, if we replace everywhere <

by % and > by E

In a recent preprint [Pa24], Manish Patnaik looks at the above conjecture in the untwisted
affine case, i.e. for loop groups. Unfortunately the Birkhoff decomposition he gets is, up to
now, proved only in a completion of the Kac-Moody group.

Proposition 4.12. For x < y in Jg, there is a z € Ig such that € [z,y] and (z,Cx) is
twin friendly.

Proof. One may suppose z # y. There is an apartment Ag in Zg containing x and y. One
may consider in Ag the spherical vectorial facet FV of A—é containing ﬁ, the ray 6 = y—|—R+ﬁ
and the splayed chimney v = ¢(F(y, F"V), F"V). By Corollary there is a twin apartment
(AL, AL) such that Co C A7 and Af, contains the germ R of v, i.e. A}, contains a shortening
t(F(y + kyt, FV), FY) of ¢ (for some k € R supposed > 1). Then Al contains z = y + kit
(and the ray z + R 7). So (z,Cs) is twin friendly and z € [z, y] (as k > 1). O

4.4.2 Retraction centered at C

Our main motivation to study twin masures is the study of the Kazhdan-Lusztig polynomials
introduced by Muthiah in [Mul9b] in the Kac-Moody frameworks. His definition involves the
cardinalities of sets of the form

Ktwinw)\Ktwin N Iooqutwin/Ktwina (441>

where Kiyin is the fixator of Og in Gyyin and A\, € YT =Y NT (and @ is defined in §2.2.2)).

The strategy he proposes to compute these cardinalities follows the steps below.

1. Define a retraction pc,, : Fp <o, = { € Ig | © < 0g} = Ag <oy = Ag N Ig <0,
centered at Cs. Then the coset “4.4.1i is in bijection with

{z € Ip <0p | d"(0g,2) = =X and pc, (v) = —p}, (4.4.2)

(see for the definition of dV).

Recall that for us, following Tits, w? acts on Ag by the translation of vector —\: see

@.1.8

2. Study the images by pc,, of line-segments of #g <o,. He proves in [Mul9b] that such
an image is a piecewise linear path of Ag satisfying certain conditions. He calls such
paths I..-Hecke paths.

3. Prove that an I,,—Hecke path from Og to —p in Ag, of shape —)\, has only a finite
(computable) number of liftings as line segments of g <o, from Og to x € S5 with
dV(O@,LU) ==\

4. Prove that, for A and p given, there is only a finite number of I,,—Hecke paths from Og
to —p in Ag, of shape —\. Together with 3. this gives the cardinality of the set

In [Mul9b], Muthiah achieves steps 2 and 3 in general and step 4 in certain cases (when
G is untwisted affine of type A, D or E, see [Mul9b, Theorem 5.54|). Step 4 is achieved in
full generality in [HP24, Corollary 3.11]. However, step 1 is only conjectural.
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We now explain step 1, i.e. how to define po_ under the assumption that (Gtwm)g (or
(Gtwin)g) admits a Birkhoff decomposition (which is still conjectural). Steps 2 and 3 will be
explained with great details in Section [5] see particularly Subsections and Theorem
b.Il In step 3, it seems that our formula for the number of liftings of a Co,—Hecke path is
more precise than Muthiah’s formula. We shall tell nothing about step 4.

Let £ = I.Ag. Then & is the set of elements z € 5 such that x U Cy is Gyyin-friendly.
Indeed, take z € £ and write & = i5.y, With is € I and y € Ag. Then A := i.A contains
U Cy. Conversely, let x € Fg be such that z U C is Gyyin-friendly. Then there exists
g € Grwin such that A := g.A contains z U C,. Then by Theorem there exists h € Giwin
such that h.A = A and h fixes ANA. Then h € I, and there exists y € Ag such that h.y = z,
sox €€.

Lemma 4.13. Let z € Ag and i € I be such that ico.z € Ag. Then ion.z2 = 2.

Proof. Let A = i0o.A = (i0o.-Ag, ico.Ag). By Theorem there exists h € Gyyin such that
h.A = A and h fixes AN A. Then hi, stabilizes A and thus it belongs to Nyyin. As his fixes
Cx, it fixes an open subset of Ag. Therefore hiy, fixes Ag. By d), his lies in T(k)
and thus it also fixes Ag. Therefore his.z2 = 2 = ix.2. O

We define po_ : € = Ag by po.(ico.®) = x for x € Ag and is € Iso. This is well-defined
by the lemma above. Moreover it is I-invariant and pco__(z) = x for all z € Ag, so it satisfies
the conditions of [Mul9b, Proposition 2.4|, with @ = I«.

It is however difficult to describe explicitly £. It is related to the existence of Birkhoff
decompositions on G by the lemma below. For our purpose, we would like that £ contains
I5,>05 (0 I <04, since our sign conventions differ from the ones of Muthiah). In the
following of this subsection [d.4] we work with % >, but the same results are true for Zg <o,

We set (Gth‘n)$ = {9 € Guin | 9.0 > 0g}.

Lemma 4.14. 1. LetJ = ﬂxEA@ Ioo Niwin(GeNGiwin) and J+ = ﬂﬂCEA@,ZO@ Ioo Niwin (G0
Gtwin)- Then 5 D) JA@ U J+.A@72[)@.

2. If £ = g, then Guyin = J.

3. If & is reductive, then &€ = g

4. We have (Gruin) Ao 500 = 0,500 -

5. We have JT D (Gtwm)ag if and only if £ D Fg >0, -

Proof. 2) Suppose £ = Ig. Let g € Gupin and x € Ag. Then g.x € £ and thus there exists
o € Ino, Yy € Ag such that g.2 = in.y and (i) 9.2 = y. Let h € Gyupin be such that
h(iso) 'g.A = A and such that h fixes A N (is) 'g.A (Theorem . Set n = h(is) 'yg.
Then n € Nyyin and y = n.x. Then g.x = icon.x and hence n‘l(ioo)_lg € G,. Consequently,
g e IooNthn(Gz N Gtwin) and Gyin = J.

(1) Let x € JAg and j € J, y € Ag be such that x = j.y. Write j = iy nk, where
(toos My k) € Ing X Npin X (Gy N Grin). Then x = in.(n.y) € €, so € D J.Ag. Similarly we
have JT.Ag >0, C E.

(3) Suppose & is reductive. Then we have Giuyin = IlooNpwinltwin, by the Birkhoff
decomposition in the affine Kac-Moody group over k, &(k[z, @ !]) = Gpin. Therefore
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we have Giwin = oo NiwinmIpwinm ™! for every m € N. Take z € Ag. Then there exists
m € Niwin such that m~t.z € Cg. Then Gy N Grwin D MIpwinm ™!, which proves (3) using
(1).

(4) Let g € (Grwin)d and © € Ag >0,. Then z > Og and by G-invariance of < we have
g.x > g.0g. By definition of (Gtwm)ag, we have g.0g > 0g. By transitivity of <, g.x > Og,
thus (Gtwm)agA@,zo@ C S50, Let © € g >0,. Then there exists g € Gypin such that
9.2,9.0g € Ag and g.x > ¢g.0g. We can moreover assume that ¢g.0g = Og (see Corollary 1
and Proposition . Then z = g~ '.(g.z) and g~' € (Gtwm)ag, hence = € (Gtwm)%-A@,zo@-
Therefore g >0, C (Gth‘n)aSA@,zo@ which proves 4).

5) By 1) and 4), we already have the implication “=". Assume £ D g >0, and take
g € (Grwin)§ and © € Ag >0,. Then by G-invariance of <, we have g.z > g.0g > Og, so
g.x € g >0, C E. Therefore there exists y € Ag and i € I such that g.x = i.y. Asin
the proof of 2), we have y € Nyyin.x, thus g € Ino Nywin (G N Grywin) and the lemma follows.

O

As we shall see in J # Giwin in general. We conjecture that J™ D (Gth‘n)ag which is
equivalent to £ D Fg >0, by the Lemma above. We also expect similar results for s <o,
(Gwin)g and J~ (where J~ is defined similarly to JT).

Remark 4.15. Tt secems also natural to define £’ = I5.Ag and then define p,  : & — Ag
by pc. (i.x) = x for i € Ig, v € Ag. However this is not defined in general because the
fixator of Ag in G does not fix Ag. Indeed, let z € k(w) be such that wg(z) # 0 and
we(z) = 0and A € Y\ {0}. Set 2z = A(2) € T (recall that Y = Hom(9Mult, T)). Then
2 acts by translation of vector —wg (2)A on Ag and by translation of vector we(2)A = 0 on
Ag. Actually, vg(T(OF)) = Y, so we can define pi,  : & — Ag/Y. Then we can define
the image by pf,_ of a line-segment of £’ (up to an element of Y') by demanding its image to
be continuous. So it might be helpful to look for a Birkhoff decomposition of G instead of a
Birkhoff decomposition of Gyin, in order to study Kazhdan-Lusztig polynomials.

5 Csx—Hecke paths

As explained above in §6.4.T] we do not get what is expected to define the retraction pr., = pc.,
(on a great part of Zg). One would like that : Vo € Fg, 2 > 0g (or < 0g), then (z,Cy)
is twin friendly. Actually we get interesting results if, at least, (z,Cs) is twin friendly for
any z € [0g,z]. Then pr = pc., is defined on [0g,z] (by Theorem or by §[4.4.2). In
this section we shall prove, using Proposition that po ([0g,x]) is an I—Hecke path
(as defined in [Mul9b]). Actually Cw is the canonical (negative) local chamber in .5 and
pC.. = pr., is the retraction of (a part of) . onto (a part of) Ag with center C; it is also
defined on a part of .#5 (using a Bruhat decomposition in .#).

More precisely, under the above hypothesis on [0g,z], we prove that pc, ([0g,x]) is
a A—path (with A = d"(0g,2)) and may be endowed with a superdecoration (§5.2} [5.3).
Conversely we prove that any superdecorated A—path is the image by pc.. of a line segment
[0, 2] with A = d¥(0g, ) and we count the number of these possible 2 (Theorem [5.1]). Then,
starting from we get that the underlying path of a superdecorated A—path is a Co —Hecke
path of shape A, for the definition of D. Muthiah (§5.11]).
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5.1 Projections and retractions

1) One considers a twin friendly pair (Cy, z) with Cy a local chamber in %5 and x € Y.
So one may suppose Cy C Ag and = € Ag (up to an element of Gyyin).

By paragraph the retraction Tpc, of T.F(g) onto TF(Ag) with center Cy is well
defined. This means that *pc, ([z, 2)) or Tpc, (Cy) is well defined for z € S and = < z (resp.,
z < z) or when C, is a local chamber at x in .#; with positive (resp., negative) direction
(recall that [z, z) is the germ of [z, z] at x).

2) Projections: One defines:

pr.(Cy) (resp., pry(Cy), also written C2° when Cy = Cu) is the germ in z of the
intersection of the half-apartments Dg (a+k) with a € ®, k € Z (resp., of the open-half-spaces
D¢ (a+k) with o € @, k € R) such that Dyyin (a4 k&) D {2} UC,. By Theorem , pr.(Cy)
(resp., pry(Cy)) is independent of the choice of (Ag, Ag) containing (Cy, x).

One may remark that ®,(Cy) := {a + k& € @4 | Dywin (o + k&) D Cy} looks like a system
of positive roots in @, (in a clear sense). But it is not clear that C2° is a local chamber (its
direction might be outside the Tits cone).

3) We are mostly interested in the case C, = Cy, hence +p0y = pc., = PIr..- Then
Q,(Cy) = Py i.e. Cy C Dywin(av +kE) < Cg C Dywin(—a — k§). So (if z € £T7°, more
precisely z > Og or x < 0g), C° is the local chamber opposite at z to pry(Cg) (defined
similarly to pry(C,) above, see [BaPR21l 2.1] for details); its sign is + if > Og and — if
x < 0g. Moreover pr,(Cy) is the closed chamber in the restricted sense (see [GROS| §4.5])
containing pr,(Cy) = C. If x is a special vertex, pr,(Cy) = prz(Cy).

N.B. a) Note that we chose above to suppose (up to Gwin) that Cy C Ag and x € Ag.
So, in general, when we speak of Cy = Cy(Ag) (resp., 0) in this section |5, it means the
positive local chamber (resp., the vertex 0(Ag)) opposite Co (7esp., Og) in a twin apartment
Atwin O Ae U Ag (in the sense of |4.1.10] and |4.1.3]) such that Cox C Ag and z € Ag. By
Theorem M the condition z > 0(Ag) or < 0(Ag) does not depend of the choice of Ayyin.

b) In this case Cy = C and x >0 orz < 0, we proved that C3° is a local chamber.

4) Lemma. Let C, be a local chamber at x in Fg. Then there are affine roots oy +
k1€, ..., antkng € ©4(Cy) with (a;+ki&)(z) = 0 and elements u; € Uq, 41,6 C GroinNGNGe,
(possibly u; = 1) such that +pcy (Cy) =up..... u1.Cy.

In particular +pc, restricted to T;7(Ss) is induced by elements of the group G (x) =
(Uggre | B+ 1€ € @o(Cy); (B +1E)(x) = 0) C Grwin N Ga, which fizes pr (Cy). Hence (in
the case of 3) above) this restriction (of Tpc, = pc..) is the retraction p' of TF(Sa) onto
T (Ag) with center pr,(Cy) (or pro(Cy) = C).

N.B. Gwin NGz N G, has the same restriction to TE(t7) as Gin ().

twin

Proof. Let C° C Ag,Ct,...,C™ = C, be a minimal gallery of local chambers at z in .7,
with origin in Ag and end C,. One argues by induction on n; it is clear for n = 0. If n > 1,
one considers the hyperplane Mg (a1 + k1§) (with ap € @,k € R) of Ag containing the local
panel common to C? and C*. One may suppose (o +k1£)(Cy) > 0. If ky ¢ Z, this hyperplane
is not a wall and C* C Ag. By induction Tpc, (Cz) = up. . ... u2.Cy (with clear notations) and
we are done (we replace ki by any ki € Z and take uy = 1). If k1 € Z, then a1+ k1€ € ®,(Cy),
and, as in Proposition one sees that there exists u; € Uy, 41,¢ such that wCt C Ag. One
considers the gallery u;C', ..., u1C"™ = u;C,. By induction there are ag + k&, ..., o +kné €
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®,(Cy) with (a; + ki§)(z) = 0 and elements u; € Us;4x,6 € Grwin N Gz N G, such that
oo, (u1Cy) = up. ... ug.u1.Cy. So Tpc, (Cr) = +Pcy (u1Cy) = Up. . ... ug.u1.Cy as expected.
As each w; fixes pr,(Cy) and pry(Cy), it is also equal to p/(Cy).

