
HAL Id: hal-03812470
https://hal.science/hal-03812470

Submitted on 14 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spray Computers: frontiers of self-Organization for
Pervasive Computing

Franco Zambonelli, Marie-Pierre Gleizes, Marco Mamei, Robert Tolksdorf

To cite this version:
Franco Zambonelli, Marie-Pierre Gleizes, Marco Mamei, Robert Tolksdorf. Spray Computers: fron-
tiers of self-Organization for Pervasive Computing. 13th International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises (ENABL 2004), IEEE, Jun 2004, Modena, Italy.
pp.403-408, �10.1109/ENABL.2004.58�. �hal-03812470�

https://hal.science/hal-03812470
https://hal.archives-ouvertes.fr

Spray Computers: Frontiers of Self-Organization for

Pervasive Computing

Franco Zambonelli
1
, Marie-Pierre Gleizes

2
, Marco Mamei

1
, Robert Tolksdorf

3

1) DISMI - Università di Modena e Reggio Emilia – Reggio Emilia – Italy

2) IRIT – Universitè Paul Sebatier – Toulouse – France

3) Institut für Informatik – Freie Universität of Berlin – Berlin – Germany
franco.zambonelli@unimore.it, gleizes@irit.fr, mamei.marco@unimore.it, tolk@inf.fu-berlin.de

Abstract
We envision a future in which clouds of microcomputers

can be sprayed in an environment to provide, by

spontaneously networking with each other, an endlessly

range of futuristic applications. However, beside the

vision, spraying may also act as a powerful metaphor

for scenarios such as ad-hoc networks and P2P

computing. In this paper we: detail the different spray

computers scenarios and their applications; discuss the

issues related to the design and development of spray

computer applications, calling for novel approaches

exploiting self-organization and emergent behaviors as

first-class tools; present the key research efforts being

taken in the area; try to define a research agenda.

1. Introduction

It is not hard to envision a future in which networks of

micro computers will be literally sold as spray cans, to be

sprayed in an environment or on specific artifacts and

enrich them with functionalities that, as of today, may

appear futuristic and visionary [11,13,18]. The number of

potential applications of the scenario is endless, ranging

from smart and invisible clothes, intelligent interactive

environments, self-assembly materials and self-repairing

artifacts.

However, the above vision of spray computers may

also act as a powerful metaphor for a range of other

scenarios that are already under formation. These include

distributed applications in embedded, possibly mobile, ad

hoc networks, as well as distributed service- and data-

oriented activities on the Internet [14,15]. In fact, besides

the different physical scale of the components involved

and of their interactions (from micro-computers

interacting within networks extending across a few

meters, to Internet hosts interacting at a world-wide

scale), all these types of spray computer networks raise

the same challenges as far as development and

deployment of applications is involved, calling for

radically novel approaches to distributed systems

development and management.

On the one hand, such systems require approaches

enabling application deployment with zero a priori

configuration effort, in which components can self-

organize their application activities and self-retune their

overall behavior depending on specific contingencies [8].

On the other hand, the autonomous and decentralized

nature of the activities in such scenarios, together with

the possibly unpredictable dynamics of the operating

environments, is likely to make those systems exhibit

unexpected, "emergent" behaviors, calling for

methodologies to predict and control the emergence of

such behaviors and possibly offensively exploit them for

the otherwise impossible achievement of complex

distributed tasks [3,12,19].

After having detailed a bit our vision about Spray

computers (Section 2), we explore the main issues arising

when exploiting self-organization for the design and

development of applications for spray computers

(Section 3). A short survey of the efforts being taken in

this area (Section 4) identifies limitations in current

researches and enables to identify a few key activities to

be undertaken in the area of spray computers (Section 5).

2. The Spray Computers Vision

The concept of spray computers will soon pervade all

ICT scenarios, from the micro-scale (literally spray

computers), to the medium-scale (handheld and wearable

computers) and the global scale (worldwide computing).

2.1 The Micro Scale

As proved in the context of the Smart Dust project at

Berkeley [13], it is already possible to produce fully-

fledged computer-based systems of a few mm3, and even

much smaller ones will be produced in the next few

years. Such computers, which can be enriched with

communication capabilities (radio or optical), local

sensing (e.g., optical, thermal, or inertial) and local

effecting (e.g., optical and mechanical) capabilities, are

the basic ingredients of our spray computers vision.

