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Abstract
We envision a future in which clouds of microcomputers 

can be sprayed in an environment to provide, by 

spontaneously networking with each other, an endlessly 

range of futuristic applications. However, beside the 

vision, spraying may also act as a powerful metaphor 

for scenarios such as ad-hoc networks and P2P 

computing. In this paper we: detail the different spray 

computers scenarios and their applications; discuss the 

issues related to the design and development of spray 

computer applications, calling for novel approaches 

exploiting self-organization and emergent behaviors as 

first-class tools; present the key research efforts being 

taken in the area; try to define a research agenda.  

1. Introduction

It is not hard to envision a future in which networks of 

micro computers will be literally sold as spray cans, to be 

sprayed in an environment or on specific artifacts and 

enrich them with functionalities that, as of today, may 

appear futuristic and visionary [11,13,18]. The number of 

potential applications of the scenario is endless, ranging 

from smart and invisible clothes, intelligent interactive 

environments, self-assembly materials and self-repairing 

artifacts.  

However, the above vision of spray computers may 

also act as a powerful metaphor for a range of other 

scenarios that are already under formation. These include 

distributed applications in embedded, possibly mobile, ad 

hoc networks, as well as distributed service- and data-

oriented activities on the Internet [14,15]. In fact, besides 

the different physical scale of the components involved 

and of their interactions (from micro-computers 

interacting within networks extending across a few 

meters, to Internet hosts interacting at a world-wide 

scale), all these types of spray computer networks raise 

the same challenges as far as development and 

deployment of applications is involved, calling for 

radically novel approaches to distributed systems 

development and management.  

On the one hand, such systems require approaches 

enabling application deployment with zero a priori 

configuration effort, in which components can self-

organize their application activities and self-retune their 

overall behavior depending on specific contingencies [8]. 

On the other hand, the autonomous and decentralized 

nature of the activities in such scenarios, together with 

the possibly unpredictable dynamics of the operating 

environments, is likely to make those systems exhibit 

unexpected, "emergent" behaviors, calling for 

methodologies to predict and control the emergence of 

such behaviors and possibly offensively exploit them for 

the otherwise impossible achievement of complex 

distributed tasks [3,12,19].  

After having detailed a bit our vision about Spray 

computers (Section 2), we explore the main issues arising 

when exploiting self-organization for the design and 

development of applications for spray computers 

(Section 3). A short survey of the efforts being taken in 

this area (Section 4) identifies limitations in current 

researches and enables to identify a few key activities to 

be undertaken in the area of spray computers (Section 5).  

2. The Spray Computers Vision

The concept of spray computers will soon pervade all 

ICT scenarios, from the micro-scale (literally spray 

computers), to the medium-scale (handheld and wearable 

computers) and the global scale (worldwide computing).  

2.1 The Micro Scale 

As proved in the context of the Smart Dust project at 

Berkeley [13], it is already possible to produce fully-

fledged computer-based systems of a few mm3, and even 

much smaller ones will be produced in the next few 

years. Such computers, which can be enriched with 

communication capabilities (radio or optical), local 

sensing (e.g., optical, thermal, or inertial) and local 

effecting (e.g., optical and mechanical) capabilities, are 

the basic ingredients of our spray computers vision.  



Spray computers, as we imagine them, are clouds of 

sub-millimeter-scale microcomputers, to be deployed in 

an environment or onto specific artifacts via a spraying 

or a painting process. Once deployed, such components 

will spontaneously network with each other and will 

coordinate their actions to provide specific “smart” 

functionalities via local sensing and effecting. We 

imagine it will be possible, say in 2020, to go to the local 

store and there buy a “pipe repairing” spray, made up of 

a cloud of MEMS microcomputers capable of navigating 

in a pipeline, recognizing the presence of holes, and self-

assembling with each other so as repair the pipe. 

Similarly, we could imagine a “spray of invisibility” [18] 

made up of micro devices capable of receiving and 

transmitting light emissions, and by interacting with each 

other via short-range wireless communications, of 

rendering invisible an object on which it is painted. Other 

applications one could envision include any type of self-

assembly artifact [11] and MEMS-based artificial 

immune systems and drugs [13].  