5.2 (y—friendly line segments in .7

1) Let z,y € g be such that x < y (resp., x S y). There is a G—apartment g.Ag
containing {z,y}, so g~ 'y — g~ 'z is in T° (resp., —T°). We define the vectorial distance
A = d(z,y) as the unique element in 6} NT° (resp., —6; N T°) conjugated by WV to
g 'y — g7 'z. Tt does not depend on the choices made (see e.g. [BaPR21, §1.6]).

The line segment [z,y] in g is said Cy—friendly if, moreover, Vz € [z,y], (Cw, 2) is
twin friendly. By Proposition we may ask that Ag contains [z,z) or [z,y). We actually
parametrize [z,y] by [0,1] : ¢ : [0,1] — [z,y] is an affine bijection. We define e(p) = +1 if
xéyands(g&):—l ifa:gy.

In the following we suppose [z,y] Cs—friendly.

2) By the usual argument using the compactness of [z, y] and Proposition we get points
20 = ¥,21,...,2, = y in this order in [z,y] and twin apartments (AZ-@,A?), 1 < i < n, with
Cs C AZ-e and [z;_1, 2] C Al@. We set z; = p(t;),to=0<t; <---<t, =1 By Theorem
or we know that pc is defined on [z, y], and also on all local chambers C, with vertex
z € [z,y] by Proposition The above result tells that pc_ ([x,y]) (or better 7 = po_ 0 )
is a piecewise linear continuous path in Ag. It is actually a A—path, as defined in [BaPR21),
1.7], |GR14, 1.8] or [GROS, 5.1], i.e. it is a piecewise linear continuous path 7 : [0, 1] — A such
that, Vt € [0,1], 7/ (t) € WY.X (which is in £7°). We shall investigate its properties more
closely and then call it an Io—Hecke path (to follow [Mul9b|) or a Coc—Hecke path or (more
precisely) a Hecke path of shape A in Ag with respect to Cy (in Ag).

3) We suppose now moreover that C2° is a local chamber, more precisely that, in the

apartment A?, one has = > 01 (resp., * < 01), where 0; means the opposite in A%B of
0o € A7. By Theoremthis condition does not depend on A; or [z,y) but only on (Cu, ).
In particular the sign of C2° is positive (resp., negative). We may decorate [z,y] by the use
of C°:

For z € [z,y[ we set CF, = pri,,)(C2°) and for z €]z, y] we set C7, = pri. ;)(Cg°), i.e.
CF, (resp., C7,) is the local chamber containing [z,y) (resp., [2,2)) in its closure that is the
closest to C5°, for details see [BaPR21], §2.1 and Def 2.4] where C7, is written C?/. One has

to be careful that, contrary to l.c. , we may have x S y (i.e. e(p) = —1) and then CZ@ (resp.,
C?.,) has a negative (resp., positive) direction. When 2 = ¢(t) we write also C’Zjip = Cia. We
write ¢ or [z,y] this decorated line segment.

We recall the notations for some segment germs: ¢4 (t) = pi(z) = ¢([t,1)) = [z,9),
7T+(t) = m+(p) = F([t7t+ 77)) (resp., p—_(t) = 90—(2:) = (p([t,O)) = [va)7 W—(t) = Tr_(p) =
w([t,t —n)) if t <1 (resp., 0 < t)and z = ¢(t),p = 7(t), n > 0 small; also the right (resp.,
left) derivatives «’(t) (resp., 7'_(t)).

We may also define C3 = C;EW = PO, (Cj;,) when p = 7(t) = po(2) = po.. (©(t)). We
get thus a decoration of 7:

Definition [BaPR21| Def. 2.6] A decorated A\—path is a triple = = (, (C’tfw)Kl, (Cix)t=0)
such that: 7 is a A—path, C’;“,r (resp., Cy ;) is a local chamber with the same (resp., opposite)
sign as A, with vertex 7(t), containing 7 (¢) (resp., 7—(t)) in its closure. Moreover, for some
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subdivision #; = 0 < #} < --- < t;, =1 of [0,1] such that 7|y, is a line segment and for
any t;_, <t,t' <t we ask that Ct';r = prﬂ(t)(Ctj,[ﬂ) (resp., Cy = prﬁ_(t)(C;,tﬂ)) (here we

exclude C "

i—1

and O} of these equalities).
s t;,m

We get easily these properties in our context, as the apartment Af-B above contains C;;_ Lo
and C, , (hence all Cip for z €]zi—1, zi[). So, for p; = m(t;), the restriction 7|y, , ;. is a line

segment from p;_1 to p; and pc ([, y]) = [Po,p1] U [p1,p2] U+~ U [pr_1,pn].

5.3 Retractions of C,—friendly line segments

1) We suppose [z,y] C Sg, Cs—friendly and parametrized by ¢ as in 1. We suppose
moreover [z,y) C Ag. We may then decorate [z,y] (i.e. ¢) by the use of C2°, if z < 0 or

x>0 (actually we assume often = = 0), cf. §5.213. We get also a decoration on the A—path
pc.. ([z,y]) (i.e. on m = po, o ¢); we keep the notations of

2) We suppose 0 % z < y hence ¢ = ¢(¢) = +1 (resp., 0 § x> y hence ¢ = ¢(p) = —1);
for this we may eventually exchange x and y if e.g. 0 % Y < 2. From this we deduce (by
induction on ) that, for any z €]z;_1, 2|, one has z > 0(AP) (resp., z < 0(AP)); in particular
C3° is a well defined local chamber of sign e.

We now consider t €]0,1[, z = ¢(t), p = 7(t) = pc.(2). We write (Ag, Ag) a twin
apartment containing Coo and C7 . By [5.1}4 the restriction of pc, to T (Ss) (whose image
is T;5(Ag)) is the retraction poee (of T5() onto T;5(Ag) with center C£°) followed by the
isomorphism 1 of T;5(Ag) onto 7?: (Ag) induced by pc.. (hence by an element of I,). Note
that (C5°) = Cp°.

We saw that CT° and CZ , have the same sign €. So we may consider a minimal gallery
CVl=Cx CL....c™m = CZW of length m = m, = m;; we write i, = i; its type. We suppose
that C°,C1,...,C™ is a minimal gallery from C% to ¢, (z). Now (C) = pc. (C1))o<icm is
a minimal gallery in T;5(Ag) of type i, := iy from C5° = pe (C°) to Cf . = pe (CF,). Tt
is minimal as we retract with respect to C°, which is the first chamber of the gallery, see
4) Lemma.

3) So the A—path 7 is decorated by the datum ((C;;r)td, (Cix)t=0), with C’Ofﬁ =
pro. +([))(C’OC()O)). For any t €]0,1[, one has chosen the type i; of a minimal gallery of local

T

chambers in Ea(A@) from C}° to C;ﬂ; its length is m = m, = m;. We supposed also that this
minimal gallery begins by a minimal gallery (of length mj) from Cp° to m (t) and continues
by a gallery of local chambers dominating 7 (t).

For any t €]0,1[ we may consider a gallery ¢, = ¢; of local chambers in 7;(Ag) from

C° = prp(Cx) to the projection C}(,?;) of C, . on the segment germ 7((t) = m(t)+7"(¢).[0, 1)
(opposite m_(t)), that is of type i; and centrifugally folded with respect to C, ., see [BaPR21]
§2.2).

Such galleries may not exist in general. But we saw above that the decorated line segment

@ or [z,y] gives rise to such galleries.

5.4 Superdecorated C,, — \ paths

Let 7 be a A—path in Ag, with A € (C} NT°) and 7(0) > 0 if ¢ = 1, 7(0) < 0 if £ = —1.
Clearly we have 7(]0,1]) C eT°.
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1) We consider the numbers 0 = t(, < t{ < --- < #;, = 1 of §5.2]2 and the points p; = 7 (t})
where m may be folded. For t; <t < t; (resp., t; < t < t; ;) the derivative 7', (t) (resp.,

7

7'_(t)) is a constant. The derivative 7/ (t) € WY.\ is in eT°.

2) Lemma. There is only a finite number of pairs (M,t) with a wall M containing a
point p = 7(t) for 0 <t <1, such that wi.(t) is not in M and Cp° is not in the same side of
M as mi(t).

Proof. We may restrict to the t € [}, ¢! +1[7 more precisely to the ¢ in a small open set €2 in
[ti,tisq]. We write M = Mg(a + k§) with o + k§ € ®qq (so k& > 0). The conditions are
thus (o + k&) (7(t)) = 0 (hence a(n(t)) < 0), a(n’,(t)) # 0 and more precisely a(n’, (t)) > 0
(as CF° C D(—a — k€)). Suppose € = +1, then m(2) (resp., 7/ (t), which is independent of
t € [t;,t;,1[) is in the open Tits cone T° (as t > 0), so a(m(t)) < 0 (for some t € Q) (resp.,
a(n’ (t)) > 0) is possible only for a finite number of positive (resp., negative) roots . Hence
there is a finite number of possible « (by [Ka90, Proposition 3.12 ¢)|, and, then, the condition
(a+ k&) (m(t)) = 0 is possible for only a finite number of k& € Z. Moreover t € 2 is uniquely
determined by o + k§ as a(n/ (t)) # 0. We get now the expected finiteness by using the
compactness of [t;, ] ,].

In the case € = —1, one argues similarly, just exchanging positive and negative roots. 0O

3) Suppose now that 7 is the underlying path of a decorated A—path = = (, (C’{;)Kl, (Cix)t>0)

with A € 6(6} N7°) and w(0) E 0if e =1 (resp., w(0) % 0 if e = —1). Moreover, for any
t €]0, 1], one supposes the existence of a gallery ¢; satisfying the conditions of 3.

The fact that = = (, (C;;)Kl,(Cgﬂ)Dg) is a decorated A—path tells that there are
numbers 0 = ¢, <t} < --- <t/ =1 such that, for any 1 < i <7, {n(t) | t;_; <t <t }isa
segment [ﬂ-(t;—l)ﬂr(t;)] and [ﬂ-(t;—l)ﬂ W(t;)] = ([Tr(t;—l)vﬂ-(t;)]? (ng)t§_1§t<t§7 (Ctjﬂ)t;_1<t§t;) is
a decorated segment ( defined in [BaPR21) Def. 2.6]).

In particular the direction C;7Y of G for t]_, <t <t} (resp., C;) of Cy for t;_, <t < t})
is constant of sign € (resp., —¢), the same (resp., opposite) as the sign of the direction C’;‘(’tv) of
O, (it t #0). We write w;” | = d™(C2%y_ ), G, 1) if i > 2 (resp., w; = d™(CY, G %) =
d¥(C2y» —C, x) the corresponding Weyl distance (resp., codistance), [AB08, 5.133]. We then
clearly have 7, (t;) = w;".\ (resp., 7'_(t) = w; .\) if one considers Co) as a new fundamental
vectorial chamber (for ¢ # 0).

4) Lemma. One writes pg = w(to),p1 = 7(t1),...,pe, = w(tg,) with 0=ty <t1 <--- <
te,—1 < te, = 1 the points p = w(t) satisfying (for some wall M) the conditions of Lemma
.2 above (ort =0, t =1). Then any point t where the path m is folded at w(t) appears in
the set {tp | 1 < k <l —1}.

Proof. 1f 7 is folded at p = 7(t) (for t €]0,1[), one has 7, (t) # 7__(t), i.e. m4)(t) # m4(1).

And, as m(4)(t) (resp., T4 (t)) is the segment germ in C(;) (resp., Cpx) with the same type as
A, one has CZ(;?;) #+ C;f = So the gallery ¢, from C)° to CZ(;?;) is folded. This is possible only if
there is at least one wall M separating Cp° from G, ; as m(4(t) # 74 (t) we may also assume

7)) ¢ M. Sote{ty|1<k<l, -1} -
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5) Definition.
A superdecorated C, — A path is a quadruple 7 = (7, (C;;T)Kl, (Cix)t>0, (€t)o<t<1) where
= (m, (C;;r)td, (Cy ;)t>0) is a decorated A—path and each c; is a gallery of type i; satisfying

the conditions of i 3. We ask moreover that the local chamber C’(}f . is the projection
o0

Prr.0)(C0)) = Prry 0)(Coo)-

6) It is interesting to describe the properties of the underlying A—path of a superdecorated
Csx — A path. We shall do this in to after some auxiliary results about twin
buildings in to This underlying A—path is a Coo—Hecke path, as in [Mul9bl 5.3.1]
(and similar to [GROS8| def. 5.2]).

A A—path 7 :[0,1] — A (with A € 6(6; N7°)) has only a finite number (possibly 0, if it is
not a Coo—Hecke path) of compatible superdecorations = = (, (C’gw)Kl, (Ci )0, (et)o<t<1)-
Actually, by §5.5] and Theorem [5.1] below, such a superdecoration is the image by pc, of a
Cso—friendly line segment (as explained in 3) and these line segments depend only of the
data (C;wﬂ)ogkgﬁ,l, (Cppm)i<k<e,—1 and (e, )1<k<e,—1- Now, as A is spherical, the number
of possible local chambers Cziﬂr C A containing 74 (t;) in their closure is finite. The type i,
is the type of a specific minimal gallery in 7 (Ag) between the chambers C7° and C;f + (which
are well defined by the decoration and Cy,); so there is only a finite number of possible such
types (moreover we shall fix one of them). Therefore the number of galleries ¢, in A of type

i, from Cp? to C’I(,:ET is also finite.

5.5 Liftings of superdecorated C,, — )\ paths

1) One considers a superdecorated C, — A path & = (7, (C;,rﬂ)t<17 (Cy )0, (€t)o<t<1) of
shape A € 5(5}), as above in .5. One considers also a point z that is Cy—friendly
(i.e. there is a twin apartment (Ag, Ag) with z € Ag and Cy C Ag) and such that

pc.. () = po = m(0). By Theorem we have moreover x > 0(Ag) if e = +1 and z < 0(A4g)
ifte=-1.

We aim to prove that there is a Coo—friendly line segment [z, y] with dV(z,y) = X € 5(5‘})
such that m is the “image” of [z, y] by pc., (as constructed in §5.3)). We want also a formula
for the number of these [z, y].

