
HAL Id: hal-03812461
https://hal.science/hal-03812461

Submitted on 17 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experiments in Emergent Programming Using
Self-organizing Multi-Agent Systems

Jean-Pierre Georgé, Marie-Pierre Gleizes

To cite this version:
Jean-Pierre Georgé, Marie-Pierre Gleizes. Experiments in Emergent Programming Using Self-
organizing Multi-Agent Systems. 4th International Central and Eastern European Confer-
ence on Multi-Agent Systems (CEEMAS 2005), Sep 2005, Budapest, Hungary. pp.450-459,
�10.1007/11559221_45�. �hal-03812461�

https://hal.science/hal-03812461
https://hal.archives-ouvertes.fr


Experiments in Emergent Programming Using
Self-organizing Multi-agent Systems

Jean-Pierre Georgé and Marie-Pierre Gleizes

IRIT, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France
{george, gleizes}@irit.fr

Abstract. We propose to investigate the concept of an Emergent Programming
Environment enabling the development of complex adaptive systems. For this we
use as a foundation the concept of emergence and a multi-agent system technol-
ogy based on cooperative self-organizing mechanisms. The general objective is
then to develop a complete programming language in which each instruction is
an autonomous agent trying to be in a cooperative state with the other agents of
the system, as well as with the environment of the system. The work presented
here aims at showing the feasibility of such a concept by specifying, and exper-
imenting with, a core of instruction-agents needed for a sub-set of mathematical
calculus.

1 Introduction

In the last few years, the use of computers has spectacularly grown and classical soft-
ware development methods run into numerous difficulties. The classical approach, by
decomposition into modules and total control, cannot guaranty the functionality of the
software given the complexity of interaction between the increasing and variable num-
ber of modules, and the shear size of possibilities. Adding to this, the now massive and
inevitable use of network resources and distribution only increases the difficulties of
design, stability and maintenance.

This state is of interest to an increasing number of industrials, including IBM who
wrote in a much relayed manifesto : "Even if we could somehow come up with enough
skilled people, the complexity is growing beyond human ability to manage it. [...]in-
creasing system efficiency generates problems with more variables than any human can
hope to solve. Without new approaches, things will only get worse" [9]. Their answer
to that is a scientific challenge they call autonomic computing, whose objective is to
design systems able to execute themselves, adjust their behaviour in face of various
circumstances, manage at best their resources and self-repair when needed.

These kind of applications are what we call neo-computation problems, namely: au-
tonomic computing, pervasive computing, ubiquitous computing [12], emergent com-
putation, ambient intelligence, amorphous computing... This set of problems have in
common the inability to define the global function to achieve, and by consequence to
specify at the design phase, a derived evaluation function for the learning process. Thus,
neo-computation systems are characterized by :

– a great number of interacting components (intelligent objects, agents, software);
– a variable number of these components during runtime (open system);



– the impossibility to impose a global control;
– a dynamic and unpredictable environment;
– a functional adequacy1 to reach in respect to the environment.

1.1 Problem Solving by Emergence

Given the previous characteristics, the challenge is to find new approaches to conceive
these new systems by taking into account the increasing complexity and the fact that we
want reliable and robust systems. Looking at natural systems [3] -biological, physical,
sociological-,there is a common factor among theses systems : the emergent dimension
of the observed behaviour. Thus it is quite legitimate to study emergence so as to un-
derstand its functioning or at least to be able to adequately reproduce it for the design
of artificial systems. This would enable the development of more complex, robust and
adaptive systems, needed to tackle the difficulties inherent to neo-computation prob-
lems. In this way, interesting and useful emergent phenomena will be used in artificial
systems when needed. Contrariwise, they will still appear sooner or later the more com-
plex the systems are getting but will be unexpected and unwanted. To prevent this, one
orientation would be, in our opinion, that the scientific community studies and develops
new theories based upon emergence.

It is noteworthy that some research is already being done for quite some years now
to bring emergence into artificial systems, but it is still very localized. For example, the
Santa Fe Institute [2] has acquired an international renown for its works on complex-
ity, adaptive complex systems and thus emergence. These are also the preoccupations
of Exystence [1], the European excellence network on complex systems. More recent
(Mars 2000), this network wants to promote collaboration between researchers from
any field interested in it, from fundamental concepts to applications.

