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Abstract. The Majority Rule Sorting (MR-Sort) method assigns alternatives evaluated on multiple cri-
teria to one of the predefined ordered categories. The Inverse MR-Sort problem (Inv-MR-Sort) consists in
computing MR-Sort parameters that match a dataset. Existing learning algorithms for Inv-MR-Sort con-
sider monotone preference on criteria. We extend this problem to the case where the preference on criteria
are not necessarily monotone, but possibly single-peaked (or single-valley). We propose a mixed-integer
programming based algorithm that learns from the training data the preference on criteria together with
the other MR-Sort parameters. Numerical experiments investigate the performance of the algorithm, and
we illustrate its use on a real-world case study.
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1 Introduction

In this paper, we consider multiple criteria sorting problems in which alternatives evaluated on
several criteria are to be assigned to one of the pre-defined ordered categories C1, C2, ..., Cp,
C1 (Cp, respectively) being the worst (best, respectively) category.

Many multiple criteria methods have been proposed in the literature (see e.g. [12],[40]). We
are interested in a pairwise comparison based method: the Non-Compensatory Sorting model
(NCS, see [4,5]). NCS assigns alternatives to categories based on the way alternatives compare
to boundary profiles representing frontiers between consecutive categories and can be viewed
as an axiomatic formulation of the Electre Tri method (see [34]). More specifically, we consider
a particular case of NCS in which the importance of criteria is additively represented using
weights: the Majority Rule Sorting (MR-Sort, see [26]).

In real-world decision problems involving multiple criteria sorting, the implementation of a
sorting model requires eliciting the decision-maker’s (DM) preferences and adequately repre-
senting her preferences by setting appropriate values for the preference-related parameters. It is
usual to elicit the sorting model parameters indirectly from a set of assignment examples, i.e.,
a set of alternatives with corresponding desired categories. Such preference learning approach
has been developed for MR-Sort (Inv-MR-Sort, see, e.g. [26], [37]), and makes it possible to
compute MR-Sort parameters that best fit a learning set provided by the DM.

Such a preference learning approach requires considering criteria involving monotone prefer-
ences (criteria to be maximized or minimized). This applies in the context of Multiple Criteria
Decision Aid (MCDA), in which the decision problem is structured and carefully crafted through
an interaction between the DM and an analyst. In contrast, we are interested in this paper in
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application in which the evaluations of alternatives on criteria do not necessarily induce mono-
tone preferences. We illustrate hereafter such a situation in the two illustrative examples.

Example 1: Consider a veterinary problem in cattle production. A new cattle disease should
be diagnosed based on symptoms: each cattle should be classified as having or not having the
disease. New scientific evidence has indicated that the presence of substance A in the animal’s
blood can be predictive in addition to usual symptoms. Still, there is no clue how the level
of substance A should be considered. Does a high, a low level, or a level between bounds of
substance A indicate sick cattle? The veterinarians’ union has gathered a large number of cases
and wants to benefit from this data to define a sorting model based on usual symptom criteria
and the level of substance A in the animal’s blood. Hence, the sorting model should be inferred
from data, even if the way to account for the substance A level is unknown.

Example 2: A computer-products retail company is distributing a new Windows tablet and
wants to send targeted marketing emails to clients who might be interested in this new product.
To do so, clients are to be sorted into two categories: potential buyer and not interested. To avoid
spamming, only clients in the former category will receive a telephone call. To sort clients, four
clients characteristics are considered as criteria, all of them being homogeneous to a currency
e.g. e : the turnover over the last year of (i) Windows PC, (ii) Pack Office, (iii) Linux PC, and
(iv) Dual boot PC. As the company advertises a new Windows tablet, both first two criteria
are to be maximized (the more a client buys Windows PCs and Pack Office, the more she is
interested in products with a Windows system), and the third criterion is to be minimized (the
more a client buys Linux PCs, the less he/she is interested in products with a Windows system).
The marketing manager is convinced that the last criterion should be considered but does not
know if it should be maximized or minimized if preferences are single-peaked; a subset of clients
has been partitioned into not interested/potential buyers. Based on this dataset, the goal is to
simultaneously learn the classifier parameters and the preference direction for the last criterion.

In the previous examples, it is unclear for the DM how to account for some of the data (level
of substance A in blood, Dual boot PC turnover) on the classification of alternatives (cattle,
client). These examples correspond to single-peaked criteria, i.e. criteria for which preferences
are defined according to a “peak” corresponding to the best possible value; on such criteria,
the preference decreases with the distance to this peak. In other words, the peak corresponds
to a target value below which the criterion is to be maximized, and above which the criterion
is to be minimized. Such criteria are frequent in the medical domain (getting close to a normal
blood sugar level), chemical applications (get close to a neutral PH), ...

In MCDA, there exist works that account the non-monotonicity of preferences in value-
based models (see e.g. [9,24,10], and Section 2). However, there does not exist, to the best of
our knowledge, such work concerning pairwise comparisons methods. This paper aims to extend
the literature on MCDA for non-monotone criteria to outranking methods and, in particular,
to MR-Sort. Specifically, we tackle the problem of inferring from a dataset an MR-Sort with
possibly non-monotone criteria. The challenge is that this inference problem is already known
to be difficult with monotone criteria, see [26].

More specifically, we assume that evaluations on criteria should be either maximized, mini-
mized or corresponds to single-peaked (or single-valley) preferences. We propose a mixed-integer
mathematical programming (MIP) approach to learn the MR-Sort parameters and criteria type
(gain, cost, single-peaked, or single-valley) from a dataset of assignment examples.
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The paper is organized as follows. Section 2 reviews the existing works in the field of MCDA
that consider criteria that are not necessarily monotone. The NCS and MR-Sort methods
are presented and extended to the case of single-peaked (single-valley) criteria in section 3.
In section 4 we specify the Inv-MR-Sort problem in the presence of single-peaked criteria,
and a MIP based algorithm is proposed in Section 5. Section 6 presents the performance of
the algorithm on a generated dataset and a real-world case study. The last section groups
conclusions and further research issues.

2 Related work

In Multiple Criteria Decision Aid (MCDA), preference learning methods require a preference
order on criteria. Such preference order on criteria directly results from the fact that alternatives
evaluations/scores correspond to performances that are to be maximized (profit criterion) or
minimized (cost criterion), which result in monotone preference data. In multicriteria sorting
problems, this boils down to a higher evaluation on a profit criterion (on a cost criterion,
respectively) favours an assignment to a higher category (to a lower category, respectively).

However, there are numerous situations in which the criteria evaluation is not related to
category assignment in a monotone way. Such a situation is indeed considered in the induction
of monotone classification rules from data.

