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Abstract—Deep Reinforcement Learning (DRL) is highly effi-
cient for solving complex tasks such as drone obstacle avoidance
using cameras. However, these methods are often limited by the
camera perception capabilities. In this paper, we demonstrate
that point-goal navigation performances can be improved by
using cameras with a wider Field-Of-View (FOV). To this end,
we present a DRL solution based on equirectangular images and
demonstrates its relevance, especially compared to its perspective
version. Several visual modalities are compared: ground truth
depth, RGB, and depth directly estimated from these 360°
RGB images using Deep Learning methods. Next, we propose a
spherical adaptation to take into account the spherical distortions
of omnidirectional images in the convolutional neural networks
(CNNs) used in the actor-critic network and show a significant
improvement in navigation performance. Finally, we modify
the perspective depth estimation network using this spherical
adaptation and demonstrate a further performance improvement.

Index Terms—Vision for robots, Mobile robotics, Perception
systems.

I. INTRODUCTION

Depth is the most commonly used input for drone navigation

in complex, unstructured environments. This visual modality

enables reliable obstacle detection and thus safe trajectories for

Unmanned Aerial Vehicles (UAVs). Most of today’s commer-

cial drones use LIDARs to obtain an accurate depth estimation.

However, these sensors are heavy and power-consuming. With

recent accuracy improvements in monocular perspective depth

estimation, RGB cameras are now being considered to replace

LIDARs.

In parallel, more affordable and accurate omnidirectional

cameras have recently been commercialized. The latest gen-

eration of cameras provides spherical images with up to 4K

resolution and high-frequency capture. In addition, with their

360° Field-Of-View (FOV), they can capture the entire envi-

ronment in a single image. Therefore, this sensor offers great

potential in many robotic tasks, including drone navigation.

To solve the point-goal navigation, most state-of-the-art

algorithms use a local planner based on deep reinforcement

learning (DRL). This method has been proven to be effective

in driving short-term navigation, and collision avoidance in

many papers [1], [2], [3]. The DRL approach proposes to

learn a navigation policy through trial-and-error experiments

where the agent interacts with the environment based on

its perception, and state [4], [5]. A reward is designed to

promote or prevent specific behaviors and thus influence the

agent’s policy. This method offers excellent generalization

capabilities but requires a very long learning process, usually

performed in virtual environments to allow thousands of trials

and exploration of failure cases.

Perception is crucial for these DRL algorithms because the

agent selects its next action based only on what it observes.

Therefore, this information must be as accurate as possible.

In recent years, monocular depth estimation in perspective

images has seen significant progress, reaching a very high

accuracy [6], [7], [8].

However, when applied directly to omnidirectional images,

these perspective methods suffer from a domain shift. Indeed,

these images present large distortions near the polar regions,

which significantly impact the accuracy of networks designed

for perspective images. Some specialized networks have been

proposed to estimate depth in spherical images [9], [10]. In this

paper, we offer an alternative method based on convolutions

taking into account distortions [11].

The contributions of this paper are fourthfold:

• First, we propose a point-goal navigation DRL solution

based on 360° FOV images as input.

• Second, we compare the performance of this solution

with its baselines using perspective images. To our

knowledge, this is the first comparison of omnidirectional

and conventional images for DRL. The obtained results

confirm the advantage of omnidirectional systems.

• Third, the ground truth depth, RGB, and estimated depth

modalities are compared in a performance benchmark.

This comparison reveals that using the MIDAS network

[8] is more reliable than methods based on RGB alone.

• Fourth, we propose an adaptation to take into account

the spherical distortions of equirectangular images. We

implement this modification in two different locations.

One in the Actor-Critic network proves that spherical

networks’ performance is improved when trained with

a specific spherical adaptation. The other directly in the

MIDAS network demonstrates that a pre-trained network

can be adapted to equirectangular images without addi-

tional training.

The structure of this paper is the following. Section II

describes the goal-driven navigation solution adopted here.

Next, Section III presents the FOV and modality performance

benchmark. Finally, Section IV presents the proposed adapta-

tion for spherical images and the associated results.