1.2 Going to the Lowest Level: The Instructions

If we suppose that we can manage to use the emergent phenomena to build artificial
systems, this will be by specifying the behaviour of the parts of the systems so that it
will enable their interactions to produce the expected global emergent behaviour of the
system. A relevant question would be to ask about what parts we are focusing on and
on which level. As with classical software engineering, any decomposition could be
interesting, depending on the nature of the system being build.

We propose here to focus on the lowest possible level for any artificial system :
the instruction level. We will explain our theoretical and experimental exploration of
the concept of Emergent Programming. This concept is explained in the next section
(section 2). Its use relies on emergence and self-organization (section 3) on one hand,
and on a multi-agent approach called AMAS (Adaptive Multi-Agent System) [7] on the

1 "Functional" refers to the "function" the system is producing, in a broad meaning, i.e. what
the system is doing, what an observer would qualify as the behaviour of a system. And "ade-
quate" simply means that the system is doing the "right" thing, judged by an observer or the
environment. So "functional adequacy" can be seen as "having the appropriate behaviour for
the task".



other hand. A sub-problem (a mathematical example) has been thoroughly explored
and is presented in section 4 where we then show how the learned lessons can lead us
forward in our exploration of Emergent Programming and more generally of problem
solving using emergence.

2 Emergent Programming

In its most abstract view, Emergent Programming is the automatic assembling of in-
structions of a programming language using mechanisms which are not explicitly in-
formed of the program to be created. We may consider that for a programmer to produce
a program comes down to finding which instructions to assemble and in which precise
order. This is in fact the exploration of the search space representing the whole set of
possible programs until the right program is found. However, if this exploration is easy
when the programmer has a precise knowledge about the program he wants and how
to obtain it, it grows more and more difficult with the increase of complexity of the
program, or when the knowledge about the task to be executed by the program becomes
imprecise or incomplete. Then are we not able to conceive an artificial system exploring
efficiently the search space of the possible programs instead of having the programmer
do it ? Only very few works exists on this topic. One noteworthy try has been done by
Koza using Genetic Algorithms and a LISP language [10], but the main hindrance of
GA is the need for a specific evaluation function for each problem, which can be very
difficult to find. At the opposite, we aim at an as generic as possible approach.

To solve the problem of Emergent Programming concretely, we chose to rely on an
adaptive multi-agent system using self-organizing mechanisms based on cooperation
as it is described in the AMAS theory [7]. This theory can be considered as a guide to
endow the agents with the capacity to continuously self-organize so as to always tend
toward cooperative interactions between them and with the environment. It then claims
that a cooperative state for the whole system implies the functional adequacy of the
system, i.e. that it exhibits a behaviour which satisfies the constraints of the parts of the
system as well as from the environment (e.g. a user).

2.1 The Instruction-Agents and the Reorganization Process

In this context, we define an agent as an instruction of a programming language. De-
pending on the type of the instruction he is representing, the agent possesses specific
competences which he will use to interact with other instruction-agents. A complete
program is then represented by a given organization of the instruction-agents in which
each agent is linked with partners from which he receives data and partners to which he
sends data. The counterpart of the execution of a classical program is here simply the
activity of the multi-agent system during the exchange of data between the agents.

We can now appreciate all the power of the concept : a given organization codes
for a given program, and thus, changing the organization changes the final program.
It comes down to having the agents self-organize depending on the requirements from
the environment so as to continuously tend toward the adequate program (the adequate
global function). In principle, we obtain a system able to explore the search space of the



possible programs in place of the programmer. Everything depends on the efficiency of
the exploration to reach an organization producing the right function. An important part
of our work on Emergent Programming has been the exploration of the self-organization
mechanisms which enable the agents to progress toward the adequate function, depend-
ing on the constraints of the environment but without knowing the organization to reach
or how to do it (since this is unknown for the problems we are interested in).