Classification methods in the field of machine learning usually account for attributes (fea-
tures) that are not supposed to be monotone. Some specialized methods have been proposed to
consider monotone feature (see [20], [7]), for decision trees [14], or for decision rules [18]. Some of
these approaches have been extended to partially monotone data (see [33], [38]). Blaszczyǹski
et al. in [3] present a non-invasive transformation applied to a dominance-based rough set
approach to discover monotonicity relationships (positively/negatively global/local monotonic-
ities) between attributes and the decision considering non-ordinal and ordinal classification
problems. With their proposed transformation applied on non-monotone data, they can deduce
laws with interval conditions on attributes because they are positively monotone in one part of
the evaluation space and negatively monotone in the other.

In the context of the multicriteria decision aid, several preference learning/disaggregation
approaches consider non-monotone preferences on criteria. To the best of our knowledge, how-
ever, almost all these contributions consider a utility-based preference model, in which non-
monotone attributes are represented using non-monotone marginal utility functions.

Historically, Despotis and Zopounidis [9] are the first to consider single peaked value func-
tions with an additive piece-wise linear model. The UTA-NM method proposed in [24] allows
for non-monotone marginals and prevents over-fitting by introducing a shape penalization.
Also, in the context of an additive utility model, Eckhardt and Klieger [13] define a heuris-
tic pre-processing technique to encode the original non-monotone attributes input into a space
monotone; in other words, each alternative x originally described by attribute values (x1, ..., xn)
is encoded values f1(x1), ..., fn(xn), where fi(xi) intuitively corresponds to an “average” of DM’s
ratings across objects that have value xi in attribute i. Another contribution proposed by [10]
proposes a heuristic approach to learn non-monotone additive value-based sorting model from
data.
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Liu et al. [27] model sorting with a piece-wise linear additive sorting model, using a regular-
ization framework to limit non-monotonicity. Guo et al. [19] propose a progressive preference
elicitation for multicriteria sorting using a utility model with non-monotone attributes. A frame-
work to rank alternatives with a utility model using slope variation restrictions for marginals
is proposed in [16,17]. Based on a mixed-integer program, [21,22] proposes to disaggregate an
additive piece-wise linear sorting model with different types of monotone (increasing, decreas-
ing) and non-monotone (single-peaked, single caved) marginal value functions. Recently some
contributions aim at inferring non-compensatory sorting models involving non-monotone cri-
teria from data. Sobrie et al. [36] consider a medical application in which some attributes are
single-peaked, and duplicates these attributes into two criteria (to be maximized and mini-
mized). Moreover, [30] proposed a heuristic to learn an MR-Sort model and criteria preference
directions from data. [36] and [30] are forerunners to the present work, but do not investigate
in a systematic way how to learn MR-Sort models from non-monotone data, which justifies the
present work.

In this paper, we extend the literature in the following way: we consider non-monotone
preferences in the context of an outranking-based sorting model, whereas the literature mainly
focuses on additive value-based preference models. We propose a learning-based formulation in
which the MR-Sort sorting model and the (possibly non-monotone) structure of preferences on
criteria are simultaneously inferred from a set of assignment examples.

3 NCS, MR-Sort, and single-peaked preferences

3.1 NCS: Non-compensatory Sorting

Non-compensatory Sorting (NCS) [4,5] is an MCDA sorting model originating from the ELEC-
TRE TRI method [15]. NCS can be intuitively formulated as follows: an alternative is assigned
to a category if (i) it is better than the lower limit of the category on a sufficiently strong subset
of criteria, and (ii) this is not the case when comparing the alternative to the upper limit of
the category.

Consider the simplest case involving 2 categories Good (G) and Bad (B) with the following
notations. We denote Xi the finite set of possible values on criterion i, i ∈ N = {1, . . . , n};
we suppose w.l.o.g. that Xi = [mini,maxi] ⊂ R. Hence, X =

∏
i∈N Xi represents the set of

alternatives to be sorted. We denote Ai ⊆ Xi the set of approved values on criterion i ∈ N .
Approved values on criterion i (xi ∈ Ai) correspond to values contributing to the assignment
of an alternative to category G. In order to assign alternative a to category G, a should have
approved values on a subset of criteria which is “sufficiently strong”. The set F ⊆ 2N contains
the “sufficiently strong” subsets of criteria; it is a subset of 2N up-closed by inclusion. In this
perspective, the NCS assignment rule can be expressed as follows:

x ∈ G iff {i ∈ N : xi ∈ Ai} ∈ F , ∀x ∈ X (1)

With more than two categories, we consider an ordered set of p categories Cp ▷ · · ·▷Ch ▷
· · ·▷C1, where ▷ denotes the order on categories. Sets of approved valuesAh

i ⊆ Xi on criterion i
(i ∈ N ) are defined with respect to a category h (h = 2..p), and should be defined as embedded
sets such that A2

i ⊇ ... ⊇ Ap
i . Analogously, sets of sufficiently strong criteria coalitions are

relative to a category h, and are embedded as follows: F2 ⊇ ... ⊇ Fp. The assignment rule is
defined bellow, for all x ∈ X, where A1

i = Xi, Ap+1
i = ∅, F1 = P(N ), and Fp+1 = ∅.
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x ∈ Ch iff {i ∈ N : xi ∈ Ah
i } ∈ Fh and {i ∈ N : xi ∈ Ah+1

i } /∈ Fh+1 (2)

A particular case of NCS corresponds to the MR-Sort rule [26]. When the families of suffi-
cient coalitions are all equal F2 = ... = Fp = F and defined using additive weights attached to
criteria, and a threshold: F = {F ⊆ N :

∑
i∈F wi ≥ λ}, with wi ≥ 0,

∑
i wi = 1, and λ ∈ [0, 1].