II. DRL-BASED NAVIGATION SOLUTION

Point-goal navigation can be modeled by a Markov decision

process (MDP). In this formulation, the agent interacts with

the environment by performing actions following a specific

policy in a given state. The agent receives a positive or negative

reward, to promote or prevent certain behaviors. In our specific

case, the drone is rewarded positively when it reaches its goal

and negatively when it collides with obstacles, gets stuck in a

loop, or moves too far away from its objective.

A. State

In DRL, the agent uses its current state to determine

its following action. Therefore, the observation of his state

must be accurate and complete enough to provide sufficient

information to make an appropriate decision. But in return, a

too exhaustive state will overload the agent with redundant

parameters. Thus, in this study, we propose to use a state

containing bare minimum information to achieve the two main

objectives: point-goal navigation and obstacle avoidance.

For the navigation task, only the relative distance and

direction of the current goal are provided. At each time-step

tk = k∆t, where ∆t is the control sampling time, we define

the distance dk and the angle θk to the goal:

dk = ∥Pk − P ⋆∥2,

θk = arctan2 (y⋆ − yk, x
⋆ − xk)− ψk,

(1)

with a drone at position Pk = (xk, yk, zk) heading towards

a fixed goal at position P ⋆ = (x⋆, y⋆, z⋆) with a yaw angle

ψk. At the same time, the drone captures its surroundings with

its perception sensor and transforms it into an image noted Ik.

Finally the state of the drone is defined at each time-step tk
by: Sk = [dk, θk, Ik].

B. Visual modalities compared

We propose to compare three different visual modalities for

the Ik image: Ground Truth (GT) depth, RGB, and Estimated

Depth (ED) using Deep Learning. In parallel, two different

capture FOVs are compared for all these modalities: a limited

one (90°) and an omnidirectional one (360°). To compare these

features fairly, we keep the same network architecture between

the different study cases. Thus, the image resolution Ik is

independent of the modality or FOV and fixed at 100 × 100
pixels. Fig. 1 shows the different inputs used in this paper.
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Fig. 1. RDMAP: (Left: RGB, Middle: depth, Right: MIDAS depth [8]).

C. Action

In forest point-goal navigation, the drone must navigate

between trees without collision. Due to the mostly vertical

structure of the trees, we propose to realize obstacle avoid-

ance in an iso-altitude plane. Therefore, the drone controller

keeps the drone’s altitude constant during its flight while the

pilot focuses on rotational movements. The agent moves by

selecting an action ak ∈ [−π, π] that corresponds to a desired

rotation angle among Nb directions, which is later sent to the

low-level controller [12]:

ak = −π +
2i

Nb − 1
π i ∈ {0, .., Nb − 1}. (2)

D. Network and Reward

In this paper, we focus on the perception of the DRL algo-

rithm using different FOVs and modalities as input. Therefore,

we have based ourselves on the rest of the DRL solution from

already proven contributions, particularly for the actor-critic

network and reward function.

The PPO algorithm [13] processes the agent state using

an actor-critic network to predict the next best action. The

architecture proposed in this paper is based on contributions

that have already proven effective for UAV navigation [14],

[2], [4]. First, the visual part I of the state S is preprocessed

using a succession of convolutions (CONV) and fully con-

nected networks (FC). The resulting 32-dimensional vector is

then combined with the goal information (dk, θk) to determine

the next action ak using another fully connected network

(RFC). The global network is shown in Fig. 2 and requires

60k parameters (more details in Appendix A).

Fig. 2. Left: At each time-step tk the agent chooses an action ak based on
its state Sk and its policy. This interaction with the environment results in
a new state Sk+1 and a reward Rk+1 to evaluate the previously followed
policy. Right: The visual observation Ik is encoded into a 32-dimensional
vector using convolutional operations (CNN) and a fully connected network
(FC). Then, combining this output vector and the goal information (dk, θk),
another fully connected network (RFC) predicts the agent’s next action ak .