Whatever the applications one may envision, the key 

characteristics that will distinguish spray computer 

applications from traditional distributed computing 

systems are not the scale at which processes take place 

and the fact that processes are likely to be situated in a 

physical environment. After all: (i) the fact that a process 

executes on a micro device rather than on a high-end 

computer does not change it basic nature; (ii) distributed 

computing systems traditionally have to carry on their 

activities while being situated in a (computational) 

environment and have to interact with it. Rather, what we 

think distinguish spray computers are the facts that: 

their computational activities take place in a network

whose structure derives from an almost random 

deployment process (as a spraying process is), and 

that is likely to change over time with unpredictable 

dynamics (due to environmental contingencies, 

failure of components, or simply mobility of 

components); 

the number of (hardware and, consequently, software)

components involved in a distributed application is 

dramatically high and hardly controllable. It is neither 

possible to enforce a strict configuration of software 

components nor to control their behavior at a fine-

grained level during execution.  

Both the above characteristics compulsory call for 

execution models in which applications are made capable 

of self-configuring and self-tuning their activities in a 

spontaneous and unsupervised way, adapting to whatever 

network structure and surviving network dynamics.  

2.2 The Medium Scale 

Spray computing, other than a likely incoming 

technology, can also act as a power metaphor for 

describing the key characteristics of the emerging 

scenarios of ubiquitous and pervasive computing.  

We already typically carry on two or three computers 

(i.e., a cell phone, a laptop, and possibly a PDA). Also, 

our houses are already populated by a variety of 

microprocessor-based furniture (e.g. TVs, phones, etc.). 

Very soon, all the world around us will be densely 

populated by personal-area networks (e.g., the ensemble 

of Bluetooth enabled interacting computer-based devices 

we could carry on or we could find in our cars), local ad-

hoc networks of handheld computers (e.g., networks of 

interacting PDAs carried by a team that have to directly 

interact and coordinate with each other in an open space), 

and furniture networks (e.g., Web-enabled fridges and 

ovens able to interact with each other and effectively 

support our cooking activities in a coordinated way).  

The above types of networks, although being formed 

by different types of computer-based devices (i.e., 

medium-end computers) and at different physical scales 

than literally spray computers, shares the same issues as 

far as the development and management of distributed 

applications is concerned. In fact, most of these networks 

will be wireless, with structures dynamically varying 

depending on the relatives positions of devices, all of 

which intrinsically mobile and ephemeral. In addition, it 

is not commercially viable to consider deploying 

applications for common everyday use if they require 

explicit configuration and control efforts to meet the 

dynamics of the operational environment. Rather, new 

approaches are needed to develop applications as if they 

were to execute on a network of spray computers. 

2.3 The Global Scale 

The dramatic growth in complexity and size of the 

Internet have raised researchers’ attention to the need of 

novel approaches to worldwide applications 

management. In fact, traditional approaches requiring 

human configuration efforts and supervision fall short 

when the applications have to deal with an environment 

that grows and evolves in a fully decentralized way (as 

the Internet and the Web do), and when both nodes, data 

and services to be accessed are intrinsically of an 

ephemeral nature (consider, e.g., PDAs, wireless Internet 

connection, non-commercial data and services). In other 

words, when the network in which applications have to 

operate can be assimilated to a spray computers network. 

The need to access data and services according to a 

variety of patterns and independently of the 

availability/location of specific servers and of the 

dynamics of the network have suggested the adoption of 

P2P approaches [14,15]. In P2P computing, instead of 

promoting a strict control over the execution of software 

components and of their interactions (an almost 

impossible task given the dynamics of the scenario), the 



idea is to promote and support adaptive self-organization 

and maintenance of a structured network of logical 

relationships among components (i.e., an overlay 

network), to abstract from the physical “sprayed” nature 

of the actual network and survive events such the arrival 

of new nodes or the dismissing of some nodes.  

Overlay networks are currently the most widely 

investigated approach to distributed application 

development and management in worldwide computing, 

and are leveraging a variety of useful applications 

facilitating access to (and coordination over) a variety of 

world-wide distributed data and services. Although self-

organizing overlay networks – as they are studied today – 

are not necessarily the only and best approach, the 

attention towards them is the body of evidence of the 

need – also in this scenario – for new self-organizing 

approaches to distributed application development. 

3 Programming Spray Computers 

Programming a spray computer (i.e., developing 

applications to be deployed on networks of spray 

computers) means engineering pre-specified and useful 

global behaviors from the cooperation of a large number 

of unreliable parts interconnected in unknown, irregular, 

and time-varying ways. This translates in devising 

algorithms and control methodologies to let the (software 

running on) sprayed computing devices self-organize

their interaction patterns and their activities towards the 

achievement of a global application goal without any a-

priori global supervisor or centralized control . 

The basic low-level mechanism upon which to rely to 

enable self-organization appears quite well-understood 

and are basically the same whatever the scale (sensor 

networks or P2P applications): dynamic discovery of 

communication partners and services via broadcasting; 

localization and navigation in some sorts of spatial 

environment, whether physical (as in sensor networks) or 

computational (as in P2P systems). What is still missing 

is an assessed understanding of how to design, develop, 

and manage, self-organizing applications for these kinds 

of systems, leading to some general purpose 

methodologies and programming environments.  

