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Abstract

This study presents models and heuristics for solving the strong network orientation problem (SNOP), which
can model several tactical optimization problems of setting directions in urban networks. The objective is
to set an orientation for each edge in an undirected graph such that the resulting digraph is strongly con-
nected and the total travel distance between any pair of nodes is minimized (or maximized). Investigating
tactical optimization problems such as SNOP is motivated by several challenges in urban networks due to
the growth of population in urban areas, large number of daily trips, increasing price of maintaining urban
networks, and the need to reduce air pollution and passive noise. Thus, a new trend is to utilize the urban
networks better. In this context, we first use a multicommodity flow formulation to model the minimization
problem. The maximization version is modeled by using the dual formulation of the shortest path problem.
Then, scalable heuristic strategies for solving SNOP are investigated. For such purpose, we first propose basic
components such as constructive heuristics, perturbations and local searches. They are combined into several
metaheuristics based on local searches, multi-start and evolutionary schemes, i.e. Multistart Local Search,
Iterated Local Search (ILS), Relaxed ILS, Evolutionary Local Search (ELS), Relaxed ELS, and Variable
Neighborhood Search. Computational experiments have been performed to analyze the proposed methods
in terms of efficiency and quality of solutions, using grid instances and a graph from downtown Clermont-
Ferrand in France.

Keywords: urban network; strong connectivity; network design; mixed integer linear programming; heuristics

1. Introduction

Tactical optimization problems in urban networks have recently received much attention due to
the growth of population in urban areas, the increasing number of daily trips, the raising costs of
maintaining urban networks, and the need to preserve agricultural areas and to reduce air pol-
lution and background noise. Even if several strategies have been developed, such as improving
public transportation, creating multimodal park areas, dedicated pedestrian areas, tolls, shared and
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Fig. 1. Example of a deterrent policy strategy.

self-service vehicles (bikes, electrical cars, etc), the organization of urban areas remains challeng-
ing. This motivates the study of new proposals and solutions to use the road networks better and
to improve them.

A growing trend consists in optimizing the use of existing urban networks rather than expanding
the infrastructures. For instance, one strategy consists in setting orientations in urban networks or
in an area (e.g. city centers) in order to minimize travel distances or travel times, while ensuring
there is a path between each pair of nodes (strong orientation, for short). Another application
consists of applying a deterrent policy strategy, where one may deter drivers entering city centers,
historical areas and tourist zones, by imposing a topology that requires long paths between origins
and destinations and takes time to go out of such areas. In such cases, one looks to maximize the
distance between every pair of origin and destination. This strategy is typically associated with
one-way route configurations as illustrated in Fig. 1. Let {a . . . p} model a city center surrounded
by a ring, called outer core. Dashed lines correspond to exits from the inner core {g, j, k, f } to the
outer core. Suppose a driver intending to drive from node b to node f . If (b, g, j, k, f ), the path
to f is not known, there is a probability of making a mistake. For instance, if the driver turns
left at node g instead of going straight ahead to node j, he will have to restart his travel in node
b due to the network configuration. This leads to a long loop back, (h, i, p, o, n, m, l, e, d, c, b).
When associated with other mechanisms, for instance car parks located close to the outer core
and multimodal facilities such as nearby public transportation stations, to perform the last part
of the trip, this approach provides an incentive for avoiding the city center without any restrictive
measure (tolls, fees, few car parks slots, etc). Moreover, drivers needing to cross city will likely use
the outer core, instead of entering the inner core. Yet, such topologies result also in longer paths for
inhabitants willing to park their car close to home or for delivering furniture for downtown shops.

Grid networks with one-way routes shown by Ortigosa et al. (2015) are more suitable to avoid
congestion since they present a better trade-off between intersection capacity and the travel dis-
tances. Readers are referred to Farahani et al. (2013) for a survey on urban networks application
considering tactical, strategical and operational levels of decisions.

In this study, we investigate the strong network orientation problem (SNOP) that is defined
in a simple, undirected, weighted and bridgeless connected graph G = (V, E ), where V is the

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
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node-set and E is the edge-set. SNOP consists in setting a unique direction for each edge e ∈ G,
such that the resulting digraph is strongly connected and the total distance between each pair of
nodes is minimized (or maximized). The maximization is used to apply deterrence policies to areas
with heavy traffic like center cities or historical zones. The idea is to orient arcs in such a way that
long paths are designed between origins and destinations in a network area. In the urban context,
this means in general areas with a unique flow circulation for each route (one-way routes). The idea
is to discourage drivers from entering the aforementioned area. This problem is NP-hard (Burkard
et al., 1999), even for graphs with only two origins and costs associated with every arc equal to one.
The authors also presented relevant results on polynomial cases for specific topologies like series
parallel graphs and regular grids.

Some closely related works are found in Huang et al. (2020a, 2020b) and Coco et al. (2020).
In Huang et al. (2020b), the authors investigate the reconfiguration of urban networks after some
disruptions (accidents, events, etc.). Two objectives are focused separately: minimizing arc reversals
and minimizing distances. An arc reversal means in practice the modification of a route direc-
tion, and in graph theory it means orienting an arc in an opposite direction. The work of Huang
et al. (2020b) is extended in Huang et al. (2020a) by considering a multi-objective approach for
the two criteria. Coco et al. (2020) focus on a multi-period scheduling problem to handle medium
and long-term disruptions in urban networks considering network design issues such as revers-
ing arcs. A common feature of these studies is that arc orientation is considered, which is the
core of the SNOP problem. However, Huang et al. (2020b, 2020a) and Coco et al. (2020) ad-
dress an initial orientation, which will be modified for some arcs depending on disruptions and
on the need to reestablish the strong connectivity. On the contrary, the initial graph in SNOP
does not have an initial orientation and we look for the best one according to the optimization
criterion. In crisis management, some works are also dedicated to restore partial (Yücel et al.,
2018; Aksu and Ozdamar, 2014) (between origins and destinations) or complete (Sakuraba et al.,
2016a, 2016b) network connectivity after major earthquakes, but route directions are not explicitly
considered.

SNOP models are a relevant basis for several problems of orienting a graph and it opens several
avenues of research in terms of graph theory. It is also of practical interest, for instance arc recon-
figuration in urban networks due to disruptions, strong connectivity restoration after disaster, etc.
The additional features of this study compared to the existing ones in the literature are the follow-
ing. Specific mathematical formulations for the minimization and for the maximization versions of
SNOP are proposed, together with several analyses on how to strengthen them in terms of number
of commodities. In addition, a collection of metaheuristics are proposed and compared. For this
purpose, a number of components such as a constructive heuristic, a perturbation operator and a
local search using dedicated neighborhood structures have been developed. These components are
combined and used in the following metaheuristics: Multistart Local Search (MS), Iterated Local
Search (ILS), Relaxed ILS (RILS), Evolutionary LS (ELS), Relaxed ELS (RELS), and Variable
Neighborhood Search (VNS). The methods have been tested on two kinds of networks, grid net-
works modeling downtowns from North America and a realistic graph from downtown Clermont-
Ferrand, France.

The remainder of this paper is organized as follows. Initially, a bibliographical review is done
in Section 2. Then, the problem is formally defined in Section 3, followed by a mathematical for-
mulation. The proposed heuristics and metaheuristics are presented in Section 4, before showing

© 2022 The Authors.
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computational experiments in Section 5. Concluding remarks and perspectives for future research
are provided in Section 6.

