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A Reduced LPV Polytopic Look-Ahead Steering Controller for Autonomous
Vehicles

Dimitrios Kapsalis1,2, Olivier Sename2, Vicente Milanes3 and John J. Martinez2

Abstract— This paper presents a novel design of a Linear
Parameter Varying (LPV) controller based-on the polytopic
approach, for the path-following system of an automated
vehicle. The implementation of the proposed steering system
is based-on the reduction of the initial 3D (3 Dimensional)
polytope that, due to the conservatism of the specific approach
suffers from over-bounding. The proposed algorithm aims at
tightening the polytope by reducing the vertices and the volume
of the polytope that includes the parameter variations i.e the
longitudinal velocity of the car, its inverse and, the look-ahead
distance of the steering algorithm. In this paper, a novel real-
time implementation of the reduced LPV/Polytopic controller
is proposed as a real-time optimization problem according to
the current measured values of parameters. The novel control
system, has been validated in high-fidelity simulations, and to
a real-life experiment at a test-bed platform (Renault Zoe)
in a private test track for low and higher speeds showing
encouraging performance and sustaining good tracking and
comfort at the same time.

I. INTRODUCTION

Automated cars can provide different services according
to the selected Operational Design Domain (ODD) [1].
To achieve the desired performance under some specific
conditions where the vehicle is intended to function, several
components that compose the overall architecture of the
vehicle, must cooperate successfully. The more important
parts of such an architecture, according to the existing bib-
liography may be: (i) Perception, (ii) Navigation (NAV) and
(iii) Control Actuation [2]. Similar cognitive architectures
have been deployed and demonstrated in [3], [4], [5].

The control part of the car mainly addresses the problems
of following (a) a path (Lateral Control), (b) a generated
longitudinal speed profile or another vehicle (Longitudinal
control). A combination of the two previous can be designed,
for some cases e.g. during a lane-change in a highway or an
obstacle avoidance (Integrated Lateral/Longitudinal Control)
[6].

Lateral control refers to the capability of the vehicle to
follow a pre-defined path via steering feedback control [7].
Several control algorithms exist and were implemented for
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the steering control of an automated vehicle. [8] presents
two different approaches based-on receding horizon control
that compute the front steering angle to track a path in
slippery road condition, while state constraints are treated.
More specifically, a Non-linear Model Predictive Controller
(NMPC) has been tuned for the non-linear vehicle model,
which is discretized off-line for a given sampling time. The
second approach refers to the design of a linear MPC for the
successive linearized and discretized vehicle model. In [9],
preview control theory has been applied to design a lateral
control system that achieves a smooth steering operation by
taking into account as preview information the future road
curvature. [10] applied robust control techniques and in par-
ticular the loop-shaping tuning method. The H∞ steering con-
troller is robust under vehicle model uncertainties of a tractor
semi-trailer. Furthermore, [11] presents an adaptive lateral
control scheme where the steering controller is self-tuned,
while showing good tracking performance and robustness
to disturbances. In addition, a more recent adaptive scheme
[12], has been combined within the MPC framework aiming
at improving lateral stability and performance under various
road conditions. The adaptive scheme aims at improving the
prediction accuracy of the vehicle model, via a data-driven
online identification procedure updating the model which is
utilized by the predictive controller to compute the front
steering control input.

Gain-scheduling and more advanced LPV approaches
emerged as a way to handle parameter variations and model
non-linearities, while performance and stability are guaran-
teed [13]. The last decades LPV control techniques have been
successfully utilized in real-world applications [14], and in
particularly for automotive problems [15]. Moreover, LPV
lateral control approaches already exist in the bibliography.
[16] applied the LPV/Gridding approach for the lateral
control on tractor-trailers. The velocity’s parameter space is
gridded for a selected step and LTI controllers are computed
via Linear Matrix Inequalities (LMIs) for every grid point.
In former studies [17], the authors have utilized the same
approach but the key difference is that the look-ahead time
of the steering framework is expressed as a continuous
function of the speed. Another interesting approach to treat
the longitudinal speed, which is an inherent parameter in the
lateral control problem, is the polytopic approach. According
to that method, the parameter set is represented by a polytope
which is defined by the combinations for the maximal values
of the parameters. Due to that fact, the polytope may be
over-bounded, meaning that the volume of the geometrical
representation is far larger than the “true” parameter tra-