2.2 A Neo-Programming Environment

The system will not be able to grow ex nihilo all by itself, all the more if we want
to obtain higher level programs. As the programmer with his classical programming
environment, the neo-programmer will affect the development of the system through a
neo-programming environment, at least at the beginning. It is a matter of supplying the
tools to shape the environment of the system so as to have this environment constrain
the system toward the adequate function. In a pure systems theory’s view, the neo-
programmer is simply part of the environment of the system.

But the neo-programming environment will certainly have to be more than a sim-
ple envelope for the developing system. We will probably need to integrate some tools
for the observation of the evolution of the system, means to influence this evolution,
the type and proportions of instruction-agents, to affect some aspects of the struc-
ture. Moreover, a complex program is generally viewed as a modular construct and
the neo-programmer may want to influence this modular structure, either by manipulat-
ing some sorts of "bricks", each being an emergent programming system, or by letting
these "bricks" self-organize in the same manner as their own components.

At the end, we will obtain a system able not only to "find" how to realize the ade-
quate function, but also to continuously adapt to the environment in which it is plunged,
to react to the strongly dynamic and unpredictable nature of real world environments,
and all this by presenting a high grade of robustness. Indeed, because of its nature, the
system would be able to change its internal structure any time and by consequence its
performed function, or even grow by adding instructions to respond to some partial
destruction or to gain some new competences.

The research we did on Emergent Programming was to explore the feasibility of the
concept. For this, we restrained the programming language to the instructions needed
for a subset of mathematical calculus, of which the mathematical example (section 4) is
a representative. We specified such a core of agents and put it through experimentation.
For this an environment has been implemented : EPE (Emergent Programming Envi-
ronment) [6]. These experimentations enabled us to explore different self-organization
mechanisms for the instruction-agents so as to find those who lead to the emergence of
the adequate function. Part of these mechanisms are described here.

3 Emergence and Self-organization

If we study specialized literature on emergence or self-organization, we can see that
these are tightly linked. Yet, at the same time, we can see a lot of works focusing
exclusively on the second without any mention, or only a brief, about the first. One



explanation could be that the notion of emergence is quite abstract, even philosophical,
making it difficult to fully grasp and therefore delicate to manipulate. At the opposite,
self-organization is more concrete by its description in terms of mechanisms and thus,
more easily used. But by concentrating solely on the mechanisms, are we not taking the
risk to leave the frame of emergence? We give here a description of self-organization
integrating emergence.

Whereas emergence has been studied for a long time only as a philosophical con-
cept manipulable only as it, the self-organization field has from the very beginning tried
to explore its internal mechanisms. They tried to find the general functioning rules ex-
plaining the growth and evolution of the observed systemic structures, to find the shapes
the systems could take, and finally to produce methods to predict the future organiza-
tions appearing out of changes happening at the component level of the systems. And
these prospective results had to be applicable on any other system exhibiting the same
characteristics (search for generic mechanisms).

3.1 Using Emergence in Artificial Systems

There are abundant definitions and descriptions of characteristics of emergence and
self-organization in literature. To resume, we can sum it up as this :

Definition. Self-organization is the set of processes within a system, stemming from
mechanisms based on local rules which lead the system to produce structures or specific
behaviours which are not dictated by the outside of the system [5][8][11].

Our work in this domain during the last decade lead us to give a "technical" defi-
nition of emergence in the context of multi-agent systems, and therefore with a strong
computer science colouration. It is based on three points: what we want to be emergent,
at what condition it is emergent and how we can use it [4].

1. Subject. The goal of a computational system is to realize an adequate function,
judged by a relevant user. It is this function (which may evolve during time) that
has to emerge.

2. Condition. This function is emergent if the coding of the system does not depend
on the knowledge of this function. This coding has to contain the mechanisms fa-
cilitating the adaptation of the system during its coupling with the environment, so
as to tend toward an adequate function.

3. Method. To change the function the system only has to change the organization
of its components. The mechanisms which allow the changes are specified by self-
organization rules providing autonomous guidance to the components’ behaviour
without any explicit knowledge of the collective function nor how to reach it.