Moreover, as the finite set of possible values on criterion i, Xi = [mini,maxi] ⊂ R, the order
on R induces a complete pre-order ≽i on Xi. Hence, the sets of approved values on criterion
i, Ah

i ⊆ Xi (i ∈ N , h = 2...p) are defined by ≽i and bhi ∈ Xi the minimal approved value in
Xi at level h: Ah

i = {xi ∈ Xi : xi ≽i b
h
i }. In this way, bh = (bh1 , . . . , b

h
n) is interpreted as the

frontier between categories Ch−1 and Ch; b1 = (min1, ...,minn) and bp+1 = (max1, ...,maxn)
are the lower frontier of C1 and the upper frontier of Cp. Therefore, the MR-Sort rule can be
expressed as:

x ∈ Ch iff
∑

i:xi≥bhi

wi ≥ λ and
∑

i:xi≥bh+1
i

wi < λ (3)

It should be emphasized that in the above definition of the MR-Sort rule, the approved
sets Ah

i can be defined using bh ∈ X, which are interpreted as frontiers between consecutive
categories, only if preferences ≽i on criterion i are supposed to be monotone. A criterion can
be either defined as a gain or a cost criterion:

Definition 1. A criterion i ∈ N is:

– a gain criterion: when xi ≥ x′
i ⇒ xi ≽i x

′
i

– a cost criterion: when xi ≤ x′
i ⇒ xi ≽i x

′
i

Indeed, in case of a gain criterion, we have xi ∈ Ah
i and x′

i ≥ xi ⇒ x′
i ∈ Ah

i , and xi /∈ Ah
i and

xi > x′
i ⇒ x′

i /∈ Ah
i . Therefore Ah

i is specified by bhi ∈ Xi: Ah
i = {xi ∈ Xi : xi ≥ bhi }. In case of

a cost criterion, we have xi ∈ Ah
i and x′

i ≤ xi ⇒ x′
i ∈ Ah

i , and xi /∈ Ah
i and xi < x′

i ⇒ x′
i /∈ Ah

i .
Therefore Ah

i is specified by bi ∈ Xi: Ah
i = {xi ∈ Xi : xi ≤ bhi }. We study hereafter the MR-Sort

rule in the case of single-peaked preferences [2].

3.2 Single-peaked and single-valley preferences

In this paper, we consider preferences that are not necessarily monotone on all criteria.

Definition 2. Preferences ≽i on criterion i are:

– single-peaked preferences with respect to ≥ iff there exist pi ∈ Xi such that: xi ≤ yi ≤ pi ⇒
pi ≽i yi ≽i xi, and pi ≤ xi ≤ yi ⇒ pi ≽i xi ≽i yi

– single-valley preferences with respect to ≥ iff there exist pi ∈ Xi such that: xi ≤ yi ≤ pi ⇒
pi ≽i xi ≽i yi, and pi ≤ xi ≤ yi ⇒ pi ≽i yi ≽i xi

In an MCDA perspective, single-peaked preferences (single-valley, respectively) can be in-
terpreted as a gain criterion to be maximized (a cost criterion to be minimized, respectively)
below the peak pi, and as a cost criterion to be minimized (a gain criterion to be maximized,
respectively) above the peak pi. Note also that single-peaked and single-valley preferences em-
brace the case of gain and cost criteria: a gain criterion corresponds to single-peaked preferences
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when pi = maxi or single-valley preferences with pi = mini, and a cost criterion corresponds
to single-peaked preferences when pi = mini or single-valley preferences with pi = maxi.

When considering MR-Sort with single-peaked criteria, approved sets can not be represented
using frontiers between consecutive categories. However, approved sets should be compatible
with preferences, i.e. such that:{

xi ∈ Ah
i and x′

i ≽i xi ⇒ x′
i ∈ Ah

i

xi /∈ Ah
i and xi ≽i x

′
i ⇒ x′

i /∈ Ah
i

(4)

In case of a single-peaked criterion with peak pi, we have:
xi ∈ Ah

i and pi ≤ x′
i ≤ xi ⇒ x′

i ∈ Ah
i

xi ∈ Ah
i and xi ≤ x′

i ≤ pi ⇒ x′
i ∈ Ah

i

xi /∈ Ah
i and pi ≤ xi ≤ x′

i ⇒ x′
i /∈ Ah

i

xi /∈ Ah
i and x′

i ≤ xi ≤ pi ⇒ x′
i /∈ Ah

i

(5)

Therefore it appears that with a single-peaked criterion with peak pi, the approved sets Ah
i can

be specified by two thresholds b
h

i , b
h
i ∈ Xi with bhi < pi < b

h

i defining an interval of approved

values: Ah
i = [bhi , b

h

i ]. Analogously, for a single-valley criterion with peak pi, the approved sets

Ah
i can be specified using b

h

i , b
h
i ∈ Xi (such that bhi < pi < b

h

i ) as Ah
i = Xi \ ]bhi , b

h

i [

Given a single-peaked criterion i for which approved set is defined by the interval Ah
i =

[bhi , b
h

i ]. Consider the function ϕi : Xi → Xi defined by ϕi(xi) = |xi − b
h
i +bhi
2

|, i.e., the absolute

value of xi − b
h
i +bhi
2

. Then, the approved set can be conveniently rewritten as : Ah
i = {xi ∈ Xi :

ϕi(xi) ≤ b
h
i −bhi
2

}. In other words, when defining approved sets, a single-peaked criterion can be
re-encoded into a cost criterion, evaluating alternatives as the distance to the middle of the

interval [bhi , b
h

i ], and a frontier corresponding to half the width of this interval.

Analogously, given a single-valley criterion i for which approved set are defined by the inter-

val Ah
i = Xi \ ]bhi , b

h

i [. Using the same function ϕi, approved set can be conveniently rewritten

as : Ah
i = {xi : ϕ(xi) ≥ b

h
i −bhi
2

}. Hence, when defining approved sets, a single-valley criterion
can be re-encoded into a gain criterion, evaluating alternatives as the distance to the middle of

the interval [bhi , b
h

i ], and a frontier corresponding to half the width of this interval.

4 Inv-MR-Sort: Learning an MR-Sort model from assignment
examples

MR-Sort preference parameters, e.g. weights, majority level, and limit profiles, can be either
initialized by the “end-user”, i.e. the decision-maker, or learned through a set of assignment
examples called a learning set. We are focusing on the learning approach. The aim is to find
the MR-Sort parameters that “best” fit the learning set.

We consider as input a learning set, denoted L, composed of assignment examples. Here,
an assignment example refers to an alternative a ∈ A⋆ ⊂ X, and a desired category c(a) ∈
{1, . . . , p}. In our context, the determination of MR-sort parameters values relies on the res-
olution of a mathematical program based on assignment examples: the Inv-MR-Sort problem
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takes as input a learning set L and computes weights (wi, i ∈ N ), majority level (λ), and limit
profiles (bh, h = 2..p) that best restore L, i.e. that maximizes the number of correct assignments.

This learning approach – also referred to as preference disaggregation – has been previously
considered in the literature. In particular, [31],[39] learned the ELECTRE TRI parameters using
mathematical programming formulation (non-linear programming for the former, mixed-integer
programming for the latter). In contrast, [11] propose an evolutionary approach to do so. Later,
a more amenable model, the MR-Sort – which derives from the ELECTRE TRI method and
requires fewer parameters than ELECTRE TRI – was introduced by Leroy et al. in [26]. They
proposed a MIP implementation for solving the Inv-MR-Sort problem. In contrast, Sobrie et
al. [35] tackled it with a metaheuristic, and Belahcene et al. [1] with a Boolean satisfiability
(SAT) formulation. Other authors proposed approaches to infer MR-Sort incorporating veto
phenomenon [28], and imprecise/missing evaluations [29], and [32] presented an interactive
elicitation for the learning of MR-Sort parameters with given profiles values. Recently [23]
proposes an enriched preference modelling framework that accounts for a different type of
input. Lastly, [30] proposed an extension of Sobrie’s algorithm for solving the Inv-MR-Sort
problem with latent preference directions, i.e. considering criteria whose preference direction,
in terms of gain/cost, is not known beforehand.