jectory, and the associated LPV controller cannot satisfy
the closed-loop performance adequately. For these reasons,
several attempts have been made to reduce the size of the
polytope for the scenario of tracking a reference trajectory,
and provide a less conservative control-oriented model. In
particular in [18], a 2D (2 Dimensional) polytope including
only the speed and its inverse is reduced even though a
parameter dependent weighting function is utilized for the
tuning of the LPV controller and thus leading to a 3D
polytopic model which is not treated completely. More
recently [19] presents a complete review of the different
methods utilized so far to reduce the size and the number
of vertices for the 2D polytopes for the synthesis problem
of a LPV/Polytopic controller.

A. Extension & Contributions

This paper stands as an extension and improvement of
[20]. More specifically, in the former study [20], the lateral
control system is based on minimizing errors computed at
a look-ahead distance expressed as a linear function of the
velocity (so a constant look-ahead time), in front of the car
w.r.t. the reference path. The design of the LPV/Polytopic
controller is based-on the reduction of a 2D polytope as
done in the literature. In this work, the contributions over
the previous work and existing attempts collected in [19] to
reduce the conservatism of the polytopic approach to design
a lateral control system can be summarized below:

• The look-ahead distance is considered here as an extra
varying parameter. Thus, a complete control design is
achieved over a larger range of selected look-ahead
distance profile and of velocity in combination with
the LPV control theory. Consequently, the autonomous
vehicle can track sufficiently the trajectory for lower and
higher speeds while its tracking performance is adjusted.

• A shrinking algorithm is proposed that reduces the
initial over-bounded 3D 8-vertices polytope to the final
4-vertices one, while the convexity property is still
satisfied. The synthesis of the reduced LPV/Polytopic
controller improves significantly the tracking perfor-
mance over the primal work presented in [20]. In addi-
tion, compared to the grid-based approach developed
in [17], where the control implementation needs the
interpolation of a far larger number of LTI controllers,
the implementation of the proposed reduced polytopic
approach only needs to compute on-line a combination
of a set of 4 LTI controllers (designed off-line).

• A novel real-time implementation procedure of the
discretized and reduced LPV/Polytopic controller is
presented. It is based-on the solution of a real-time
constrained Least-Squares (LS), which mathematically
is expressed as a quadratic programming problem.
That implementation is validated in a test-bed
platform at a test track, proving its embedded-
applicable formulation and validity, as it can be
seen in the following video recorded during the
experiments: https://drive.google.com/

file/d/1-VBEj528LXWbQWn89r9GxYU-N2Vj_
KJF/view?usp=sharing .

B. Structure of the paper

The following sections of the paper are organized as
follows. Section 2 introduces the lateral control framework,
and the complete model of the steering dynamics of the
car including the errors and the actuator’s identified model.
Section 3 presents the proposed algorithm to tighten the 3-
dimensional parameter polytopic set and the associated LPV
model. Then, section 4 details the LPV Polytopic Controller
synthesis in the H∞ framework and section 5 describes the
off-line and on-line steps of the novel implementation for
embedded application. Sections 6 & 7 provide the simulation
and experimental results of the novel control scheme, respec-
tively. Section 8 sums up the paper and proposes extensions
& future perspectives.

II. PATH-FOLLOWING CONTROL FRAMEWORK

This section presents the modelling of the vehicle’s lateral
dynamics, as well as of the look-ahead trajectory tracking
model. In particular, the modeling of look-ahead errors is
given, including the identified model of the EPS system.

