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Abstract

Hypertension is a major risk factor for cardiovascular disorders and diseases.

Since it is expected to increase dramatically, effective Hypertension man-

agement becomes more and more critical. Early detection of patients with

uncontrolled Hypertension would allow to employ personalized medicine for

anticipating and providing the adequate drug class. In this paper, we pro-

pose MS-LSTMEA, a Multi-Source and Explainable Hypertension prediction

Approach based on Long Short-Term Memory algorithm, for predicting both

the drug class for patients and the date of their next medical appointment.

MS-LSTMEA can successfully combine different sources of medical infor-

mation about patients, represented by tabular data, while processing them

separately and differently, and taking into account the temporal aspect of

Electronic Health Records. In addition, it integrates an Attention mecha-

nism which allows to improve the model results and to explain its outcomes.
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Experiments have been conducted on real Electronic Health Records data

from 429,087 patients with the support of experts in healthcare. The results

show significant improvements in accuracy over several existing models.

Keywords: Deep Learning, Explainable Artificial Intelligence, Attention

mechanism, Hypertension, Electronic Health Records

Introduction

Hypertension is a major factor behind one of the most important causes

of death in the world due to Cardiovascular diseases [1]. Improving upon

the detection and the control of Hypertension, and working towards its early

detection is of great importance in reducing the impact of cardiovascular

diseases, their progression, and the associated risks. In order to confirm

the diagnostic of Hypertension, repeated medical measurements are collected

from patients.

With the availability of home kits for self-measurement allowing patients

to be involved in the management of their disease, adherence to classic man-

agement rules could be advantageously replaced by personalized manage-

ment. This enables to deeply interpret the characteristics of the patients and

a better understanding of disease mechanisms, leading to better treatment

choice and prevention. The collected measurements added to the available

data sources are recorded in Electronic Health Records (EHRs).

An EHR can be viewed as a real-time patient health record (or a digi-

tal version of a patient’s health information) with access to evidence-based

decision support tools that can be used to aid physicians in their medical

care task. An EHR contains the complete medical history of a patient. Such
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history can contain diagnoses, drug class plans, medications, comorbidities,

allergies, laboratory results, radiology images, etc.

In this study, we aim to improve appointment times and drug class quality to

each patient. To achieve this goal, we use a real dataset provided by a med-

ical prescription platform "CEGEDIM" (used by 23,000 doctors in France),

that has been collected from 3,000 physicians. This dataset contains 429,087

patients. Each patient is associated with a sequence of visits. A visit con-

tains several patient’s characteristics (age, gender, height, diastolic pressure,

systolic pressure, pulse rate, etc.) represented as tabular data. At each visit,

a drug class is associated to each patient.

The purpose of the work presented in this paper is to propose a Machine

Learning (ML) tool for predicting drug class of Hypertension and the next

medical appointment for a patient, by using EHRs represented as tabular

data that comes from different sources. Among ML approaches, Deep Learn-

ing (DL) showed impressive results in various areas like image recognition,

translation, etc. DL is actually widely used to improve the quality of health-

care.

Recently, recurrent neural networks (RNNs) [2] have encountered a great

success in solving several ML problems due to their ability to learn hierar-

chical features in temporal domains [3]. It is why RNNs have been applied

in different tasks such as representation learning, predictive learning, and

classification. Nevertheless, simple RNNs are limited in their own since, for

example, it is not easy to train them on long time sequences. This is due

to the problems of vanishing and exploding gradients that are caused by

back-propagation of errors over many time steps. The Long Short Term
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Memory models (LSTM) [2] [4] deal with such problem by integrating mem-

ory units that allow to learn long temporal dynamics. LSTMs showed their

effectiveness in various areas, especially in healthcare [5][3]. Despite their

performance, and like most other ML algorithms, LSTMs are limited in their

ability to explain results. They suffer from what is called the "black-box"

problem.

In almost all approaches, the tabular feature sources that characterize the

patients are fused before using the ML models (with or without preprocess-

ing step). The problem is that these features generally come from different

sources and their difference must be captured by the ML algorithm. This

can be achieved by learning the tabular source representation when building

the ML model.

To deal with the problems cited above, we propose a novel deep architec-

ture through a Multi-Sources LSTM Explainable Approach (MS-LSTMEA)

applied to Hypertension management. For that purpose, the approach suc-

cessfully treats separately and differently several sources of tabular medical

information, and takes into account long temporal trajectories of events em-

bedded in EHRs. In addition, MS-LSTMEA uses an Attention mechanism

[6] which consists in highlighting the information that has been most crucial

in the predictive results. Such a mechanism can improve the model’s expla-

nation; a very important property in critical areas such as healthcare.

MS-LSTMEA is able to predict the drug class and the next medical ap-

pointment for a hypertensive patient. Indeed, the choice of the relevant

and personalized drug class for each patient is very important since a bad

choice can lead to disastrous effects that can conduct to the death of the
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patient. The next medical appointment time is also crucial for physicians

when making decisions, because it provides information on the gravity of the

patient’s condition. The scientific contributions and challenges of this work

are summarized below:

1. Novel multi-source LSTM architecture for dealing with the temporal

trajectory of multi-sources events embedded in EHRs (temporal and

heterogeneous aspects).