In this paper, we aim to extend the resolution of the Inv-MR-Sort problem to the case
where each criterion can be either a cost criterion, a gain criterion, a single-peaked criterion,
or a single-valley criterion.

5 Exact resolution of Inv-MR-Sort with single-peaked criteria

In this section, we present a Mixed Integer Programming (MIP) formulation to solve the
Inv-MR-Sort problem when each criterion can either be a cost, gain, single-peaked, or single-
valley criterion. More precisely, the resolution will take as input a learning set containing
assignment examples and computes:

– the nature of each criterion (either cost, gain, single-peaked, or single-valley criterion),

– the weights attached to criteria wi, and an associated majority level λ,

– the frontier between category Ch and Ch+1, i.e. – as defined in Section 3 – the value bhi
such that if criterion i is a cost or a gain criterion, and the interval [bhi , b

h

i ] if criterion i is a
single-peaked or single-valley criterion.

For the sake of simplicity, we describe the mathematical formulation in the case of two
categories; the extension to more than two categories is discussed in Section 5.6.

Let us consider a learning set L, provided by the Decision Maker, containing assignment
examples corresponding to a set of reference alternatives A∗ = A∗1 ∪ A∗2 partitioned into 2
subsets A∗1 = {aj ∈ A∗ : aj ∈ C1} and A∗2 = {aj ∈ A∗ : aj ∈ C2}. We denote by J∗, J∗1, and
J∗2 the indices j of alternatives contained in A∗, A∗1, and A∗2, respectively.

In the MIP formulation proposed in this section, we represent single-peaked or single-valley
criteria only. As discussed in Section 3.2, this is not restrictive because the cost and gain criteria
are particular cases of single-peaked (or single-valley) criteria, with a peak corresponding to
the endpoints of the evaluation scale.
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5.1 Variables and constraints related to approved sets and profiles

Suppose that criterion i is single-peaked and that the set of approved values is defined by

Ai = [bi, bi]. Let us denote b⊥i =
bi+bi
2

the middle of the interval of approved values. Consider

an alternative aj ∈ A∗ in the learning set; its evaluation on criterion i is approved (i.e, aji ∈ Ai)

if aji ∈ [bi, bi]. The condition |aji − b⊥i | ≤
bi−bi
2

guaranties that aji ∈ [bi, bi]. This allows to rewrite

the set Ai as Ai = {xi ∈ Xi : |xi − b⊥i | ≤
bi−bi
2

}.
To test whether aji ∈ Ai, we define αj

i = aji − b⊥i such that aji ∈ Ai ⇔ |αj
i | ≤

bi−bi
2

. In
other words, we re-encode criterion i as a cost criterion representing the distance to b⊥i , and ac-

cepted values correspond to αj
i which are lower or equal to

bi−bi
2

(i.e., the half the interval [bi, bi]).

In the following, we denote bi =
bi−bi
2

. Hence, in our formulation, the sets Ai are defined

using two variables: b⊥i representing the middle of the interval [bi, bi], and bi representing half
of the interval [bi, bi] allowing to define Ai using bi and b⊥i as Ai = {xi ∈ Xi : |xi − b⊥i | ≤ bi}.

In order to linearize the expression |αj
i | = |aji − b⊥i | in the MIP formulation, we consider two

positive variables αj+
i , αj−

i (defined such that |αj
i | is equal to αj+

i + αj−
i ) and binary variables

βj
i verifying constraints (6a)-(6c), where M is an arbitrary large positive value. Constraints

(6b) and (6c) ensure that at least one variable among αj+
i and αj−

i is null.

αj
i = aji − b⊥i = αj+

i − αj−
i (6a)

0 ≤ αj+
i ≤ βj

iM (6b)

0 ≤ αj−
i ≤ (1− βj

i )M (6c)

Let δij ∈ {0, 1}, i ∈ N , j ∈ J∗, be binary variables expressing the membership of evaluation
aji in the approved set Ai (δij = 1 ⇔ aji ∈ Ai). In order to specify constraints defining δij, we
need to distinguish the case where criterion i is a single-peaked or a single-valley criterion. In
the first case, the single-peaked criterion is transformed into a cost criterion and the following
constraints hold :

δij = 1 ⇐⇒ |αj
i | ≤ bi =⇒ M(δij − 1) ≤ bi − (αj+

i + αj−
i ) (7a)

δij = 0 ⇐⇒ |αj
i | > bi =⇒ bi − (αj+

i + αj−
i ) < M δij (7b)

δij ∈ {0, 1} (7c)

In the second case, the single-valley criterion is transformed conversely into a gain criterion as
follows :

δij = 1 ⇐⇒ |αj
i | ≥ bi =⇒ M(δij − 1) ≤ (αj+

i + αj−
i )− bi (8a)

δij = 0 ⇐⇒ |αj
i | < bi =⇒ (αj+

i + αj−
i )− bi < M δij (8b)

δij ∈ {0, 1} (7c)

In order to jointly consider both cases (7a)-(7b) and (8a)-(8b) in the MIP, we introduce a
binary variable σi, i ∈ N which indicates whether criterion i is a single-peaked (σi = 1) or
single-valley criterion (σi = 0). When σi = 1, the constraints (9c) and (9d) concerning the
single-peaked criteria hold while the constraints (9a) and (9b) for single-valley criteria are
relaxed, and conversely when σi = 0.
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−M σi +M(δij − 1) ≤ αj+
i + αj−

i − bi (9a)

αj+
i + αj−

i − bi < M δij +M σi (9b)

M.(σi − 1) +M(δij − 1) ≤ bi − αj+
i − αj−

i (9c)

bi − αj+
i − αj−

i < M δij +M (1− σi) (9d)

δij ∈ {0, 1} (7c)

σi ∈ {0, 1} (9e)

Lastly, in order to restrain the bounds of the single-peaked/single-valley interval within
[mini,maxi], we add the 2 following constraints :

b⊥i − bi ≥ mini (10a)

b⊥i + bi ≤ maxi (10b)

5.2 Variables and constraints related to weights

As in [26], we define the continuous variables cij, i ∈ N , j ∈ J∗ such that δij = 0 ⇔ cij = 0
and δij = 1 ⇔ cij = wi, where wi ≥ 0 represent the weight of criterion i with the normalization
constraint:

∑
∀i∈N wi = 1. To ensure the correct definition of cij, we impose:

cij ≤ δij (11a)

δij − 1 + wi ≤ cij (11b)

cij ≤ wi (11c)

0 ≤ cij (11d)

5.3 Variables and constraints related to the assignment examples

So as to check whether assignment examples are correctly restored by the MR-Sort rule, we
define binary variables γj ∈ {0, 1}, j ∈ J∗ equal to 1 when the alternative aj is correctly
assigned, 0 otherwise. The constraints below guarantees the correct definition of γj (where
λ ∈ [0.5, 1] represents the MR-Sort majority threshold).∑

i∈N cij ≥ λ+M(γj − 1), ∀j ∈ J∗2 (12a)∑
i∈N cij < λ−M(γj − 1), ∀j ∈ J∗1 (12b)

5.4 Objective function

The objective for the Inv-MR-Sort problem is to identify the MR-Sort model which best matches
the learning set. Therefore, in order to maximize the number of correctly restored assignment
examples, the objective function can be formulated as: Max

∑
j∈J∗ γj

Finally, the MIP formulation for the Inv-MR-Sort problem with single-peaked and single
valley criteria is given bellow (where M an arbitrary large positive value, and ε an arbitrary
small positive value). Table 1 synthesizes the variables involved in this mathematical program.
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Variable Domain Number of variables Definition

αj+
i R+ n× |A⋆| first component of the absolute value |aj

i − b⊥i |
αj−
i R+ n× |A⋆| second component of the absolute value of |aj

i − b⊥i |
βj
i {0, 1} n× |A⋆| binary variable indicating the sign of aj

i − b⊥i
σi {0,1} n σi = 1 if criterion i is single-peaked, σi = 0 if i is single-valley
γj {0,1} |A⋆| γj = 1 if alternative aj is correctly assigned by the model, γj = 0 if not

δij {0,1} n× |A⋆| δij = 1 if aj
i ∈ Ai, δij = 0 if aj

i /∈ Ai

cij [0,1] n× |A⋆| cij = 1 if aj
i ∈ Ai (i.e, if δij = 1), cij = 0 if aj

i /∈ Ai (i.e, if δij = 0)

b⊥i R n middle of the interval [bi, bi]

bi R n value of half the width of the interval [bi, bi] on criterion i
wi [0,1] n weight of criterion i
λ [0,1] 1 majority threshold

Table 1: Description of decision variables

max
∑
j∈J∗

γj (13a)∑
i∈N cij ≥ λ+M(γj − 1) ∀j ∈ J∗2 (12a)∑
i∈N cij + ε ≤ λ−M(γj − 1) ∀j ∈ J∗1 (12b)∑
i∈N wi = 1 (13b)

cij ≤ δij ∀j ∈ J∗,∀i ∈ N (11a)

cij ≥ δij − 1 + wi ∀j ∈ J∗,∀i ∈ N (11b)

cij ≤ wi ∀j ∈ J∗,∀i ∈ N (11c)

b⊥i − aji = αj+
i − αj−

i ∀j ∈ J∗,∀i ∈ N (6a)

αj+
i ≤ βj

iM ∀j ∈ J∗,∀i ∈ N (6b)

αj−
i ≤ (1− βj

i )M ∀j ∈ J∗,∀i ∈ N (6c)

−M.σi +M(δij − 1) ≤ αj+
i + αj−

i − bi ∀j ∈ J∗,∀i ∈ N (9a)

αj+
i + αj−

i − bi + ε ≤ M.δij +M.σi ∀j ∈ J∗,∀i ∈ N (9b)

M.(σi − 1) +M(δij − 1) ≤ bi − αj+
i − αj−

i ∀j ∈ J∗,∀i ∈ N (9c)

bi − αj+
i − αj−

i + ε ≤ M.δij +M.(1− σi) ∀j ∈ J∗,∀i ∈ N (9d)

b⊥i − bi ≥ mini ∀i ∈ N (10a)

b⊥i + bi ≤ maxi ∀i ∈ N (10b)

cij ∈ [0, 1], δij ∈ {0, 1} ∀j ∈ J∗,∀i ∈ N (13c)

αj+
i , αj−

i ∈ R+ ∀j ∈ J∗,∀i ∈ N (13d)

βj
i ∈ [0, 1] ∀j ∈ J∗,∀i ∈ N (13e)

bi ∈ R, wi ∈ [0, 1], b⊥i ∈ R, σi ∈ {0, 1} ∀i ∈ N (13f)

γj ∈ {0, 1} ∀j ∈ J∗ (13g)

λ ∈ [0.5, 1] (13h)
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5.5 Interpretation of the optimal solution

Once the optimal solution to the above mathematical program is found, it is necessary to derive,
from the optimal solution, the corresponding MR-Sort model, i.e:

– the nature of each criterion (either cost, gain, single-peaked, or single-valley criterion),

– the weights attached to criteria wi, and associated majority level λ,

– the frontier between category C1 and C2, i.e., the value bi if criterion i is a cost or a gain
criterion, and the interval [bi, bi] if criterion i is a single-peaked or single-valley criterion.

Criteria weights wi, and associated majority level λ are directly obtained from the corre-
sponding variables in the optimal solution. The preference directions and criteria limit profiles
are deduced as follows:

– Case σi = 1 (criterion i is represented as a single-peaked criterion in the optimal solution):

• if b⊥i − bi ≤ minj∈J∗{aji}, then criterion i is a cost criterion, and the maximal approved
value on criterion i is b⊥i + bi, i.e. Ai =]−∞, b⊥i + bi], see Fig. 1 case 3,

• if b⊥i + bi ≥ maxj∈J∗{aji}, then criterion i is a gain criterion, and the minimal approved
value on criterion i is b⊥i − bi, i.e. Ai = [b⊥i − bi,∞[, see Fig. 1 case 2,

• otherwise, i is a single-peaked criterion, and Ai = [b⊥i − bi, b
⊥
i + bi], see Fig. 1 case 1

– Case σi = 0 (criterion i is represented as a single-valley criterion in the optimal solution):

• if b⊥i − bi < minj∈J∗{aji}, then criterion i is a gain criterion, and the minimal approved
value on criterion i is b⊥i + bi, i.e. Ai = [b⊥i + bi,∞[, see Fig. 2 case 3,

• if b⊥i + bi > maxj∈J∗{aji}, then criterion i is a cost criterion, and the maximal approved
value on criterion i is b⊥i − bi, i.e. Ai = [−∞, b⊥i − bi], see Fig. 2 case 2,

• otherwise, i is a single-valley criterion, and Ai = [−∞, b⊥i − bi] ∪ [b⊥i + bi,∞[, see Fig. 2
case 1.