A. Two-Wheeled Dynamic Bicycle Model Formulation

Fig. 1 depicts the bicycle model that captures the lateral
motion of the car [21]. The resulted dynamics are expressed
in the state space model where the longitudinal velocity
vx is considered as a varying parameter. In that sense, the
longitudinal motion of the vehicle can be decoupled from
the lateral one and a controller per scenario can be designed
independently from the other. As states are considered the
lateral speed vy and the yaw-rate ψ̇ of the car. The control
input is the steering wheel angle applied to the front wheels
of the car δ . α f , αr are the tire side-slip angles of the front
and rear wheels respectively. β is the side-slip angle of the
vehicle body. L f , Lr are the distances of the front and rear
wheel from the center of the gravity of the car. The lateral
tire forces are approximated as linear functions of the tire
side-slip angles from the well-know empirical model “Magic
formula” [22], i.e Fyr =Crαr, Fy f =C f α f . C f , Cr are the front
and rear cornering stiffness respectively.

Fig. 1. Two-wheeled bicycle model representing the vehicle lateral
dynamics.
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B. Look-ahead Errors Model

Fig. 2 illustrates the steering framework via the following
of a path is achieved. More specifically, the NAV of the
vehicle provides a set of control points (blue points in fig.
2) by utilizing polynomials and discretizing it into several
points. Thus, at every instant, according to the vehicle’s
position and its heading the vehicle’s pose is computed at
the selected look-ahead distance L and it’s projected onto
the closest segment of the reference trajectory. The closest
segment consists of two consecutive control points, and from
that segment, the lateral and angular errors at the look-ahead
distance are calculated, i.e yL, εL respectively, [23]. The
errors are modeled as follows:

ẏL =−vy −Lψ̇ + vxεL

ε̇L =−ψ̇ + vxκ
(2)

where κ is the road curvature of the trajectory at the target
point.

Fig. 2. Look-ahead errors according to the reference trajectory.

The merged model that contains the dynamics from eq.
(1) & (2), can be expressed from the concatenated matrices
below:

ẋv(t) = Avxv(t)+Bv1r(t)+Bv2u(t)

yv(t) =Cvxv(t)
(3)
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,

Cv =
[
0 0 1 0

]
and r(t) = ψ̇tra j = vxκ is an exogenous input.

C. Steering Actuation Model & Augmented Yaw Dynamics

The steering actuation system has been identified as a
delayed second-order transfer function. This model is con-
nected in series with the bicycle model so as to design a
controller that respects the bandwidth of the actuator. The
actuator transfer function is expressed below:

Gact =
k

s2 +2ζ ωns+ω2
n

e−Tds (4)

where k, ζ , ωn and Td are the static gain, the damping,
the natural frequency and the time-delay respectively.

A second-order Padé approximation of the time-delay Td
is applied, equation (4) can be re-written as a state space
model:

ẋact(t) = Aactxact(t)+Bactδ (t)

δact(t) =Cactxact(t)
(5)

where xact ∈ R4 is the vector expressing the states of the
actuator, Aact ∈ R4×4, Bact ∈ R4×1, Cact ∈ R1×4 are the
systems matrices and δact ∈ R is the output.

Considering the output of the actuator as the input of
the extended vehicle model (3), the state space of the
interconnected system can be written as:

ẋv(t) = Avxv(t)+Bv2Cactxact(t)+Bv1r(t)

ẋact(t) = Aactxact(t)+Bactδ (t)
(6)

The above state space equations can be formulated as the
augmented system shown below:

ẋ(t) = Ax(t)+B1r(t)+B2δ (t)

y(t) =Cx(t)
(7)

where, x(t) =
[

xv(t)
xact(t)

]
∈R8 is the augmented state vector,

A=

[
Av Bv2Cact

1−20 Aact

]
∈R8×8, B1 =

[
Bv1
0

]
∈R8, B2 =[

0
Bact

]
∈R8 and C =

[
Cv 0

]
∈R1×8 are the augmented

system matrices.

III. LPV MODEL & 3D POLYTOPE REDUCTION

This section proposes a 3-dimensional polytope reduction
for the augmented system eq. (7) and for the selected
operating domain of varying parameters. Note that this is
not a generic method able to handle a n-dimensional size
polytope.