The reward function is crucial in DRL. It describes how

the agent performed during the episode. In [15], the authors

propose a solution that shows promising results in goal-driven

navigation and obstacle avoidance. Their reward function is

ideally suited for our problem. However, they use depth

sensors in their model to maintain a safe distance to the

obstacles during the flight. In order to be more independent to

the modalities where absolute depth is not necessarily known,

we have removed this safe distance in the reward function.

At each time-step tk, the reward is computed using the

relative goal state (dk, θk), a penalization term (−0.02), and an



additional termination reward if the agent reached an terminal

state Rend. The resulting function is :

Rk = −0.1dk − 0.05∥θk∥ − 0.02 +Rend. (3)

Three different terminal states are possible for each episode:

• the drone collides with an obstacle, so it receives a large

negative reward of Rend = −5;

• the drone reaches its goal (dk < 1m), so it receives a

great positive reward of Rend = 5;

• the drone is stuck in a loop (more than 200 time-steps)

or going too far away from its goal (dk > 100m), so it

receives a small negative reward of Rend = −2.

III. FIRST RESULTS

We train and compare the performances of our proposed

DRL solution in a simplified forest environment RDMAP. We

choose Unreal Engine [16] as rendering software to build

this environment. Connected to AirSim [12], an open-source

robotics plugin, the simulator can provide high-fidelity image

capture and a low-level controller to stabilize a drone.

The training is performed on Nvidia Tesla-V100 graphic

cards and takes about 8 to 10 hours. Inference on 300 drone

trajectories takes between 120 and 180 minutes.

A. Visual modalities compared

As presented in Section II-B, three different modalities

are compared in this article: ground truth depth, RGB and

estimated depth with Deep Learning. In parallel, for each

modality, two FOV are studied: one perspective and one

omnidirectional.

The ground truth depth and RGB images are directly

provided by the AirSim simulator. The GT depth value is

cropped to the [0..5] meters range to remain representative

of the capabilities of a small UAV-mounted LIDAR.

To estimate depth from equirectangular RGB images, we

can either use specialized spherical networks or standard

perspective solutions with spherical adaptations. Several om-

nidirectional networks have been published, such as [9],

[10]. However, they require significant computational power,

and their specific training on omnidirectional datasets makes

them less oriented towards drone navigation. Therefore, we

choose a lightweight perspective network MIDAS [8]. This

Convolutional Neural Network (CNN) is one of the lightest

and most accurate published perspective depth estimation

networks, with already proven performance in several mobile

and UAV applications [17], [18]. We directly use its pre-trained

version midas v21 small to be representative of an embedded

drone solution. Solutions to adapt to equirectangular images

are proposed in Section IV.

B. Simplified training and testing environment RDMAP

We build a simplified forest environment named RDMAP.

This 200 × 200 meters terrain is made of many vertical

cylinders placed randomly and schematizing a dense forest

of tree trunks. Fig. 3 shows an overview of this simplified

environment.

Fig. 3. Overview of the RDMAP environment.

C. Training

The proposed DRL solution is trained in RDMAP using

the different visual modalities and FOVs. Each training takes

100k time-steps and uses the same schedule and parameters

for a fair comparison. Appendix A shows the hyperparameters

used to tune the PPO algorithm. During training, the distance

between the initial position of the drone and its target is always

20 meters.

D. Metrics

Two standard metrics are used to evaluate each solution

navigation results:

• the Success Rate SR (the percentage of successful runs

divided by the total number of runs) to directly assess the

drone’s abilities to reach its goal (dk < 1m);

• the Success weighted by Path Length, as defined in [19]:

SPL =
1

N

N∑

i=1

Si

ℓi

pi
,

where Si is 0 or 1 depending on the success of the

episode, pi is the length of the drone’s trajectory and ℓi is

the shortest distance between the initial and goal points.

Thus, the closer the drone trajectory is to the shortest

path, the closer the SPL is to 100%. Besides, failed tests

are strongly penalized by the boolean value Si.