2. Specific processing of data sources of patient characteristics (personal,

clinical and comorbidity), that are usually merged in the literature,

leading to a high level patient representation learned during the model

construction at each time step.

3. Attention mechanism allowing to:

(a) Highlight the information that has contributed most to the pro-

vided results (decision explainability).

(b) Adapt the drug class by identifying important features that are

specific for each patient (drug class personalization).

4. Advising support system with the potential to improve patient health-

care by predicting the date of his/her next visit (self-management of

Hypertension).

In the next section, we will discuss related works in terms of temporal as-

pect, multi-sources of EHRs, and use of Attention mechanism that improves

explainability of DL approaches. Then, Section 3 describes the proposed

approach (MS-LSTMEA). Section 4 presents the experiment design, the re-

sults and a discussion allowing to highlight the main contributions of this

5



work. Section 5 concludes and draws some improvements of our work and

its perspectives.

1. Related works

Researchers have recently applied DL methods to EHRs in order to pre-

dict medical events. We can distinguish the proposed approaches using sev-

eral criteria [7][8]: the kind of features they consider, the feature represen-

tation they used, the type of DL architectures they used, the tasks they

performed, their methods attempting to explain the obtained results, etc.

We focus on related works that consider the temporal aspects and the multi-

sources nature of EHRs and those that use Attention mechanism for model

explanation.

1.1. Temporal aspect of EHRs

There are different neural network architectures in the literature that

deal with the temporal aspects of EHRs. These architectures are mainly

composed of RNNs or Convolutional Neural Networks (CNNs).

RNNs are specially designed to deal with sequences and have been very

successful in the NLP field. Since EHRs data are similar to text documents

from many perspectives, most of the RNNs that represent EHRs were in-

spired from Natural Language Processing (NLP) applications.

Pham et al. [9] proposed Deepcare, that is based on LSTMs. It used tem-

poral parameterization that takes into account the dynamics of the diseases.

DeepCare deals with the variable size of the input sequences, their irregular

timing and the confounding interactions between the intervention and dis-

ease progression. It was used to predict unscheduled readmission of patients
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with mental disorders and diabetes in an Australian hospital. Lipton et al.

[10] used LSTM with target replication to represent the sequential aspect

of data to perform diagnoses prediction. They evaluated their approach for

predicting different diseases on EHRs data from patients in intensive care

units.

Doctor AI [11] was proposed to predict the diseases diagnoses, the treatments,

and the date of the next visit. It projected the high dimensional inputs to

a lower dimensional space and then used a Gated Recurrent Unit (GRU)

network that is based on the same principle as LSTM with less training pa-

rameters. Doctor AI used a joint loss function combining the cross entropy

for diagnoses and drug class prediction with squared loss for the next visit

prediction. In [12], authors addressed the class imbalance problem using

LSTMs for the prediction of unplanned readmission risk within 30-day. The

proposed approach is based on contextual embedding and medical features of

clinical concepts to generate visits representations. The authors succeeded to

obtain good results on real data from a Swedish Hospital. Dasilva et al. [13]

developed a model based on LSTM to assess the severity of patient’s condi-

tion in order to anticipate its appropriate treatment. The authors showed

good results when predicting vital signs of patients and therefore predict the

prognostic indices to treat patients before the deterioration of their health

condition.

In [14] and [15], authors proposed the use of bidirectional RNNs (BiGRU or

BiLSTM) that can be considered as variants of RNNs. These models consist

first in applying the RNNs from the first to the last visit then, from the

last to the first visit. The resulting representations are concatenated before

7



performing predictions.

CNNs have also been adapted to deal with EHRs sequential data. EHRs

are represented as matrices, with the horizontal dimensions representing the

time and the vertical dimensions representing medical events [16][17][18].

Other works have chosen to combine different DL algorithms for the purpose

of improving the prediction results. For example, a CNN was combined with

LSTM in [19] and with BiLSTM in [20]. More recently, several works were

published about the prediction of COVID-19 comparing the different archi-

tectures that deal with temporal data [21][22]. In [22], authors compared

different architectures (CNN, BiLSTM, LSTM, and combined CNN-LSTM)

for the prediction of COVID-19 and find that LSTM and combined CNN-

LSTM give better results.

1.2. Multi-Sources DL and EHR

Medicine practices rely on information provided by different sources: clin-

ical data, laboratory data, imaging data, narrative data, etc. In recent DL

applications in the medical field, a fusion of complementary data sources was

proposed aiming to improve the performance results [23]. Most recent works

combined the tabular EHR data with medical imaging or textual data [23].

In [24][25], authors used CNNs to represent the images, combined the ex-

tracted high level features with clinical characteristics and then used a Feed

forward neural network. These models did not deal with the temporal as-

pect of EHRs. In [26] [27], authors aggregated the prediction results using

different approaches. Reda et al. [26] built a new classifier that takes the

prediction probabilities from the different sources as input for early diagnosis

of prostate cancer. Qiu et al. [27] used different ways to aggregate the predic-

8



tions of the different sources: majority voting, max and min. The results of

the three methods were merged and then fused with clinical models. Qiao et

al. [28] proposed a multimodal approach based on Attention that combines

CNN and Bi-GRU to represent the textual and clinical data for diagnosis

prediction. The authors captured the correlations between the two sources

before using Joint fusion, where features interactions were performed before

using bidirectional RNNs with Attention.