2. Related works

Components of the SNOP are found in the scientific literature of graph theory, Automated Guided
Vehicles (AGV) systems and urban network applications. Below we review such studies and men-
tion our contributions.

Most works of graph theory associated with strong orientations in graphs provide theoretical
results for this problem. For instance, the pioneering work of Robbins (1939) established the
conditions in which a graph can admit a strong orientation: an undirected graph G = (V, E )
can be strongly orientated if and only if G is connected and has no bridges (i.e. an edge whose
removal breaks the network connectivity). The study is motivated by an application on an urban
network which is two-way on week-days and the aim is to repair routes such that every route is
set one-way and each point in the city is still reachable. Chung et al. (1985) extend the results
of Robbins (1939) by considering strong orientations for mixed multigraphs, i.e. multigraphs
with both undirected and directed connections. Chvátal and Thomassen (1978) investigate the
conditions for bridge-less graphs to be strongly oriented considering a given upper bound on
the radius. Nash–William’ strong orientation theorem has been extended in Fukunaga (2012),
by defining directions on an undirected graph, while ensuring connectivity requirements among
pairs of vertices. Recently, Conte et al. (2016) proposed an algorithm to enumerate efficiently
all strong orientations for a given undirected connected graph. It relies on the linear-time de-
tection of all strong bridges proposed by Italiano et al. (2012). One may note that there is an
exponential number of possible orientations. Our work considers graph orientations, but fo-
cuses on optimization models and methods to find an orientation that minimizes or maximizes
distances.

Variations of the SNOP have been investigated in the context of AGV, where connecting require-
ments have to be ensured for every pair of pickup and delivery points. In AGV systems, solutions
are applied at an operational level and the network design (layout) can be often reconfigured on the
fly, which is not suitable in an urban context.

The well-known flow path design is closely related to the SNOP and it has been widely investi-
gated for AGV systems. Introduced by Gaskins and Tanchoco (1987), the problem has been mo-
tivated by the use of AGV in production systems and aims at designing a unique path between
pickup and delivery points. A Mixed Integer Linear Programming (MILP) formulation to set ori-
entation in a given graph between all pairs of pickup and delivery points was proposed by Gaskins
and Tanchoco (1987), such that the total traveling distances is minimized. The model is indexed on
the possible paths.

Following the study of Gaskins and Tanchoco (1987), the amount of work dedicated to AGV
systems has increased significantly for several applications in manufacturing, distribution, trans-
shipment and transportation systems. Several aspects were addressed such as designing routes for
AGV, balancing the charge, defining positioning policies and scheduling. They are surveyed in Vis
(2006) and Qiu et al. (2002). Kaspi and Tanchoco (1990) raise the concept of connectivity between
pickup and delivery points and model the problem using a multiflow formulation. The authors

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
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also propose a Branch-and-Bound (B&B) method. Venkataramanan and Wilson (1991) explicitly
define and apply the idea of strong connectivity. It is handled in a B&B approach, but the strong
connectivity is not explicitly mathematically formalized. Moreover, computational results are not
presented in Kaspi and Tanchoco (1990) and Venkataramanan and Wilson (1991), probably due to
the limits of MILP solvers at that time. Here, our proposed formulations extend the ones presented
in Kaspi and Tanchoco (1990), by ensuring the strong connectivity for the final network and by
formalizing the idea introduced in Venkataramanan and Wilson (1991), by means of a multiflow
formulation. In addition, a comparison and computational results are shown here for both models.
A recent review on AGV problems is found in Vancea and Orha (2019), and for readers looking for
more on AGV, Ullrich (2014) provides a very interesting retrospective of AGV.

The network configuration in AGV systems is more flexible than in the SNOP for urban networks
since the topology can be easily changed by adding arcs, for example. On the contrary, adding arcs
in urban networks means building new routes, which is very complicated. In addition, AGV system
has quite often objectives related to path optimization instead of looking for a global network
optimized topology, as the SNOP for urban networks.

In the context of urban networks, the problem of one-way orientation such that the total travel
time is minimized for every pair of nodes has been introduced in Drezner and Wesolowsky (1997).
The authors consider a smaller street travel time if it is set one-way since it increases the traffic
capacity on such arc. However, the shortest distances also increase for some pairs of nodes in the
network. A B&B, simple heuristics and a simulating annealing are presented. Three strategies to
build initial solutions are proposed: (i) random generation, (ii) reparation procedure which starts
from the graph with all orientations and set a unique direction per arc at a time, and (iii) reparation
procedure for which triangulation rules are applied to generate a feasible solution. Computational
results are presented for instances with up to 40 nodes and 99 arcs. Roberts and Xu (1988, 1994)
investigate the case of cities where streets are represented by a grid graph, i.e. a graph where nodes
are set on p rows and q columns. In Roberts and Xu (1988), the authors focus on the optimality
conditions for grid graphs. They conclude that an optimal orientation for a 4 × 4 grid graph has
the following weakness in an urban context: there is a vertex with two entering arcs coming from
different directions, which can produce congestion in urban networks. The case with p = 3 is stud-
ied in Roberts and Xu (1994). Some works also investigate the efficiency of network configurations
by means of simulation. For instance, Ortigosa et al. (2015) analyze the impact of various grid con-
figurations modeling urban networks in terms of network exit function. One of the configurations
is the No Turn Left (NTL) layout, which is safer and more efficient in the sense it does not interfere
with the incoming traffic.

The signal settings problem also received much attention in the literature. It is another way to
manage and to improve the use of urban networks. The SNOP and the signal settings are related
in terms of practical objectives, optimizing the efficiency of the urban network. The signal settings
consist of evaluating local delays induced by the green light frequency. Some interesting entry points
are Cantarella et al. (2006) and Gallo et al. (2010). The former investigates the signal settings such
that travel time is optimized, and tested the proposed methods using instances from Villa San Gio-
vanni and Barcellona Pozzo di Gotto in Italy. For the latter, a stochastic strategy is used instead of
a deterministic one applied to Benevento city in Italy. It should be mentioned that some signal set-
ting problems are now handled by some real-time signal controls. They allow the green time period
to be adapted in order to reduce congestion.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
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6 C. Duhamel and A. C. Santos / Intl. Trans. in Op. Res. 0 (2022) 1–29

As can be observed in the bibliographical review, some variants of the SNOP have been inves-
tigated in the context of AGV. However, AGV systems are usually designed for workshops in in-
dustries, thus in a closed and reduced dimension. In up-to-date applications on urban networks,
SNOP has an additional and relevant characteristic to consider: a large-scale dimension. This re-
quires the development of scalable, robust and effective heuristics. This study encompasses a set
of fundamental features for SNOP. In particular, two versions of the problem are proposed and
modeled by means of graph theory and flow-based mathematical formulations. One may note that
there is a lack of studies in the literature dedicated to the maximization version of SNOP. Moreover,
a set of components like building feasible solutions and local moves are proposed, and combined
to build modern and successful metaheuristics. Last but not least, extensive computational exper-
iments to analyze the performance and robustness of the proposed methods are described. This
study opens several avenues of research in terms of graph theory, mathematical programming, and
applied research on urban networks.