E. Inference in RDMAP

We test the performance of the trained DRL solution directly

in the training environment RDMAP. The testing process is

identical for each modality or FOV: point-goal navigation is

proven on the same 600 randomly selected drone-goal pairs on

the map. However, unlike training, the distances between the

targets are not only 20m: we also used distances of 40m and

60m to test our solution and prove its robustness thoroughly.

As presented before in Section II-B, three visual modalities

(GT depth, RGB, and Estimated Depth (ED) with MIDAS) and

two FOVs (perspective and omnidirectional) are compared.

The results are presented below in Table I.

Solutions using omnidirectional images consistently outper-

form those using perspective ones. The larger FOV improves

navigation and obstacle detection tasks. Obstacles invisible in

a narrow FOV are now detected in the omnidirectional images

reducing the number of collisions (higher SR). Moreover, the



RUN SR (%) SPL (%)

90° FOV GT depth 76.0 54.0

360° FOV GT depth 88.8 68.6

90° FOV RGB 68.3 52.8

360° FOV RGB 85.7 62.6

90° FOV ED 69.7 57.9

360° FOV ED 86.0 67.0

TABLE I
PERFORMANCES IN RDMAP.

drone has a better understanding of its environment resulting

in better trajectory optimization (higher SPL). These results

demonstrate the great potential of large FOV sensors for point-

goal navigation, regardless of the type of visual information

captured.

As expected, ground truth depth is the best performing

visual modality. In second place, estimated depth presents a

slight advantage over RGB images. As a result, we conclude

that MIDAS prediction accuracy, despite is lightweight archi-

tecture, is sufficient to build a navigation solution more reliable

than one based on RGB alone.

IV. DRL SPHERICAL ADAPTATION

The proposed DRL-based navigation solution shows

promising results using 360° FOV observations as inputs.

However, all spherical projections introduce some distortions.

In particular, equirectangular images show significant distor-

tions near the polar regions.

Therefore, we present a solution to consider these distortions

by maintaining the local coherence of pixels during convo-

lution operations. This approach is applied in two different

locations in our proposed solution. First, the convolution layers

of the actor-critic network used in the DRL algorithm are

modified. Second, the MIDAS network is adapted to improve

depth prediction in equirectangular images without additional

training.

Fig. 4. Example of kernels with different latitude and longitude. In blue is
the center of the kernel, in green the perspective kernel and in red the adapted
equirectangular one. The wider distortions are near the poles.
A. Distortion-aware convolution

Several methods deal with spherical distortions in Convo-

lutional Neural Networks (CNNs). A first approach consists

in modifying the entire feature maps using Fourier transforms

[20] or spherical polyhedra [21]. A second technique directly

changes the shape of the convolutional kernels. The new

kernels shapes can either be learned [22] or specifically

adapted to the equirectangular projection [23], [11]. This latter

method does not require new variables or additional learning,

nor a complete modification of the network architecture. For

these reasons, we choose to implement this distortion-aware

convolution using a pre-computed offsets table.

During training and inference of the DRL solution, these

offsets are directly applied to change the point position in

every kernel to project the spherical image locally onto its

perspective equivalent. For example, Fig. 4 shows different

distortion-aware kernel shapes in function of their position in

the equirectangular image.

B. Actor-Critic Network Adaptation

The four convolutional layers of the proposed actor-critic

network architecture are modified. Prior to training, the offsets

tables are computed based on the resolution of the observation

used and the different parameters of each adapted convolu-

tional layer. Fig. 5 shows how this additional plugin is applied

on the network architecture.

Fig. 5. Pre-computed spherical adapted offsets are added to the four
convolution layers of the Actor-Critic network during training and testing
of the DRL-solution.

The proposed navigation solution is trained in the RDMAP

environment in a process similar to that presented in Sec-

tion III-C.

Results in RDMAP: The equirectangular adapted DRL solu-

tion is tested in the RDMAP environment and compared to its

baseline from Section III-E. Table II shows the performances

of 360° FOV navigation based on ground truth or estimated

depth. The baseline results are directly reused from Table I.