Spray computers, as we imagine them, are clouds of

sub-millimeter-scale microcomputers, to be deployed in

an environment or onto specific artifacts via a spraying

or a painting process. Once deployed, such components

will spontaneously network with each other and will

coordinate their actions to provide specific “smart”

functionalities via local sensing and effecting. We

imagine it will be possible, say in 2020, to go to the local

store and there buy a “pipe repairing” spray, made up of

a cloud of MEMS microcomputers capable of navigating

in a pipeline, recognizing the presence of holes, and self-

assembling with each other so as repair the pipe.

Similarly, we could imagine a “spray of invisibility” [18]

made up of micro devices capable of receiving and

transmitting light emissions, and by interacting with each

other via short-range wireless communications, of

rendering invisible an object on which it is painted. Other

applications one could envision include any type of self-

assembly artifact [11] and MEMS-based artificial

immune systems and drugs [13].

Whatever the applications one may envision, the key

characteristics that will distinguish spray computer

applications from traditional distributed computing

systems are not the scale at which processes take place

and the fact that processes are likely to be situated in a

physical environment. After all: (i) the fact that a process

executes on a micro device rather than on a high-end

computer does not change it basic nature; (ii) distributed

computing systems traditionally have to carry on their

activities while being situated in a (computational)

environment and have to interact with it. Rather, what we

think distinguish spray computers are the facts that:

their computational activities take place in a network

whose structure derives from an almost random

deployment process (as a spraying process is), and

that is likely to change over time with unpredictable

dynamics (due to environmental contingencies,

failure of components, or simply mobility of

components);

the number of (hardware and, consequently, software)

components involved in a distributed application is

dramatically high and hardly controllable. It is neither

possible to enforce a strict configuration of software

components nor to control their behavior at a fine-

grained level during execution.

Both the above characteristics compulsory call for

execution models in which applications are made capable

of self-configuring and self-tuning their activities in a

spontaneous and unsupervised way, adapting to whatever

network structure and surviving network dynamics.

2.2 The Medium Scale

Spray computing, other than a likely incoming

technology, can also act as a power metaphor for

describing the key characteristics of the emerging

scenarios of ubiquitous and pervasive computing.

We already typically carry on two or three computers

(i.e., a cell phone, a laptop, and possibly a PDA). Also,

our houses are already populated by a variety of

microprocessor-based furniture (e.g. TVs, phones, etc.).

Very soon, all the world around us will be densely

populated by personal-area networks (e.g., the ensemble

of Bluetooth enabled interacting computer-based devices

we could carry on or we could find in our cars), local ad-

hoc networks of handheld computers (e.g., networks of

interacting PDAs carried by a team that have to directly

interact and coordinate with each other in an open space),

and furniture networks (e.g., Web-enabled fridges and

ovens able to interact with each other and effectively

support our cooking activities in a coordinated way).

The above types of networks, although being formed

by different types of computer-based devices (i.e.,

medium-end computers) and at different physical scales

than literally spray computers, shares the same issues as

far as the development and management of distributed

applications is concerned. In fact, most of these networks

will be wireless, with structures dynamically varying

depending on the relatives positions of devices, all of

which intrinsically mobile and ephemeral. In addition, it

is not commercially viable to consider deploying

applications for common everyday use if they require

explicit configuration and control efforts to meet the

dynamics of the operational environment. Rather, new

approaches are needed to develop applications as if they

were to execute on a network of spray computers.

2.3 The Global Scale

The dramatic growth in complexity and size of the

Internet have raised researchers’ attention to the need of

novel approaches to worldwide applications

management. In fact, traditional approaches requiring

human configuration efforts and supervision fall short

when the applications have to deal with an environment

that grows and evolves in a fully decentralized way (as

the Internet and the Web do), and when both nodes, data

and services to be accessed are intrinsically of an

ephemeral nature (consider, e.g., PDAs, wireless Internet

connection, non-commercial data and services). In other

words, when the network in which applications have to

operate can be assimilated to a spray computers network.

The need to access data and services according to a

variety of patterns and independently of the

availability/location of specific servers and of the

dynamics of the network have suggested the adoption of

P2P approaches [14,15]. In P2P computing, instead of

promoting a strict control over the execution of software

components and of their interactions (an almost

impossible task given the dynamics of the scenario), the

idea is to promote and support adaptive self-organization

and maintenance of a structured network of logical

relationships among components (i.e., an overlay

network), to abstract from the physical “sprayed” nature

of the actual network and survive events such the arrival

of new nodes or the dismissing of some nodes.