A. LPV Polytopic Model Construction

The above system representation (7), can be written in an
LPV form, by considering the varying parameters in the plant
matrices as bounded and real-time measured. In that sense,
the system matrices are fixed functions of the parameter
vector ρ(t).

More specifically, it is assumed that the vector ρ varies in
a polytope Θ of vertices θi.

ρ(t) ∈ Θ

Θ =Co{θ1,θ2, ..,θN}
(8)

where Co denotes the convex hull of the finite N vertices θi.
The vertices θi correspond to the combinations of the

extremum values of the parameters ρi, i.e ρi ≤ ρi ≤ ρi.
Respectively, the LPV Polytopic model is constructed by
assuming that the LPV plant matrices, which contain the
parameters ρi, vary in a matrix polytope. That polytope is
defined as the convex hull of a number of vertex matrices
of the same dimension. These vertex matrices are computed
for values of parameters equal to the vertices θi. Another
assumption, it is the affine dependence of the LPV matrices
on the parameter vector ρ [13], i.e

A(ρ) = Aρ0 +
n

∑
i=1

ρiAρi (9)

where Aρ0 , Aρi are LTI state matrices and n is the number
of parameters.

The varying parameters chosen in this work, are the speed
vx and the look-ahead distance L. These parameters are
explicitly included in the system (7) through the system
matrix A(vx,L). Therefore, by defining the vector of varying
parameters ρ = (ρ1, ρ2) = (vx, L) the state matrix can be
decomposed as follows:

A(ρ) = ρ1Aρ1 +
1
ρ1

A 1
ρ1
+ρ2Aρ2 (10)

As seen, A(ρ) is then not an affine function of the parameter
vector, because the term 1/vx = 1/ρ1 exists in the matrix A 1

ρ1
and consequently is not LTI.

To meet this requirement the varying parameter vector ρ

is augmented as, ρ = (ρ1 ρ2, ρ3) = (vx, 1/vx, L). Thus, the
affine property is satisfied as it is shown below and at the
right part of the eq. (11) all the matrices are LTI.

A(ρ) = ρ1Aρ1 +ρ2Aρ2 +ρ3Aρ3 (11)

In this work, the selected look-ahead distance profile per
speed is the same as the one considered in [17] for lane-
tracking. The range of speed is selected according to the
pre-defined ODD of a project launched by Renault that aims
at providing robotaxi services around the peri-urban and rural
areas of Paris. More specifically, the operating domain of the
varying parameters is the following:

vx ∈ [5,25] (m/s)

1/vx ∈ [0.04,0.2] (s/m)

L(vx) = avxebvx + cvxedvx (m)

(12)

where a = 3.83, b =−0.7261, c = 1.154 and d =−0.01453.
Then, the LPV matrix A(ρ) can be expressed, according

to the vertex property [24], as a convex hull of the vertex
matrices created by all the possible combinations of the
parameter bounds, as shown below:

A(ρ) =
N

∑
i=1

aθi(t)Ai

N

∑
i=1

aθi(t) = 1, aθi(t)≥ 0

(13)

where aT
θ
(t) = (aθ1(t), ..,aθN (t))

T , N = 23 are the scaling
variables and the number of vertices accordingly. The vari-
ables aθ (t) are computed according to the real-time position
of ρ(t) in the 3D polytope Θ and, subsequently w.r.t. the
vertices θi ∈ R3, formulated as such:

ρ(t) =
N

∑
i=1

aθi(t)θi (14)

The resulting LPV Polytopic model, by replacing the LPV
matrix from (13) to the augmented model (7) is the one
below:

ẋ(t) = A(ρ(t))x(t)+B1w(t)+B2u(t)

y(t) =C(t)x(t)
(15)

It has to be remarked that the look-ahead distance is a
varying tuning parameter that is selected by the designer
per speed [25]. Subsequently, it is clear that the parameter
L also depends from vx. Thus, it seems of high interest to
reduce the size of the polytope Θ. The shrinking of the
polytope’s size decreases the complexity, the conservatism
of the approach and it facilitates the implementation of the
synthesized controller, as it is detailed in [19] and it has
already applied successfully in [18], [26].