Bagheri et al. [29] combined clinical temporal data with textual data for

cardiovascular risk prediction using Joint fusion approach. They used a BiL-

STM model that provided word embedding. These embedding were then

concatenated with clinical data, resulting in a larger embedding which was

then fed to dense layers before performing the prediction.

The multi-sources models proposed in the literature deal only with hetero-

geneous data (tabular EHR with images or/and text). Even if the data in

EHR comes from different sources, these sources are merged and processed

in the same way.

Our approach learns the tabular source representation during the model con-

struction by simultaneously taking into account their temporal aspect. To

our knowledge, it is the first approach that deals with this problem.

As a critical application area, healthcare requires explanation of the results

provided by DL tools to be thoroughly explained. The interpretation of the

models and/or the predictions is crucial since it can highlight the features

that are involved in the predictions and therefore allows models to be vali-

dated or trusted and/or the discovery of unknown relationships between the

features and the predictions. Therefore, different approaches that aim to ex-

9



plain DL models used in healthcare were proposed in the literature [30][31].

Recently, Attention mechanism has received a lot of interest in several ap-

plication areas like Natural Language Processing (NLP), where it has been

used to improve model results and to explain prediction. Most of the models

applied to EHRs are inspired by those used in the field of NLP. We focus

on the related works that use Attention mechanism for model or predictions

interpretation.

1.3. Attention based interpretation

Attention mechanism in DL allows to highlight elements/features that

are involved in the prediction. Self-attention provides a representation of the

same sequence by linking its different positions.

Attention mechanisms are mainly combined with different RNNs models at

different levels in the architectures. Shickel et al. [32] proposed DeepSOFA

for the disease severity prediction. It used a GRU to handle the temporal

aspect of EHRs and Self-attention to point up the most relevant time points

when predicting hospital mortality. After embedding EHRs, the model as-

signs weights to time points that precede the current time point. The Atten-

tion scores allow to identify and highlight the time periods that influences the

predictions. In [33], Ma et al. proposed a model that is based on bidirectional

RNN, called Dipole. It is used to predict the future health information of a

patient. To improve and interpret the prediction results, authors proposed

three variants of their algorithm by introducing three Attention mechanisms

that allow to compute different context vectors. These mechanisms differ

by the way they capture the relationships between the hidden states of the

RNN.
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Edward Choi and al. [34] developed a DL model, called RETAIN (RE-

verse Time AttentIoN) that predicts heart failure in the outpatient setting. It

is able to compute the importance of a variable or a visit through two RNNs

and a two-level Attention mechanism which can identify important visits and

the relevant clinical features in the highlighted visits. The tool GRNN-HA

proposed in [14], based on a Bi-GRU and hierarchical Attention, performs

mortality prediction. It is able to compute two levels of Attention: one level

for medical codes and another one for the visits of a patient. Another model

that introduced hierarchical Attention mechanisms, called Patient2Vec, was

proposed by Zhang et al. [15]. Patient2Vec used a BiGRU with a two-level hi-

erarchical Self-attention in order to predict the future risk of hospitalization.

Authors proposed to group visits into times periods called sub-sequences and

proposed hierarchical self-attention mechanisms at two levels: medical codes

(variables) and sub-sequences. Kaji et al. [35] applied an Attention mech-

anism at the level of input variables, then used LSTM in order to predict

several medical outcomes (daily sepsis, vancomycin antibiotic, myocardial

infarction, and administration) over two-week-long patient Intensive Care

Unit (ICU) courses using the MIMIC-III dataset. They provided, from a

simple Attention mechanism, an interpretation at the level of variables and

at the level of visits. More recently, Men et al. [36] proposed to predict

multiple diseases based on EHR data, from a hospital in Southeast China,

using LSTM extended with time-aware (for handling temporal irregularities

in EHRs) and Attention mechanism (for prediction interpretation). The lat-

ter allows to identify the relevance of each visit for the disease prediction.

The authors showed that their approach outperforms classical ML and DL
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methods for the prediction of the diagnoses of future disease.

In our work, we propose a novel approach, which is based on a joint

fusion of data sources, that takes into account the temporal aspect of EHRs

using LSTMs and the different sources of EHRs tabular data even though

they can be merged directly at the level of inputs (early fusion) as done

in related works. We showed that this representation improves the results.

Moreover, unlike existing approaches, the construction of the data sources

embedding is not separated from the overall architecture, it is learned during

the training step of the whole NN. Our approach deals simultaneously with

multiple sources over time in the RNN since at each visit, the learned high-

level representation of the sources is transmitted to the LSTM units. We

also use a Self-attention mechanism that helps to improve the results and to

highlight the most important variables, sources, and patient visits. Unlike

existing approaches that embed the Attention mechanism inside RNN units,

or that use complex multi-level Attention, our approach implements a simple

attention mechanism at the input level. This mechanism allows a direct

interpretation of the model predictions.

2. Method

As already said, we present a novel explainable Multi-Source Approach

that is based on LSTM architecture, called MS-LSTMEA. This approach is

dedicated to predicting clinical events for each patient, such as drug class

and the date of the next medical appointment.