The idea is to build [z, y] progressively, starting from x. So we look locally.

2) We look first for the segment germs [z, ) of sign € such that po ([z,24)) = 74(0) =

po + 7 (0).[0,1), more precisely to local chambers C.F of sign e such that po (CF) = Cf ©

(then [z,x,) is the segment in C; with the same type as A; so pc ([z,24)) = 7,(0) and
C;r :pr[z,x+)(0§0))~

Proposition. There is a local chamber C;f of sign € such that pc, (C) = Cyf . In case
€ = +1, we suppose now moreover pg ) (i.e. po # 0), then the number of these C;f (or of
the corresponding segment germ [x,x4)) is finite (if ¢ = |k| is finite) and equal to ¢ if po
or x s a special vertex, where my is the length of wa' (cf. 3) i.e. the length of a minimal
gallery d in Ty, (Ag) from Cpy to Cr If po is not special, one has to replace mqy by the

Ppo,7 "

" . [e’e] -+
number mg of walls separating Cpe from Cp. .

Remark. When pg = 0, then C§° is negative and C(;Cw of sign €, so there is a problem if
¢ = +1. (Fortunately, for Muthiah’s purpose one has py = 0 but ¢ = —1, as @’ acts by the
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translation of vector —\.) In this problematic case the condition for C; involves codistances:
it is d*V(C5°, CF) = wy = d™(C§°, Cy ). By the retraction pc
d*V(C§°, po (CF)) = w{;, i.e. to po (CF) = C;B’Tr.
this condition.

it is clearly equivalent to

oo

There are infinitely many solutions for

Proof. We avoid the problematic case ¢ = +1, pg = 0. Then the equality pc_(C)) = C'I‘);’,r
is equivalent to d¥(C°,C) = wi = d“(C§°, Cafﬂ). This is clear as we saw (in [5.3/2) that
pc., restricted to T;5() is equal to a retraction poe (of T;5(#) onto 7.7 (Ag) with center
Cg°) followed by an isomorphism v of T;5(Ag) onto T;f(Ag) (which sends C5° to C5°).
Now d¥(C,C) = w{ is equivalent to the existence of a minimal gallery of type i (the
type of a fixed minimal decomposition of wg ), hence of length mg = ¢(wg ), in Fg from C°

to C;f. There are ¢ (or more generally qmg) such galleries. m

3) For 0 <t < 1, we suppose now given a z = ¢(t), a local chamber C, hence a segment

germ ¢_(t) C Oy, (of the same type as —A) such that the pair (Cw, 2) (hence also (Cx, C; )

or (Coo,p—(t))) is twin friendly and pc,, (2) = 7(t) = p, P (C,) = Cprs PO (p-(t) =
m—(t). We write (Ag, Ag) a twin apartment with Co C Ag, C,, p-(t) C Ag. We now
look for a segment germ [z, z4) of sign € opposite ¢_(t), such that pc ([z,24)) = 74(t) =
p+ 7 (¢).[0,1); more precisely we look for a local chamber C of sign € opposite ¢_(t), such
that po,, (CF) = C,f; and CF = pr...)(C; ).

Proposition. a) There is a local chamber C} of sign € in T (Ig) such that pc., (CF) = C;f,

and that the segment germ [z, zy) in CS of the same type as X is opposite ¢_(t).
Actually we add the condition that the minimal gallery of type iy from C° to CJ retracts
onto ¢p by the retraction pe,- (of T (Sg) onto T;(Ag) with center C~.,) followed by the

isomorphism 1 of T.*(Ag) onto ’7?[(&@) induced by pc., . This implies CF = pri, . y(C7 ).
b) Suppose q = |k| finite. Then the number of these local chambers is finite (non zero) and

equal to the cardinality of the set ‘58", (C°,¢p) of all minimal galleries in T; () starting
p,T™

from C3° and retracting onto ¢, by the retraction of Ty (Sg) onto Ty (Ag) with center C, .
(Compare with [BaPR21, §3.3 (b)]).
c¢) If m is not folded at p = 7(t), then m(yy(t) = m4(t). The number of expected local

chambers C} (or of expected segment germs [z, z4)) is then g™, where my is the number of
walls that separate Cp° from C.f and do not contain wi(t) (or equivalently w_(t)). If ¢ = |K|
may be infinite, we have at least that [z,z1) and CS are unique when m; = 0.

There is a twin apartment (AL, Aly) with Al D Coo and Aly D CTUC,, D [z, 24).

d) In particular, if t is not one of the t; in Lemma .4, then m{ =0 and C is unique;
more precisely this unique CF is in Ag, which already contains C, (and Coo C Ag). In
,J;). All this is true for any cardinality of k.

particular C)f . = cf

N.B. From d) above, one deduces that a superdecorated Co, — A\ path 7 satisfies the condition
of definition of decorated A—paths in 3 above with the subdivision tg = 0 < t1 < --- <
te, = 1 of Lemma 4. Moreover, for ¢ different from each ¢;, the gallery c(;) is minimal,
uniquely determined by its type i;.

Proof. a) + b) We write g € I an element (of Gyin fixing C) sending Ag, to Ag and z
to p; it exists by paragraph By §5.213 the restriction of pc. to T;5(Fg) is g restricted
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to 7.5 (#s) (sending isomorphically T,5(.%g) onto 7?(%@)) followed by the retraction pcse
(of Ei(f@) onto ’7?[(1%@) with center Cp°). The expected C; and [z, z;) correspond thus
bijectively (by g) to pairs (Cf, [p,py)) where Cf is a local chamber in T7(.#5) such that
pos(CF) = Gy and that [p,p) is the segment germ in Gy of the same type as A and is
opposite 7_(t).

But ¢, = c; is a gallery in 7;5(&@) starting from Cp°, of type i, the type of a minimal
gallery from C)° to C;f - Hence any minimal gallery in 7;(#g) starting from Cp° of type
i; ends with a chamber C’; such that pcgo(CIj' ) = C’; = Moreover ¢, is centrifugally folded

with respect to C}, ; and ends with the chamber C}();) projection of C, . onto the segment

germ 74y (t) = 7(t) + 7' (t).[0,1) (of type A) opposite 7_(t) (of type —A in Cpx). The set
%gﬂ (Cp°, cp) is thus exactly the set of all galleries retracting by pcse onto the minimal gallery
p,T™

of type i from C}° to Cpf - and retracting by Py onto c,. In particular the last chamber
C of such a gallery satisfies pcgo(C';' ) = C;f. and the segment germ [p,p;) in CT;F of the
same type as A retracts by Py onto the segment germ 74 (t). So a) and b) are proved, as

a consequence of [BaPR21| §2:3] (mutatis mutandis), which tells that %gzﬂ(cgﬂcp) is non
empty and finite (if ¢ = |k| < 00) and gives a formula for its cardinality. "

c) If 7 is not folded at p = m(t), then m,)(t) = m4(¢) and c; is a gallery of type i; and
length m,. By the convention for i; (cf. 3) the gallery c¢; shortened by removing the
chambers of numbering > mj is minimal from C;° to 7, (¢) and the chambers of numbering
> mj contain 7 (t) in their closure. So the number of possible choices for [z,z4) is the
number of possible liftings of the gallery c; shortened (and then CFf = pr(. ., \(C; ) is well
determined). One considers the hyperplanes M cutting this shortened gallery ¢; along a panel
and their contribution to a factor of this number of liftings, see [BaPR2I, §2.3] (mutatis
mutandis). If M is not a wall, its contribution is 1. The walls cutting this shortened gallery
c; i.e. between the chambers C° and C™ are exactly the walls that separate C,° from CJ -
and do not contain 74 (¢); the contribution of each of them is ¢. If m}’ = 0, each contribution
is 1 and [z, z4) is unique.

To get the twin apartment A’, we just have to modify A by elements of Uy4re where
M = Mg(a + k€) cuts ¢; between the chambers C° and C™ and Dg(a + k€) D Ca,
Dg(a + k€) D C, . and then apply ¢g~'. The modified apartment A’ contains Coo, C7

and [z, 24 ), hence also C7.

d) In this case t & {t1,...,ts,}, one has m} = 0 and ¢™ = 1. By the above procedure
we get A’ just by applying ¢! to A. So A’ = A = g7'A. As g € I, fixes Cy, we have
- - +
Cfn = 00 (CF) = P (7 21) (CF)) = PP, (Cy ) = Cp . O

Theorem 5.1. Let & = (m, (C’t'f i<1, (C’t})bo, (ct)o<t<1) be a superdecorated Coo — A— Hecke

™

path in Ag of shape A € 5(6} NT°) with 7(0) 2 0 if e =+1 (resp., m(0) % 0ife=-1). We
consider also a point © € Fg that is Coo—friendly (i.e. there is a twin apartment (Ag, Ag)
with Cs, C Ag and x € Ag) and such that pc (z) = 7(0).

(1) There is a Coo— friendly line segment [z, y| with d¥(z,y) = A, such that & is the “image”
of [z,y] by pc.. (as constructed in §5.3). B

(2) Except in the case e = +1 and w(0) = 0, the number of these line segments is finite
(provided that ¢ = |k| < 00) and given by the following formula (for the notations see .2,

Lemma .4 and Proposition . 3)
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lr—1

#{lz.vly = a0 x [ #5 (Cvien)
k=1

This number is equal to ¢".(q — 1) for some n,n’ € Z>q depending only on 7 (in A), not
of k, see [BaPR21, §2.5]. B

(3) If m is the parametrization of such a [x,y], we write zo = x = p(to = 0),21 =
O(t1), ... 2k = ©(t), ... 20, = @(te, = 1) = y. Then there exist twin apartments (A, AY)
(for 1 < k <€) such that A7 D Cs and AY O [2_1, 2k (i.e. AT contains [p(tk—1), ¢(ts]
and all C;;p (forty—y <t <ty), Cp, (fortr—1 <t <tg))

Proof. Suppose the line segment [z = ¢(0), 2z, = (tx)] constructed with the expected prop-
erties. This is clearly satisfied for £ = 0. We now construct [z, zjx1].

If £ = 0, we investigated the possibilities for ¢4 (0) = [20,21) in §5.512. Their number is
> 1 and equal to ¢™0 under the conditions of (2). Now the proposition 3.d tells that each
possibility for [zg, z1) corresponds to one and only one possibility for [zg, z1] and there is a twin
apartment (AT, AT) such that Cs C AT and [z, z1] C AP; hence C° C AP, [z, 21] € AT.

If k£ > 1, we investigated the possibilities for ¢ (ty) = [z, 2k11) in [5.5]3 a) b). Their
number is > 1 and equal to #%g;_k W(COO cp,)- Now the proposition 3.d tells that each

PR
possibility for [z, zx11) corresponds to one and only one possibility for |zx, zx+1]. If we choose

a twin apartment (AEH,A?H) such that Co, C A?H and [zx, 2k41) C Cih . C A?H, then
AI?H contains [z, zx+1]and [2zk, zkt1]. O

Note that Theorem [5.1| is obtained with a slightly different method in [HP24] 4.5.2].

5.6 Folding measure of superdecorated C,, — A paths

Let m = (m, (C’;’“ﬂ)Kl, (C; 2 )t>0, (ct)o<t<1) be a superdecorated Coo — A path in Ag of shape
A€ 8(6\}), as above in 3. We consider the numbers 0 = ¢y < t; < --- < ty, = 1 and
the points p; = m(t;) as in .4. We recall 1 2) that, for p = 7(t) with ¢t > 0, C;z(?,tr) is
the projection of C; on the segment germ 74 )(t) = 7(t) + 7_(¢).[0,1); when ¢;_; <t < t;,
C;,()jr) = C}f (see [BaPR21], Lemma 2.5] and Proposition (3.d) above). In the following of

this subsection we drop 7 in the notations Cgf,r = Cffﬂ and C,(,j;) = Ct(;).

The direction C;™ of G} for ¢, <t < t; (resp., C;¥ of C; for t;_1 < t < t;) is constant
of sign € (resp., —¢), the same (resp., opposite) as the sign of the direction C’;?;’) of C;?t) (if
t # 0); here we may replace the ¢; by the ¢’ of3. From [BaPR21], 2.9.2] it is also clear that,
for t;_1 < t <t;, the direction Ct(+)v of C’t(+) is constant of sign € and equal to C’;gfl. Fori > 1,

we write w = d¥(CSY,CHY) (if i < £r) (resp., wy = d¥(C¥,C5Y) = d¥(CSY, G ).
Then we clearly have 7/, (;) = w;".A (for i < x) (resp., ©'_(t;) = w; .A (for i > 0)) if one

considers Cgf" as a new fundamental vectorial chamber.

Proposition. For the Bruhat order in WYV, one has w;tl > w; fori>2 and w; < wf for
1 <<,

Remarks. 1) Unfortunately this gives no inequality between the w;" (or the w; ). Perhaps
one can get some inequalities with other definitions of wl?t.
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2) In the case of Hecke paths in a masure with respect to a sector germ one gets w;r_l =w;

and w; < w;". So one gets inequalities between the w;™ (or the w; ). This case of sector germs
is in [GRI14]. It should be possible to prove similarly the case of a Hecke path with respect to
a local chamber, but it is written nowhere.

(++)

Proof. The second inequality is clear: ¢, is a gallery fom Cp° to Cp,;’, with the same
type as a minimal gallery from C}° to Cpt (type associated to a minimal decomposition of

= dV(CpY,CfY)). For the first inequality recall that pry, (Cp)¥ is the vectorial chamber
contalnmg the ﬁ for z € CO sufficiently near from 0. So Cp°¥ = opp(pry, (C’o) ) is the vectorial

chamber containing the 7p; xp; for these x. But we have l‘—Iﬁ =Ip;i_1+Dpi_ 1pl and zp;,—1 € Cp7,,

piiD; € Cpl .- Hence Cp°V meets the closed convex hull of C°Y and C’;;Xl = C(j)v. So
CpY is in their enclosure, i.e. Cp°Y is a vectorial chamber of a minimal gallery from Cp", to
CHv. = C,(,j)v. This proves that w; = dW(C’ng,C( v Y)Y <adv(Ce,CFY ) = wi . O

Pi—1 Pi—1’ T Pi—1
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5.7 Opposite segment germs and retractions in masures or twin buildings

From to §5.8] we consider .# a twin building and A its canonical |twin| apartment. We
use the notation [twin| to indicate the reference to a classical notation in twin buildings, not
to We think of A as a vector space V = A, even if it is more precisely the union of
two opposite Tits cones in V. These Tits cones are associated to a root system ®, a Weyl
group WV and a fundamental chamber CJY; but the thick walls of .# are associated to some
particular roots called thick roots.