Fig. 1: Three cases for single-peaked criteria



12 P. Minoungou, V. Mousseau, W. Ouerdane, and P. Scotton

Fig. 2: Three cases for single-valley criteria

5.6 Extension to more than 2 categories

Our framework can be extended to more than two categories, at the cost of adding supplemen-
tary variables and constraints to the mathematical program. So as to extend to p categories
(p > 2), sets of approved values Ah

i ⊆ Xi on criterion i (i ∈ N ) should be defined with respect
to a category level h (h = 2, . . . , p), and should be embedded such that Ap

i ⊆ Ap−1
i ⊆ ... ⊆ A2

i .
In the MIP formulation, the variables δij, cij, α

j+
i , αj−

i , βj
i , bi, and b⊥i should be indexed

with a category level h = 2..p, and become δhij, c
h
ij, α

jh+
i , αjh−

i , βjh
i , bhi , and bh⊥i , respectively.

Constraints (12a) and (12b) relative to the assignment examples should be replaced by the
following ones:

•
∑

i∈N cp−1
ij ≥ λ+M(γj − 1), ∀aj ∈ Cp

•
∑

i∈N c1ij + ε ≤ λ−M(γj − 1), ∀aj ∈ C1

•
∑

i∈N ch−1
ij ≥ λ+M(γj − 1), ∀aj ∈ Ch ⊂ [C2, Cp−1]

•
∑

i∈N chij + ε ≤ λ−M(γj − 1), ∀aj ∈ Ch ⊂ [C2, Cp−1]

Lastly, constraints on bhi , and bh⊥i should be imposed so as to guaranty that the approved
sets are embedded such that Ap−1

i ⊆ Ap−2
i ⊆ ... ⊆ A1

i , i.e, [b
p−1⊥
i − bp−1

i , bp−1⊥
i + bp−1

i ] ⊆
[bp−2⊥

i − bp−2
i , bp−2⊥

i + bp−2
i ] ⊆ . . . ⊆ [b1⊥i − b1i , b

1⊥
i + b1i ].

6 Experiments, results and discussion

In this section, we report numerical experiments to empirically study how the proposed algo-
rithm behaves in terms of computing time, ability to generalize, and ability to restore an MR-
Sort model with the correct preference direction (gain, cost, single-peaked, or single-valley). The
experimental study involves artificially generated datasets and ex-post analysis of a real-world
case study.

6.1 Tests on generated datasets

In this section we are focusing on synthetic data.
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6.1.1 Experimental design

Assuming a generated MR-Sort model M0 representing perfectly the Decision Maker pref-
erences, we first randomly generate n-tuples of values considered as alternatives (each tuple
corresponding to n criteria evaluations). Then we simulate the assignments of these alterna-
tives following the model M0 and obtain, therefore, assignment examples which constitute
the learning set L, used as input to our MIP algorithm. Alternatives are generated in such a
manner to obtain a balanced dataset (i.e. equal number of assignments in each category). The
Inv-MR-Sort problem is then solved using the proposed algorithm and, as a result, generating
a learned model noted M′.

Generation of instances and model parameters. We consider a learning set of 200 as-
signment examples. A vector of performance values of alternatives is drawn in an independent
and identically distributed manner, such that the performance values are contained in the unit
interval discretized by tenths. We then randomly generate profiles values (either bi, or bi and
bi) for each criterion; also these values are chosen with the unit interval discretized by tenths.
In order to draw uniformly distributed weights vectors (see [6]), we uniformly generate |N |− 1
random values in [0, 1] sorted in ascending order. We then prepend 0 and append 1 to this set
of values obtaining a sorted set of |N | + 1 values. Finally, we compute the difference between
each successive pair of values resulting in a set of |N | weights such that their sum is equal to
1. We randomly draw λ in [0,1].

In order to assess the ability of the algorithm to restore preference directions, we consider
q criteria out of n for which we consider the preference direction as unknown, and we uni-
formly draw a random preference direction among gain, cost, single-peaked and single-valley.
For each single-peaked and single-valley criteria, the peak is uniformly drawn in the [0,1] inter-
val discretized by tenths4. Hence, the preference direction of these q criteria are assumed to be
unknown. Meanwhile, the remaining n− q criteria are considered as gain criteria.

Performance metrics and tests parameters. To study the performance of the proposed
algorithm, we are considering three main metrics.

– Computing time: we consider here the time (CPU) necessary to solve the MIP algorithm.

– Restoration rate of assignment examples : as our MIP algorithm is an exact method, it is
expected that the entire learning set L will be restored by M′. Therefore we assess the
restoration performance on a test set which is run through M0 and M′. This test set
comprises randomly generated alternatives not used in the learning set; that is, assignment
examples that the algorithm has never seen. This allows to assess the restoration rate (also
called classification accuracy in generalization or CAg), that is, the ratio between the number
of alternatives identically assigned in categories by both M0 and M′, and the number of
alternatives.

– Preference direction restoration rate (PDR): considering the set of criteria where the pref-
erence direction is unknown, PDR is defined as the ratio between the number of criteria
where the preference direction has been correctly restored and the cardinality of this set.

4 It should be noted that if the peak is drawn as an extreme value, the single-peaked (or single-valley) criterion actually
corresponds to a monotone (gain or cost) criterion.
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In order to account for the statistical distribution of all the randomly selected values, we
independently select 100 different learning sets, each one associated with a randomly generated
M0 MR-Sort model. We then ran 100 independent experiments and aggregated the results.

In our experiments, we vary n the number of criteria in {4, 5, 6, 7, 8, 9}; q the number of
criteria with unknown preference directions vary in {0, 1, 2, 3, 4}, and the number of categories
is set to 2. The test set is composed of 10000 randomly generated alternatives.

We executed experiments on a server endowed with an Intel(R) Xeon(R) Gold 6248 CPU
@ 2.50GHz, 80 cores and 384 GB RAM. The tests were performed using the Cplex solver
version 20.1.0 [8] on the server using 10 reserved threads and limiting the computing time to a
maximum of 1h.