We chose LSTM architecture due to its ability to remember previous entries,

which makes it well suited for time series prediction.
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MS-LSTMEA successfully integrates multiple tabular data sources contain-

ing medical patients information and takes into account the temporal aspect

of EHRs. The architecture of MS-LSTMEA is showed in Figure 1. Every data

source is passed to fully connected layers that build individual embedding for

the source. These embeddings constitute abstract high level representations

of the data sources that are concatenated before being processed by an LSTM

unit. The goal is to predict the drug class at each visit and the date of the

next medical appointment for each patient.

In addition, we introduced a Self-attention mechanism at the level of the

Figure 1: MS-LSTMEA architecture

input. This improves both the results and the explanation of the predictions

and the model. Indeed, we are able to determine the most relevant features

that are used for each prediction thanks to the attention mechanism that is
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located at the input level. The importance of the sources and the visits can

then be deduced from the scores of the important features.

We represent each patient p ∈ P by a succession of np medical events (visits)

vt (1 ≤ t ≤ np): p = [v1, . . . , vnp ].

The goal is to predict the date of the next medical appointment (see Sec-

tion 3.3) or the drug class among a set of drug classes: Y = {y1, . . . , ym},

where m is the number of drug classes. The different knowledge sources are

usually concatenated (early fusion) and not separated in the literature since

they share a tabular representation. In our approach, we used joint fusion

were the high-level representations (embeddings) of sources are combined.

Guided by the EHR data that we used, we defined the three following

sources1:

• s(1): refers to the personal features (gender, age, etc.)

• s(2): corresponds to clinical features (clinical codes related to the di-

agnoses, the procedures of medications, etc.);

• s(3): contains comorbidity features that correspond to the presence of

other diseases in addition of hypertension (disease of interest).

Each source of information is transmitted to fully connected layers after

learning attention scores.

1Our architecture is enough general since we can add easily other data sources that

contain additional information about patients.
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2.1. Attention mechanism

A visit vt at time t of a patient p is represented by a vector that contains

the values of the sources of information (see Figure 1):

vt = [st(1), st(2), st(3))], where st(1), st(2) and st(3) are the three sources

that describe the patients p at the visit vt. The sources s(k)t (k ∈ {1, 2, 3})

are represented by numerical vectors of dimension dk. We introduce a set

of weights Wk (k ∈ {1, 2, 3}) that allows to calculate the feature-level self-

attention scores αt(k) associated to the source st(k) (k ∈ {1, 2, 3}). These

weights are learned during the training step and the attention scores α(k)t

(k ∈ {1, 2, 3}) are computed as follows:

αt(k) = softmax(Wk · st(k)) (1)

The Attention scores αt(k) associated to the input patient visit vt and

then transmitted to the fully connected layers in order to build the high level

of representation as follows:

ŝt(k) = αt(k)⊙ st(k), k ∈ {1, 2, 3} (2)

where ⊙ denotes element-wise product.

Note that, unlike most of existing approaches that introduce Attention scores

inside the LSTM unit (mostly with the aim to improve the prediction re-

sults), we add an Attention layer at the level of input sources to preserve

interpretability. The computed score is based on learned weights Wk (k ∈

{1, 2, 3}), that provide variables importance like in [35].

After this step, we obtain, for each patient p, high level representations s̃(k),
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of the sources s(k) (k ∈ {1, 2, 3}) using, a specific number lk of connected

hidden layers.

at time t, these embeddings are concatenated in order to form one mul-

tidimensional vector ṽt defined as follows2:

ṽt = [s̃t(1); s̃t(2); s̃t(3)] (3)

For the rest of the paper, the components of the high level representation of

the visit at time t, ṽt, are denoted as ṽtj, i.e.,

ṽt = [ṽt1, . . . , ṽtd], where d is the dimension of ṽt (4)

2.2. Visits representation

The embeddings built for the visit of each patient are fed sequentially to

the LSTM units that take into account the temporal aspect of these visits.

We use a one-to-one LSTM in order to provide a prediction at each time

step. Figure 2 illustrates the temporal aspect of our model.

A visit vt ∈ V , at time t, of patient p ∈ P is embedded into a represen-

tation space where it is transformed to a vector ṽt. The resulting vector is

fed to an LSTM unit that produces the prediction of the drug class or the

next medical appointment. An LSTM unit (see Figure 3) is composed of a

memory cell c, that keeps the observed information from the input to the

current time step, and three gates that control the state of the cell: forget

gate f that controls the retention or deletion of old information; input gate

2Note that the temporal aspect of the visits is not taken into account in the fully

connected layers. It is handled by the LSTM.
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Figure 2: Unfolded MS-LSTMEA Architecture

i, which selects the information that will be added to the cell state c; output

gate o that selects the information that will be returned by the cell state.
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Figure 3: LSTM Unit

The LSTM unit receives three inputs: ct−1, ht−1 and ṽt. ct−1 represents

the memory cell and ht−1 corresponds to the state of the LSTM unit at time

step (t− 1). The value of the initial LSTM state h0 is equal to 0.

At time step t, three gates ft, it, and ot are defined as follows:
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ft = sigmoid(Wf [ṽt;ht−1] + bf )

it = sigmoid(Wi[ṽt;ht−1] + bi)

ot = sigmoid(Wo[ṽt;ht−1] + bo)

(5)

Where (Wf , bf ), (Wi, bi), and (Wo, bo) are the (weights, biases) couples

associated to the three gates.