Overlay networks are currently the most widely

investigated approach to distributed application

development and management in worldwide computing,

and are leveraging a variety of useful applications

facilitating access to (and coordination over) a variety of

world-wide distributed data and services. Although self-

organizing overlay networks – as they are studied today –

are not necessarily the only and best approach, the

attention towards them is the body of evidence of the

need – also in this scenario – for new self-organizing

approaches to distributed application development.

3 Programming Spray Computers

Programming a spray computer (i.e., developing

applications to be deployed on networks of spray

computers) means engineering pre-specified and useful

global behaviors from the cooperation of a large number

of unreliable parts interconnected in unknown, irregular,

and time-varying ways. This translates in devising

algorithms and control methodologies to let the (software

running on) sprayed computing devices self-organize

their interaction patterns and their activities towards the

achievement of a global application goal without any a-

priori global supervisor or centralized control .

The basic low-level mechanism upon which to rely to

enable self-organization appears quite well-understood

and are basically the same whatever the scale (sensor

networks or P2P applications): dynamic discovery of

communication partners and services via broadcasting;

localization and navigation in some sorts of spatial

environment, whether physical (as in sensor networks) or

computational (as in P2P systems). What is still missing

is an assessed understanding of how to design, develop,

and manage, self-organizing applications for these kinds

of systems, leading to some general purpose

methodologies and programming environments.

Identifying some general and abstract solution to

enable the design and development – via a proper

programming of self-organizing activities – of specific

global application goals, would have a dramatic impact

in all sketched scenarios (micro, medium and global

scale). In this paper, without having solutions at hand, we

can try to identify some key directions to investigate.

3.1 Direct Engineering of Self Organization

Direct engineering approaches to self-organization

basically aims at defining distributed algorithms that,

starting from a few basic mechanisms (e.g., broadcast

and localization), and exploiting local interactions and

local computations, can provably lead a system (or parts

of it) to a final coherent global state. Unlike traditional

distributed algorithms, self-organizing algorithms

disregard micro-level issues such as ordering of events,

process synchronization, and structure of the underlying

networks (issues for which no possibility of control is

assumed). Rather, they focus on the fact that the

algorithm will eventually converge despite micro-level

contingencies, and that it will keep the system in a stable

state despite perturbations (e.g., network dynamics).

A typical example of a direct engineering approach to

self-organization is distributed self-localization. A

number of randomly distributed particles can determine

their geographical position starting from a few “beacon”

particles (self-determined via leader election and acting

as reference frame) and recursively applying a local

triangulation mechanism to determine their position w.r.t.

to close particles, until a global coherent positioning of

all particles in the reference frame is reached [11].

Another example relates to the formation of regular

spatial patterns in mobile particles [17]. Given a number

of particles distributed in an environment, it is possible to

devise distributed algorithms that, by locally driving the

movements of the particles, eventually lead the system to

self-organize in globally regular shapes. For instance

(Figure 1): a simple leader election algorithm can

determine the center of gravity of the particles; then, the

center of gravity can propagate in the network with a

sort of “gravitational field” attracting all other particles

toward the center, ending in a circular organization of

particles.

Figure 1: Sequences of direct self-organization
of mobile robots into a circle

Direct engineering approaches to self-organization have

the great advantage of enabling engineers to achieve “by

design” a specific robust self-organized behavior.

Unfortunately, such approaches are feasible only for a

limited number of application needs. In fact, with direct

approaches, only very simple global states of equilibrium

(or, which is the same, only very regular patterns of

activity) can be enforced, i.e., all those that can be

modeled in simple linear terms. Engineering very

complex behavior involving non-linear phenomena such

as differentiation in activities, navigation and localization

in complex manifolds, enforcement of complex

coordination patterns, requires facing very higher

complexities. Most importantly, it requires a priori

assumptions on the configuration of the system that

would limit its self-organizing nature and, consequently,

its degree of adaptivity and its robustness. For instance,

making the particles in Figure 1 self-organize into non-

symmetrical patterns by direct self-organization requires

either a very complex code to be executed by particles or

some particles to have some a priori information on

where to go, that is, some a priori configuration efforts.

For all these cases, a reverse engineering approach may

be required.