Identifying some general and abstract solution to 

enable the design and development – via a proper 

programming of self-organizing activities – of specific 

global application goals, would have a dramatic impact 

in all sketched scenarios (micro, medium and global 

scale). In this paper, without having solutions at hand, we 

can try to identify some key directions to investigate.  

3.1 Direct Engineering of Self Organization 

Direct engineering approaches to self-organization 

basically aims at defining distributed algorithms that, 

starting from a few basic mechanisms (e.g., broadcast 

and localization), and exploiting local interactions and 

local computations, can provably lead a system (or parts 

of it)  to a final coherent global state. Unlike traditional 

distributed algorithms, self-organizing algorithms 

disregard micro-level issues such as ordering of events, 

process synchronization, and structure of the underlying 

networks (issues for which no possibility of control is 

assumed). Rather, they focus on the fact that the 

algorithm will eventually converge despite micro-level 

contingencies, and that it will keep the system in a stable 

state despite perturbations (e.g., network dynamics). 

A typical example of a direct engineering approach to 

self-organization is distributed self-localization. A 

number of randomly distributed particles can determine 

their geographical position  starting from a few “beacon” 

particles (self-determined via leader election and acting 

as reference frame) and recursively applying a local 

triangulation mechanism to determine their position w.r.t. 

to close particles, until a global coherent positioning of 

all particles in the reference frame is reached [11].  

Another example relates to the formation of regular 

spatial patterns in mobile particles [17].  Given a number 

of particles distributed in an environment, it is possible to 

devise distributed algorithms that, by locally driving the 

movements of the particles, eventually lead the system to 

self-organize in globally regular shapes. For instance 

(Figure 1): a simple leader election algorithm can 

determine the center of gravity of the particles; then, the 

center of gravity can propagate in  the network with a 

sort of “gravitational field” attracting all other particles 

toward the center, ending in a circular organization of 

particles.   

Figure 1: Sequences of direct self-organization 
of mobile robots into a circle 

Direct engineering approaches to self-organization have 

the great advantage of enabling engineers to achieve “by 

design” a specific robust self-organized behavior. 

Unfortunately, such approaches are feasible only for a 

limited number of application needs. In fact, with direct 

approaches, only very simple global states of equilibrium 

(or, which is the same, only very regular patterns of 

activity) can be enforced, i.e., all those that can be 

modeled in simple linear terms. Engineering very 

complex behavior involving non-linear phenomena such 

as differentiation in activities, navigation and localization 

in complex manifolds, enforcement of complex 



coordination patterns, requires facing very higher 

complexities. Most importantly, it requires a priori 

assumptions on the configuration of the system that 

would limit its self-organizing nature and, consequently, 

its degree of adaptivity and its robustness. For instance, 

making the particles in Figure 1 self-organize into non-

symmetrical patterns by direct self-organization requires 

either a very complex code to be executed by particles or 

some particles to have some a priori information on 

where to go, that is, some a priori configuration efforts. 

For all these cases, a reverse engineering approach may 

be required.  

3.2 Reverse Engineering of Emergent Behaviors 

Reverse engineering approaches to self-organization 

aims at achieving complex coordinated behaviors in 

spray computers by recreating in spray computers (and 

adapting to specific application needs) the conditions to 

make some complex coordinated behaviors observed in 

other systems and in nature emerge in the computational 

system. In these cases, due to the complexity (and non-

linearity) of the phenomena involved, engineers have no 

direct control on the evolution of the system, nor they 

can somehow prove that the system will behave as 

needed. Simply, they can be reasonably (i.e., 

probabilistically) confident that the evolution of the 

system will eventually lead to the desired globally 

coordinated behavior.  

Clearly, simulations will be the workhorse of reverse 

engineering approaches: they will not only provide a 

framework on which to test the functionalities of a 

developed system, but they will be an integral part of the 

design and development process. Since the behavior of 

the components and of their interactions can hardly be 

modeled and predicted “on paper”, simulations appear to 

be the only tool with which to have feedback on the 

actual working of a system. In other words, in reverse 

engineering approaches, the modeling phase consists in 

verifying via simulations the correctness of an idealized 

model suitable to the target scenario (e.g., a biological or 

social model), then to refine the model and the 

simulations (that also realize a prototype implementation 

of the model) to rend them similar to the actual scenario 

for which a candidate solution is needed.  