The unit state ht at the current time step t depends on the input ṽt, the

states of the three gates and the previous LSTM state ht−1. It is calculated

by:

c̃t = tanh(Wc[ṽt;ht−1] + bc)

ct = ft · ct−1 + it · c̃t

ht = ot · tanh(ct)

(6)

A each time step t, the state ht of the LSTM unit is updated before being

propagated to the following output layer in order to predict the drug class

or the date of the next medical appointment. For the classification task, we

used a softmax activation function in the output layer in order to compute

the probabilities πt associated to the predictions as following:

πt = softmax(W .ht + b) (7)

Where W represents the learned weights and b is the bias.

The prediction ỹt at time t of our model is defined by: ỹt = argmaxφ
i=1πti.

A categorical cross entropy function E is used to train the model 3, it is

defined a follows:

3In the case of regression tasks, we can use a linear activation function in the output
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E = − 1

#P

∑
p∈P

1

np

np∑
t=1

φ∑
i=1

[ytilog(πti)] (8)

Where #P represents the patients number in the training set, πt is the

model output probabilities and yt is the true target (class)4.

3. Experimentation

In order to validate our approach, we performed different experiments

whose results are presented in this section. For these experiments, we have

considered Hypertension, which is known as one of the major factors of heart

disease and stroke. Gathering regular medical measurements helps to consol-

idate the diagnosis of Hypertension. These measurements are exploited and

combined into EHRs with different sources in order to improve the prediction

of the right drug class for a patient and the date of patient’s next medical

appointment. This allows to help patients to self-manage their disease.

3.1. The Dataset

The dataset considered in the experiments comes from a real data col-

lected by 3,000 doctors, provided by CEGEDIM (medical prescription plat-

form used by 23,000 doctors in France). This dataset contains the char-

acteristics of 429,087 patients which are under follow-up for Hypertension.

Each patient is represented by a sequence of visits and received an average

of twenty visits. We have retained, for each visit, 15 characteristics (Table

1 describes the most important ones). A class of drug is associated to each

layer and a mean squared error loss function.
4Note that we represent the classes using One-Hot Encoding.
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patient at each visit. Six classes of drugs were distinguished: Alpha blockers

(AB), Beta-blockers (BB), Diuretics (D), Angiotens in II receptor blockers

(ARAII), ACE inhibitors (IEC), and Calcium channel blockers (IC) (see Ta-

ble 2).

The dataset was anonymized by removing sensitive data such as names,

Features Signification Source type

Gender Indicates the person’s gender

Age Patient’s age at time of prescription s(1)

Weight Patient’s last recorded weight

Height Patient’s last recorded height

Pulse Heart rate associated with medical

consultation

Diastolic Blood

Pressure

Diastolic blood pressure associated

with the medical consultation

Systolic Blood

Pressure

Systolic blood pressure associated

with the medical consultation

s(2)

Measure blood

sugar

Patient’s last measurement of blood

glucose

Insulin treatment Insulin drug class (if any)

Other treatment If there is drug class (other than in-

sulin)

s(3)

Table 1: Most important features of a visit.

addresses and phone numbers.
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Number of patients 429087

Number of input features 15

Average number of visits 20

Type of data Real/Boolean

Gender repartition Female: 41%, Male: 59%

Average age at the time of prescription 68.8

Average duration between visits (days) 63.8

Treatment classes BB, AB, IEC, ARAII, IC, D

Table 2: Datasets description.

3.2. Experiment setup

An LSTM model has been trained for predicting the drug class and the

date of their next medical appointment for a patient. The proposed model

receives a multidimensional vector vt representing the features related to the

visit at time t for a patient p. As explained previously, a visit vt is composed of

Personal features (s(1)), Clinical features (s(2)), and Comorbidities features

(s(3)), as shown in Table 1.

First, the data is split up into training, validation, and test sets. 60% of

patients data were used for training the models, 20% as the validation set

and 20% as the test set. An Attention mechanism is applied to each data

source. The output of the Attention mechanism is used, for embeddings’

construction, as input to a two fully connected layers with sigmoid activation

function. Then, each visit of each patient is represented by concatenating

the high level representations sources. It is this representation which is used

to proceed to the predictions by using LSTM units. The model has been
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trained for 1000 epochs 5. Dropout has been used between LSTM layers

to avoid overfitting. All model hyperparameters are fixed using grid search.

Note that we tested different variations of LSTM: LSTM with stacked layers,

Bi-LSTM and we did not see any improvement in results compared to vanilla

LSTM.

3.3. Experimental results

Our algorithm has been validated by comparing the results given by MS-

LSTMEA with those of other proposed methods that are based on different

DL architectures. We considered: Doctor AI [11] (based on (GRU), Med2vect

[37] (based on Auto-encoders), Deepr [17] (based on CNN), DeepCare [9]

(based on LSTM), DeepPatient [38] (based on Multilayer Perceptrons). The

following aspects have been evaluated:

• Prediction results.

• Influence of source type on the prediction results.

• Influence of the high level representation of sources on the prediction

results.

• Determining relevant clinical factors.

• Determining individual relevant clinical factors.