Actually we think very strongly to the case where .# is the tangent space (with its
unrestricted building structure) at a point p to a thick masure, A > p is an apartment of
this masure, ® is in the dual of V' = A and the thick walls in .# are associated to the walls of
this masure containing p (i.e. the direction ker 5 of this wall satisfies f(p) € Z : § is a thick
root).

In the following lines up to the proposition (included), we indicate between parentheses
some words we may add when we think to a masure.

We consider:

C, anegative (local) chamber (with vertex p) in A

&, n positive segment germs of origin 0 (or p) in A

—&, —n their negative opposites in A

C_¢ a negative (local) chamber in A (with vertex p) containing —¢ in its closure
i the type of a minimal gallery from C, to C_¢

9 a positive (local) chamber in A (with vertex p) containing 7 in its closure

In the picture, everything not in dotted
lines is in A.

One writes p = p, o (resp., pa = paa)
the retraction with center C, (resp., Q)
and image A (= T,(A)) defined on .#.

One asks that &, i) are generated by vectors
in WY\ for A a dominating vector in A
(i.e. A€ CF).

W is the subgroup of WV generated by
the rg for 8 a thick root.

Proposition. cf. [GR14, 4.6/
(1) The following conditions are equivalent:

(a) There exists an opposite ¢ to n in & (with vertex p) such that p({) = —€.

(b) There exists a gallery ¢ of (local) chambers in A (with vertex p), of type i for some
choice of C_¢, that is centrifugally folded with respect to Q (in particular folded along thick
walls) with first chamber C, and last chamber containing —n in its closure.

(c) n <wy & i.e. there exist {o,& € V \ {0} such that n = [0,1)&, & = [0,1)§ and

%
a Wy —chain from & to s, i.e. finite sequences (&0,&1,---,&) of vectors in V.= A and
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(B1,---,Bs) of (real) roots satisfying the following (for 1 <i < s):
(i) rg,(&i-1) =&,
(i) Bi(&i-1) <0,
(111) ker B; is a thick wall, i.e. B; is a thick root (i.e. Bi(p) € Z for a masure),
(iv) Bi € ®T = ®T(=C, ), i.e. Bi(C, ) <O0.

(2) If moreover i is minimal (i.e. C_¢ is the (local) chamber “containing” —¢& nearest to C,
i.e. C_¢ = pr_¢(C, ), then the possible ¢ are in one to one correspondence with the disjoint
union of the C§(c) = {minimal galleries m with origin C,; and type i with image ¢ by psa},
when ¢ runs in the set F$(i, —n) of galleries satisfying (b) above with this type i (fized).

Remarks. With these choices of signs, ®T is of positive type, i.e. the associated vectorial
chamber CX = —C,, is in the positive Tits cone T, but perhaps not equal to C’}’.

Contrary to |[GR14], we do not suppose in (1) above that i is minimal. This gives more
flexibility for applications.

We repeat below the main lines of the proofs in [GRI14] and |[GROS, 6.1, 6.3]. We give
details of a proof of [GROS8| 6.1] independent of the existence of a strongly transitive group.
Proof. (a) = (b) Let m = (C, = Mo, My,..., M, > () be a minimal gallery in .# from
C, to (. Its retraction by p is a minimal gallery from C,” to —§. Hence, under the additional
hypothesis of (2), one may suppose m of type i and then ¢ determines m. If one retracts now
m into A by pq (with center ), one gets a gallery ¢ = py o(m) satisfying (b) (and of type
i, under the hypothesis of (2)). This is a result of [GR14) 4.4] which is independent of the

existence of a strongly transitive group.

(b) = (a) If c = (C, = Co,C1,...,C;) satisfies (b), there exists a minimal gallery
m = (C, = Cp,C1,...,C}) retracting by pg = pa g onto ¢, with the same type i (cf. [GR14,
4.4]). Let ¢ C 6; retracting by pq on —n C C,; as n C Q, this implies in particular that ¢
is opposite 1. As ¢ and m are of type i, one has p(C}) = C_¢. Hence p(¢) is in C_¢ as —¢€.
Thus p(¢) = —¢, as they are both opposite 1, up to a conjugation by W".

(2) Under the hypothesis of (2), the ¢ are in one to one correspondence with the m, which
are exactly the galleries in [, C§(c) as announced.

(a) = (c) This generalizes [GRO8, Prop. 6.1], just taking 7 =n,7_ = ¢, pr_ = —¢.
One considers [twin| apartments A containing 7 U ¢, A" containing C, Un and A~
containing €}, U (. One defines p_ = p, oy (recall that p = p, C;)' But we shall first

modify A~ by the following Lemma.

Lemma 5.2. Let & = (ST, .77) be a twin building, C~ a chamber in ¥~ and A = (AT, A7)
a [twin] apartment. Then there exists a chamber CT in At that is opposite C~. We write
then B = (B, B™) the unique [twin] apartment containing C~ and C'*.

If moreover D is a chamber in AT (resp., A~), one may choose Ct in such a way that
D c B" (resp., D C B™).

N.B. This Lemma seems well known when .# is spherical, but we did not find a reference,
see [Ro23| 2.2.11]. Tt is likely that this twin case is also already known.

Proof. One assumes first D C AT. We choose a [twin| apartment A; = (A], A7) containing
C~ (in A7) and D (in A7), and we write C” = oppa,(C~) C Af. As D C Af, with A4
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generated by C~ and C”, one has d*V(D,C~) = d¥(D,C") (see the Chasles relation (4) in
[ABOS, 5.173], as d*V(C~,C") = 1).

Let CT C A" be the chamber such that d%¥(D,Ct) = d*V(D,C™); this means that
there exists in AT a minimal gallery (Cy = D,...,Cs = C%) of type i = (i1,...,is),
where 7;,.. ... r;, 18 a minimal decomposition of d*V(D,C~) = d¥(D,C"). Let us prove that
CT and C~ are opposite. One calculates d*¥(C;,C~) by induction on j: d*V(Cy,C™) =
d¥(D,Ct) = d™V(D,C™) = 1jy..... 7i,. One bets that d™V(C;,C7) = i ..., ri, (this
will give d*V(C*,C~) = 1, qed). But d“(Cj41,Cj) = ri,,, and, by induction hypothesis,
Ui d™(C5,C7)) = LTy riy) = £(d*™V(C;,C7)) — 1. So, by the axiom (Tw2) in
[ABOS, 5.133 p. 266], one gets d*™(Cj11,C7) = 7i; pe v ri, which concludes the induction.
One has now to prove that D C B*. But d*V(D,C~) = d¥(D,C™); so this is a consequence
of [ABOS, 5.175 p. 278).

Let us now look at the case D C A~. We choose a [twin| apartment A; = (A], A7)
containing C~ U D (in A]) and write C” = oppa,(C~) C Af. The Chasles relation
gives d¥(D,C™) = d*V(D,C"). Let C* C A*' be such that d*V(D,Ct) = d¥(D,C™).
There is in A] a minimal gallery (Co = D,...,Cs = C7) of type i = (i1,...,15), where
Tigeveo 7i, 18 a minimal decomposition of &*¥(D,C") = d*V(D,C") = d¥(D,C~). Let us
prove that C* and C~ are opposite. For this one calculates d*V(Cj, CT) by induction on
j: d*V(Co,Ct) = d*V(D,C*) = a¥(D,C™) = d*™V(D,C") = ry..... ri,. One bets that
d*™V(C;,CF) =1y 7, (this will give d*V(C~,C%) = 1, qed). But dV(Cj11,Cj) = 745,
and, by induction hypothesis, £(r;,,, d*™(Cj, CT)) = £(ri; ... .. ri,) = L(d™(Cj,CT))—1. So,
by the axiom (Tw2), one gets d*V(Cj;11,CF) =74, 5. .. .. r;, and the induction is OK. One has
d™(D,C*) = d¥(D,C~), hence D C B~ by [ABOS, 5.175] -

5.8 End of proof of Proposition
We no longer differentiate the two parts of a [twin] apartment by an exponent =+.

(a) = (c) We write A] the [twin| apartment B of Lemma (obtained by setting
Cc™:=C,, A:= A% and D D ¢). We shall replace A~ by A but not change A”. One has
AT D C,yu¢uUCt and CZ; = Ct c A% is opposite C, in A7. Recall that p_ = Pa-c5

and p = Pacy -

Remark. In [GROS, prop. 6.1], C* is written Cy and C, = germ(s). Both Al and A~
contain €, and ¢, so they are isomorphic by an isomorphism 6~ : A7 — A~ fixing €, and
¢. If one supposes 0~ induced by an automorphism 6~ of the twin building (e.g. if there is a
strongly transitive automorphism group, as in [GROS]|), one may define A' = §~(A°). This
apartment contains ¢ and a segment germ n' = 6~ (n) (opposite ¢) such that p(n') = p(n)
(as C, is fixed by 67). So we are exactly in the situation of [GROS8], second paragraph of the
proof of 6.1 (n! is written 7} there).

In this proof of 6.1, one takes a minimal gallery m = (cg,c1,...,c,) in A from ¢y =
6= (C*) = C’X_ = opps-(C,) to the opposite n* = 07(n) of (. And then one takes its
retraction § = p_(m). We shall replace m by m’ = (#~)~!(m), which is a minimal gallery in A°
from G = CF = opp,(C7) = (07)7H(C1) to (07) 7 (") = - S0 d = p—(m) = p—(m)
and this will avoid to suppose 6~ induced by an automorphism of .#.

Back to the proof of (a) = (c) (without assuming the existence of a strongly transitive
group).
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We assume A~ = A; . As in [GROS8| we consider p_ instead of p; they are almost the same
as p— =0op,if 0 : A — A" is the isomorphism fixing C".

By hypothesis, there are wy € WV, such that £ = [0,1)w_\ and n = [0, 1)w4A. We choose
w4 minimal for this property. Here we consider C’;{ = oppa(C, ) as the fundamental vectorial

chamber of A, to precise the action of WY on A and the relation A € A (i.e. A € UX).

In A° one considers a minimal gallery m’ = (co, c1, . .., cn) of type i = (iy,...,4,) between
cp = Ct = CX, = C;_ and ¢, D n. The retracted gallery 6 = p_(m/) = (co,¢] =
p—(c1),...,ch = 1p_ (cn)) in A™ is centrifugally folded with respect to C, . It satisfies co =
p—(C3_) =C}_and ¢, D p_(n).

One hasn € w_C’X, =w_Ct in A°, with w_ minimal (to be precise, W" is considered here
as a group of automorphisms of A° by considering C* as its fundamental vectorial chamber):
Actually 7 is opposite ¢ in A° D C™; so, using the isomorphism 6° : A° — A~ fixing ¢ and
C™, it is sufficient to prove that the opposite opps—(¢) of ¢ in A~ is in w_CT = w_CAL_.
But p induces the isomorphism 67! : A~ — A (fixing C, ) which sends ¢ onto —¢ (by the
hypothesis (a)) hence opp4-(¢) onto ¢ and C7
by the above definition of w_, we are done.

_ onto CX. As € € w,CX with w_ minimal,

From the definition of m’, one gets that w_ = r;..... r;, 1s a reduced decomposition.
Using once more the isomorphism 6! : A~ — A (which sends p_(n) to p(n) =n and C}_ to
C1), one gets p_(n) € wyCh_ with wy minimal.

In A% the chambers c; and c¢;;+1 are separated by a (thick or thin) wall H 31 and one writes
H; the (thick or thin) wall in A~ containing p_(H]1 ng) = p_(Hj1 N ¢+1). We denote by
j1s- -+, Js the indices such that ¢ = p_(¢;) = p—(cj+1) = ¢}, ;. Then, for all £, Hﬂlk and
Hj, are thick walls (it is a part of the definition of a centrifugally folded gallery). One writes
Br € @7 the positive root such that Hj, has direction ker 3 (here ®* is defined as in condition
(iv) of (c) but in A™: B € & = B(C,) <0).

Actually we get § = p_(m’) from a minimal gallery 6° = (¢§ = co = C1_,c},...,c)) =
6°(m’), of type i in A~ from cg to 2 = w_cy D 6°(n), by applying successive foldings along
the walls H; , Hj,,...,Hj,. At each step one gets a gallery ok = (clg =cy = CZ_,c’f, o,

of type i in A™, centrifugally folded with respect to C};, which ends more and more closely to
Co.

One writes §g = w_ A€ 2 =w_cy C A~ and & = TBye - rg,-£0 € cﬁ C A™. In particular
Es€cs =c, and d, D p_(n). As & € WV and n is generated by a vector in WV, one sees
that & generates this segment germ p_(n) C A~. Similarly, we see that {x = w_\ generates
0°(n) Cc A~

Actually the isomorphism = 106° : AY - A~ — A sends Ct = Cj_ onto C’g and n onto &
(as we saw above that it sends ¢ onto —¢): p(6°(n)) = € in A. The isomorphism =1 : A= — A
sends 6°(n) onto & and p_(n) onto n. So the condition (c) we aim to prove is equivalent to
the conditions (i,il,iii,iv) for (&y,...,&) and (B1,...,08s) in A7, Actually (i), (iii) (as Hj, is a
thick wall) and (iv) are clearly satisfied. Let us prove now (ii): Sx(&k—1) < 0:

80 is a minimal gallery from ¢y = C’X_ tow_co D [0,1)w_A. So, for any j, cgﬂ, oo, and
[0,1)w_A are on the same side of the wall separating c? and c?_H; in particular (c;?k_H, . ,cfl)

is a minimal gallery, entirely on the same side of Hj, and [0,1)¢, ¢ H;,. But cé?k =p_(cj,) =
P—(Cjpt1) = c?k 1 and, as we have centrifugal foldings (with respect to C,, opposite Ct =¢
in A7), this chamber is on the positive side of the wall Hj, (with direction ker ;). So
cg?kJrl, ...,cF are in this positive side; this means that S(&) > 0, d.e. Bp(€x—1) < 0. This
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proves that (a) = (c).

(c) = (a) This generalizes a part of [GROS, th. 6.3].

We have & (resp., n) generated by & = w_A\ (resp., & = wy\) and w+ € WV is chosen
minimal for this property. We write w_ =r;,..... ri, a minimal decomposition (of type i, the
type of a minimal gallery from C, to —¢, as in the hypothesis of (2)).