In the past few years, several approaches to self-

organization relying on the reverse engineering of 

diverse natural phenomena have been proposed in 

different areas and have shown their effectiveness in 

achieving difficult global coordination tasks. For 

instance, the phenomena of ant foraging [2,10] and 

gossiping [5] turn out to be useful to discover path to and 

diffuse information, respectively, in dynamic networks of 

spray computers.  

Coming back to the example of mobile cooperative 

robots, to enforce the emergence of non-symmetrical 

patterns by getting inspiration from the biological 

formation of morphogenesis. There, it can be observed 

that differentiation from regular symmetrical patterns 

occur due to the contrasting forces induced by cells 

increasing in number and still have to adhere to each 

other in a limited physical space. Similarly, in mobile 

computational particles, one can impose a constraint on 

the average density of cell. This constraint, contrasting 

with the gravitational attracting them toward the center of 

gravity, forces them to organize in non-symmetrical 

patterns (see Figure 2).  

Reverse engineering approaches to self-organization 

have several advantages. First, it is possible to rely on 

results from other disciplines to explore a variety of 

complex coordination phenomena to be exploited in 

spray computers systems. Second, once the basic 

mechanisms underlying an emergent behavior are 

understood, programming an actual system to exhibit 

such behavior is dramatically simple, and it reduces to 

programming typically simple local rules and local 

interactions. In addition, the resulting system is 

intrinsically robust and adaptive.  

Figure 2. Emergence of non-symmetrical 
patterns in mobile robots 

Unfortunately, approaches relying on complex emergent 

behavior also incur in potential drawbacks. The non-

linearity involved in the evolution of the system may 

cause several potential final states to be reached by a 

system, without the possibility of predicting which ones 

will be actually reached after the self-organization 

process. In some cases, all of these states may be 

equivalent from the application viewpoint (e.g., in ant 

foraging, any reasonably short path to food/information 

that is found by the system is acceptable). Also, the 

presence of multi stable states may be sometimes 

advantageous, because it would ensure that the system, 

even if strongly perturbed, will be able to soon re-

organize its activity into another stable state. However, in 

several other cases, the designer may wish that its system 

self-organizes to a specific global state, not to any one. 

For instance, in the case of cooperative mobile robots, 

specific application needs of self-assembly or of 

landscape, may require robot to assume a specific non-

symmetric form, not any of the ones that could emerge 

from the self-organization process (Figure 2). 



3.3 Control of Emergent Behaviors 

When the evolution of a system can lead to several final 

global states, of which only a limited set are useful, the 

problem arise of how to control/direct the evolution of 

the system so as to ensure that it will self-organize as 

desired. The problem is not easy and introduce the key 

issue of somewhat mixing together forms of reverse and 

of direct engineering of self-organization.  

Introducing some sorts of direct engineered control 

should be done without undermining the basic 

advantages of the reverse engineering approach, i.e., its 

capability to promote the spontaneous formation of 

complex and robust patterns of activity with little design 

and coding efforts. In addition, for such a mixed 

approach to be possible, it is necessary that both direct 

self-organizing algorithms and emergent behaviors are 

modeled and coded with the same set of basic 

abstractions.  

In the example of cooperative mobile robots, we have 

successfully enforced some sort of distributed control of 

emergent behavior, by properly mixing the phenomena 

making non-symmetrical patterns emerge (described in 

Subsection 3.2) and sorts of leader election algorithm (as 

a form of direct self-organization). In particular, we have 

been able to let the system self-select a specific number 

of particles – equidistant from each other and from the 

center – to act as if they had a higher gravitational mass, 

so as to control the emergence of polygon-like structures 

(Figure 3) with any required number of vertices. Overall, 

the solution preserves both simplicity and robustness.  

Figure 3. Controlling the emergence of specific 
non-symmetrical patterns in mobile robots. 

Besides this example, the general problem of controlling 

emergent behaviors in a complex self-organizing system 

– which in our opinion will represent one of the key

challenges for the whole research area of autonomic and

self-organizing computing – is still open and widely

uninvestigated. The urge for appropriate control models

and for a uniform approach to direct and reverse

engineering of self-organization appears even more

compulsory when considering another factor. In several

cases, even simple systems engineered with a direct

approach may – due to simplifications in their modeling

– exhibit unexpected emergent behaviors. Although

sometimes such unexpected behaviors may be irrelevant

or even useful and can be offensively exploited 

(consider, e.g., the emergence of scaling in complex 

networks and the advantages it carries in terms of 

robustness [1]), sometimes they could be damaging and 

would call for proper forms of control [19]. 