Prediction results

The results of the comparison of our MS-LSTMEA based Attention al-

gorithm with different algorithms, regarding the prediction of the drug class

5One epoch corresponds to one iteration over the entire training data.
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Approach Accuracy Precision Recall F1-Measure

MS-LSTMEA 80.4 ±0.03 78.4 ±0.02 83.9 ±0.2 81.0 ±0.04

Doctor AI 68.3 ±0.07 69.5 ±0.01 65.2 ±0.02 67.3 ±0.03

M2vect 65.4 ±0.02 59.5 ±0.07 69.2 ±0.11 64.0 ±0.05

DeepCare 55.5 ±0.11 54.6 ±0.03 64.9 ±0.01 59.3 ±0.09

Deepr 51.9 ±0.04 52.2 ±0.02 46.6 ±0.03 49.2 ±0.02

DeepPatients 58.8 ±0.01 57.2 ±0.03 69.3 ±0.01 62.7 ±0.13

Table 3: Comparative results while predicting the best drug class.

and the date of the next medical appointment, are reported in Tables 3 and

4. Table 3 shows that our approach greatly outperformed the existing ones

while predicting drug class. Indeed, MS-LSTMEA obtained an accuracy by

up to 80.4% while Doctor AI, which resulted in the second best score, ob-

tained barely 68.3%. This can be attributed to the use of LSTM instead

of GRU in DoctorAI since LSTMs remember longer sequences than GRUs.

While this is the main reason why LSTMs outperform other algorithms in

tasks requiring modeling long sequences, we will see hereafter that the intro-

duction of Attention mechanism further improves the results.

The prediction results are in the favor of our approach, compared to other

approaches. This confirms the efficiency of the proposed visit representation,

the use of an Attention mechanism and fully connected layers.

The prediction of the next medical appointment should be modeled as a re-

gression problem. The time between visits (time period) could be biased

because it depends not only on the availability of doctors and patients, but

also on patient’s health condition. In our approach, we decided to discretize

the time period. Thus, the regression problem was transformed into a clas-
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sification problem.

After having explored several discretization values, and having had several

discussions with physicians, we opted for a time period covering one month.

In the used EHRs, the smallest time between two visits is equal to 10 days

and the largest one is up to 200. So, seven classes Ck have been fixed, de-

pending on the time period as follows:

Let k be the number of months since the previous visit, so seven classes are

fixed, depending on the time period as follows:

• For k = 1 to 6: Class Ck = k, if (k − 1) months ≤ time period < k

months

• Class C7 = 7 if time period ≥ 6 months

In practice, physicians6 plan the next visit of their patient according to

the patient’s situation. When a patient’s Systolic Blood Pressure is very

high, physicians usually set their next visit very close (less than 25 days)

for therapeutic adjustments. The visit is planned within three months if the

Hypertension is severe, i.e., with associated risk factors (e.g., a patient who

had a previous stroke) or with comorbidities (e.g., diabetes). Renewal of

the drug class requires close monitoring. In the case of a renewal of a drug

class for a person with few health problems and for young patients whose

blood pressure has been stabilized for a long while, the delay goes beyond six

months. The use of classes incremented by month applies well to patients in

self-measurement at home as it creates an opportunity to detect any prob-

6Source: interview with Dr François Teboul, Emergency Doctor, Paris, May 2021
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Approach Accuracy Precision Recall F1-Measure

MS-LSTMEA 79.5 ±0.04 78.6 ±0.01 80.9 ±0.01 79.7 ±0.03

Doctor AI 68.2 ±0.02 66.7 ±0.11 72.2 ±0.04 69.4 ±0.03

M2vect 57.6 ±0.01 56.2 ±0.01 66.8 ±0.1 61.1 ±0.03

DeepCare 74.7 ±0.02 73.4 ±0.01 77.1 ±0.05 75.2 ±0.01

Deepr 59.4 ±0.03 58.2 ±0.05 65.6 ±0.07 61.7 ±0.01

DeepPatients 62.2 ±0.02 60.3 ±0.03 70.9 ±0.02 65.2 ±0.01

Table 4: Comparative results while predicting the time before the next medical appoint-

ment.

lematic situations beyond the above framework.

Table 4 also illustrates the superiority of our MS-LSTMEA based ap-

proach, which gives an accuracy of up to 79.5%.

The influence of source type on the prediction results

For studying the influence of combining multiple sources of information

on the performance, we have tested the different combinations7. Indeed, de-

termining the significant sources of features plays an important role in pre-

dicting Hypertension. Choosing the relevant combination of features plays

also a crucial role in improving the performance of the prediction model.

Table 5 shows that Clinical features outperform the Personal and the Co-

morbidity features when predicting the drug class or the date of the next

medical appointment. The prediction accuracy is improved by up to 44.7%

7The fact of having three distinct input sources, necessitated to set up seven experi-

ments.
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(s1) (s2) (s3) Accuracy (T) Accuracy (V)

0 0 1 22.2 ±0.03 13.7 ±0.04

0 1 0 49.3 ±0.01 51.8 ±0.03

0 1 1 64.3 ±0.02 59.1 ±0.05

1 0 0 24.5 ±0.04 19.4 ±0.03

1 0 1 36.3 ±0.06 46.2 ±0.02

1 1 0 67.7 ±0.07 57.1 ±0.01

1 1 1 80.4 ±0.03 72.3 ±0.14

Table 5: Influence of source type (1: included, 0: not included) on the prediction Accuracy.

when they are included to predict drug class. However, using only Personal

features gives a low accuracy (score of 24.5%). This can be interpreted by

the fact that the age, gender, weight etc. without Blood pressure measure-

ments do not really make sense for drug class prediction. What is important

to note is that the results show that we can produce more accurate predic-

tions (accuracy=80.4% for the prediction of the drug class) when merging

the different information sources, which provide measurements that can be

different and complementary in their nature.