3.2 Reverse Engineering of Emergent Behaviors

Reverse engineering approaches to self-organization

aims at achieving complex coordinated behaviors in

spray computers by recreating in spray computers (and

adapting to specific application needs) the conditions to

make some complex coordinated behaviors observed in

other systems and in nature emerge in the computational

system. In these cases, due to the complexity (and non-

linearity) of the phenomena involved, engineers have no

direct control on the evolution of the system, nor they

can somehow prove that the system will behave as

needed. Simply, they can be reasonably (i.e.,

probabilistically) confident that the evolution of the

system will eventually lead to the desired globally

coordinated behavior.

Clearly, simulations will be the workhorse of reverse

engineering approaches: they will not only provide a

framework on which to test the functionalities of a

developed system, but they will be an integral part of the

design and development process. Since the behavior of

the components and of their interactions can hardly be

modeled and predicted “on paper”, simulations appear to

be the only tool with which to have feedback on the

actual working of a system. In other words, in reverse

engineering approaches, the modeling phase consists in

verifying via simulations the correctness of an idealized

model suitable to the target scenario (e.g., a biological or

social model), then to refine the model and the

simulations (that also realize a prototype implementation

of the model) to rend them similar to the actual scenario

for which a candidate solution is needed.

In the past few years, several approaches to self-

organization relying on the reverse engineering of

diverse natural phenomena have been proposed in

different areas and have shown their effectiveness in

achieving difficult global coordination tasks. For

instance, the phenomena of ant foraging [2,10] and

gossiping [5] turn out to be useful to discover path to and

diffuse information, respectively, in dynamic networks of

spray computers.

Coming back to the example of mobile cooperative

robots, to enforce the emergence of non-symmetrical

patterns by getting inspiration from the biological

formation of morphogenesis. There, it can be observed

that differentiation from regular symmetrical patterns

occur due to the contrasting forces induced by cells

increasing in number and still have to adhere to each

other in a limited physical space. Similarly, in mobile

computational particles, one can impose a constraint on

the average density of cell. This constraint, contrasting

with the gravitational attracting them toward the center of

gravity, forces them to organize in non-symmetrical

patterns (see Figure 2).

Reverse engineering approaches to self-organization

have several advantages. First, it is possible to rely on

results from other disciplines to explore a variety of

complex coordination phenomena to be exploited in

spray computers systems. Second, once the basic

mechanisms underlying an emergent behavior are

understood, programming an actual system to exhibit

such behavior is dramatically simple, and it reduces to

programming typically simple local rules and local

interactions. In addition, the resulting system is

intrinsically robust and adaptive.

Figure 2. Emergence of non-symmetrical
patterns in mobile robots

Unfortunately, approaches relying on complex emergent

behavior also incur in potential drawbacks. The non-

linearity involved in the evolution of the system may

cause several potential final states to be reached by a

system, without the possibility of predicting which ones

will be actually reached after the self-organization

process. In some cases, all of these states may be

equivalent from the application viewpoint (e.g., in ant

foraging, any reasonably short path to food/information

that is found by the system is acceptable). Also, the

presence of multi stable states may be sometimes

advantageous, because it would ensure that the system,

even if strongly perturbed, will be able to soon re-

organize its activity into another stable state. However, in

several other cases, the designer may wish that its system

self-organizes to a specific global state, not to any one.

For instance, in the case of cooperative mobile robots,

specific application needs of self-assembly or of

landscape, may require robot to assume a specific non-

symmetric form, not any of the ones that could emerge

from the self-organization process (Figure 2).

3.3 Control of Emergent Behaviors

When the evolution of a system can lead to several final

global states, of which only a limited set are useful, the

problem arise of how to control/direct the evolution of

the system so as to ensure that it will self-organize as

desired. The problem is not easy and introduce the key

issue of somewhat mixing together forms of reverse and

of direct engineering of self-organization.

Introducing some sorts of direct engineered control

should be done without undermining the basic

advantages of the reverse engineering approach, i.e., its

capability to promote the spontaneous formation of

complex and robust patterns of activity with little design

and coding efforts. In addition, for such a mixed

approach to be possible, it is necessary that both direct

self-organizing algorithms and emergent behaviors are

modeled and coded with the same set of basic

abstractions.

In the example of cooperative mobile robots, we have

successfully enforced some sort of distributed control of

emergent behavior, by properly mixing the phenomena

making non-symmetrical patterns emerge (described in

Subsection 3.2) and sorts of leader election algorithm (as

a form of direct self-organization). In particular, we have

been able to let the system self-select a specific number

of particles – equidistant from each other and from the

center – to act as if they had a higher gravitational mass,

so as to control the emergence of polygon-like structures

(Figure 3) with any required number of vertices. Overall,

the solution preserves both simplicity and robustness.