B. Reduction of the 3D Polytope

The polytope that describes the LPV system is first created
for the upper and lower bounds of the operating domain
of parameters (12) and is illustrated in Fig. 3. Due to the

Fig. 3. The initial over-bounded 8-vertices polytope.

facts that (i) the parameter vector ρ is further increased to
satisfy the affine-dependence and, (ii) all the parameters ρi
are all dependent to each other, the inherent conservatism of



the Polytopic approach is enlarged. To treat this limitation
of the method and avoid other engineering-based solutions
as selecting the look-ahead distance or the time constant,
as in [18], [20] accordingly, it is proposed a 3-dimensional
polytopic reduction.

It has to be remarked that the reduced parameter polytope
has to include the parameter variation as the initial-full 8
vertices (see Fig. 3). This statement arises to retain the
convexity property, as it is defined for the Polytopic Linear
Differential Inclusions [27].

For the above reasons, the proposed Alg. 1 is proposed.
As a fist step, the 2-dimensional pairs of parameter variations
are illustrated in figure 4(a) and in the second step of
figure 4(b), a new set of vertices is selected for which
the resulted 3D polytope 4(c) is convex and compact. In
step 3 & Fig.4(d), the remaining non-realistic vertices that
doesn’t affect the inclusion of the 3D parameter trajectory are
deleted, i.e θ4. In the final step of the algorithm, no-more
vertices are deleted, but the coordinates of the remaining
vertices are reduced to shrink even more the polytope (see
figure 4(e)). In that particular case, the vertical coordinate
of vertex θ2, Lθ2 = 20 m, is reduced giving θ ∗

2 . Moreover,
the vertical coordinate of θ ∗

2 corresponds to a smaller value
of look-ahead distance, Lθ∗

2
= 13 m, hence permitting the

increased bandwidth around that region of parameters for the
closed-loop system. It has to be emphasized that θ3 and θ5
describe the two realistic cases, and the position of θ1 is not
modified since the inclusion of the parameters trajectory will
be affected. Finally, the remaining vertices of the reduced
polytope Θ̃ are the θ ∗ = (θ1,θ

∗
2 ,θ3,θ5).

Algorithm 1: 3D Polytope Reduction Procedure
Data: Θ =Co{θ1,θ2, ..,θ8}, Fig. 3.
Result: Θ̃ =Co{θ1,θ

∗
2 ,θ3,θ5}.

1 Step 1: Plot the 2D trajectories of the pairs of
parameters. Keep the vertices of the triangles that
include the 2D parameter variations (Fig. 4(a));

2 Step 2: Extend the necessary triangles (Fig. 4(b))
whose vertices are able to merge to a compact 3D
convex set (Fig. 4(c));

3 Step 3: Reduce the vertices (i.e θ4 in Fig. 4(d)), for
which the 3D parameters trajectory is still included;

4 Step 4: Shrink the polytope by reducing the vertical
coordinate of θ2 to θ ∗

2 , till the final geometry
includes the parameters trajectory (Fig. 4(e));

It is worth mentioning that the proposed algorithm is not
valid for every 3-dimensional polytope but for the specific
system, as it is shown in figures 3 and 4.

It can also be noted that for the case where the operating
domain of parameters changes e.g. the formula of the look-
ahead distance, then the 3-dimensional polytope will slightly
change as well and a new reduction algorithm should be
applied to secure the stability properties of the reduced poly-
topic system. This is a limitation of the proposed algorithm,

5
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(a) First step of reduction
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(b) Second step of reduction

(c) Illustration of the 3D polytope after the second step of the
algorithm.

(d) Illustration of the 3D polytope after the third step of the algo-
rithm.

(e) Illustration of the 3D polytope after the fourth step of the
algorithm.

Fig. 4. Overall comparison from the initial 8-vertices polytope (pink) to
the reduced 4-vertices (green).

which is the price to pay for the complexity reduction.