The segment germs ¢ such that p({) = —¢ are in bijection with the galleries of type i
m~ = (cg =C,,cp,...,c,) that are minimal (i.e. non stammering) starting from C, . This

bijection is given by the relation { C ¢,. We have now to prove that we may choose m™ in
such a way that ¢ is opposite 77 This is for this that the W —chain will be useful.

We write 0° = (c¢§ = O, },...,c%) the minimal gallery of type i in A starting from C’+
It is thus stretched from CJr to & (generated by & = w_\). We shall first fold this gallery
step after step, using the W; —chain:

As B1(&) < 0 (by (ii)) and B1(C}) > 0 (by (iv)), the wall ker 81 (thick by (iii)) separates
) = Cf from ¥ so it is the wall between two adjacent chambers c?l_l and c(;l (actually

here j; is well determined). One writes ' = (¢} =) = CF, et =), ... i = e =
l1 1= T8 91,...,0711 = rg,c)). It is a gallery of type i and ¢}, D rg (&) = {1 (by (i)).
But $2(&1) < 0 and B2(C)f) > 0, so the wall ker 35 separates ¢y = CJ from c}; it is the

wall between two strictly adjacent chambers c jlg_l and cj2 One ertes 62 = (cg =cp =

=Cf 3= Cla--'vC§2—1 = 0}271,052 =Cj,_1 = 1"[32031-2,...,072Z = rg,cl). It is a gallery of
type i and ¢2 D 74,(&1) = &. But B3(&2) < 0, ete. At the end of the day, one gets a gallery
= (c=cd=0CFc5,...,c5) of typeiin A startmg from C; and finishing in ¢§, D & = wi A
(generating 7). This gallery is folded along thick walls (this is condition (iii)), but perhaps not
centrifugally folded (with respect to C,), contrary to what is written (too quickly) in [GROS],
line 3 on page 2650.

To prove now that ¢ and n are opposite segment germs, it is equivalent to prove that ¢},
(D n) and ¢, (D () are opposite chambers (as ¢ and 7 are generated by vectors in £WVA).
For this we shall choose carefully the successive chambers ¢; and prove more than necessary:
by induction on j, c; and cj are opposite for 0 < j < n; this is true for j = 0. Let us suppose
¢ and ¢i_; opposite. Then ¢} is adjacent to ¢i_; (resp., ¢ has to be strictly adjacent to

03'11) along a panel (in the unrestricted sense) of type i;. If the wall containing this panel is

thin, then ¢j and cj_, (resp., ¢; and ¢ _,) are in the same apartments and c; # ¢ 1 (resp.,

¢ #+ c;_l) 80 ¢; and ¢j are automat1cally opposite. If, on the contrary th1s Wall is thick,
then (from the theory of twin buildings, see e.g. [ABO8, 5.139 and 5.134]) one knows that
all chambers adjacent (or equal) to ¢ 1 (along a panel of type i;) except exactly one, are

opposite c . As the wall is thick, we can always choose ¢j opposite c and strictly adjacent

to Cj—l' O

5.9 (C,—Hecke paths

We consider, as before a thick masure .# and a (canonical) apartment A considered as
a vector space with origin 0 = 04. It is endowed with a Weyl group WV, a root system ®
(in A*), a fundamental vectorial chamber C} and a Tits cone 7 = W".C}. We consider a
spherical dominant or antidominant vector A € E(C‘} nT°).

Recall the definition and properties of A—paths from §5.2]3, §5.411 and Lemma[5.4]2.
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We consider now the case where .# = .Zg is the positive part of a twin masure and
A = Ag is the canonical twin apartment. So Ag contains the fundamental negative local
chamber Cy. For any p € Ag satisfying p S0 or p < 0, we defined in 3 the local
chamber C7° = pry(Cy); its sign is + if p 20 (i.e. pe T°) and — if p <0 (i.e. p€ =T).

We suppose the origin 7(0) of 7 in e7. By the choice of A, we have w(t) € eT°, for any
t €]0,1]. So Coiyy 1s well defined and of sign € for ¢ > 0.
Definition. Such a A—path 7 is called a Cso—Hecke path of type A (with sign ¢) if, for any
0 <t <1, the left and right derivatives /. (t) € eT° at p = 7 (¢) satisfy 7 () <wy oz 7 (2),
which means that there is a (W), Cp°)—chain from 7, (t) to 7’ (t), i.e. finite sequences
(o = 7' (t),&1,...,& = 7_(t)) of vectors in A and (B, ...,08s) of real roots (in A*) such
that, foralli=1,...,s,

(i) rg,(&i-1) = &,

(ii) Bi(&i-1) <O,

(iii) Bi(p) € Z (i.e. 3 a wall of direction ker ; containing p),

(iv) Bi € @F(C}°), d.e. Bi(Cp°) > Bi(p)-

Remarks. 1) When p is not a folding point of 7 (i.e. #'_(t) = 7/, (¢)), the above conditions
(i) to (iv) are always fulfilled with s = 0.

2) W is the subgroup of WV generated by the rg, for 3 € ® and 3(p) € Z.

3) The condition (iv), more precisely the definition of ®*(Cp°), is opposite the definitions
in [GR14) 1.8 (iv) and 1.8 (2)|, [BaPGR16, 3.3] or [BaPR21, 2.5]. Actually in these references
the analogue of Cp° (which determines locally the investigated retraction) is naturally of
negative sign. In our case C° is of positive sign for ¢ = 1 and negative sign for ¢ = —1; this
is one of the reasons for our choice of definition of ®*(C5°). Notice that this ®*(Cp°) will be
also opposite the ® of Proposition 1.c (iv), when we shall use this proposition.

4) We write C5°¥ C A the vectorial chamber (of sign €) which is the direction of C;°.
We consider the linear action of W" on A obtained by identifying (A, C}) and (A, Cp®V). As
7 (t) is also of sign ¢, there is w(t) € WY such that 7/ (t) € wx(t).C;*¥ C V; we actually
choose w4 (t) minimal for this property. Then the condition 7’ (¥) <wy,cg 7/, (t) implies
w_(t) < w4(t):

Actually one may define o; € WY minimal such that §; € 0;.C;°V (hence w_(t) = o5 and
w4 (t) = 0g) and we prove now that o; < 0;_1. Clearly & € 175,0i-1.C;°", s0 07 < rg,0i—1.
But {1 € 0;-1.C5%, Bi(&i—1) < 0 and B;(Cp°) > 0. Therefore C°¥ and o;_1.C;°V are on
opposite sides of the wall ker §;. This proves that ¢(r,0:—1) < £(0s—1) and 73,051 < 04_1.

5) The relation 7’ (t) <wy,cee 7, (t) is also opposite the relation appearing in the above
references [GR14], [BaPGR16] or [BaPR21|. This is really a new phenomenon. We saw in
remark (4) above that it implies w_(¢) < w4 (¢). This reminds us the relation w; < w;" of
Proposition but it is opposite the relation in [GROS| 5.4].

One may note that, in this reference the definition of wy(t) compares classically 7/, (t)
with the fundamental vectorial chamber C’}’ (which is opposite the analogue of Cgo), while the
definition above compares it with Cp° (which is seldom of direction C7}).

5.10 (Cy—Hecke paths as retractions of C, — friendly line segments

A line segment [z,y] in Zg is said € — Cx—friendly if it is Cno—friendly in the sense of .1
with = < y if e = +1 (resp., x S y if ¢ = —1) and moreover, in a twin apartment (A5, A7)
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containing Co, C A§ and z € AY (or even [z,y) C AY) one has z > OA(e)a (resp., x < ()Aga),
where 0 A9 is the element in ASG opposite the vertex of C.

We write ¢ : [0,1] — [z, y] an affine parametrization of [z, y], with z = ¢(0),y = ¢(1) and
A = d¥(z,y); actually e is in the interior of the Tits cone and in 6}.

By definition, the retraction pc, (of a part of Zg into Ag, with center C) is defined on
[z,y] and we saw in §5.2]2 that the image m = pc__ o ¢ of [z,y] by pc.. is a A—path.

Proposition. 1) Let [x,y] C Fg be an € — Coo—friendly line segment and X\ = d¥(x,y), then
its image T by pc., is a Coo— Hecke path of type X (with sign € ).

2) Conversely let m be a Coo— Hecke path of type X (with sign € ) in Ag with origin po > O,
(resp., po < Oag) if € = +1 (resp., € = —1) and v € Fg be such that (Cso,x) is twin
friendly and pc. (x) = po, then there is an e — Coo—friendly line segment [x,y] such that
= pc.. ([z,y]); moreover A = d¥(z,y).

Proof. We consider first the case ¢ = —1.

(1) Clearly po = m(0) satisfies pg < 0O, d.e. po € =T. For any t €]0,1] we write
p = 7(t); we have now to find a (W), C5°)—chain from , (t) to 7’ (t). For this we use
Proposition in the tangent space 7,(#p) and we change first A in order that it contains
Co and [p(t),x): this does not change 7, up to an isomorphism which is a restriction
of pc,. We then have p = n(t) = ¢(t). For the chamber C, we take the negative
chamber Cp° of 3 (we identify local chambers at p and chambers in 7,(#g)). For ¢
we take the negative segment germ ¢4 (t) = [p,y). For n we take the positive segment
germ 7_(t) = ¢p_(t) = p—[0,1)7"_(¢t) C Ag (we identify segment germs of origin p in Zg
and segment germs of origin 0 in 7,(.%g)). And for —¢ we take the negative segment germ
4 (t) =p+[0, )7/ (t) C Ag (so £ =p—[0,1)7’ (t) C Ag is a positive segment germ).

We have pc. (¢) = =&, i.e. p(¢) = =&, as the restriction of pc,, to Tp(Se) is p = pa,cee
(see Lemma 4). We are exactly in the situation of Proposition 1.a, except that the
Ain lLe is our =\ € —eT° = T°: n (resp., §) is generated by —7n’ (t) € —WVA (resp.,
-7/ (t) € =WVA). From (a) == (c) in this proposition, we get 7 < ¢, or more precisely
sequences (§, = —7/ (t),&],...,& = —n_(t)) and (B,...,F,) satisfying the conditions (i) to
(iv) of Proposition 1.c. Considering the sequences (§o = =& = 7/, (t),&1 = =1, ..., & =
=& = (t)) and (1 = —f,...,Bs = —f4), we get the expected (W, Cp°)—chain, as the
OH(C) of (iv) is opposite the T of Proposition ﬂ 1.c.iv.

(2) Now 7 is a Coo—Hecke path of shape A (with sign ¢ = —1) in Ag with origin
po € Ag and x € g satisfies po(z) = po. By definition there is a subdivision 0 =
to < t1 < -+ < tg, =1 of [0,1] such that 7([0,1]) = [po,p1] U [p1,p2] U--- U [pe,—1,pe,],
if we write p; = w(t;). We take a twin apartment A containing Cs and z, then pc,|a,
is an isomorphism of Ay onto A fixing Cy and sending x to pg; so x < 0 A® 33 expected.
We shall prove by induction that, for ¢ > 1, there is a (—1) — Cs—friendly line segment
[z, z;] such that pc([z,z]) = 7([0,t;]). We define [z, 2] = (PCOO|A39)_1([P07P1])a it is a
solution for ¢ = 1. We assume now the result for ¢ and prove it for ¢ + 1. Up to an
isomorphism, we may assume A D Cy U [z;,x). Let p := p; = z;, we get the situation
of Proposition by setting C, = C3°, n = [z,2) = [pi,pi-1), =& = [pi,pi+1). The
condition (c) of lec. is fulfilled (see above in (1) the translation between chains). So the
implication (¢) = (a) provides us a segment germ ( opposite n with origin z; satisfying
pc..(C) = =& = [pi, pit+1). We write A; a twin apartment containing C and ¢. Then pc_ |4,
is an isomorphism from A; onto A fixing Cs, and we define [z;, ziy1] = (po, |A§B)_1([pi,pi+1]).
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We have pc([x, z:] U [z, zit1]) = 7([0,tiv1]). But [z, 2) = n and [z, zi+1) = ¢ are opposite.
So [z, zi] U [2, zi+1] is a line segment by [GR14] 4.9] and we are done.

We deal now with the case ¢ = +1.

(1) As above pg = 7(0) satisfies pg > Oag, i-e. po € T. For any t €]0, 1] we write p = 7(t);
we have now to find a (W}, Cp°)—chain from 7/, (t) to ©’_(¢). We want to use Proposition
in 7,(4s), but now Cp° is a positive local chamber in Ag. Luckily the signs in Proposition
are not important, as e.g. T is defined in 1.c.iv by reference to C, , not to the signs in Ag.
The important fact is that § and 7 (resp., C, , ¢ and —§) are of the same sign. We change first
A in order that it contains C and [p(t),z), so p = 7(t) = (). We take now C, := C;°,
Cim pult), 1= m(t) = o (1) = p— [0,1)x(t) and —€ = 7,(t) = p -+ [0,1)7(¢), 50
£ =p—[0,1)7 (t). We have pc, (¢) = —§ and we are exactly in the situation of Proposition
1.a, except for the signs; in particular ) (resp., §) is generated by —n’ (t) € —WVA (resp.,
—7 (t) € =WVA), so the X in Lc. is our —A. From (a) = (c) in this proposition, we get
n < & which seems to mean —n’_(t) < —n’, (t). By the same trick as above for the case e = —1,
we get the expected (W), C5°)—chain from 7’ (t) to 7’ (t).

The proof of the converse result (2) is the same, mutatis mutandis, as the one given above
in the case e = —1. m

5.11 Consequences

(1) We considered in .2, Co—friendly line segments [z,y] which were actually ¢ —
Coo—friendly. We endowed them with a decoration. Then m = pc_ ([z,y]) C Ag is en-
dowed with a superdecoration (3) which makes it a superdecorated Cos — A path (see
5 and .6). Conversely we proved in Theorem that a superdecorated Co, — A path
is the image by pc., of a C—friendly line segment.

Comparing with the above Proposition [5.10] we get that:

(a) The underlying path of a super-decorated C, — A path is a C,o—Hecke path.

(b) Any Cs—Hecke path 7 C A may be endowed with a super-decoration (provided that

7(0) = 0s or 7(0) < 0g).

(¢) The number of these possible super-decorations is finite (see §5.4/6).

Actually the consideration of (super-)decorations is useful to count the number of line
segments with a given Co—Hecke path as image under pc, (see . But the definition we
gave of a super-decoration is perhaps too precise. Other choices of the decorations Ctj;r may
be interesting, e.g. to compare with Muthiah’s results in [Mul9b].