Figure 3. Controlling the emergence of specific
non-symmetrical patterns in mobile robots.

Besides this example, the general problem of controlling

emergent behaviors in a complex self-organizing system

– which in our opinion will represent one of the key

challenges for the whole research area of autonomic and

self-organizing computing – is still open and widely

uninvestigated. The urge for appropriate control models

and for a uniform approach to direct and reverse

engineering of self-organization appears even more

compulsory when considering another factor. In several

cases, even simple systems engineered with a direct

approach may – due to simplifications in their modeling

– exhibit unexpected emergent behaviors. Although

sometimes such unexpected behaviors may be irrelevant

or even useful and can be offensively exploited

(consider, e.g., the emergence of scaling in complex

networks and the advantages it carries in terms of

robustness [1]), sometimes they could be damaging and

would call for proper forms of control [19].

4 Relevant Research Projects

Several projects around the world are starting to

recognize the above needs and are facing issues related,

to different extents, to the engineering and programming

of spray computers systems and applications.

Focusing on micro-scale scenarios, the Amorphous

Computing project at MIT addresses the problem of

identifying suitable models for programming applications

over amorphous networks of simple computational

particles [11]. However, the project so far has mostly

focused on direct engineering approaches, and the

problem of network dynamics has not been faced. The

other main thread of researches in the area of micro-scale

spray computers concerns sensor networks [7]. There, the

key issues being investigated relate to the identification

of effective algorithms and tools to perform distributed

monitoring activities in a physical environment. These

researches are providing good insights on the theme of

self-organization and are leading to some very interesting

results. However, most approaches rely on direct self-

organization, while reverse engineering approach are

only occasionally exploited. In addition, the accent on

“sensing” – disregarding the “actuating” factor – and the

key attention paid to resource and power constraints, tend

to limit the research focus and undermine the

identification of a wider range of additional applications

and research issues.

Coming the medium scale, most of the researches are

focusing either on routing algorithms for mobile ad-hoc

networks of handheld computers [6] or on the definition

of effective user-level ubiquitous environments [16].

Researches on routing algorithms for mobile networks

share several common issues with researches on

algorithms for data distribution on sensor networks. In

our opinion, these works are too often focused on power

and resources limitation problems and mostly disregard

higher-level self-organization issues such as coordination

of distributed behaviors. Researches on ubiquitous

computing environments mostly focus on achieving

dynamic interoperability of existing application-level

components and of smart-artifact and pervasive

computing devices [16]. In any case, these approaches

have little to say on the issue of developing and

controlling self-organizing distributed applications.

As far as the global scale is involved, most research

on adaptive and unsupervised computing focus, as we

have already stated, on the key idea of self-organizing

overlay networks for P2P computing, which can be

considered as a typical example of a direct engineering

approach to self-organization. However, we do not think

this is necessarily the best and only approach. In fact,

building and maintaining globally coherent overlay

networks at a worldwide scale may be very costly. Thus,

although simulations on small-scale systems with

moderate dynamics show the feasibility of the approach,

it is still unclear how this could scale to millions of nodes

with very high dynamics. Next generation P2P networks

should rely on flexible and light-weight approaches

exploiting reverse engineering of self-organization

phenomena. For instance, recent approaches based on

artificial ants [2,4,5,10] – relying on overlay networks

produced by the emergent collective behaviors in ants

randomly roaming in the network – and computational

fields [9] – enabling a sort of self-organization of

components into virtual spatial shapes, i.e., mimicking in

a virtual space what we have shown in this paper for

mobile cooperative robots – appear both very promising.

In summary, whether the micro, medium, or global

scale are involved, little is currently known about the

possibility of extensively exploiting self-organization

phenomena, and about the methodologies that can be

devised to effectively program and control them.

5 Research Agenda

To conclude, we sketch what we consider key challenges

to be faced in the area of self-organization for the design,

development and control of spray computer applications.

First, researches should rely on a deeper

understanding of the global behavior of a wider class of

spatially distributed systems of autonomous and

interacting components, other than ants and social

systems. This could be used to gain a better knowledge

about both the offensive exploitation of self-organization

phenomena and the defense from possibly dangerous

phenomena. Both cases also require the study of

mechanisms and tools to somehow direct and

engineering such systems in a decentralized way, so as to

enforce some sorts of control over these systems despite

the impossibility of controlling them in full.