IV. LPV POLYTOPIC CONTROLLER SYNTHESIS

In the H∞ framework, a LPV Polytopic Controller can be
designed off-line, as a solution of a convex optimization. The
semi-definite problem subject to a set of LMI, is formulated
at every vertex of the reduced polytope (Fig. 4(e)) [24].

A. Tuning & Controller Synthesis
The tuning of the LPV controller is achieved by introduc-

ing performance/template weighting functions Wy, Wu(s), Wr
& Wn [28] according to the control configuration scheme
(Fig. 5). These functions are selected as such:

• The first-order filter Wu(s) is chosen as Wu(s) =
s+wbc/M
εs+wbc

with wbc = 1 rad/s to respect the cor-

responding control objective about the bandwidth of
the controller, M = 2 (6db) to respect the saturation
limits and ε = 0.1 (10−1 rad/s) that expresses the
frequency where the roll-off starts to achieve better
noise attenuation.

• The weighting function Wy is chosen as Wy = 0.5. It
aims at imposing weight on the lateral error at the target
point, as a way to achieve the comfortable tracking of
the reference trajectory.

• Finally, constant scaling weights are added on the noise
signal and the reference, respectively as: Wn = 0.5 and
Wr = 0.3.

Fig. 5. Path-following feedback control configuration.

The generalized plant (16) that describes the control config-
uration of the weighted control scheme (depicted in Fig. 5),
is expressed below.ẋg(t)

y(t)
z(t)

=

A (ρ) B1 B2
C 0 0
Cz Dz1 Dz2

xg(t)
w(t)
u(t)

 (16)

where xg is the augmented state vector that consists of the
states of the extended model (7) and the states xz, which
express the dynamics of the weighting functions i.e xg(t) =[

x(t)
xz(t)

]
∈ R9, z(t) =

[
z1(t)
z2(t)

]
∈ R2 and w(t) =

[
r(t)
n(t)

]
∈ R2.

The generalized plant in (16) is also in polytopic form
consisted of the vertices θ ∗, of the reduced polytope.

Problem Definition: The LPV control synthesis problem
consists in finding an LPV controller K(ρ) so that the closed-
loop system represented in Fig. 5 is stable and there exists

a γ > 0 s.t.

sup
||w||̸=0

∥z∥2

∥w∥2
< γ, ∀ θ

∗ (17)

B. Solution & Frequency response of the LPV Controller

The polytopic approach is here considered to design the
vertex controllers Ki, i = 1,2,3,4, by solving off-line the
appropriate set of LMIs (for more details see [24] or [29])
The solution of the synthesis of the LPV/Polytopic controller
is computed with an attenuation level γ = 2.6. The solution
is the set of the vertex LTI controllers in a state space form:

ẋc(t) = Aixc(t)+Biy(t)

u(t) =Cixc(t)+Diy(t)
, i = 1,2,3,4 (18)

where xc(t) ∈ R9 denotes the state space vector of the
controller.

Fig. 6(a) depicts the controller sensitivity function u/r over
the closed-loop system for every vertex controller. As it is
visualized, the desired performance imposed by the template
weighting function Wu(s) is satisfied over the frequency
domain for every vertex θ ∗

i . Whereas, in figure 6(b), it is
depicted the closed-loop behavior for the lateral error at the
target point to the yaw-rate reference. Fig. 6(c) illustrates the
bode plot for the vertex LTI continuous controllers, proving
that the smaller magnitudes of vertex controllers is provided
by the two non-realistic vertices θ1 and θ ∗

2 .

V. REAL-TIME IMPLEMENTATION OF THE LPV
POLYTOPIC CONTROLLER

A dynamic output feedback LPV/Polytopic controller is a
convex combination of vertex LTI controllers computed in
real-time from the scaling variables aθi . Different methods
can be to compute these interpolation variables. In [30]
binary representations are utilized for the case where the
polytope Θ consists of a box, cube or hyper cube when the
number of parameters is n = 2,3 or > 3 respectively. That
approach is accurate for the cases where no reduction is ap-
plied to the parameters polytope. The formula that computes
the interpolation variables for the ith vertex controller are as
follows:

aθi(k) =
N

∏
j=1

αi jρ j(k)+βi j

ρ j −ρ j
(19)

where ρ j(k) is the real-time measurement of the j parameter
and ρ j, ρ j are the upper and lower bounds of that vertex re-
spectively. αi j and βi j provide automatically the appropriate
sign according to the binary representation that is given to
the j vertex.