3.2 The Engine for Self-organization

According to the AMAS theory[7],the designer provides the agents with local criterion
to discern between cooperative and non-cooperative situations (NCS). The detection
and then elimination of NCS between agents constitute the engine of self-organization.
Depending on the real-time interactions the multi-agent system has with its environ-
ment, the organization between its agents emerges and constitutes an answer to the



aforementioned difficulties of neo-computation problems (indeed, there is no global
control of the system). In itself, the emergent organization is an observable organiza-
tion that has not been given first by the designer of the system. Each agent computes
a partial function, but the combination of all the partial functions produces the global
emergent function. Depending on the interactions between themselves and with the en-
vironment, the agents change their interactions i.e. their links. This is what we call
self-organization.

By principle, the emerging purpose of a system is not recognizable by the system
itself, its only criterion must be of strictly local nature (relative to the activity of the
parts which make it up). By respecting this, the AMAS theory aims at being a theory of
emergence.

4 Emergence of a Mathematical Function

We tried to find an emergent programming system as simple as possible (i.e. with the
smallest number of agents with the simplest functioning), but still needing reorganiza-
tions so as to produce the desired function. The advantages of such a case study are that
it is more practical for observation, that it leads to less development complexity and that
it presents a smaller search space.

4.1 Description

The specification of each agent depends on the task he has to accomplish, of his "in-
puts" and "outputs". The agents communicate by messages but to accomplish the actual
calculation, we can consider that the agents are expecting values as inputs to be able
to provide computed values as outputs. Schematically, we can consider exchanges be-
tween agents as an electronic cabling between outputs and inputs of agents.

The mathematical example we choose is constituted of 6 agents : 3 "constant"
agents, an "addition" agent, a "multiplication" agent and an "output" agent. A "con-
stant" agent is able to provide the value which has been fixed at his creation. The 3 the
system contains have been given sufficiently different values so as to prevent calcula-
tion ambiguity : AgentConstantA (value = 2), AgentContantB(value = 10) and Agent-
ConstantC (value = 100). Combined with AgentAddition and AgentMultiplication, the
values produced by the system are results from organizations like (A + B) ∗ C or any
other possible combination. AgentOut simply transmits the value he receives to the en-
vironment. But he is also in charge of retrieving the feedback from the environment and
forward it into the system.

The size of the complete search space is 65, that is 7776 theoretically possible or-
ganizations, counting all the incomplete ones (i.e. where not every agent has all his
partners). There are 120 complete organizations and among those, 24 are functional
(they can actually calculate a value) if we count all the possible permutations on the in-
puts which do not change the calculated value. In the end, we have 6 types of different
organization (cf. Figure 1) producing these 6 values : 120, 210, 220, 1002, 1020 and
1200. The aim is to start without any partnerships between agents and to request that
the system produces the highest value for example.



��

A 
B 

C 
��

2 

10 

100 

20 

120 

��

A 
C 

B 
�

2 

100 

10 

200 

210 

��

B 
C 

A 
��

10 

100

2 

1000 

1002 

�

B 
C 

A 
��

10 

100 

2 

110 

220 

��

A 
C 

B 
��

2 

100 

10 

102 

1020 

��

A 
B 

C 
��

2 

10 

100 

12 

1200 

OUT 

OUT

OUT

OUT 

OUT 

OUT 
2 

3 

1 

5 

6 

4 

Fig. 1. The 6 different possible types of functional organizations for the mathematical example

4.2 Reorganization Mechanisms

In accordance with the AMAS theory, the agent’s self-organizing capacity is induced by
their capacity to detect NCS (Non-Cooperative Situations), react so as to resorb them
and continuously act as cooperatively as possible. This last point implies in fact that the
agent also has to try to resorb NCS of other agents if he is aware of them: to ignore a
call for help from another agent is definitely not cooperative. We will illustrate this with
the description of two NCS and how they are resorbed.

Detection
NCSNeedIn : the agent is missing a partner on one of his inputs. Since to be coop-

erative in the system he has to be useful, and to be useful he has to be able to compute
his function, he has to find partners able to send values toward his input.

Most NCS lead the agent to communicate so as to find a suitable (new) partner.
These calls, because the agents have to take them into account, also take the shape of
NCS.

NCSNeedInMessage : the agent receives a message informing him that another
agent is in a NCSNeedIn situation.

