NAD kinase promotes Staphylococcus aureus pathogenesis by supporting production of virulence factors and protective enzymes - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue eLife Année : 2022

NAD kinase promotes Staphylococcus aureus pathogenesis by supporting production of virulence factors and protective enzymes

Résumé

Nicotinamide adenine dinucleotide phosphate (NADPH) is the primary electron donor for reductive reactions that are essential for the biosynthesis of major cell components in all organisms. Nicotinamide adenine dinucleotide kinase (NADK) is the only enzyme that catalyzes the synthesis of NADP(H) from NAD(H). While the enzymatic properties and physiological functions of NADK have been thoroughly studied, the role of NADK in bacterial pathogenesis remains unknown. Here, we used CRISPR interference to knock down NADK gene expression to address the role of this enzyme in Staphylococcus aureus pathogenic potential. We find that NADK inhibition drastically decreases mortality of zebrafish infected with S. aureus. Furthermore, we show that NADK promotes S. aureus survival in infected macrophages by protecting bacteria from antimicrobial defense mechanisms. Proteome-wide data analysis revealed that production of major virulence-associated factors is sustained by NADK. We demonstrate that NADK is required for expression of the quorum-sensing response regulator AgrA, which controls critical S. aureus virulence determinants. These findings support a key role for NADK in bacteria survival within innate immune cells and the host during infection.
Fichier principal
Vignette du fichier
2022 Leseigneur eLife.pdf (10.16 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03812608 , version 1 (12-10-2022)

Licence

Paternité

Identifiants

Citer

Clarisse Leseigneur, Laurent Boucontet, Magalie Duchateau, Javier Pizarro-Cerda, Mariette Matondo, et al.. NAD kinase promotes Staphylococcus aureus pathogenesis by supporting production of virulence factors and protective enzymes. eLife, 2022, 11, pp.e79941. ⟨10.7554/elife.79941⟩. ⟨hal-03812608⟩
27 Consultations
11 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More