For a more general case where the polytope is reduced
another way can be applied as in the proposition 3.1 of [31].
The interpolation variables are computed as the solution of a

linear system that is augmented with the equality
N

∑
i=1

aθi = 1.

[
θ1 θ2 . . . θN
1 1 . . . 1

]
aθ =

[
ρ(k)

1

]
(20)
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(a) Controller sensitivity function of the vertex closed-loop system
relatively to the weighting function 1/Wu.
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(b) Frequency response of the yL/r of the closed-loop vertex systems.
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(c) Frequency response of the LTI vertex controllers Ki.

Fig. 6. Bode Plots of the reduced 4-vertices polytopic closed-loop system.

However, that approach may cause numerical problems espe-
cially for the cases where the polytope is tightened and since
the inequality aθi ≥ 0 is absent. Subsequently, a novel on-line
implementation procedure is proposed for the LPV/Polytopic
controller K(ρ).

A. Off-line Step

First, the discrete-time state space vertex controllers, Kdi

are computed as indicated for LTI systems in [32], for a

given sampling time Ts:

Kdi =

[
Adi Bdi

Cdi Ddi

]
xc(k+1) = Adixc(k)+Bdiy(k)

u(k) =Cdixc(k)+Ddiy(k)[
Adi Bdi

0 0

]
= exp

([
Ai Bi
0 I

]
Ts

)
Cdi =Ci ,Ddi = Di

(21)

B. On-line Step
The discretized LPV controller is implemented as a convex

combination of the vertex controllers Kdi i.e

Kd(ρ) =
4

∑
i=1

aθi(k)Kdi (22)

where the constants aθi(k) are the scaling variables, as they
specify the contribution of each vertex controller, according
to the real-time measurement of the vector ρ(k) [33].

In this work, the proposition 3.1 from [31] is extended.
Indeed the novel computation of aθ (k), is formulated as a
real-time constrained LS problem, as presented below:

minimize
a(k)

||M aθ (k)−ρ(k)||22

subject to aθi(k)≥ 0
4

∑
i=1

aθi(k) = 1

(23)

where M contains the coordinate information of the
vertices i.e M =

[
θ1,θ

∗
2 ,θ3,θ5

]
∈ R3×4 and aT

θ
(k) =

(aθ1(k),aθ∗
2
(k),aθ3(k),aθ5(k))

T ∈ R4.

VI. SIMULATION RESULTS

This section presents the simulated results (Fig. 7). The
synthesized LPV controller, and consequently the vertex ma-
trices, has been discretized for a sampling time Ts = 0.01 s at
which the steering actuation system of a Renault Zoe model
accepts steering command. The real-time implementation of
the constrained LS problem that computes the variables aθi

is achieved by the custom-generated solver CVXGEN [34].
As a case scenario is utilized a segment of a test track

(Fig. 7(a)) that contains two turns, for a varying longitudi-
nal speed profile depicted in figure 7(b). The dataset that
contains the information of the trajectory has been collected
experimentally from the work of [17].

The vehicle at the beginning started with an initial lateral
offset at the center of gravity, i.e ycg, of 0.4 m (figure 7(c))
and for that reason the steering, in figure 7(d)) was abrupt at
the beginning. Apart from that, the steering is smooth enough
during the turns while the control system doesn’t allow more
than 0.2 m of lateral deviations. It has to be remarked that
the LS solution, i.e aθi(k), didn’t fail when the velocity of
the car at the beginning started outside of the polytope’s
minimum velocity value. On the contrary, the optimization
successfully computed that the closest vertex is θ3. As the
speed increases, the contribution of each controller varies, as
it expected.
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(b) Longitudinal speed profile fed by the NAV to the lateral control.
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(d) Steering wheel angle command of the reduced LPV/Polytopic
controller.
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(e) Scaling variables aθi computed as an output of the optimization
problem (23), w.r.t. the position of the vector ρ(k) to the 3D reduced
polytope.