3. Problem definition and mathematical formulations

Let G = (V, E ) be a simple, undirected, weighted and bridgeless connected graph, where V and
E stand respectively for the set of n = |V | vertices and the set of m = |E | edges. Each edge e ∈ E
is associated with a length ce > 0. Let K = {(o, d, q)} be the set of traffic requests, also referred to
as commodities. Each request (o, d, q) ∈ K corresponds to a traffic demand q to be routed from
its origin o to its destination d . It may correspond to users’ shifts, such as commuting (e.g. daily
home-work or work-home trips in heavy traffic) or commercial trips. We make the assumption of
rational driver behavior, such that each request (o, d, q) will be routed on the shortest path from
o to d . In addition, the set P = {(o, d ) ∈ V × V, o �= d} defines the set of all node pairs and A =
{(i, j), ( j, i)|[i, j] ∈ E} is the set of all arcs that can be obtained by setting an orientation to the
edges in E .

The Orientation Problem (OP) consists in setting a unique orientation (i, j) or ( j, i) for each edge
e = [i, j] ∈ E , leading to a digraph G′. Without loss of generality, we assume here ci j = c ji = ce,
i.e. the length does not depend on the orientation. G′ distance matrix will not be symmetric. The
Strong Orientation Problem (SOP) extends the OP by requiring G′ to be strongly connected, even
if the set of requests does not cover all the n(n − 1) pairs of nodes in P. This means there must
be a path between all pairs of nodes in the network. Thus, the SNOP combines the SOP with the
minimization (or maximization) of the total travel distance for traffic requests.

3.1. SNOP with minimization criterion

The mathematical formulation (M1a) from (1) to (6) relies on a classical arc formulation that en-
sures a path between each pair (o, d ) ∈ P of nodes. Thus, strong connectivity is ensured and, at
the same time, it provides means for computing the total travel distance. The formulation uses the
decision variable xi j to state if arc (i, j) ∈ A is chosen (xi j = 1) or not (xji = 0). Moreover, f od

i j is
the flow variable which indicates if the flow from o to d uses the arc (i, j).

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.
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min
∑

(i, j)∈A

ci j

∑
(o,d,q)∈K

q f od
i j (1)

s.t.
∑

l :(l,i)∈A

f od
li −

∑
l :(i,l )∈A

f od
il =

⎧⎨
⎩

−1, if i = o
+1, if i = d
0, otherwise

∀(o, d ) ∈ P, ∀i ∈ V (2)

(M1a)

f od
ij ≤ xij ∀(i, j) ∈ A, ∀(o, d ) ∈ P (3)

xij + xji = 1 ∀[i, j] ∈ E (4)
xij ∈ {0, 1} ∀(i, j) ∈ A (5)

f od
ij ≥ 0 ∀(i, j) ∈ A, ∀(o, d ) ∈ P. (6)

The objective function (1) computes the total travel distance for all requests. Constraints (2) are
the flow conservation constraints. Inequalities (3) allow flow to be routed only on selected arcs
(i, j). Equations (5) guarantee a unique orientation is set for every edge e = [i, j] ∈ E . Variables are
defined in (5) and (6).

Another version of a mathematical formulation for the SNOP, without the strong connectivity,
was proposed for AGV by Kaspi and Tanchoco (1990). This formulation is referred to as (M1b)
and it is presented in Equations (7) to (12).

One multicommmodity flow is set for each traffic request (set K) instead of each pair of nodes
(set P). Thus, strong connectivity is not guaranteed anymore in (M1b) for any set K:

min
∑

(i, j)∈A

ci j

∑
(o,d,q)∈K

q f od
i j (7)

s.t.
∑

l :(l,i)∈A

f od
li −

∑
l :(i,l )∈A

f od
il =

⎧⎨
⎩

−1, if i = o
+1, if i = d
0, otherwise

∀(o, d, q) ∈ K, ∀i ∈ V (8)

(M1b)

f od
ij ≤ xij ∀(i, j) ∈ A, ∀(o, d, q) ∈ K (9)

xij + xji = 1 ∀[i, j] ∈ E (10)
xij ∈ {0, 1} ∀(i, j) ∈ A (11)

f od
ij ≥ 0 ∀(i, j) ∈ A, ∀(o, d, q) ∈ K. (12)

Figure 2(a) illustrates the difference between (M1a) and (M1b) in terms of their optimal solu-
tions. Let us consider a small graph with three vertices and three edges, see Fig. 2(a), and a set of
three commodities K = {(1, 2, 4), (1, 3, 5), (3, 2, 1)}. For simplicity, all edges are of unit length. The
optimal solution for model (M1a) is given in Fig. 2(b). Its cost is 14 and it is strongly connected.
The optimal solution for model (M1b) is shown in Fig. 2(c). Its cost is 10 and it is not strongly con-
nected. Obviously, enforcing the strong connectivity and not just the connectivity for the requests
may lead to solutions with a higher cost.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13229 by C

ochrane France, W
iley O

nline L
ibrary on [07/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 C. Duhamel and A. C. Santos / Intl. Trans. in Op. Res. 0 (2022) 1–29

Fig. 2. Difference between solutions produced by models (M1a) and (M1b).

Fig. 3. Strong connectivity flows on a graph with four vertices.

Model (M1b) contains fewer variables and constraints than model (M1a), especially when |K| 	
|P|. For example, model (M1a) for the small instance in Fig. 2(a) uses six unit flows (hence 36 flow
variables, 18 flow constraints (2) and 36 coupling constraints (3)). The model (M1b) uses three unit
flows (hence 18 flow variables, 9 flow constraints (8) and 18 coupling constraints (9)). The strong
connectivity property can be added to model (M1b) by forcing an additional unit flow between
some pairs of nodes. This can be done in several ways:

1. One node, say node 1, sends one unit of flow to every other node and (ii) receives one unit flow
from every other node. Thus, node 1 and every other node belong to the same strong component
and the resulting digraph is strongly connected. This leads to model (M1c).

2. Each node i, i = 1, . . . , n − 1, sends one unit flow to node i + 1. Node n sends one unit flow to
node 1. Thus, a (non-elementary) circulation is set on all the nodes and the resulting digraph is
strongly connected. This leads to model (M1d).

Figure 3 illustrates the added flow structure for models (M1c) and (M1d). Both models add O(n)
unit flows: model (M1c) adds at most 2(n − 1) unit flows while model (M1d) adds up to n unit
flows. For this reason, model (M1d) is preferred since it requires fewer unit flows.

3.2. SNOP with maximization criterion

Models (M1a), (M1b), (M1c) and (M1d) cannot be used for the total travel distance maximization.
In fact, one wants to set the orientation in maximization such that the sum of the shortest travel
distances is the largest possible. Switching from min to max is not sufficient as the model would

© 2022 The Authors.
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C. Duhamel and A. C. Santos / Intl. Trans. in Op. Res. 0 (2022) 1–29 9

turn into a (incorrect) longest path computation. The primal formulation for the shortest paths is
not compatible with maximization. Instead, the dual formulation can be used for the shortest path
and then the maximization is used. Let us consider uk

i ≥ 0 be the distance label from node k at node
i. Moreover, let Q be a large-enough constant. Then the generic model is as follows:

max
∑

(o,d,q)∈K

qud
o (13)

s.t. uo
j ≤ uo

i + cij + (Q − cij)xji ∀(i, j) ∈ A, ∀(o, d ) ∈ P (14)
uo

o = 0 ∀(o, d ) ∈ P (15)

(M2) < strong connectivity constraints >

xij + xji = 1 ∀[i, j] ∈ E (16)
xij ∈ {0, 1} ∀(i, j) ∈ A (17)
uo

i ≥ 0 ∀i ∈ V, ∀(o, d ) ∈ P. (18)

The objective function (13) and constraints (14) and (15) correspond to the dual model for short-
est path computation. Strong connectivity constraints are any set of constraints that force x vari-
ables to define a strongly connected digraph G′. Constraints (14) have been adapted to take the arc
orientation into account. Equations (16) are kept to ensure exactly one direction is selected for each
arc. Constraints (17) and (18) are the variable definitions.