N.B. The reader should note that a decorated Co, — A path cannot always be endowed with
a super-decoration. One should, at least, assume the condition C;r = prm(t)(C't}r), when ¢

is not among the t; of Lemma .4. See analogously Proposition 2.7 N.B. and Remark (3) in
§3.3 of [BaPR21].

(2) We indicated in that our main motivation, according to Muthiah’s goals, was
to calculate the cardinality of sets of the form (Kjuin@ *Kpwin N Too@ *Kiwin)/ Kiwin for
A pE a(Ciyﬂ T°NY) C Ag. Such a set is in one to one correspondence with the set of points
x € Jg such that dV(0g,x) = A and pco_ () is defined and equal to . Due to the lack of a
Birkhoff decomposition, we are only able to calculate the cardinality of a subset: the set of the
x as above such that, moreover, po_ (2) is defined for any z € [0g), z]. The formula we get for
this cardinality is as follows: it is the sum of the numbers #{[z,y]} in Theorem [5.1]2, where
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the sum runs on the set of all superdecorated Co, — A paths in Ag of shape A from Og to p
(with the type i; fixed for any ¢ €]0, 1[). One can notice that this set of paths depends only
on Ag, A and p (not of k) and that it is finite, at least if the root system of & is untwisted
affine of type A, D or E (see (1.c) above and the result [£.4.2]4 of D. Muthiah). So (in the
case of A, D, E with \ € —(Ci}’ NT7°NY)) this cardinality is a well defined polynomial in the
cardinality ¢ of k, depending only on Ag, A and pu.

6 The case of affine SLsy: counter-example to the Birkhoff de-
composition and examples of Hecke paths

In this section, we begin by proving that when G is affine SLy over k(w), the Birkhoff
decomposition does not hold, that is Giyin € IoNK. Actually, many Kac-Moody groups
over k(w) can be considered as affine SLy over k(w): we will work with GY°P, G and G,
which are respectively SLa(k(ww)[u, u']), G'°°P x k(w)* and a central extension of G. Their
maximal tori have dimensions 1, 2 and 3. In G°°P, neither the simple coroots nor the simple
roots are free, in G the simple coroots are not free but the simple roots are free and in G
both simple roots and simple coroots are free so that G and G fulfil the assumptions of
To prove that the Birkhoff decomposition does not hold, we work in G'°°P, in which the
computations are easier, and then deduce the results for G and G.

We exhibit an element of Gyyin \ Ioo NK. Our element lies in G\ (Gag U Gg), where the
index @ means that GT and G~ are defined with respect to .#;. This suggests that we need
to work in Gg or G to obtain a Birkhoff decomposition (see . This was expected, since
this is already the case for the Cartan decomposition

We end this section with some examples of Hecke paths associated with G.

6.1 Notation and projection of Gon G

We begin by defining G, which is a central extension of SLy (k(w@)[u, u™']) xk(w)*, by defining
a root generating system, in the sense of Bardy-Panse [Ba96]. Let Y = ZXY & Zc @ Zd, where
RV, ¢,d are some symbols, corresponding to the positive root of SLg(k(cw)), to the central
extension and to the semi-direct extension by k(w)* respectively. Let X = ZN® Z5 & ZA,
where X, 0, Ag : Y — Z are the Z-module morphisms defined by R(RY) = 2, R(c) = R(d) =0,
S(RY) =0 =4(c), 6(d) =1, Ap(c) = 1 and Ag(RY) = Ag(d) = 0. Let ag = — N, a7 = N,
ay =c—RXY and ) =R, Then S = (23 X, Y, {@0, a1}, {ag,a)}) is a root generating
system. Let G be the Kac-Moody group associated with S over k(zw). Then by [Ku02l, 13]
and [MarI8, 7.6], G is a central extension of G := SLy (k(w)[u, u™']) x k(w)*, where u is an

indeterminate and if (M, 2), (My,21) € G, with M = (a(w’u) ble,u) ), M = (al(w’u) bl(w’u)>,

c(w,u) d(w,u) c1(w,u) di(w,u)
we have

(M, 2).(M1, 21) = (M (““W“) bl(w’zm)  221). (6.1.1)

c1(w,zu) di(w,zu)

Let X = ZN @ Z5 and Y = ZRY & Zd. We regard X as a set of maps from Y to Z
by restricting them to Y. Let ap = 6 — X, oy = XN, af = —RY and af = XY. Then
S=((2%73),X,Y, {ag, a1}, {ag,a)}) is a root generating system and G is the associated
Kac-Moody group (over k(w)).

Note that the family (o, ) is not free. We have ® = {a+ ké | @ € {£R}, k € Z} and
(g, 1) is a basis of this root system. We denote by ®* (resp. @) the set ® N (Nag + Nay)
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(resp —®4). For k € Z and y € k(w), we set znyis(y) = (((1) “’;y) ,1) € G and x_wik5(y) =
((u49) Dec

The tori of G, G and G'°P are different (with respective dimensions 3, 2 and 1). On the
contrary the maximal unipotent subgroups U + U* and Ulfop are naturally isomorphic [Ro16),
1.9.2|.

We set T = {((g y91> ,2) | y,z € k(w)*}. Then T is a maximal split torus of G. Let N
be the normalizer of T in G. We have

w *UZ * ™ *’U,Z E
N=aGn (((k‘ 0 ) @V U (e ) () >).

Recall that O = k[w, w~!]. We have
MO)=c6n <<(“‘*“f“z ez ) KTV (1 %2 65 ,k*w%)

and Y(O0) = (o415 (0) | @ € {£R}, k € Z), so that
Grwin = (M(O), U(O)) C SLy(Ofu, u™1]) x k*w?

The group G (resp G) acts on the masures Io, Jo (resp f@,f@) We denote with a
tilde the obJects related to the masures f@ and f@ (for example the vertex 0@ and the local
chamber Cu). Let K (resp. K) be the fixator of Og (resp. of Og) in G (resp. in G) and
I (resp., I ) be the fixator of Co in Gyin (resp., of Cw in étwm) Let v € {©,®}. The
standard apartment An can be written as A, @ Re, where ¢ € Y corresponds to the center, so
that A, can be considered as the quotient of AU by Re. Let m : G — G denote the natural
projection and denote also by 7 : &u = A, & Rec — A, the natural projection. Then we have
the following easy lemma.

Lemma 6.1. The map « : An - Ay uniquely extends to a map m : % — Sy such_that
m(g.a) = 7(g).7(a) for g € G, a € Ay. In particular, we can regard %, as a quotient of Fy by
Re.

Let v € {&,®} and f(w),g(w) € k(w)* be such that wy(f(w)) = we(g(w)) = 0. Let
{,n € Z. Then ((f(wo)wZ f(w)i)lwfl
—sgn(v)(/RY + nd). N

The kernel C of 7 : G — G is a one-dimensional split central torus (actually the reduced
connected component of the center of é which is contained in f) with cocharacter group
Z.c C'Y (cocharacter group of T'). So there exists an isomorphism T¢ : k(w)* — C such that

Tc(a) acts by the translations of vectors —wg(a)c on Ag and —wgs(a)c on Ag (see 2
We set t. = Te(w ™) € T(k[w, @']) C Gruwin-

),g(w)w") acts on A, by the translation of vector

Lemma 6.2. Let i € G be such that 7(i) € Ino. Then i € IoC C I, T.

Proof. We have m(i.05) = Og and hence i. 0@ = 0 + ke, for some k € Z. Then ith.05 = 0@
Then itk C’OO is a local chamber based at 0o and we have (k. Coo ) = Cso. Therefore it% € I,
and i € I..C C I..T. O
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Lemma 6.3. Recall that € = Io.A and that € = Ig.A. Then & = 7 1(€) and PG = TOPCo-

More precisely, let g € G and x € A be such that g.x € €. Let g € 7 (g) and & € 771 ().
Then §.& € € and 7o pe—(3.2) = pcy, (9-).

Proof. Let & € €. Write & = i.§j, where i € Iog and §j = P @ € A. Then (%) = n(i).7(y) €
Ioo.m(y) C €. Moreover, m(ps— (%)) = 7(9) = pc(m(x)). Conversely, take z € £. Write
v =iy, withi € Ioandy € A. Let 2 € 7 *({z}), y € 7~ ({y}) and 7 € 77 ({i}). Then
7(i.§) = 7(Z) and hence there exists k € Z such that & = (t.)¥i. = i(t.)*.§. Therefore Z € &,
which proves that £ = 7~ 1(&).

Take g € G and = € A such that gx € €. Let g € 7~ ({g}) and 7 € 7 '({x}). Write
gx =iy, withie Ioandy € A. Takei € 7~ ({Z}) and § € 7~ *({y}). Then 7(§.%) = 7 (i),
so there exists k € Z such that §.% = i(t.)*.5 € £. Therefore p pe_(9.2) = (t )*.4, and the
lemma follows. O

In we defined actions of W" on 5& and A. We denote by - the action of W? on A.
We have wx € w.x + Re, for all x € A C A.

Lemma 6.4. Let \ € C:}’ and X\ = w(\). Let v,w € WY be such that v.A = w.X. Then
VA = Wi
Proof. Leti € I ={0,1}. We have ;.\ = A—a;(A\)a) and 77\ = A—a; (V) = A—a; (V)
with @;¥ € a) + Re. Moreover, (WV)c = {c}, so by induction on £(w'), we have (w')7\ €
w'. A+ Re, for all w' € W".

Write A = A + te, with t € R. We have v~ 'w.\A = X and therefore:

v A = v wi (A te) = v wi A+t wie = v wiA+te € v w A+ Re = A+ Re = A+ Re.
Consequently v~ 'w\ € C:}’ NV ={\} O

Lemma 6.5. Let \ € Ci}’ﬂ T°, A= 7©(A), 7:[0,1] = A be a A-path (for the action . of W

on A) and dy € A be such that w(ag) = 7(0). Then there exists a unique A-path 7 : [0,1] — A
(for the action = of WV on A) such that mo 7 =7 and 7(0) = ao.

Proof. Letn € Nand 0 <ty < t; < ... < t, = 1 be such that 7 is differentiable (with constant
derivative) on |t;,t;+1[ for all i € {0,...,n —1}. For i € {0,...,n — 1} and ¢ G]tz,tz_i'_l[
choose w; € WV such that 7/(t) = w;. )\ Let 7 : [0,1] — A be a A-path with 7 o 7 = 7.
Maybe increasing the number of ¢;, we may assume that 7 is differentiable on ]¢;, ¢;+1[ for all
i€{0,...,n—1}. Leti € {0,...,n—1} and t €]t;, t;+1[. Then 7(7'(t)) = w;.\. By Lemma
we deduce that 7 () = w;.A. So 7(t) — 7(0) is well-determined by 7 for every ¢t € [0, 1], which
proves the desired uniqueness.

For the existence, it suffices to set 7(t) = dp + fg 7, for t € 0,1]. O

Let g € G and ¢ : [0,1] — A be a parametrization of a preordered segment of A. We
assume moreover that g.¢(t) € € for all t € [0,1]. Let § € 7 1({g}). Then from what we

proved, for every ¢t € [0,1], §.o(t) € € and <ﬁév(§g0)> = po. (9.¢), and we can recover

7 (P (G.9)) from i (3.0).
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Let I?o be the fixator of a.; in étwm, N = 7 L(N). Let g € I:;KU? and g = m(g). Then
by Lemma g € I, NK. Therefore, in order to prove that I,oc NK 2 Giyin, it suffices to
prove that I,o NK 2 Giypin and we now work with G instead of G.

6.2 Reduction to a problem in G°°P

We have G = SLy (k(w)[u,u™']) x {1} € G. We set IR = I, N G and K" =
K N GYP. We denote by proj*® : G — k(w)* the projection on the second coordinate. We
begin by proving that we can get rid of the semi-direct product and work in G°°P. We regard
0 as a linear form Ay, — R. For v € {6, @}, we denote by d, : Ay — R the restriction of &
to Ay. As §,(RY) =0, 6y is W¥-invariant. Let pioop @ # — Ay be the retraction with respect
to the sector germ C. We extend dy to . by setting du(z) = do(p+oo(2)), for z € S
Actually by [Hel8el Proposition 8.3.2 2)|, we have d, = d, o p, for any retraction p : ., — A,
centred at a sector germ.

Recall from 2.2.4] that

Uc,, = (xa(y) | a € @,y € k(w),za(y) € Ge,)

and
Toe = T({y € k(@) | waly) = 0) = {((§,% ) +2) |y, 2 € k()" way) = wo(z) = 0},

Lemma 6.6. Let g € G, v € {©,®} and x € S,. Write g = (¢'°°P, ¢°%) with ¢° € K*. Then
8o(g-2) = Go(x) + wo(g™).

Proof. Suppose that b = @. By the Iwasawa decomposition ([Rol6l Proposition 4.7]) we can
write ¢ = vit1k, with v1 € UT, t; € T and k € K. By |[Rol6, Proposition 4.14] applied
with the point Og we can write k = viv_n, where v, € UT, v_ € U~ and n € N N K.
Write = vg.y, with vo € UT. Then g (g.7) = §(vit1viv_nve.y). As T normalizes U™ and
U~ , we have dg(g.x) = 0g(v10/ v _tinve.y), for some v/, € UT and v/ € U~. By [Hel8¢,
Proposition 8.3.2 2)], we deduce that dg(g.7) = 6g(t1nve.y). As t1nva(tin) ! fixes the sector
germ t1n.(+00), [Hel8e, Proposition 8.3.2 2)| implies that

0a(g.x) = 0g(tin.y).

We have g = vit1v,v_n and thus proj**(g) = ¢°? = proj*?(t;)proj*¢(n). Asn € NN K,
we have wa (proj*d(n)) = 0. Therefore £ := weg(proj*d(g)) = we(proj*d(t;n)). Therefore
0g (tin.y) = dg(y) + £ = dg(x) + ¢, which proves the lemma when v = @. The case where
v = & is similar. o

Remarks. (1) From the Lemma above we deduce that if v € {&, @}, then the masure .7,°%P
of G1°°P is actually {x € %, | §,(x) = 0}.

(2) Suppose v is any place of K and write g = (¢'°°P, g°?) € SLa(K[u,u™1]) x K* = G. Let
&y be the map %, — R whose restriction on the canonical apartment A, is § : Y ®7z R — R as
in Then the above Lemma may be generalized easily to get d,(g.2) = 6 (x) + wy(g°%).