Fig. 7. Simulation results.

VII. EXPERIMENTAL RESULTS

In a private test track at Satory of France, the proposed
control architecture has been validated in an automated elec-

tric Renault Zoe (Fig. 8). The control has been implemented
in a MicroAutobox that has been installed at the trunk of the
car. The real-time deployment is achieved by using dSPACE
to upload the built code. The vehicle is equipped with a
Real-Time Kinematic Differential Global Positional System
(RTK-DGPS) that provides the vehicle’s pose at the global
frame. Consequently, it is feasible to calculate at every instant
the lateral error at the target point, according to the speed
provided by the Navigation, and eventually feed the control
system and the real-time optimization problem. The LTI
vertex controllers are discretized at 0.01 s and thus, the LPV
controller provides the steering command that is computed
in rad and is converted in degrees that leads as input to the
Electric Power Steering (EPS) system. In the two following
subsections, two different segments of the test track are
utilized for low and high speeds.

A. Path-Tracking at Low Speed Curves

At first, the vehicle is tested under two turns as where
the measured experimental result are depicted in figure 9.
The vehicle starts in autonomous mode at 8 m/s and an
initial lateral error of 0.4 m and for that reason an initial
abrupt steering is applied. Then, the vehicle decelerates to 2
m/s and then accelerates again to 13 m/s to enter the first
turn and keeps a velocity around 12-14 m/s (Fig. 9(e)) till
then end of the second turn. The plot of the lateral offset
of the car ( Fig. 9(c)) proves that the proposed controller
is able to sustain a good tracking performance since the
maximum lateral offset never gets more than 0.2 m. The
applied steering command, as it is depicted in figure 9(d),
shows that the steering is smooth and comfortable enough
throughout the ride. Figure 9(e) show that, even though the
measured velocity is outside of the parameter variation (when
it gets to 2 < 5 m/s, the proposed optimization achieves to
compute the closest vertex controller, i.e θ3, to treat that
case and that is real-time implementable since it respects the
computational power for the utilized sampling time of 0.01
s.

Fig. 8. Autonomous Electric Renault Zoe

B. Higher Velocity Curves

In this experimental part (set of figures 10), the au-
tonomous mode is activated at 12 m/s and accelerates at
a maximum value of 18 m/s to track two smooth curves. As
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(e) Real-time solution of the LS (23), aθi , w.r.t. the position of the
vector ρ(k) to the 3D reduced polytope.

Fig. 9. First case scenario a): Experimental results at the test track of
Satory.

it can be seen, even though the lateral offset of the vehicle
is high at the beginning (Fig. 10(c)), the car is able to apply
a smooth steering command and track the curves sufficiently

comfortable without permitting more than 0.2 m of lateral
error at the center of gravity. The steering, as it is depicted in
the subfigure 10(d)) is not sensitive to noise at higher speeds
and even though it is increased at 20◦ during the second curve
it was increased in a slow pace. Once again, the solutions of
the optimization problem, i.e aθi are provided in the subfig.
10(e), where it is illustrated that the scaling variable aθ5 is
increased since the closest vertex is θ5.

VIII. CONCLUSION

This paper presents the reduction, design and the im-
plementation of a 3D polytope-based LPV controller. An
algorithm is proposed to reduce the number of vertices of
the initial over-bounded polytope and its real-time imple-
mentation is achieved as the solution of a constrained LS
problem. The validity and the performance of the proposed
path-following control system is assessed and proven at both
simulation and experimental results for low and high speeds
for an automated electric Renault Zoe.

Future works will include the comparison of the perfor-
mance for different reductions of the 3D polytope. An inter-
esting perspective could be the merging of the auto-tuning
of weighted LS [35] for the implementation of the LPV
controller. In that sense, different performance objectives
about longitudinal or lateral performance could be taken into
account in the optimization or as constraints.
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