As mentioned before, a set of constraints enforcing the strong connectivity has to be included,
otherwise the problem is unbounded. Two versions are proposed, using the same idea illustrated in
Fig. 3 for models (M1c) and (M1d). In the first version, one unit flow is sent from node 1 to any
other node and from any other node to node 1. Let f +k

i j ≥ 0 be the flow variable on arc (i, j) ∈ A
from node 1 to node k. Similarly, let f −k

i j ≥ 0 be the flow variable on arc (i, j) ∈ A from node k to
node 1. The first set of strong connectivity constraints is then as follows:

∑
l :(l,i)∈A

f +k
li −

∑
l :(i,l )∈A

f +k
il =

⎧⎨
⎩

−1, if i = 1
+1, if i = k
0, otherwise

∀k ∈ V \ {1}, ∀i ∈ V (19)

∑
l :(l,i)∈A

f −k
li −

∑
l :(i,l )∈A

f −k
il =

⎧⎨
⎩

+1, if i = 1
−1, if i = k
0, otherwise

∀k ∈ V \ {1}, ∀i ∈ V (20)

f +k
ij ≤ xij ∀(i, j) ∈ A, ∀k ∈ V \ {1} (21)

f −k
ij ≤ xij ∀(i, j) ∈ A, ∀k ∈ V \ {1} (22)

f +k
ij , f −k

ij ≥ 0 ∀(i, j) ∈ A, ∀k ∈ V \ {1}. (23)

Constraints (19) set the flow from node 1 to any other nodes. Constraints (20) set the flow from
any node to node 1. Constraints (21) and (22) forbid non-selected arcs to carry the flow. Con-
straints (23) are the definition of the variables. Using these equations in model (M2) leads to model
(M2a).

© 2022 The Authors.
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10 C. Duhamel and A. C. Santos / Intl. Trans. in Op. Res. 0 (2022) 1–29

Fig. 4. Counterexample to stronger constraint f +k
i j + f −k

i j ≤ xi j .

Table 1
Models’ main properties

models obj #flows SO #var #0/1 #cstr

(M1a) min n(n − 1) yes mn(n − 1) m (n2 + mn)(n − 1) + m/2
(M1b) min k no mk m k(m + n) + m/2
(M1c) min ≤ k + 2(n − 1) yes ≤ m(k + 2(n − 1)) m ≤ (m + n)(2(n − 1) + k) + m/2
(M1d) min ≤ k + n yes ≤ m(k + n) m ≤ k(m + n) + n2 + m/2
(M2a) max 2(n − 1) yes (2m + n2)(n − 1) m (mn + 2m + 3n)(n − 1) + m/2
(M2b) max n yes (m + n2)(n − 1) m (mn + n)(n − 1) + mn + n2 + m/2

The second version sets a unit flow circulation over all the nodes (one unit flow from node i to
node i + 1, i = 1, . . . , n − 1, and one unit flow from node n to node 1). This leads to model (M2b).

Note that the two sets of constraints (21) and (22) cannot be merged into a stronger constraint
( f +k

i j + f −k
i j ≤ xi j) since it could forbid the optimal solution. This is illustrated in Fig. 4 for an

instance with six vertices and seven edges with unit length. Three requests are considered: (1, 6, 1),
(3, 4, 1) and (6, 3, 1). Vertex 1 is set as root node. The optimal solution is shown in Fig. 4(b) and
the flow f + from node 1 (resp. f − to node 1) is presented in Fig. 4(c) (resp. Fig. 4(d)). One can see
arc (3,4) carries both kinds of flow.

3.3. Model characteristics summary

Given an instance with n vertices, m arcs and k requests, Table 1 summarizes the main properties of
the six models presented in Sections 3.1 and 3.2. The column “#flows” corresponds to the number
of unit flows used in the model while column “SO” indicates if the models guarantee a strong orien-
tation of the optimal solution. The last three columns indicate the number of variables (“#var”), the
number of 0/1 variables (“#0/1”) and the number of constraints (“#cstr”) for each model. Note

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
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C. Duhamel and A. C. Santos / Intl. Trans. in Op. Res. 0 (2022) 1–29 11

that the number of flows for models (M1c) and (M1d) is an upper bound since the original OD
flows can be used as part of the strong connectivity flow scheme. As mentioned before, aggregated
flow can be used. The resulting models are more compact but their linear relaxation is worse, due
to big-M constants in flow-topology coupling constraints.

The two following properties trivially hold for the linear relaxations of the proposed models:

Property 1. The linear relaxation of model (M1b) is weaker than the linear relaxation of models
(M1a), (M1c) and (M1d). The last three linear relaxations are equal.

Property 2. The linear relaxation of model (M2a) is equal to the linear relaxation of model (M2b).

4. Heuristics for the SNOP

Using multicommodity flow in models (M1a) to (M2b) involves a large number of variables and
constraints. Thus, these models cannot handle medium-to-large problems and other approaches
have to be investigated. Several metaheuristics are considered. Since each one provides its own
mechanism to explore the search space, we intend to assess their behavior for different network
configurations and select the ones with the best performance. These methods share the follow-
ing components: constructive heuristics, a local search and perturbations. They are detailed in the
next subsections.

4.1. Constructive heuristics

Let G = (V, E ) be an undirected connected graph with n vertices and m edges. An algorithm for
computing a strong orientation of G has been proposed in Roberts (1978). It consists in performing
a Depth-First Search (DFS) (Cormen et al., 2009) on G, starting from an arbitrary initial node.
A rank is associated with each vertex. It corresponds to the order the vertex is visited in the DFS.
The edges used to extend the exploration arborescence are oriented the way they are traversed. The
other edges are oriented from the extreme vertex with the largest rank to the extreme vertex with the
smallest rank. This deterministic algorithm runs in O(m + n) time. It guarantees a feasible solution,
i.e. a strong orientation.

We first propose its randomization in order to be able to produce several strong orientations. The
idea consists in assigning a weight wi ≥ 0 to each vertex i ∈ V . Let Ad jw(i) be the adjacency list of
vertex i, sorted by increasing weight. Then, at each DFS iteration, the unvisited neighbor with the
smallest weight is selected, see Algorithms 1 and 2.

Given a vector of vertices weight, this DFS algorithm ensures a strong orientation is computed
since it extends Roberts’ algorithm (Roberts, 1978) by only changing the order the neighbors are
visited. It runs in linear time, provided the neighbors have been first sorted by increasing weight.
The interest of randomizing the DFS is to be able to produce several feasible solutions by randomly
generating several weight vectors w and calling the algorithm. Yet, some strong orientations cannot
be obtained using this algorithm. For instance, the graph in Fig. 5 with five nodes and eight arcs is
strongly connected but none of the 120 possible node sequences induced by weights can lead to this
strong orientation. The other components of the metaheuristic are used to mitigate this limitation.