Lemma 6.7. The Laurent polynomial versions of G'°°P and G are Gif;?p = SLy(Ofu,u™1))

and Gpo = SLa(Olu, u™1) x O*, where O = k[w,w ], hence O* = Ujezkw’.
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Proof. For any place v, we know from [Rol6], 4.12.3.b], that {g € SLa(K[u,u"1]) | 9.0, = 0y}

is equal to SLa(Oy[u,u"t]). Taking now the intersection in SLa(K[u,u~!]) of all these groups

for v # 0,00, we get G;C;?p = SLy(Ofu,u1]) (see .3.a). Now from Remark .2, we
pol

see that the component in £* of an element in as to be in O*. So we get clearly

Gpol = SLQ(O[u,ufl}) x OF. O

Remark 6.8. Comparison of Gy, and G
(1) Inside G;)Oo?p (resp., Gpor) the twin group Gloop (resp., Grwin) is generated by the

twin
diagonal and upper or lower triangular matrices in SLo(O[u,u1]) (resp., and by O*). So the

g;?p with G;fl% (resp., Gpol With Gryin) is exactly equivalent to the

1

problem of the equality of G
problem of the generation of SLy(k[cw, ™!, u, u~!]) by its elementary matrices. Unfortunately,
in [Cos88l, §2 p. 228|, the author tells that he knows no answer for this problem (while many
closely related cases are known).

(2) We may also look more generally to affine SL,, over K = k(w), i.e. replace above SLg by
SL,, for n > 3. One gets easily that, as above for SLa, Grwin = G2 xO* and Gpol = GLloP O

twin pol
Moreover Giﬁ% is the subgroup of SL,(k(w)[u,u"!]) generated by its unipotent elementary
matrices with coefficients in Ofu,u™; it is a subgroup of SL, (k[ew, w1, u, u™1]).

Now, for any place v, O, is a discrete valuation ring (in particular a local ring); so, following
[Co66l page 14|, Oy is a GE—ring: SL,,(O,) is generated by its unipotent elementary matrices.
Following [Su77, page 223|, SK1(O,) = {0}. And from [l.c. Cor. 7.10], SL;(Op[u,u"1]) is
generated by its unipotent elementary matrices, for n > 3 (as O, is of dimension 1). We have
got what is needed to generalize [Rol6], 4.12.3.b] from SLs to SL,. So SL,(Oy[u,u™!]) is the
group of elements g € SL,,(K[u,u~!]) fixing the origin 0, of the masure .%, of SL,,(K[u,u"1])
associated to the valuation wy.

Taking now the intersection in SLn(lC[u,u_lﬂ of all these groups for v # 0,00, we get
6.7)

G;;)O?p = SL,(O[u,u"]) (as above in Lemma But Corollary 7.11 of [Su77] tells that
SL,(k[z, ™!, u,u!]) is generated by its elementary unipotent matrices for n > 3. So

Glo% = G% and Gpor = Grain.

pol twin

Lemma 6.9. Let g € [.LuNK NGYP. Then g € I:2°P NP K100P yyhere N0oP = N ) Gloop,

Proof. Let G, be the fixator of Cs in G. We have I, = G NGrypin and by Proposition@,
Ge,, = Uc, Toe,

Write g = vtgnk, where v € Uc_,tg € To s, n € N and k € K. Write k = (k1, k2), with
ko € k(w)*. Then by Lemma [6.6, we have wg(k2) = 0 and hence (1,ks) € K. By we
deduce that (1,k;").k € K'°°P. We have

g = v.ton(1, ke).(1,ky )k € I'2°P N K'°°P 0 Gloop,

As proj*? is a group morphism, we deduce ton(l, k) € N 100p which proves the lemma. O

6.3 Towards a counter-example in G'°°P

We now prove that J120P pyloop feloop £ G°PNGyyin. We now identify G'°°P with SLq (k(w)[m u_l]).
We begin by describing Io0P (or more precisely a group containing it). After that, we

regard G'°°P as a subgroup of G0 = SL; (k(w)((u™"))), and define “completions” K'°°P and

I of K'°P and I, in G°P. We then define an element g € G'°°P N Gyyin, that admits a
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decomposition g = ik, with (i, k) € Io \ Iso x K0P\ K 100p “and by a uniqueness property for
these decompositions, we deduce that g ¢ I, NP [1oop,
Recall that Og = {y € k(w) | wg(y) > 0}.

Lemma 6.10. We have K = SLy(Og[u,u™']) x OF.

Proof. By [Rol6, Proposition 4.14], we have K = U™ Uy Nog,, where Uy, = Ut N

(Uaca{t € Ua | 1.0 = 0s}), No is the fixator of Oz, in N and U™ is defined in[22.4 By
[Ro16][Example 4.12 3) b)|, Uy""~ C SL2(Og|[u, u™ )« {1}. As ]%@ and UJ;B are contained in
SL2(Og[u, u™!]) x 0%, we deduce that K C SLa(Og[u, u™']) x OF. By [Rol6||Example 4.12
3) b)], we have K'°°P = SLy(Ogu,u™']) and as {1} x O} fixes Og (it fixes Ag), we deduce
that K = SLo(Ogu,u™']) x O%. O

Lemma 6.11. We have

loo o k[ u,u ] Hk[uTt] ko fuu T A u T ku Y
13 C (w—lk[w—l][u,u—lHk[u—l} oLk~ fu,u— ] +Hk[u~1] )

Proof. Recall that G¢__ is the fixator of C in G. Let y € k(w)* and k € Z. If k > 0, then
xpiks(y) € Goo, if and only if wg(y) > 0 and if k£ < 0, then zxyks5(y) € Ge, if and only if
we(y) > 0. Indeed, the fixed point set of xx1xs(y) is D := {a € Ag | R(a)+kd(a)+ws(y) > 0}.

e If ws(y) > 0, then D contains a neighborhood of Og in Ag and thus D contains Cx.

o If C, C D, then Og € D and thus wg(y) >0

e Assume that £ > 0 and that C, C D. Let Q be a neighborhood of Og in Ag such
that N —C} , is contained in D. Then for all a € QN —C}, we have wg(y) >

)

(—N(a) — kd(a)) > 0 and thus wg(y) > 0.

e Assume that k£ < 0. As {X,§ — X} is a basis of &1, we have that (X — §)(C) > 0, and
thus (X + k0)(Cs) > 0. Therefore if ws(y) = 0, then xx1xs5(y) € Ge, -

Similarly, if & > 0, then x_xyrs(y) € Ge, if and only if ws(y) > 0 and if £ < 0, then
T_xiks(y) € Ge, if and only if we(y) > 0.

By Proposition we have Go, = Uc,, .Toe.

Take v € U, and write it v = ((Z;} 3;3) ,1), with a11,a12,a21,a22 € k(w)u,u™1).

Take ¢ € Tpe and write it ((g y91) 2), with y, 2 € k(w)* such that we(y) = we(z) = 0.

1
Then vt = ((al’ly 1,2y 1) ,2). Let i,5 € {1,2}. By the first part of the proof, we can write

a2,1y a22y~

aij= Y. @ frd@u+) fou@u,

k<—1,4€Z (€N

where fj,;(w) € k(w) satisfies we (fie(w)) = 0 for all k, ¢, with foo(w) = 0 if (¢,5) = (1,2).
Lemma follows by intersecting Gc_, Grwin and Gloor
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6.4 Calculations in a completion

Let Gl = SLy (k(w)(v 1)) D G'°P. By |[Rol6 4.12.3.b] this group is the negative Mathieu
completion (GIo9P)"™mae of GIooP (cf.[2.2.3) 2).

Let
ioos _ (Oa(@™Y) Os(@ ™)\ ~ oo
foop = (o@«u-l» Oa((u- >>> nGlooe
and Tloop _ (& ke (k] @tk )+ 1] Gloop
% _(w*lk[w*]((u*l))w[[u*lﬂ okl 1] (=) 1] )ﬂ :

k[u™1] v k[u=1]

By Lemmas|6.10(and[6.11) K'°°P ¢ K0P [2°P € [.2°P and I2°PNKoop = (k[[u—l]] k[u~1]

SLa (k[u=1])).
Lemma. The subgroup U™ of G1°°P introduced i m .2 is the intersection H of SLa(Ogu~
1 1o o 1
with ( +U£96 Hqﬁ“;ﬁ 'l 1+u718£ﬁufﬂ1”) . Its intersection with G'°°P (resp., G = G'PN\Gin)
is UZ"™ (resp., is in IX°P ) Its intersection with G;OOC;p is the intersection of SLa (ke ™!, u™1])

. 14+u~ k[t u1] u k[ uTl]
with ( koo~ u1] 14w k[w tu™1] )°

N.B. U/ is not in IXP. One should replace @™ 'k[w™!] by {z € k(w) | wa(z) > 0} in the

definition of this last group to get such an inclusion.

Proof. An easy calculation in SLo proves that a matrix is in H if, and only if, it may be

written (19) (p(;d (1+2)_1> (§%), with ¢ € Ogu™'] and b,d € u'Ogu~']. On the other

side we saw in [2.2.412 that (taking gz = sla(Z[u,u"!])) the elements in U™ are written
[loca- Xa(8a,z @z Og) (as fo (a) =0 for a € A7). And we may choose any order on the
set A™ of negative roots. We consider first (on the left) the roots —8 — nd for n > 0, then
(in the middle) the imaginary roots —nd for n > 0 and last (on the right) the roots X — nd

for n > 0. For a = =N =6, gaz = (4, o, 0) 50 Xa(gaz ®z Og) = 24(0s) = (Oetfn ?);

hence the (commutative) product of these terms for n > 0 is written (1 ¢) with ¢ € Og[u™!].
Similarly the (commutative) product of the X (gaz ®z Og) for « = X —nd with n > 0 is
written (%) with b € u™'Og[u!].

To get the first assertion of the Lemma, the last thing to do now is to identify the

commutative products of the X, (gqa,z®z Og) for a = —nd,n > 0 with matrices <1J6d (1+(c)1)*1 )

as above. But a basis of g_,57 is h, = <”5" f_n). The expression X_,s5(hy, ® A) of

. n is actually written [e:z:p]()\h ) in [Rol6l 2.12] and is equal to ('} 1?2) with v1 =
T4+ ™+ XNu™2" 4+ and vg = 1)1 =1— Au"". Moreover such an element is in U™ if,
and only if, A € Og (as fc..(—nd) = 0). Now an easy induction proves that any element in
14+ u1Ogu~!] may be written as an infinite product of terms of the shape 1 — Au~" with
A € Og and n > 0. So we get the equality Ug*™ = H.

Now the last assertions of the Lemma are easy consequences of the definitions and [6.7 ©

6.5 An element in GE;-I;L \ I.NK

Let g = 2 _n(wu™Hag(w lu™!) € G°P. We have

g=an(C—g) (Ve () =, (6:5.1)

)n

g)
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— 1 -1, —1 R, —
where ¢ = ( a2 & ) € IS and k = z_n(FZ
0 I14u?

Actually g.0g # Og (as the first factor in g fixes Og, and the second one does not fix it).
But dg(9.0g) = 0g(0g) by So neither g.0g > Og nor g.0g < Og, i.e. g & G UGg.

») € K1°op. Therefore g € 12 11207 Toop

1+u—2

Lemma 6.12. The element g does not belong to I.2°P K0P,

Proof. Suppose g = ik, with i € I}%°P € I'%°P and k € K'°°P ¢ Kloop, Set h = i~15 = KE e
K0P () [°°P Therefore ih~! = i. Write i = (AB)and h!=(2%), with a,b,c,d € k[u™"]
and A, B,C, D € w k[ ][u,u™1] + k[u"1]. We have

+w e = A, b +ow T ld=B,(1+uHe=C,(1+u?Hd=D.

1+u2 1+u2

Therefore a = 4= € k[u"!] and b := H% € klu™!. We have wlule €
k[ [u,u""] and thus ¢ € k[u,u"']. Moreover (1 + u ?)c € k[u™'] and thus ¢ € k[u™'].
Similarly, d € k[u~!]. As det(i) = 1, we have ad — bc = (1 +u~2)(ad — bc) = 1 and thus

1+ w2 is invertible in k[u~!]: we reach a contradiction. Consequently g ¢ I:2°P K1o°p, O

It is easy to check that N'oP[gloop — Tloop frloop 4 Nloop feloop — Tloop [floop  where
oo = {(3 %) |y e k() =GP T

Lemma 6.13. Let t,t' € T'°°P be such that I.2°PtKloop M [2°P¢/ Koo £ (). Then tK1oop =
t/ Kloop,

Proof. There exists (i,k) € Io x K°°P such that itk = t/, or equivalently, ¢'~1it = k1.
Write ¢ = (0 91) and t' = (7)/ 7/(11)7 with 7,7 € k(w). Write i = (@mn)mmne(1,2), With
amn € k(u™ )] and k = (bmn)mome{1,2}, With by, € Og((u™1)), for m,n € {1,2}.
Suppose aj,1a22 = 0. Then aj2a21 = —1. Let a12 € u”'k[u~!] and a1 € k[u='] be
the evaluations of a;2 and ag; at w1 = 0. Then a1,2a21 = —1: we reach a contradiction.
Therefore a 1a22 # 0.
We have a1 177ty = b11 and aga(y"1y)71 = beo. For myn € {1,2}, write am, =
> p<0 amnp( u)wP, where amnp(u) € k((u™t), for all m,n,p. Let £ = wg(y'~1y) and set
f(w) = wy~1. Then

a1y 'y =Y ar1p(u) f(@)@ P € Og(u )

p<0

and thus £ > 0. As ag27'7™! € Og(u™1)), we also have £ < 0. Therefore £ = 0. This proves
that ¢'~1¢ € Kloop. D

We deduce that g ¢ I oNK. Indeed, otherwise, by Lemma we could write g = itk,
with i € II%°P, ¢ € TP and k € K°°P, Then t € T N K19 ¢ K1°°P and thus g € [.2°P K1o0P,
which would contradict Lemma In particular, Gypin 2 IooNK.

=
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6.6 Examples of Hecke paths

The Cs—Hecke paths, which are the image by the retraction pc  of Coo— friendly line
segments have very different behaviors than the Hecke paths considered in the references
IGR14], [BaPGRI16| or [BaPR21]. We study here some examples of such Cs,—Hecke paths in
the case of affine SLy .