Resorption
NCSNeedIn : this is one of the easiest NCS to resorb because the agent only has

to find any agent for his missing input. And the agents are potentially always able to
provide as many values on their outputs for as many partners as needed. The agent has
simply to be able to contact some agent providing values of the right type (there could
be agents handling values of different types in a system), i.e. corresponding to his own
type. So he generates a NCSNeedInMessage describing his situation (his needs) and
send it to his acquaintances (because they are the only agents he knows).



NCSNeedInMessage : the agent is informed of the needs of the sender of the NCS
and his cooperative attitude dictates him to act. First, he has to judge if he is relevant
for the needs of the sender, and if it is the case, he has to propose himself as a potential
partner. Second, even if he is not himself relevant, one of its acquaintances may be. He
will do what the AMAS theory calls a resorption by restricted propagation : he tries to
counter this NCS by propagating the initial message to some acquaintances he thinks
may be the most relevant.

For each NCS the agent is able to detect (there are 10 NCS in total for these agents),
a specific resorption mechanism has been defined. It is a precise description of the
decision making of the agent depending on his state and on what it perceives. For other
NCS, the mechanisms become quite complicated, and require a long description. For
an exhaustive presentation, please refer to [6].

These NCS and their symmetric for a missing partner on an output enable the system
to produce an organization where each agent has all his needed partners. To obtain the
functional adequacy for the system means that the final organization is able to produce
the expected result. The main question is how to introduce mechanisms in the resorption
of the NCS to enable the agents as a whole to reach this organization. For this, they
need some kind of "direction" (but on local criterion) to get progressively closer to
the solution, a local information to judge this proximity. The information used here is
simply a "smaller/bigger" feedback type that the environment sends to the system and
that will be dispatched between the agents by propagation and by taking other the goal
(smaller or bigger). The agent then tries to satisfy its new goal and staying at the same
time the most cooperative possible with the other agents. This will bring the system as
a whole to produce a smaller or bigger value.

Of course, the agents will get into conflict with other agents when trying to reach
these goals and the self-organizing mechanisms take that into account. Each agent
also manipulates a knowledge about the prejudice he inflicts or may inflict following
changes he induces in the organization. By minimizing these prejudices (which is a
form of cooperation), the whole organization progresses.

It is important to note that the information which is given as a feedback is not in any
way an explicit description about the goal and how to reach it. Indeed, this information
does not exist : given a handful of values and mathematical operators, there is no explicit
method to reach a specific value even for a human. They can only try and guess, and
this is also what the agents do. That is why we believe the solving we implemented to
be in the frame of emergence.

4.3 Results and Discussion

Results. First of all, the internal constraints of the system are solved very quickly :
in only a few reorganization moves (among the 7776 possible organizations), all the
agents find their partners and a functional organization is reached. Then, because the
system is asked to produce the highest value for example (configuration 6, Figure 1),
other NCS are produced and the system starts reorganizing toward its goal.

On a few hundred simulations, the functional adequacy is reached in a very satisfac-
tory number of organization changes. Since the search space if of 7776 possible orga-
nizations, a blind exploration would need an average of 3.888 checked organizations to



reach a specific one. Since a functional organization possesses 4 identical instances for
a given value (by input permutations), we would need 972 tries to get the right value.
Experimentation shows that, whatever the initial organization (without any links or one
of the 6 functionals), the system needs to explore less than a hundred organizations
among the 7776 to reach one of the 4 producing the highest value. We consider that this
self-organization strategy allows a relevant exploration of the search space. A notewor-
thy result is also that whatever organization receives the feedback for a better value, the
next organization will indeed produce a better value (if it exists).

Emergent Programming : A Universal Tool. If we define all the agents needed to
represent a complete programming language (with agents representing variables, alloca-
tion, control structures, ...) and if this language is extensive enough, we obtain maximal
expressiveness : every program we can produce with current programming languages
can be coded as an organization of instruction-agents. In its absolute concept, Emergent
programming could then solve any problem, given that the problem can be solved by a
computer system. Of course, this seems quite unrealistic, at least for the moment.

Problem Solving Using Emergence. But if we possess some higher-level knowledges
about a problem, or if the problem can be structured at a higher level than the instruction
level, then it is more efficient and easier to conceive the system at a higher level. This is
the case for example when we can identify entities of bigger granularity which therefore
have richer competences and behaviours, maybe adapted specifically for the problem.