© 2022 The Authors.
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12 C. Duhamel and A. C. Santos / Intl. Trans. in Op. Res. 0 (2022) 1–29

Algorithm 1. Randomized DFS orientation R-DFS(G, A)

Input: G = (V, E ): graph
Output: A: edges orientation
1: for i ∈ V do
2: color[i] ← WHITE
3: end for
4: A ← ∅
5: r ← arg mini∈V {wi}
6: DFS_visit(G,A,i,-1)

Algorithm 2. Subroutine DFS_visit(G, A, i, f )

Input: G = (V, E ): graph; A: edges orientation; i: node to visit; f : ancestor
Output: A: edges orientation
1: color[i] ← GRAY
2: for j ∈ Ad jw(i) (increasing weight) do
3: if color[j] = WHITE then
4: A ← A ∪ (i, j)
5: DFS_visit(G,A,j,i)
6: else if j �= f and color[j] �= BLACK then
7: A ← A ∪ (i, j)
8: end if
9: end for
10: color[i] ← BLACK

Fig. 5. Counterexample for the randomized DFS.

As a consequence, encoding a solution s as a node sequence v or as a vector w of node weights,
and using Algorithm 1 to ensure the binding v/w → s cannot be applied extensively in a meta-
heuristic since it does not guarantee the optimal solution can be reached. However, it can be used
to compute initial solutions in a multistart strategy by setting random node weights.

4.2. Local search

The Variable Neighborhood Descent (VND) of Mladenović and Hansen (1997) has been initially
defined as a local search for the Variable Neighborhood Search (VNS). It relies on an ordered list
N = {N1, . . . ,NT } of T neighborhood structures and it works in the following way: only one neigh-
borhood structure is active in each iteration, with N1 being used initially. Then, given the current

© 2022 The Authors.
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C. Duhamel and A. C. Santos / Intl. Trans. in Op. Res. 0 (2022) 1–29 13

Fig. 6. Basic moves.

solution s and the active neighborhood structure Nt, the set of neighbor solutions Nt (s) is explored.
If an improving solution s′ ∈ Nt (s) is found, then s ← s′ and t ← 1. Otherwise t ← t + 1. The VND
stops as soon as t = T + 1, when no improving solution has been found in N1(s) · · ·NT (s). Here,
three neighborhood structures are proposed for the VND.

A move in the first neighborhood, N1, called One arc reversal, has been introduced by Drezner
and Wesolowsky (1997). It consists of changing the orientation for a single arc, see Fig. 6(a). One
may note that this does not guarantee a strong connectivity of the resulting solution s′. Thus, a
basic O(m + n) algorithm is used to check if s′ is strongly connected. All arcs are considered for
this neighborhood. In the One vertex cocycle reversal move N2, the orientation of all the edges
connected to a vertex is modified, see Fig. 6(b). This move does not ensure strong connectivity.
Thus, as for a N1 move, a check on strong connectivity is performed. All vertices are considered for
this neighborhood. To the best of our knowledge, the next neighborhood N3 has not been proposed
in the literature. A One cycle reversal move in N3 consists in reverting the arcs in a cycle, see Fig. 6(c).
This move is especially interesting since the strong connectivity is ensured. As a consequence, the
new solution is feasible. Only a subset of cycles is considered for this neighborhood. Namely, the
smallest cycle including each arc is selected by performing a BFS (Breadth First Search). One may
note that these three neighborhood structures N1 . . .N3 require a global evaluation of the new
solution, that is the computation of all the shortest paths.

4.3. Perturbation

The perturbation mechanism aims at modifying the current solution such that the subsequent use
of a local search will drive the process into other areas of the solution space. The perturbation can
be parametrized in order to control the amount of modifications from the current solution.

© 2022 The Authors.
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14 C. Duhamel and A. C. Santos / Intl. Trans. in Op. Res. 0 (2022) 1–29

For the SNOP, the perturbation consists in changing the orientation of a given number of arcs,
such that the resulting topology remains strongly connected. This is done iteratively. In each it-
eration, a subset of arcs whose orientation can be safely changed is computed as follows: a DFS
is performed on the current solution. Following Cormen et al. (2009), the combination of tree
arcs and back arcs defines cycles in the digraph. Thus, the forward arcs and the cross arcs can
be reversed without breaking the strong connectivity. They can be identified in O(m + n) time
complexity to define the subset. Then, an arc is randomly chosen from this subset and it is re-
versed. In order to avoid as much as possible the arc being reverted, a null weight pi j is ini-
tially assigned to each edge [i, j] ∈ E . It is increased each time the orientation of edge [i, j] is
changed and the arc to be changed is randomly chosen in the subset among the arcs whose weight
is minimal.

4.4. Metaheuristics

Six metaheuristics are being used and compared: the multistart strategy (MS), the ILS proposed
by Lourenço et al. (2002), the RILS of Afsar et al. (2014), the ELS of Wolf and Merz (2007), the
RELS, and the VNS of Mladenović and Hansen (1997). They all make use of the components
presented in the previous sections, but in different ways since each one defines its own exploration
strategy, as described below.

At each iteration of the MS, an initial solution is randomly generated before being improved
in the local search. The best solution obtained over the iterations is kept. This is the most basic
metaheuristic since its global strategy consists in randomly sampling the solution space.

In the ILS, an initial feasible solution is computed and then submitted to a local search.
In the following, and for a given number of iterations, a random perturbation is applied to
the current solution before calling the local search to get a new local optimum. This new so-
lution becomes the new current solution whenever it is better than the current solution. Oth-
erwise, the current solution is kept. The best-known solution found so far is returned by the
algorithm.

The ELS extends the ILS by creating, at each iteration, a given number of the current solution
copies. A random perturbation is performed on each copy before improving it in the local search.
The best new solution is kept and the current solution is updated the same way ILS does.

The VNS first improves the initial solution in the local search. Then, given a level τ of pertur-
bation, one iteration consists in copying the current solution, applying a random perturbation of
level τ , then improving the result with the local search. If the new local optimum is better than the
current solution, the current solution is updated and τ is reset to its minimal value τmin. Otherwise,
the current solution is kept and τ ← τ + 1. The method stops when τ reaches its maximal value
τmax.

Note that a variation is also considered for both ILS and ELS. The “better” acceptance criterion
can be replaced by the “random walk” acceptance criterion: the new solution always replaces the
current solution, even if it is not better than the incumbent solution (Lourenço et al., 2002). In such
a case, the incumbent solution has to be explicitly stored as it does not necessarily correspond to
the current solution. This leads to the RILS and the RELS.

© 2022 The Authors.
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5. Computational experiments

The experiments are performed on an Intel Core i7 with 2.6 GHz clock and 8Gb of RAM. The
mathematical formulations are tested using the CPLEX 12.7 solver under default parameters and
the proposed heuristics are developed in C++ and compiled with GCC g++ 9.3.0.

The first computational experiment addresses the mathematical models (M1a) to (M2b) in order
to measure the impact of enforcing or not the strong connectivity and the various unit flow sets,
and to evaluate the running times and the linear relaxation, see Section 5.1. The metaheuristics
are tested in the second set of experiments, see Section 5.2, in order to provide a comparison, to
evaluate their convergence, robustness and running time.