Including solely Clinical features for predicting the time before the next med-

ical appointment gives 51.8% of accuracy that is higher than the accuracy

obtained with personal data only (19.4%) or with only Comorbidity features

(13.7%).

Influence of high level representation of sources on the prediction results

We evaluated the influence of high level representation of sources (con-

struction of embeddings). For that purpose, we tested our model with and
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Embeddings Accuracy (T) Accuracy (V)

Yes 69.3 ±0.02 65.7±0.03

No 80.4±0.03 72.3 ±0.14

Table 6: Influence of embeddings construction on the prediction results.

without construction of embeddings. In Table 6, it clearly appears that con-

struction of embeddings from EHRs provides new data representations and

improves prediction results whether when predicting the drug class or the

date of a patient’s next medical appointment. This is due to the ability of

our approach to build relevant high level representation from the initial data

sources using the fully connected layers.

Determining relevant clinical factors

The Attention scores over visits were used to construct heatmaps for

the models trained to predict the drug class or the date of a patient’s next

medical appointment. The softmax scores for each feature were averaged

over test patients who were predicted to belong to the same class in order

to obtain patients-averaged Attention maps. This is helpful for highlighting

the individual characteristics that had the most influence on the prediction

of a class of interest.

Figure 4(A) shows a heatmap while averaging the Attention scores of

patients when predicting the drug class (BB) at each visit. This shows, for

each visit, the most relevant features that lead to the prediction. Figure 4(B)

shows the averaged Attention scores obtained in Figure 4(A) on the features

for each patients visit. This shows the visits which contributed the most to

the prediction. We can see that Visits 4 and 10 are the most efficient visits
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for the prediction. Figure 4(C) shows the averaged Attention scores on the

visits to highlight the most significant features that are used for the predic-

tion. As we can see, the most significant features are ’Pulse’ and ’Diastolic

pressure’ with an Attention score equals respectively to 0.63, and 0.62. The

feature ’Systolic pressure’ has an Attention score up to 0.58. In summary,

we can confirm, once more, that the most significant features are the clinical

ones.

Finally, the Attention mechanism has been also applied to each data source

to observe the importance of sources. By averaging the scores of the features

that constitute each data source, we measured their importance scores. Fig-

ure 4(D) shows that the most important source type for prediction of the

drug class is the Clinical features with an Attention score of up to 0.53.

Figure 4: Attention heatmaps averaged over all test patients with visit Attention, features,

and sources with the highest mean activation per visit while predicting the drug class BB.
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The second heatmap of Figure 5 shows the patients-averaged Attention

scores when predicting the date of the next medical appointment (class C1).

The results shows that we can extract the features with the highest Attention

scores for each visit from Figure 5(A): for visit 1, ’Pulse’ and ’Systolic Blood

Pressure’ have the highest score. The most relevant visits can be extracted

from Figure 5(B): as we can see, the visits 9, 10, and 11 contribute the most

to the prediction. The most important features are given by the Figure 5(C):

as shown, the features ’Diastolic pressure’ and ’Pulse’ are the most relevant

in predicting the next medical appointment with respectively 0, 616, 0, 61

and 0, 60 as Attention scores. The importance of data sources is given by

the Figure 5(D): we can observe that, similarly, the most important source

for this prediction is the Clinical Features source with an Attention score of

up to 0.54.

Determining relevant individual clinical factors

We have generated individualized predictions and Attention visualization

heatmaps for each patient for the two predictions task (the drug class and

the date of the next medical appointment).

Figures 6 and 7 show the same information as in the previous section for

each patient. Heatmaps are built for each patient individually in (A). Then,

we plotted the Attention scores related to visits (B), features (C), and data

sources (D). Figure 6(B) shows that visit 5 is the most relevant one for pre-

dicting the drug class for this patient. Figure 6(C) shows that ’Diastolic

pressure’, ’Pulse’, and ’Prescription blood sugar’ are the most important fea-

tures with respectively 0.78, 0.74, and 0.74 as Attention scores. Figure 6(D)

confirms, once more, that the most important features belong to the clinical
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Figure 5: Attention heatmaps averaged over all test patients with visit Attention, features,

and sources with the highest mean activation per visit while predicting the date of the

next medical appointment (class C1).

features with an Attention score up to 0.7.

Similarly, the heatmap of the Figure 7(B) shows that for the same patient,

the visit 4 is the most determinant one, the features ’Duration’ and ’Diastolic

pressure’ are the most determinant features regarding the prediction of the

next medical appointment with respectively 0.71 and 0.60 as Attention scores

(Figure 7(C)). This figure illustrates the sources scores and definitely confirms

that clinical features represent the most determinant ones with an Attention

score of up to 0.47.