Consequently, we will certainly be able to apply the self-organizing mechanisms de-
veloped for Emergent Programming to other ways to tackle a problem. Indeed,
instruction-agents are very particular by the fact that they represent the most generic
type of entities and that there is a huge gap between their functions and the function
of a whole program. The exploration of the search space, for entities possessing more
information or more competences for a given problem can only be easier. In the worst
case, we can always try to use Emergent Programming as a way to specify the behaviour
of higher-level entities (recursive use of emergence).

Let us consider for instance the problem of ambient intelligence : in a room, a
huge number of electronic equipments controlled each by an autonomous microchip
have as a goal the satisfaction of the users moving around it from day to day. The
goal itself, user satisfaction, is really imprecise and incomplete, and the way to reach
it even more. We claim that this problem is an ideal candidate for a problem solving
by emergence approach: let us endow the entities with means to find by themselves the
global behaviour of the system so as to satisfy the users. The challenge is to define the
"right" self-organizing behaviours for the different equipments for them to be able to
modify the way they interact to take into account the constraints of every one of them
plus the external stimuli from the users (order, judgement, behaviour, ...). And we are
convinced that this can only be done if the self-organization mechanisms tightly fit the
frame of emergence.

5 Conclusion

We aimed at studying the feasibility of the concept of Emergent Programming by using
self-organizing instruction-agents. We presented in this paper the concept and how we



studied it. For this, we first described the frame of self-organization and emergence as
we think can be applied in artificial systems. Then we described a generic approach for
adaptive systems based upon a multi-agent system where the agents are endowed with
self-organizing mechanisms based upon cooperation and emergence.

A mathematical example has been used as a case study. Its implementation, and
experimentation with, lead to the definition of the self-organizing mechanisms of the
instruction-agents so as to enable them to make the system reach a given goal.

This study has been an interesting work to explore self-organization in MAS when
confronted to difficult problems that we are persuaded need an Emergent solution. We
claim that this approach would be really relevant for neo-computation problems such
as ambient intelligence, if not directly with instruction-agents, by using the same kind
of cooperative self-organization mechanisms.

References

1. Web site of exystence : the complex systems network of excellence.
http://www.complexityscience.org.

2. Web site of the santa fe institute. http://www.santafe.edu.
3. S. Camazine, J.-L. Deneubourg, N. Franks, J. Sneyd, and E. Theraulaz, G.and Bonabeau.

Self-organization in biological systems. Princeton University Press, 2002.
4. D. Capera, J. Georgé, M.-P. Gleizes, and P. Glize. Emergence of organisations, emergence of

functions. In AISB’03 symposium on Adaptive Agents and Multi-Agent Systems, April 2003.
5. J. Georgé, B. Edmonds, and P. Glize. Self-organizing adaptive multi-agent systems work,

chapter 16, pages 321–340. Kluwer Publishing, 2004.
6. J.-P. Georgé. Résolution de problèmes par émergence - Étude d’un Environnement de

Programmation Émergente. PhD thesis, Université Paul Sabatier, Toulouse, France, 2004.
http://www.irit.fr/SMAC/EPE.html.

7. M.-P. Gleizes, V. Camps, and P. Glize. A theory of emergent computation based on coopera-
tive self-oganization for adaptive artificial systems. In Fourth European Congress of Systems
Science, Valencia, Spain, 1999.

8. F. Heylighen. Encyclopedia of Life Support Systems, chapter The Science of Self-
organization and Adaptivity. EOLSS Publishers Co. Ltd, 2001.

9. P. Horn. Autonomic computing - ibm’s perspective on the state of information technology.
http://www.ibm.com/research/autonomic, 2001.

10. J. R. Koza. Evolution and co-evolution of computer programs to control independently-
acting agents. In From animals to animats : proceedings of the first international conference
on Simulation of Adaptative Behavior (SAB). MIT Press, 1991.

11. I. Prigogine and G. Nicolis. Self Organization in Non-Equilibrium Systems. J. Wiley and
Sons, New York, 1977.

12. M. Weiser and J. S. Brown. Designing calm technology. PowerGrid Journal, 1(1), 1996.