Three sets of instances are used.1 The first one relies on grid graphs of size 4 × 4, 5 × 5, up to
10 × 10. For each grid size, 10%, 25%, 50%, 75% and 100% of the possible number of requests
(unit flow) is randomly selected. Thus, there is one instance for each size of grid and each size of
set of requests. The second set of instances contains 100 randomly generated sets of requests for
the same 4 × 4 grid and for each percentage — 10%, 25%, 50%, 75% — of the possible number
of requests (unit flow). For 100%, there can be only one set of requests. Thus, there is only one
instance. The third test set consists of a single instance corresponding to the center of Clermont-
Ferrand city in France. It has been obtained from a Geographical Information System, followed by
a data treatment to generate the corresponding graph. It contains 92 vertices, 304 edges and 992
requests, which corresponds to around 11.8% of the possible number of requests.

5.1. Results of mathematical formulations

The mathematical formulations (M1a) to (M2b) are tested on the first set of instances described
above, with a running time limit set to 2 hours. Results for the minimization and the maximization
are reported in Tables 2 and 4 respectively. Each line corresponds to an instance. Columns “size”
and percentage of requests “%req.” indicate the instance characteristic dimensions, resp. the grid
size and the number of requests. The three next columns contain the optimal value, the linear
relaxation value and the relative integrality gap in percentage for models (M1a), (M1c) and (M1d).
Then for each model, the CPU time in seconds is provided. For model (M1b), the column “feas.”
indicates if the computed optimal solution if strongly connected (“y”) or not (“n”). The symbol “-”
indicates the solver has run out of memory, as a consequence no solution has been obtained.

As can be seen in Table 2, all instances with up to 36 nodes and 50% requests can be solved. The
number of flows used in the model has significant impact on the time to find an optimal solution.
Time consumed with model (M1a) grows faster than with smaller models (M1c) and (M1d). Model
(M1b) consumes the least time, since it only uses the flows corresponding to the requests. It is worth
mentioning that the four models have the same value of the linear relaxation for all these instances,
even if Property 1 states that model (M1b) can have a weaker linear relaxation.

In Table 2, all the optimal solutions obtained with model (M1b) were strongly connected, even if
the property is not guaranteed for this model. Intuitively, one may think the probability for model

1Instances will be available on https://cv.archives-ouvertes.fr/andrea-cynthia-santos, and https://pagesperso.litislab.fr/
cduhamel/, or under reasonable request.
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Table 2
Results for models (M1a), (M1b), (M1c) and (M1d) (minimization)

Instances M1a M1b M1c M1d

size %req. z∗ z %gap time time feas. time time

4 × 4 10 3782 3782 0.00 0.74 0.03 y 0.04 0.03
25 7791 7248 6.97 3.99 0.36 y 0.67 0.41
50 13969 12691 9.15 6.24 1.60 y 2.18 2.11
75 15244 14303 6.17 4.24 2.73 y 2.89 2.75

100 43160 38352 11.14 7.33 7.33 y 7.33 7.33
5 × 5 10 12333 11734 4.86 287.33 1.09 y 2.48 1.64

25 31332 28630 8.62 238.15 9.95 y 22.93 12.32
50 49136 46908 4.53 78.69 16.13 y 19.11 19.70
75 77522 73214 5.56 91.40 49.81 y 35.91 54.42

100 109458 96620 11.73 1068.87 1068.87 y 1068.87 1068.87
6 × 6 10 29178 28227 3.26 2788.80 5.88 y 12.79 8.05

25 72371 67149 7.22 – 286.56 y 634.72 609.54
50 160299 147199 8.17 – 1450.12 y – –
75 – – – – – – – –

100 – – – – – – – –

Table 3
Impact of the number of requests on model (M1b)

Instances M1a M1b

size %req. %gap time %gap time (s) #same #feas.

4 × 4 10 2.51 2.16 2.44 0.07 65 84
25 6.57 3.61 6.56 0.41 99 99
50 9.84 5.48 9.84 1.88 100 100
75 5.92 4.06 5.92 2.57 100 100

100 11.14 5.30 11.14 5.30 100 100

(M1b) optimal solution to be feasible should depend on the number of requests. In order to check
this intuitive idea, models (M1a) and (M1b) have been run on the second set of instances, i.e.
100 randomly generated sets of requests for each number of requests (save 100% requests). The
results are reported in Table 3. For each model, “%gap” and “time” stand, respectively, for the
average relative integrality gap and the average computing time in seconds. The columns “#feas.”
and “#same” report the number of times, on the 100 sets of requests, model (M1b) optimal solution
was (i) similar to model (M1a) optimal solution and (ii) feasible.

It appears the empirical probability of computing a strongly connected solution with model
(M1b) is close to 1, even with 25% requests. With only 10% requests, this probability is still 0.84.
The probability of getting the same solution with models (M1a) and (M1b) is close to 1 with at least
25% requests. Below, it drops to 0.65 with 10% requests. This means with 10% requests, the solu-
tion may differ on arcs that are not used to define the shortest path for the requests. Yet, on some
occasions, the solution provided by model (M1b) has a better optimal value, but it is not strongly
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Table 4
Results for models (M2a) and (M2b) (maximization)

Instances M2a M2b

size %req. z∗ z time time

4 × 4 10 9588 344401 14.96 9.82
25 16743 834489 18.67 14.59
50 28109 1683328 18.83 12.24
75 37602 2502418 21.18 13.87

100 71998 3216800 17.60 21.25
5 × 5 10 – – – –

25 – – – –
50 – – – –
75 – – – –

100 – – – –

connected. This is highlighted by the %gap: 2.51% for model (M1a) versus 2.44% for model (M1b)
for 10% requests.

Even if there seems to be a correlation between the percentage of requests and the probability of
obtaining a strongly connected solution with model (M1b), counterexamples do exist. For example,
if the instance contains n requests that define a circulation on the nodes, the optimal solution is
guaranteed to be strongly connected. On the other hand, if there is at least one request from every
node but one to every other node (hence (n − 1)2 requests), the optimal solution will not be strongly
connected. However, the probability of such configurations is small.

Table 4 reports the results for the maximization on the first set of instances with models (M2a)
and (M2b) respectively. Only instances with 16 nodes have been solved in the 2h time limit, while
some 36 nodes instances have been solved to optimality in Table 2. This indicates experimentally
that the SNOP with maximization criterion is more difficult than the SNOP with minimization
criterion. The value of the linear relaxation is the same for both models, as stated by Property 2. The
large integrality gaps that can be observed are a direct consequence of big-M in constraints (14).
One can also note model (M2b), which uses a smaller number of flows than model (M2a), leads to
lower computing times. However, the impact of the number of requests on the CPU time seems to
be smaller than in minimization.

5.2. Results for the proposed metaheuristics

Tables 5 and 6 present the results for the proposed metaheuristics (MS, ILS, RILS, ELS, RELS and
VNS), resp. applying the minimization and maximization criteria for SNOP, and considering the
first and the third set of instances. A limit of 200 calls to the VND local search is set, which means
200 iterations for MS, ILS and RILS.

The ELS and the RELS rely on two parameters, the number of iterations and the number of
copies in each iteration, whose product must be equal to 200. The calibration has been done
with Iterated Racing for Automatic Algorithm Configuration package (IRACE) (López-Ibáñez
et al., 2016) on the 5 × 5 instances. This leads to 20 iterations (and 10 copies) for ELS, both for

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.
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minimization and maximization. For RELS, the recommended value for the iterations was 100 in
minimization and 40 in maximization, with quite a low sensitivity in the latter. Thus 100 iterations
(and two copies) have been chosen for RELS. With these settings, RELS is quite close to RILS.