3.4. Discussion

This study presents a deep learning model based on LSTM and an At-

tention mechanism for performing two prediction tasks that are important in
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Figure 6: Personalized Attention heatmap while predicting the drug class BB for one

patient.

Figure 7: Personalized Attention map for the prediction of the next medical appointment

for one patient (class C1).
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Hypertension management: the drug class for patients and the date of their

next medical appointment. The model gives high accuracy of up to 80.4%

while predicting the drug class and an accuracy of up to 72.3% while predict-

ing the date of the next medical appointment. The results showed that high

level representation of Personal, Clinical, and Comorbidity features realized

separately and differently, from EHRs using a fully connected layers, with a

simple Attention mechanism, is a strategy which outperforms models that

ignore any of these aspects. Moreover, we showed that combining different

features results gives better performance than using either of them alone. In

addition, our model proved itself to be able to capture the significant fea-

tures, sources or visits that contribute the most to the predictions thanks to

the use of the Attention mechanism. Thus, our model can easily provide an

explainable prediction.

There are a many works regarding the prediction of high Blood pressure and

cardiovascular risk, but few address the prediction of the drug class for Hy-

pertension. Close to this is the work of Xiangyang and his colleagues [39] on

the prediction of the optimal therapeutic pathway for Hypertension. They

used RNNs including LSTM to predict the probability of reaching a target

BP (Blood Pressure) control with different drug class pathways. As in our

case, LSTMs reveal a high degree of accuracy in prediction. We think that

the strategies of predicting the drug class and the optimal pathway can be

considered as two complementary ways that can help patients and doctors

collaborate and improve Hypertension management. Another related work

concerns the personalization of hypertensive drugs [40]. The authors consid-

ered five antihypertensive drug prescriptions for a 14,581 inpatient population
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where each patient is described by 15 features and belongs to the success-

ful group if its DBP (Diastolic BP) <90 and SDB (Systolic BP) <140, to

the unsuccessful group otherwise. To reveal the difference in characteristics

of the features between the two groups, the authors applied statistical and

machine learning methods to assign a weight to each feature. Each weight

represents the importance of a feature for a patient regarding the effective-

ness of a drug. The results of this study can help doctors in choosing the

most adequate drugs for patients. Unfortunately, unlike in our study, the

considered dataset does not take into account the temporal aspects related

to Hypertension drug class. Moreover, the study could have gained in relia-

bility if the considered dataset had been larger.

A limitation in the construction of the predictive model of current research is

related to the use of only demographic features [41] and clinical features [42].

The former discards a huge proportion of information in each patient records,

whereas the latter ignores the knowledge and guidelines coming from human

intelligence. Our experiments showed that using information regarding co-

morbidities improves the performance of deep learning algorithms. Such

expert knowledge is considered as a domain-specific knowledge which is also

a big challenge since it impacts the progression of the disease and the state

of the patient.

When dealing with deep learning models for predicting clinical events with

EHRs, it is important to ensure that the model is flexible. Such flexibility

ensures the possibility of adding new data sources. In fact, the combination

of multiple data inputs (biological, pathological, medical images, etc.) raises

expectations and hopes in terms of understanding the causes and mechanisms
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of diseases as well as for the personalization of medical monitoring. Some of

existing works did not take into account the integration of new data sources

such as the work in [17]. Our MS-LSTMEA approach is integrative since

it can easily handle new data sources, either being discrete or categorical,

regardless of heterogeneity. This is because we build for each data source

differently and separately an embedding to represent a visit.

4. Conclusion

In this work, we have proposed MS-LSTMEA, which is an LSTM-based

model that can learn efficient patient representation from a large amount of

electronic patient records and predict future events for patients, such as the

drug class or the date of their next medical appointment. We have tested

MS-LSTMEA on a large dataset of real EHRs, which achieved 82.90% ac-

curacy and significantly outperformed many existing approaches. We have

also shown that high level representation of Personal, Clinical, and Comor-

bidities features from EHRs, with an LSTM network highly improves the

performance.

In the conducted experimentation, we have used a real set of data col-

lected from 3,000 doctors, provided by CEGEDIM (medical prescription plat-

form used by 23,000 doctors in France). The provided dataset describes the

characteristics of 429,087 patients, each of whom is represented by a series

of visits. Our method is generic enough to integrate several kinds of knowl-

edge sources (Ex. genomics, images...). The approach and the results can

be used to design a Decision Support System (DSS) that could be used by

hospitals and physicians for Telemonitoring (follow-up) of Hypertensive pa-
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tients in terms of predicting the drug class and the date of their next medical

appointment. At the last, but not the least, the proposed approach can help

patients self-manage their Hypertension while providing explanations for the

decisions of the model, contributing to the challenges of explainable Artifi-

cial Intelligence (AI), a subject of high interest in the current AI landscape

[43][44].

This work raises different research perspectives. Indeed, we used the LSTM

to model the temporal trajectory of patient visits. However, other models like

the transformer [45] have recently proved their efficiency in the processing of

sequential information and especially the EHRs [46]. Future work will focus

on these models. In order to improve the explainability and transparency

of our approach, we plan to combine the neural networks with symbolic AI

approaches. We will focus on applying a multi-agent argumentation proto-

col that will be able to deal with prior knowledge injection from the official

guidelines behind Hypertension. This has already been successfully done

with an ensemble method based on multilayer perceptrons in [47].
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