Once the above understanding will be quite assessed,

there will be need to define a general purpose

programming model for designing and deploying

applications in dynamic networks of spray computers,

together with the development of associated middleware

infrastructure and tools. Such a model should enable to

program, deploy, and control self-organizing applications

(exploiting both direct and reverse engineering

approaches) with a minimal knowledge and

independently of the specific application scenario, sensor

networks rather than wide-area distributed applications.

Approaches based on computational fields [9,17] appears

very promising, enabling to uniformly model a wide

variety of distributed self-organizing behaviors [10].

Eventually, all the above researches will definitely

increase our understanding on the potentials of spray

computers at any scale, and will likely cause a range of

new application areas to come to the fore. For instance,

systems such as worldwide file sharing and artifacts like

the spray of invisibility could have simply never been

conceived a few years ago. The new software and

hardware technology will call for visionary thinkers, to

unfold the newly achieved application potentials.

References
1. R. Albert, H. Jeong, A. Barabasi, “Error and Attack Tolerance of

Complex Networks”, Nature, 406:378-382, 2000.

2. O. Babaoglu, H. Meling, A. Montresor, “Anthill: A Framework for

the Development of Agent-Based Peer-to-Peer Systems”, 22nd

Conference on Distributed Computing Systems, Vienna (A), 2002.

 3. C. Bernon, M.P. Gleizes, S. Peyruqueou, G. Picard, “ADELFE: a

Methodology for Adaptive Multi-Agent Systems Engineering”, 3rd

International Workshop Engineering Societies in the Agents World,

LNAI No. 2577, 2002.

4. E. Bonabeau, M. Dorigo, G. Theraulaz, “Swarm Intelligence”,

Oxford University Press, 1999.

5. D. Braginsky, D. Estrin, “Rumor Routing Algorithm For Sensor

Networks”, 1ST Workshop on Sensor Networks and Applications

(WSNA), 2002.

6. J. Broch, et al., “A Perfomance Comparison of Multi-Hop Wireless

Ad Hoc Network Routing Protocols”, ACM/IEEE MOBICOM

Conference, 1998.

 7. D. Estrin, et al., “Connecting the Physical World with Pervasive

Networks”, IEEE Pervasive Computing, 1(1):59-69, 2002.

8. J. Kephart, D. M. Chess, "The Vision of Autonomic Computing",

IEEE Computer, 36(1):41-50, 2003.

9. M. Mamei, F. Zambonelli, “Co-Fields: a Physically Inspired

Approach to Motion Coordination”, IEEE Pervasive Computing,

3(2):51-51, 2004.

10. R. Menezes, R. Tolksdorf, “SwarmLinda: a New Approach to

Scalable Linda Systems based on Swarms“,ACM Symposium on

Applied Computing, Melbourne (FL), 2003.

11. R. Nagpal, A. Kondacs, C. Chang, “Programming Methodology for

Biologically-Inspired Self-Assembling Systems”, AAAI Spring

Symposium on Computational Synthesis, 2003.

12. V. Parunak, S. Bruekner, J. Sauter, "ERIM’s Approach to Fine-

Grained Agents", NASA/JPL Workshop on Radical Agent

Concepts, Greenbelt (MD), 2002.

13. K. Pister, Invited Plenary Talk, 23rd International Conference on

Distributed Computing Systems, Providence (RI), 2003.

14. S. Ratsanamy,, et al., "A Scalable Content-Addressable Network",

ACM SIGCOMM Conference, ACM Press, 2001.

15. M. Ripeani, A. Iamnitchi, I. Foster, “Mapping the Gnutella

Network”, IEEE Internet Computing, 6(1):50-57, 2002.

16. M. Roman et al., “ Gaia : A Middleware Infrastructure for Active

Spaces”, IEEE Pervasive Computing, 1(4):74-83, 2002.

17. M. Vasirani, M. Mamei, F. Zambonelli, “Experiments in

Morphogenesis of Simple Mobile Robots”, Applied Artificial

Intelligence, 18(9-10), 2004.

18. F. Zambonelli, M. Mamei, “The Cloak of Invisibility: Challenges

and Applications”, IEEE Pervasive Computing, 1(4):62-70, 2002.

19. F. Zambonelli, M. Mamei, A. Roli, “What Can Cellular Automata

Tell Us About the Behavior of Large Multi-Agent Systems?”, in

Software Engineering for Large Agent Systems, LNCS No. 2603,

2003.