For each call of the shaking procedure in ILS, RILS, ELS and RELS, the number of iterations is
randomly drawn in the interval (0.01m, 0.05m) where m is the number of arcs. For VNS, τmax is set
to 0.8m, which means up to 80% of the arcs may be reversed.

The column BKS refers to the value of the best-known solution. Optimal values are in bold,
whenever they have been found by models (M1a)–(M2b) in Tables 2 and 4. Otherwise, the value
in italic corresponds to the best value obtained by the metaheuristics. For each method, the best
upper bound (UB), the relative gap to the BKS (%dev) and the running time in seconds (time)
are reported.

For the minimization criterion in Table 5, the MS, ILS, RILS, ELS, RELS and VNS found the
BKS, respectively 11, 14, 11, 12, 14 and 11 times out of 26 instances (25 grids and 1 city center).
In general, the gaps remain below 2% of the optimal solutions for small instances and 2% of BKS
for the other ones for all methods. In terms of running time, the MS is the most time consuming
one. This is an expected result since the MS method generates random initial solutions that do
not benefit from optimized parts of the previous known local optima. As a consequence, the local
search needs to improve each initial solution until a local optimum is reached. For the realistic
instance, RELS is the only one to obtain the BKS, the ILS and the VNS being close behind.

For the maximization criterion in Table 6, the MS, ILS, RILS, ELS, RELS and VNS found the
BKS, respectively 5, 7, 6, 5, 13 and 10 times. The computational times are significantly smaller
in maximization, and MS time consumption is not much higher than the other methods. Yet, the
instances seem harder to solve: the BKS has been found a total of 46 times in maximization as
opposed to 73 times in minimization. In addition, relative gaps to the BKS in maximization are
larger than in minimization. Even if the settings in RELS (100 iterations, two copies) is quite close
to RILS, the results differ significantly. This means the copying mechanism in ELS/RELS provides
a substantial benefit. For the realistic instance, RELS finds the BKS, closely followed by ILS. The
other methods get significantly worse results, especially MS and RILS.

The next set of experiments is quite similar except that the number of calls to the local search
is now unlimited. A time limit, corresponding to the time spent by the slower method (i.e. VNS)
in Tables 5 and 6, is set instead for each method on the same instance. Thus, each method is given
the same amount of time and uses at least the time it spent in these tables. The results for the
minimization and for the maximization are presented in Tables 7 and 8, respectively. Optimal values
are in bold and best-known results are in italic. The number of time each method got the best result
is reported at the bottom of each table.

As can be seen, ILS and RILS get a significant improvement. In minimization, ILS finds 19 BKS,
five more than with 200 calls to the LS. RILS finds five more BKS as well. It is worth noting the
BKS is improved for two instances: 8 × 8 75% by RILS and 10 × 10 75% by ILS. MS, ELS, RELS
do not benefit much from the increase of CPU time.

The situation is similar for maximization. ILS is the method benefiting the most from the increase
of cpu time (12 BKS found instead of 7). The other methods improve their results too, to a smaller
extent, with the exception of MS which seems to reach its limits. Yet, RELS still looks the most
effective of these approaches in maximization. The BKS of 4 instances is improved (5 × 5 10% by
RILS, 6 × 6 10% by ILS and RELS, 10x10 10% by ILS, and clermont 92 nodes 11.8% by ILS).

© 2022 The Authors.
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Table 7
Results for the metaheuristics (fixed time minimization)

Instances MS ILS RILS ELS RELS VNS

Size %req. cpu UB UB UB UB UB UB

4 × 4 10 0.2 3782 3842 3782 3842 3782 3782
25 0.3 7791 7791 7791 7791 7791 7791
50 0.3 13969 13969 13969 14297 13969 13969
75 0.4 15244 15314 15244 15314 15244 15244

100 0.3 43160 43160 43160 43160 43160 43160
5 × 5 10 1.5 12333 12333 12333 12333 12333 12333

25 1.7 31332 31332 31332 31332 31332 31376
50 1.4 49136 49136 49136 49136 49136 49136
75 2.0 77522 77522 77522 77522 77522 77522

100 2.0 109458 109458 109458 109576 109458 109458
6 × 6 10 7.0 29178 29178 29178 29178 29178 29210

25 10.0 72371 72371 72371 72371 72371 72371
50 8.5 160847 160299 160655 160299 160473 160665
75 9.4 145133 144051 144051 144317 144119 144645

100 9.2 236694 234814 234814 234814 234814 234814
8 × 8 10 109.9 122080 120528 120800 121046 120690 120528

25 114.6 269909 267713 268089 267713 267713 267793
50 133.9 561188 557686 561610 575554 559856 559772
75 121.1 939114 932572 929680 931130 930992 931938

100 125.6 1490269 1479278 1481160 1491588 1483714 1480154
10 × 10 10 564.1 437472 437246 435610 439026 436780 435612

25 652.6 761662 757124 759942 760164 758676 757630
50 949.4 2065205 2042847 2057581 2048995 2051431 2053661
75 846.1 3364629 3326229 3353731 3333005 3331299 3346371

100 864.3 3823346 3812642 3825700 3809398 3810430 3819432
92 11.8 279.8 825534 821413 822293 822624 820460 820504
nb_best 12 19 16 12 14 12

The best-known solution obtained by the metaheuristics on the realistic instance is displayed
in Figs 7–8 for the minimization and the maximization respectively. These two solutions can be
compared on their structural properties in order to assess their differences better. This is done in
Table 9 for three properties: the node balance, the return length and the increase in travel distance
for each request. The node balance is defined as the absolute difference between the number of
incoming arcs and the number of outgoing arcs. Thus, it measures the equilibrium of a node in
terms of entering/leaving arcs. The return length, for a node, is the length of the shortest cycle
containing this node. It provides some information on the local arc configuration in terms of travel
distance. For a request, the increase in travel distance is the relative difference between the length
of the shortest path in the current solution and the length of the shortest path in the undirected
graph. It shows how close to the best possible situation the current solution is, with respect to the
request. For the sake of clarity, the BKS corresponding to the minimization is referred as to BKS
min, respectively BKS max for the maximization.

© 2022 The Authors.
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Table 8
Results for the metaheuristics (fixed time maximization)

Instances MS ILS RILS ELS RELS VNS

Size %req. cpu UB UB UB UB UB UB

4 × 4 10 0.2 9588 9588 9588 9588 9588 9588
25 0.3 16743 16743 16743 16743 16743 16743
50 0.3 27609 27609 28109 27609 28109 28109
75 0.3 36934 35130 37602 36934 36934 37602

100 0.3 71998 70804 71998 71998 71998 71998
5 × 5 10 1.3 31231 31171 32399 30828 32399 32399

25 1.5 78238 77246 78238 77246 78238 78238
50 1.6 150146 150146 150146 150146 150146 150146
75 1.5 206662 209352 209352 204208 209352 209352

100 1.5 239256 241260 240336 239256 246192 246192
6 × 6 10 5.3 102688 107900 104092 93966 107900 104092

25 7.8 204923 210831 223087 224339 224339 223087
50 7.5 484073 478621 475929 486385 483285 492467
75 7.9 448421 455851 447275 452611 457213 453831

100 7.1 682600 697236 679788 687986 697236 681318
8 × 8 10 65.1 469296 503104 489652 508023 512016 507736