4 Relevant Research Projects 

Several projects around the world are starting to 

recognize the above needs and are facing issues related, 

to different extents, to the engineering and programming 

of spray computers systems and applications.  

Focusing on micro-scale scenarios, the Amorphous 

Computing project at MIT addresses the problem of 

identifying suitable models for programming applications 

over amorphous networks of simple computational 

particles [11]. However, the project so far has mostly 

focused on direct engineering approaches, and the 

problem of network dynamics has not been faced. The 

other main thread of researches in the area of micro-scale 

spray computers concerns sensor networks [7]. There, the 

key issues being investigated relate to the identification 

of effective algorithms and tools to perform distributed 

monitoring activities in a physical environment. These 

researches are providing good insights on the theme of 

self-organization and are leading to some very interesting 

results. However, most approaches rely on direct self-

organization, while reverse engineering approach are 

only occasionally exploited. In addition, the accent on 

“sensing” – disregarding the “actuating” factor – and the 

key attention paid to resource and power constraints, tend 

to limit the research focus and undermine the 

identification of a wider range of additional applications 

and research issues.  

Coming the medium scale, most of the researches are 

focusing either on routing algorithms for mobile ad-hoc 

networks of handheld computers [6] or on the definition 

of effective user-level ubiquitous environments [16]. 

Researches on routing algorithms for mobile networks 

share several common issues with researches on 

algorithms for data distribution on sensor networks. In 

our opinion, these works are too often focused on power 

and resources limitation problems and mostly disregard 

higher-level self-organization issues such as coordination 

of distributed behaviors. Researches on ubiquitous 

computing environments mostly focus on achieving 

dynamic interoperability of existing application-level 

components and of smart-artifact and pervasive 

computing devices [16]. In any case, these approaches 

have little to say on the issue of developing and 

controlling self-organizing distributed applications.  

As far as the global scale is involved, most research 

on adaptive and unsupervised computing focus, as we 

have already stated, on the key idea of self-organizing 



overlay networks for P2P computing, which can be 

considered as a typical example of a direct engineering 

approach to self-organization. However, we do not think 

this is necessarily the best and only approach. In fact, 

building and maintaining globally coherent overlay 

networks at a worldwide scale may be very costly. Thus, 

although simulations on small-scale systems with 

moderate dynamics show the feasibility of the approach, 

it is still unclear how this could scale to millions of nodes 

with very high dynamics. Next generation P2P networks 

should rely on flexible and light-weight approaches 

exploiting reverse engineering of self-organization 

phenomena. For instance, recent approaches based on 

artificial ants  [2,4,5,10] – relying on overlay networks 

produced by the emergent collective behaviors in ants 

randomly roaming in the network – and computational 

fields [9] – enabling a sort of self-organization of 

components into virtual spatial shapes, i.e., mimicking in 

a virtual space what we have shown in this paper for 

mobile cooperative robots – appear both very promising. 

In summary, whether the micro, medium, or global 

scale are involved, little is currently known about the 

possibility of extensively exploiting self-organization 

phenomena, and about the methodologies that can be 

devised to effectively program and control them.  

5 Research Agenda 

To conclude, we sketch what we consider key challenges 

to be faced in the area of self-organization for the design, 

development and control of spray computer applications. 

First, researches should rely on a deeper 

understanding of the global behavior of a wider class of 

spatially distributed systems of autonomous and 

interacting components, other than ants and social 

systems. This could be used to gain a better knowledge 

about both the offensive exploitation of self-organization 

phenomena and the defense from possibly dangerous 

phenomena. Both cases also require the study of 

mechanisms and tools to somehow direct and 

engineering such systems in a decentralized way, so as to 

enforce some sorts of control over these systems despite 

the impossibility of controlling them in full.  

Once the above understanding will be quite assessed, 

there will be need to define a general purpose 

programming model for designing and deploying 

applications in dynamic networks of spray computers, 

together with the development of associated middleware 

infrastructure and tools. Such a model should enable to 

program, deploy, and control self-organizing applications 

(exploiting both direct and reverse engineering 

approaches) with a minimal knowledge  and 

independently of the specific application scenario, sensor 

networks rather than wide-area distributed applications. 

Approaches based on computational fields [9,17] appears 

very promising, enabling to uniformly model a wide 

variety of distributed self-organizing behaviors [10].  

Eventually, all the above researches will definitely 

increase our understanding on the potentials of spray 

computers at any scale, and will likely cause a range of 

new application areas to come to the fore. For instance, 

systems such as worldwide file sharing and artifacts like 

the spray of invisibility could have simply never been 

conceived a few years ago. The new software and 

hardware technology will call for visionary thinkers, to 

unfold the newly achieved application potentials. 
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