6.1.2 Results

In the following we present the results of the randomly generated tests.

unknown Number of criteria (n)

dir. (q) 4 5 6 7 8 9

0 0.34s / 0.65s 0.56s / 1.55s 0.84s / 2.42s 2.38s / 5.18s 2.61s / 8.92s 3.37s / 11.37s
100% 100% 100% 100% 100% 100%

1 1.51s / 3.96s 3.23s / 11.47s 4.53s / 21.14s 7.22s / 35.49s 19.15s / 118.1s / 18.68s / 342.9s
100% 100% 100% 100% 100% 91%

2 6.12s / 38.87s 12.97s / 57.7s 30.1s / 147.6s 54.4s / 430.6s 43.19 / >1h 58.0s / >1h
100% 100% 94% 90% 72% 59%

3 37.48s / 272.7s 76.68s / >1h 72.46s / >1h 76.3s / >1h 59.32s / >1h 25.91s / >1h
95% 89% 80% 54% 47% 31%

4 96.34s / >1h 129.49/ >1h 61.01 / >1h 108.25/ >1h 22.17 / >1h 23.63 / >1h
59% 57% 52% 42% 27% 28%

Table 2: Median CPU time (sec.) of instances solved in 1h / 9th decile of CPU time, and
proportion of terminated instances, with 4 to 9 crit. (n), 0 to 4 crit. with unknown pref. dir.
(q)

Computing time Table 2 presents the median CPU time of the terminated instances (timeout
set to 1 hour). The execution time increases with the number of criteria and the number
of criteria with unknown preference direction up to n = 7 and q = 2. Beyond this limit,
the execution time fluctuates, and we observe a relatively large dispersion of CPU times. For
instance, when n = 7 and q = 3, the median value of CPU time is just above 1 minute (76.3
sec.), while the 90%th percentile value exceeds 1 hour.

Additionally, Table 2 shows the percentage of instances that terminated within the time
limit, set to 1 hour. Unsurprisingly, the number of terminated instances decreases with both the
number of criteria and the number of criteria with unknown preference direction. In particular,
the rate jumps from 95% with 4 criteria to 31% with 9 criteria in the model when q = 3.
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Restoration rate of the test set. Regarding the classification accuracy (CAg) of the learned
models (involving 4 to 9 criteria in the model and 0 to 4 criteria with unknown preference
direction), globally, the performance values are between 0.9 and 0.95, with 0.93 on average.
We do not notice a significant trend over both the number of criteria and the number of
criteria with unknown preference directions. However, the figures reflect the performance of
only terminated instances. Therefore, the CAg rate could degrade when considering executions
above the timeout, assuming these are the most difficult instances to learn.

Fig. 3: Preference direction restoration rate (PDR) considering 1 to 4 criteria with unknown
preference direction (q) (average performance over terminated instances)

w1 ≤ 1
2n

1
2n

< w1 < 2
n

w1 ≥ 2
n

PDR 0.44 0.74 0.78

Table 3: PDR (averaged over n) according to the range of weight of criterion c1

Preference direction restoration rate. Figure 3 illustrates the evolution of the preference
direction restoration rate (PDR). Globally, the PDR falls with the increase of the number
of criteria in the model. In addition, this indicator degrades moderately with the number of
criteria with unknown preference directions with respectively 55% and 35% for q = 1 and q = 4
considering 9 criteria in the model.

The results illustrated in the Table 3 give more insights of the behaviour of the algorithm
regarding PDR. We consider instances involving one criterion with unknown preference direc-
tion, q = 1 (it corresponds to criterion 1). We analyze how the importance of this criterion (w1)
on the restoration rate of the preference direction. The PDR rate is averaged over the number
of criteria in the model (n ∈ {4, .., 9}) and distributed over three intervals: [0, 1

2n
] ,] 1

2n
, 2
n
[, [ 2

n
, 1]

which can be interpreted as three levels of importance of w1 (respectively low level, medium
level, and high level). As expected, the average PDR rises with the importance of w1; we have
44% of PDR for a low level of importance whereas 74% and 78% correspond respectively to
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a medium and high level of the importance of w1. It appears that the MIP has more difficul-
ties in correctly detecting the preference direction of a criterion when this criterion has low
importance.

6.1.3 Discussion

The experiments carried out on randomly generated instances give us the following insights.

Although exact methods are typically computationally intensive, the computation time is
relatively affordable for medium-sized models (less than 3 minutes for 200 alternatives in the
learning set and up to n = 9 and q = 4 in the model when the timeout is set to 1 hour).
Moreover, The computation time could be reduced as our experiments were performed with a
limited number of threads set to 10.

The algorithm can restore accurately new assignment examples based on the learned models
(0.93 on average up to 9 criteria) and remains relatively efficient with the number of criteria
with unknown preference directions. Extended experiments should be done without the limit of
time to accurately predict the restoration rate in generalization with the increase of parameters
n and q.

Our algorithm restores with difficulty preference directions when the number of criteria
grows while keeping the learning set constant. The PDR rate also decreases with the increase
of the number of criteria with unknown preference direction in the model with similar learning
set sizes (but still greater than the random choice that is 25%). It would be instructive to
discover the algorithm’s behaviour in terms of PDR for non-terminated instances for more
insights.

Finally, the restoration rate of criteria preference direction correlates with such criteria’s
importance in the model. It appears that the preference direction of criteria with importance
below 1

2n
are the most difficult to restore. These results are valid with a learning set of fixed

size (200); It would be interesting to investigate experimentally whether larger learning sets
would make it possible to accurately learn the direction of preference.

6.2 Tests on a real-world data: the ASA dataset

The ASA5 dataset [25] constitutes a list of 898 patients evaluated on 14 medical indicators (see
Table 4) enabling to assign patients into 4 ordered categories (ASA1, ASA2, ASA3, ASA4).
These categories correspond to 4 different scores that indicate the patient health. Based on
the score obtained for a given patient, anesthesiologists decide whether or not to admit such a
patient to surgery. The relevance of the dataset for our tests relies on the presence of a criterion
with single-peaked preference, which is “Blood glucose level” (i.e. glycemia). For practicality,
we restrain the ASA dataset to the 8 most relevant criteria for our experiments. They are in
bold in Table 4

To have two categories, we first divide the dataset into two parts: category 2 representing
patients in categories ASA1 and ASA2 (67% of the population) and category 1 representing
those in categories ASA3 and ASA4 (33% of the population).

In the following, we illustrate how to learn the model parameters and the preference type
(gain, cost, single-peaked (SP), single-valley) of the criterion “Glycemia” with three different

5 ASA stands for “American Society of Anesthesiologists”.



A MIP-based approach to learn MR-Sort models with single-peaked preferences 17

sets of assignment examples chosen in the original set of 898 patients. In this medical appli-
cation, we suppose that the “Glycemia” criterion type is unknown and expect to “discover”
a single-peaked criterion. We report for each experiment the number of distinct performances
considered per criterion.