25 84.9 1105387 1244047 1119543 1198415 1010967 1145677
50 82.2 2142644 2398622 2177088 2345886 2242096 2254874
75 88.8 3300174 3398188 3422536 3427392 3578280 3305072

100 88.0 4992488 5102718 5166662 5384026 5261022 4907118
10 × 10 10 431.1 1859260 2014004 1896464 1947502 1924276 1949546

25 260.8 3690164 4243588 3636788 3772352 3900512 4235338
50 532.3 8330461 9238531 8872463 9964117 10034431 9303039
75 542.6 15768273 15422191 15179123 16492175 16387161 16471941

100 544.2 14931142 16827816 15173708 16171418 15408808 15759412
92 11.8 110.6 3132116 3675395 3026080 3373331 3467395 3446262
nb_best 5 12 9 7 16 11

In terms of node balance, both solutions contain balanced nodes (min value 0). The maximal
imbalance is 2 for BKS min, while it is 4 for BKS max. The average node imbalance is 0.54 for BKS
min, and twice as much (1.02) for BKS max. The next columns report the number of nodes with a
given node imbalance. One can note nearly half the nodes (45 out of 92) are balanced in BKS min,
while more than one quarter of the nodes (26 out of 92) has an imbalance greater or equal to 2
in BKS max. Thus, in terms of node balance, BKS min contains much more balanced nodes than
BKS max.

In terms of return length, the minimal value is almost the same for the two BKS. However, the
maximal value is six times higher for BKS max (6996) than for BKS min (1147), and the average
length is nearly four times larger (2116.0 against 552.6). When comparing with the smallest possible
return time (using each edge at most once), the same behavior happens. Thus, on average, the local
traffic consumes more distance in BKS max than in BKS min.

The difference is even more evident with the travel distance for each request. Even if there is at
least one request whose travel distance is the smallest possible for each BKS (min = 0.0 %), the
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Fig. 7. Best found solution (minimization) for the realistic instance.

situation significantly differs when considering the average relative gap to the best distance: the
travel distance is 53.8% higher than the smallest possible for BKS min while it is 707.2% larger for
BKS max. The next columns report the number of requests whose travel distance gap belongs to
a class: for instance, 192 requests have a gap between 0% and 10% in BKS min, almost the same
(194) for BKS max. For the class 0%–10%, there is no significant difference. Starting from 10%–
20%, BKS min obtains better results. This can also be seen for the class above 100% (at least twice
the smallest possible distance): 115 requests fall within this class for BKS min, compared to 656
requests for BKS max. This is an expected result, since BKS min aims at providing the smallest
total distance while BKS max does the opposite.

The convergence and the robustness have been analyzed in graphical terms, using a descent graph
for solution values and TTTPlots (Aiex et al., 2007).

Figures 9–10 are representative examples of the trade-off between the objective values and run-
ning time on the 6 × 6 grid instance with 1260 requests. In Fig. 9, the evolution of the objective
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Fig. 8. Best found solution (maximization) for the realistic instance.

value for a single run of each method is reported. The horizontal axis indicates the running time in
seconds, while the vertical one corresponds to the objective values. Thus, the closer a line is to the
vertical axis, the faster is the method’s convergence to better solutions in this run. Some interesting
results can be noticed in these graphics, for instance, the VNS and the RELS show a fast conver-
gence for SNOP with minimization criterion, and these two methods together with ILS are ones
able to find the optimum solution. ILS is the heuristic with the fastest convergence for SNOP with
maximization criterion and the only one able to meet the optimum solution. In both cases, SNOP
with minimization and maximization criteria, the MS presents the worst convergence quality.

For the TTT plots in Fig. 10, 100 runs have been done for each method. The target value is set
to 1.05BKS in minimization and to 0.95BKS in maximization. The horizontal and vertical axis
stand respectively for the running time and the probability of finding a target value. Thus, the
more vertical the plot is for a method, the more robust the method is. These graphics indicate ILS,
ELS, RELS heuristics are the most robust ones for the SNOP with minimization criterion, while

© 2022 The Authors.
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Table 9
Properties of the BKS for the realistic instance

Balance # nodes with balance

Node balance Min Avg. Max 0 ±1 ±2 ±3 ±4

BKS min 0 0.54 2 45 40 7 – –
BKS max 0 1.02 4 29 37 22 3 1

Length % gap to best

Return length Min Avg. Max Min Avg. Max

BKS min 134 552.5 1147 0.00 38.71 259.59
BKS max 146 2116.0 6996 0.00 430.29 1494.20

% gap to best # requests with gap to best

Request length Min Avg. Max 0% 10% 20% 50% 100% >100%

BKS min 0.0 53.8 2383.9 192 157 167 262 99 115
BKS max 0.0 707.2 17174.2 194 24 35 52 31 656

ILS, RILS, ELS, RELS present close results in terms of robustness for SNOP with maximization
criterion. These results are more statistically meaningful since they rely on a larger number of runs.

Summarizing the analysis previously done in terms of best solutions found, running time, con-
vergence and robustness the ILS seems a good compromise for SNOP with minimization and max-
imization criteria.

6. Concluding remarks

Several mathematical formulations and sophisticated heuristics were proposed and tested over grid
instances and a realistic one. The former formalized the problem, while the latter allowed us to
obtain high-quality results. In terms of mathematical formulation, models (M1d) and (M2b) are,
respectively, the best ones for the SNOP with minimization and maximization. Considering the
metaheuristics, the task of choosing one is not simple. Globally, ILS, ELS and RELS have the best
performances considering the analysis done and the set instances used. However, ILS appears as a
good compromise whenever one looks for a unique method for both SNOP with minimization and
maximization criteria.

SNOP is a baseline problem for solving tactical optimization problems in urban networks. Thus,
the contributions of this article open several avenues for further research. One direction is to inves-
tigate a more general case of SNOP on multigraphs (multiple directed arcs between two nodes) or
in mixed graphs (directed and not-directed arcs between two nodes). These two cases generalize the
SNOP to address an overall transportation network, differing the way the network is modeled in
terms of a graph. Other avenues of research cover the development of other mathematical formula-
tions, valid inequalities, new components for the heuristics methods, and exact algorithms. SNOP
presents also theoretical interest in graph theory and network design.
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Fig. 9. Methods trajectory for the grid instance 6 × 6 with 1260 requests.

As mentioned before, SNOP is a key problem with extensions appearing in a number of practical
applications. For instance, both mathematical models and methods can be adapted to handle other
urban network problems such as the installation of green lanes (pathways for pedestrians, green
pathways, bikeways, etc.) and dynamic routes (routes used for different objectives, and whose direc-
tion can also change over the day). Green lanes and dynamic routes appear for different reasons.
Green lanes have been implemented to try to change the inhabitants’ life style and to encourage
more eco-responsible and healthier habits. Dynamic routes are justified by better use of the physical
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Fig. 10. Methods TTTplot for the grid instance 6 × 6 with 1260 requests.

space in order to reduce daily congestion. Even if green lanes and dynamic routes are different, they
share some common technical and modeling issues. In particular, which routes are more likely to
adopt one of these systems? How should one organize the transport flow after such a modification?
What are the impacts on the environment? Poor choices, local decisions or short-term decisions,
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concerning the implantation of green lanes or dynamic routes can generate congestion in unex-
pected points of the urban network.
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