In the context of Lemma we consider the action of the subgroup G°°P of G on 7.
We choose the parametrization of the line segment [0 — d] (with §(—d) = —1 and R(—d) = 0)
in A given by ¢ : [0,1] — Ag C Ag such that o(t) = —td and will study Co—Hecke paths
pc. (9.¢([0,1])) for some g € G°°P. They are the images, by the map 7 of Lemma of
the Cso—Hecke paths pe (7.¢([0,1])), for some § € G with image ¢ in G. We have to prove,
along the way, that these retractions pc_ (9.¢([0,1])) and pc. (g.¢([0,1])) are well defined;
for this we shall prove some Birkhoff type decompositions of some elements in G.

These elements g are products of terms ((1) @ttt = Tyt kst (k—1)e(1) for k € Zso.

So they are in Ut = Ut C G and act on .. One recall that TN ko (h— 1e(1) fixes
D, = {a € Ag | R(a) + ké(a) + (k — 1) > 0} and its analog D 4 in Ag. This half-
apartment contains Cg and is limited by Mj_ (line of equation z = —k:y +1—k)in Ag with
cartesian system such that x corresponds to X and y to 6. The matrix ( _kil . 1) fixes
Dy, :={a €Ay |R(a)+ki(a)+ (k—1) <0}

Moreover (§4.1.9) Ty g4 (k—1)e (1)@ vk (k—1)e (=D Tryro 4 (r-1)e (1) = <_w19ku7k 0
stabilizes Ag and its class in W is the reflexion Ry fixing M;_j. We denote t; := kT € [0,1],

so that p(tx) = (0, —tx) € My_.
In order to write decompositions of the elements g (written as a product) with a left term

in I})%Op, we use the two following formulas in SLo,

T |
(6 )06 D= Gasw D" ) (7).

EXAMPLE 1:

For N > 1, we consider gy = gn

||,’:]2

w“ )% ) and want to study the C'\c—Hecke

paths pc.. (gn-¢([0,1])).
In Figure (1} we represent pc. (g2.¢([0,1])) in blue and pc_(g3.¢([0,1])) (blue and red).
For N = 2, we give details of the study
The element gy = (} wiu? ) (§=7 @ u) fixes ¢(t) for t € [0,t3], so, for such a ¢, pc. (g2-¢())
is well defined and equal to ¢(t). For t € [ts,tg], we use

(57) = (o s D) (0% ™) (dus?)
then as (w,glu,g (1]) and ((1) w51u6) fix (1),
pen(g2:0(1) = P ((o-dys 9) (Lo %us =0 ) ) = pon(( o %ys =" ) 0(0)

(if it exists), because (__3,-s") € Io0P ( So pe.. (g2-¢(t)) is well defined and equal to
Rggo(t) fort € [tg,tﬁ] .
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Figure 1: Cs-Hecke path

AN /! /
N /

,

S

6=-1 —d=@-n pry (C] \

For t > tg, we can write, successively using the two formulas above,
— (1 w?u? 1 wdub) — (1 w?ud 1 0 0 woub 1 0
92—(0 1 )(o 1 )_(0 1 )(w_5u_6 1) —@Su6 0 (w—5u—6 1)

1 0 1+w_3u_3 0 w2u3 5,6
_ 5 —6 1 —=—— 0 w u 1 0
= < @ %u — 1) ( 0 1 ) (D 14w 13u 3 ) (7‘17/’7511,76 0 ) ( —5,,—6 1)

1+w_3u 1+w73u73

Using Hwﬁ =1+ Zkﬂ(—l)kw*%u*%, we find the existence of a matrix A €

-1 -1 -1 1
SLa(Os[u~]) N (Hlégeﬁ[ie_[[fﬁ H 11u—?8£1ﬁu—[|1|]> such that

2= 40T (07 (Lot "0") ().

By the lemma of AeUgs C G'°°p and more precisely, as go and the other matrices
are in G°°P N Giypin so is A, and we have A € I%°P - Moreover (1 w_l) = wn_¢(1) fixes

0 1
Co C{a € Ac [ R(a) +1 >0}, 50 A(L =) € IR,

. 5,6 .
For t > tg, we obtain pc,, (g2-¢(t)) = pos ((§ w?u?) (—w—05u—6 “ ) (w,éu,ﬁ ) e(t)) (if
it exists). But, we know that (__3 ) fixes ¢(t) and (7 0 6 w5“6> acts by Rs on it.

wiu6 1 w Sy 0
As (} @) fixes DT,, for t > tg, this matrix acts on R5(¢(t)) if and only if ¢ < tg (as
Rs(p(t)) € DT, <= ¢(t) € D7)
So, for t € [tg, tg] by the same argument as in [t3, 6], po.. (g2.¢(t)) is well defined and equal
to RaRs5(p(t)). Moreover for t € [tg, 1], po.. (92.¢(t)) = Rs(p(t)). We see that the Hecke path
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has exactly 3 folding points p3s = pco_ (92.¢(t3)) = @(t3), ps = pc.. (92-¢(ts)) = Rap(te), pg =
pC. (92-¢(tg)) = RaRsp(tg), with the line segment [pg po] C RaR5(p([0,1]) = [(6,0)(—d)] and
his last direction is that of Rsp(tg, 1].
Forall N > 2, pc. (gn-¢([0,1])) is well defined and has 3 folding points ps = pc._ (g2.¢(t3)),
P6 = pCac (92-0(t6)), P3(N+1) = P (9N-P(t3(N11))), moreover [ps p3(v11)] = RaRs(@([te, tavr1))])
and is included in the line segment [(6,0) (—d)] and the last direction of the Hecke path is
that of the segment germ Rsn_1¢((0,1]).

- N
1 o (wu) +1>>, for

0 1
t < tav+1) we have po (gn+1-9(t) = po., (9n-»(t)) and so the Hecke path has the two

folding points ps = po. (g2-¢(t3)), ps = pc.. (92-¢0(ts)). We will see that we have no folding
at p3v41)- For the calculus, we remark that if u, = w1¢F and Sy = Zij\[ uy, then

This result is easily obtained by induction. As gyy1 = gN(

— S ¢V € —w ! + ¢ 'k[[¢7!]] and we will use the same method as before.
1+U’N+1SN
. o 1 0 0 wil(wu):”(NﬂLl) 1 0
We write gyy1 = gn {wu) 3N+ | — ofu) BN o o) 3N 1 ) -
1 \3(N+1)
For ¢ > t3(n41), we know that (w(wu)fg(NH) ?) fixes p(t) and <—w(wu)0_3(N+1) w (wzé) )

acts as R3n4o.
We consider ¢ = (wwu)? and ug = w ™ {wu)? = w~1¢¥ and see that :

1 0 —1 S
1 0 -1 1+u SN 0 1 —2N .
— (u ) N+1 1
gN (w(wu)*3<1v+1> 1) <1+i\’£1+115N 1) < 0 (1+UN{._15N)1> (0 1+ N1+15N > S0 it can
. -1 —1,N . _ 1+u=10gu? “10g[ut
be written A’ (} —= ) <(1) w4 ) with A" € SLa(Ogfu 1]])ﬂ< %@Hﬁ[ﬁ " 1iu*18£ﬁufﬂlﬂ>'

As before, we can see that A’ (} _“{1) e I

By for t > tsni1y, PO (gN11-0(1) = pcoo((})w’l(zf“)”) Ran2((t)) (if they
exist).
For ¢ large enough, the last direction of the Hecke path is Rsn12¢((0,1]).

1 w*l(wu)SN —

More precisely (0 ; > acts on Rany2(p(t)) iff t < t3(nvy9) (because Roign (D (3N71)) =

Di_(B(NJrQ)fl))
matrix acts by Ran—1 and we have R3n_1R3n12 = RaRs. So po., (9n+1-0([ta(v41)s ta(v+2)]))
is well defined, is equal to RoR5([¢(t3n+1))s ¢(t3(n+2))]) and is included in [(6,0) (—d)] so
there is no more folding at p3y41) and we have the expected result. The third folding point

I8 P3(v+2) = PCo (G- (3N 42)))-
EXAMPLE 2:
In the second example, we want to consider a new family (g}), with a growing number of

folding points. In the analog of previous calculus, we want that the action of the “new term”
doesn’t affect the previous folding points.

. But, as in the first calculus for ¢ € [tg, tg], we can see that, modulo I})%Op, this

N
. - - 2k 1
We consider for N >0, ¢y = gy = H ((1) @ 1(D‘I'U)32 ) € Gl
k=0
Let us prove that for N > 1, pc._ (¢/y-¢([0, 1])) is well defined, has at least N folding points
and there exists t3 v < Ty < t59n+1 such that po (¢h-¢((Tn,1])) = Ryonv_1(p([Tn ,1])).
As g} = g2, we know the corresponding Hecke path and the result is true in this case (with
tg = T < tlg).

We consider for N > 1, 9§V+1 = 9?\/ ((1) w*l(m{)mNH )
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As before, if it is well defined, we have po__ (gn+1.0([0, t598+1])) = po, (gn-p([0, t3 9n11])).
We know by induction that pc. (gn+1-0([TN,t3on+1])) = R3on_1(@([TN, t3on+1])) is well de-
fined and that this Hecke path has at least N folding points there. As previously, we write

, o Lo 0 0 o (wu)? 2" Lovn %) i order to
Ini1 = 9N o (u) =32 1 —w(wu)*?’aNH 0 w(wu) 32 1)

study the case t > t3onv+1. With D =1+ Zivzo(wu)?"(Qk_QNH) and a = ! ZkN:O(wu)S'Qk,
we obtain

N
g/ — }3 SN +1 0 <D 0 > (1 %) 0 w1 (wu)32 +1 < 1 Nt 0)
N+1 % 1 01/D 01 —w(wu)’3'2N+l 0 w(wu) 32 1

In fact & — a+w ! € Ogfu'], and so (as before) modulo Jloop g acts on p([tg on+1,1])
0 -1 3.2N+1
as (1) (_w(wu)_mNH “ (m;) 0 as gy © R3on+1_1.

But for k < N, Rgovt1_1(p(t)) € My_g0 if, and only if, p(t) € M;_g oni2_oky (€. t =
t3.(2n+2_9r)). So gy really acts on Rgoni1_1(p(t)) only for some ¢ in [t on+1),t3 2V +2_9n)]
and there exists Ty;1 with t3onv+e1 < Tivyr < t39n+2 such that po (9 -9((TNy1,1]) =
Rsoni1_1(¢([Tn+1,1])) and, as the direction of this line segment is different from that of
Ry on _1(@([Tn ,t39n+1])), there is a new folding point for this Hecke path, so at least N + 1
folding points.

Remark. It is interesting to look at what happens in these two examples when N goes to
infinity. Actually US_; gnve([0, tan]) (resp., US_; dve([0,t3~])) is an increasing union of
Coo—friendly line segments in jv, and the same is true for their images in .#. So we get
a half-open Co—friendly line segment written (abstractly) geop ([0, 1]) (resp., ghow([0,1])) in
7 and 9oop([0,1]) (resp., ghoe([0,1])) in #. A question is whether they can reasonably be
completed in a “closed” Cy,—friendly line segment. The answer is clearly no for example 2:
this would lead to a Co—Hecke path pc, (gh¢([0,1])) with an infinite number of folding
points, contrary to Definition [5.9] and Proposition in

On the contrary we can make further calculations for example 1, as gy = gy is as-
sociated to a geometric sequence in k[w,w_l,u,u_l]. We consider the matrix g}\, =

N 3k -1 3N+3 P
(Sholzo™ = @) ¢ g s gl = gl = (4, T) = (29) (5=3)

P 1°9P ) By the following Lemma g} fixes ([0, t3x5+3]).

So goo([0,1]) is actually equal to gl ([0,1[). We shall prove now that gl »([0,1]) is a
Coo—friendly line segment. The associated Coo—Hecke path is then clearly [0 ps] U [ps pg] U

[pe —d].
We have to find a good Birkhoff decomposition for g',. The details of the calculations are
similar to those above and left to the reader,

1 _ 1 .0 10 0 23 1 0

gOO - (w_Qu_3 1) (*w 1) <—w72u73 wOu ) (w_Qu_3 l)

1 0 —w! 0 293 0 546 1 0 1 0
(w‘zu_3 1) ((1) 1 ) (—w’Zu’S w()u ) (—w*5u*6 wou ) (w_5u_6 1) (w‘zu_?’ 1)

5,6

Now (40 0) (resp, (4,0 0)) fixes o(lta 1)) (respe, o(lto, D). (Lo %0 =)
(resp., (_w_ogu_g wi)“3)) stabilizes Ag and induces on it R5 (resp., Ry); moreover (w,%u,g (1))
and ( (1) *wl_l) are in I:2°P. So the last expression for gl is a Birkhoff decomposition, telling
that the pair {Cso, g% ¢([ts, 1])} is friendly. One can also deduce from these expressions the
shape of pc, (95,¢([0,1]))-

is a fixed element in GI°%P (so gL € G

Lemma. g} € (U;’E‘[lo';w%])U,N#,([O’l])) N Giﬁ% fizes ([0, tsn+s]).
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-1

Proof. In SLy(k[w][u]) € &P™*(K), one may write gp = (§¢) (¢, 2) (3 9) (% 7), with
c =1 _( u)?’, a = Z 11((wu?;13v+3 _ Z wwIN+24+3k, 3N+3+3k gnd p = 17(—wwu)3 1+ =
S, —w(wu)®. Now (L)9) = a:_N(—w) € U_y(0,1)) fixes ¢([0,1]). And (19) =

[T, zonyaps(—wF L) € U"E‘[IOJrl]) fixes also ¢([0,1]), as fu(o,1)(—N + 3kd) = 3k (see

2.2.4). Moreover (§ ) = [TZo s @an4asams (@ T273) € UTEE - ) fixes ([0, t3n43]), as
Joo.)(R+ (BN + 3+ 3k)6) = (3N +3 + 3k)t.

The last thing is Isow to prove that ( 0)is in Uso([O )" We argue as in § or [Rol6, 2.12].
The matrix b, = (Y _%) is a basis of gns7, hence X,5(ht @) = [exp]()\th) (% 1?2) with
vp = 1+ "+ 2"+ and vy = 1—Au"™. We taken = 3, A = @3, s0 (¢;' 9) = [eap](=®hy).

[

But fy(0,17)(30) = inf{r € Z | (36)(¢([0,1])) + 7 > 0} = 3, so (07 0) e U"E([ZOJFH) O
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