Attribute Domain (Unit) Direction

Age [0− 105] (year) min.
Diabetic {0,1} min.
Hypertension {0,1} min.
Respiratory failure {0,1} min.
Heart failure {0,1} min.
Heart rate [55− 123] (bpm) SP
Heart rate steadiness {0,1} max.
Pacemaker {0,1} min.
Atrioventricular block {0,1} min.
Left ventricular hypertrophy {0,1} min .
Oxygen saturation [43− 100](%) max.
Blood glucose level (glycemia) [0.5− 3.8](g/l) SP
Systolic blood pressure [9− 20.5](cmHg) min.
Diastolic blood pressure [5− 13](cmHg) min.

Table 4: Original criteria in the ASA dataset

First Dataset: we initially consider the whole original dataset with all 898 assignment ex-
amples in the learning set as input to our MIP algorithm. We infer the type (gain, cost, single-
peaked, single-valley) of criterion Glycemia and the MR-Sort parameters from this first dataset.

The inferred model given in Table 5 is computed in 40h33mn execution time. The obtained
model allows restoring CA = 99.4% of the assignment examples in the learning set. However,
in the inferred model, the glycemia criterion is detected as a cost criterion to be minimized
(whereas we expect it to be inferred as single-peaked). Note that the inferred value for the
limit profile on the glycemia criterion (1.18 g/l) makes it possible to distinguish patients with
hyperglycemia from the others but does not distinguish hypoglycemia from normal glycemia
(normal glycemia corresponds to [0.9,1.2]). This is due to the distribution of the glycemia values
over the patients shown in Figure 4. This distribution shows that all patients with glycemia
above 1.2g/l (hyperglycemia) are assigned to Category 1. However, some patients with normal
glycemia [0.9,1.2] are also assigned to Category 1, and some patients with glycemia equal to
0.8 g/l or below (hypoglycemia) are assigned to Category 2.

In the following, we check if it is possible to restore the “correct” preference direction (i.e.
single-peaked) with a subset of carefully selected patients. To do so, we will remove the patients
with normal glycemia ([0.9, 1.2] g/l) assigned to category 1.

Second Dataset : in a second step, we choose to remove the 97 patients of the learning set
assigned to Category 1 and whose glycemia values lie within [0.9, 1.2] g/l, i.e., with normal
glycemia. Our goal is to foster the algorithm to retrieve a single-peaked preference for the
glycemia criterion. The distribution of glycemia values in the new learning set of the remaining
801 patients is provided in Fig. 4.

Using this second learning set, we solve the inference problem with the MIP algorithm.
Computation time is 56mn, and the inferred model (see Table 6) restores 99.8% of the learning
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Instance settings Model parameters learned
Attributes #values Direction pref. dir. bi wi pref. dir.

Age 103 (origin) min. known 72.9 0.01
Diabetic 2 (origin) min. known 0.99 0

Hypertension 2 (origin) min. known 0 0.01
Respiratory F 2 (origin) min. known 0.99 0.88
Pacemaker 2 (origin) min. known 0 0.02
Systolic BP 24 (origin) min. known 15 0.03
Diastolic BP 17 (origin) min. known 8.92 0.02
Glycemia 82 (origin) SP unknown 1.18 0.03 min

λ = 0.98

Table 5: Inferred model with the first dataset (898 assignment examples)

Fig. 4: Distribution of patients glycemia in the first dataset

Fig. 5: Distribution of patients glycemia in the second dataset
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set. Once again, the restoration rate is high. However, the glycemia criterion is still detected
as a cost criterion to be minimized (instead of a single-peaked criterion). The inferred model
does not distinguish patients with hypoglycemia from normal glycemia ones.

Instance settings Model parameters learned
Attributes #values Direction pref. dir. bi wi pref. dir.

Age 103 (origin) min. known 5.9 0
Diabetic 2 (origin) min. known 0.99 0

Hypertension 2 (origin) min. known 0 0.01
Respiratory F 2 (origin) min. known 0 0.01
Pacemaker 2 (origin) min. known -0.01 0
Systolic BP 23 min. known 15 0.01
Diastolic BP 15 min. known 8.5 0.01
Glycemia 82 (origin) SP unknown 1.18 0.96 min

λ = 0.99

Table 6: Inferred model with the second dataset (801 assignment examples)

Third Dataset : Finally, we remove patients in Category 2 for which the glycemia value
is lower than 0.9 (hypoglycemia). This new configuration leads to a dataset of 624 patients.
In this third dataset, the distribution of glycemia values (see Figure 6) in which hypo and
hyperglycemic patients are assigned to Category 1 while patients with normal glycemia are in
Category 2.

With this dataset, the MIP algorithm runs in 4mn30s and results are presented in Ta-
ble 7. The computed model restores all the assignment examples, and glycemia is now detected
as a single-peaked criterion. Furthermore, the approved values [0.93, 1.18] can be reasonably
interpreted as normal glycemia.

Fig. 6: Patients glycemia in the third dataset
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Instance settings Model parameters learned
Attributes #values Direction pref. dir. bi wi pref. dir.

Age 103 (origin) min. known 3.3 0
Diabetic 2 (origin) min. known 0 0

Hypertension 2 (origin) min. known 0 0
Respiratory F 2 (origin) min. known 0.99 0
Pacemaker 2 (origin) min. known 0 0
Systolic BP 23 min. known 12.88 0.01
Diastolic BP 15 min. known 9 0.01
Glycemia 73 (origin) SP unknown [0.93,1.18] 0.99 SP

λ = 1

Table 7: Inferred model with the third dataset (624 assignment examples)

This illustrative example shows that our model can infer an MR-Sort model and retrieve
single-peaked criteria; however, to do so, the learning set should be sufficiently informative.
Specifically, when inferring from a dataset a “ground truth” in which a specific criterion i is
single-peaked with a set of acceptable values Ai = [bi, bi], it is necessary that some examples in

the learning set are evaluated on criterion i below bi, in [bi, bi], and above bi.

7 Conclusion and future work

This paper proposes a MIP-based method to infer an MR-Sort model from a set of assign-
ment examples when considering possibly non-monotone preferences. More precisely we learn
an Mr-Sort model with criteria that can be either of type (i) cost, (ii) gain, (iii) single-peaked
or (iv) single-valley criteria. Our inference procedure simultaneously infers from the dataset an
MR-Sort model end the type of each criterion.

Our experimental test on simulated data shows that the MIP resolution can handle a dataset
involving 200 examples and nine criteria. Experiments suggest that the correct restoration of
the criteria type (i)-(iv) requires a dataset of significant size.

Our work opens avenues for further research. First, it would be interesting to test our
methodology on real-world case studies to assess further and investigate our proposal’s perfor-
mance and applicability. Another research direction aim at pushing back computational barrier:
our MIP resolution approach faces a combinatorial explosion. The design of an efficient heuristic
would be beneficial in this respect.
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