RUN SR (%) SPL (%)

360° FOV GT depth (baseline) 88.8 68.6

360° FOV GT depth (DRL adapted) 94.8 78.3

360° FOV ED (baseline) 86.0 69.0

360° FOV ED (DRL adapted) 89.5 73.3

TABLE II
PERFORMANCES IN RDMAP.

For each modality, the distortion-aware (adapted) solutions

show highly better performance. Maintaining local pixel co-

herence during convolutions helps the Actor-Critic network to

better detect obstacles in the Ik input image. As a result, the

drone trajectories are better optimized, with fewer collisions

and faster paths. In particular, it allows the spherically adapted

ED solution to outperform the non-adapted GT depth based

solution, especially in trajectory optimization.

C. MIDAS network Adaptation

To further improve the results of the previous section, we

propose a fast and elegant method to increase depth estimation

accuracy in equirectangular images without additional training.



MIDAS is a lightweight depth estimation network trained

on perspective datasets. Therefore, its accuracy suffers from

spherical distortion when applied directly to equirectangular

images. The previous test section showed that the DRL solu-

tion based on 360° estimated depth performs well but is still

lower than ground truth depth performances.

Therefore, we propose to improve depth prediction accuracy

by applying a spherical adaptation to the MIDAS network.

The decoder convolutions are modified with additional pre-

computed offsets as explained in Section IV-A. No additional

training is performed on an equirectangular dataset as we keep

the training weights of the MIDAS authors on perspective

datasets.

The actor-critic network spherical adaptation remains active

as it has shown excellent results in the previous section. Fig. 6

shows the new global pipeline.

Fig. 6. The convolutions of the MIDAS decoder are modified without
additional network training to take into account spherical distortions for depth
prediction. Therefore, the final proposed DRL pipeline has two spherical
adaptations: one for the MIDAS network and one for the Actor-Critic network.

Results in RDMAP : The DRL-solution using MIDAS net-

work adapted for equirectangular images is trained and tested

in the RDMAP environment. Table III shows the performances.

RUN SR (%) SPL (%)

360° FOV ED (DRL & MIDAS adapted) 89.8 74.5

TABLE III
PERFORMANCES IN RDMAP.

The performance of our solution with the spherical DRL

and MIDAS adaptation is better than that of the DRL-only

adapted solution. As a result, the MIDAS adaptation has better

depth estimation accuracy than its baseline on equirectangular

images.

The depth is improved locally with better obstacle detection

and thus a higher success rate. In parallel, the estimation is

also globally enhanced, allowing a better understanding of

the complete environment of the UAV and faster trajectories

(higher SPL).

Therefore, using a larger FOV and spherical adaptations

allows the final version of our solution based on estimated

depth to go from an initial success rate of 70% to a final

version close to 90%. Moreover, the drone trajectories also

gain noticeably in speed.

V. GENERALIZATION TO A PHOTOREALISTIC FOREST

ENVIRONMENT

To reduce the gap with reality, we build the RWFOREST

forest environment. Using the best rendering capabilities of

Unreal Engine and forest textures from its marketplace, we

create a photorealistic forest with complex lighting. Unlike

the simplified trunks in RDMAP, the trees here have different

sizes, branches, and dense foliage. As a result, RWFOREST

is a challenging environment where the captured images Ik
are much more complex to analyze and translate into actions.

Fig. 7 shows some observations from this environment.
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Fig. 7. RWFOREST : (Left: RGB, Middle: depth, Right: MIDAS depth [8]).

We directly test the previously trained solutions in this

new environment to challenge the robustness of our proposed

solution. No additional training was performed in RWFOREST.

Instead, the pre-trained models of the section III-C were

directly tested on 600 objectives of 20m, 40m, and 60m. The

Table IV presents the result of the best performing solutions

from the previous sections: the spherical adapted ground truth

and the DRL & MIDAS adapted estimated depth.

RUN SR (%) SPL (%)

90° FOV GT depth 81.0 69.1

360° FOV GT depth (DRL adapted) 89.7 76.9

360° FOV ED (DRL & MIDAS adapted) 84.7 62.1

TABLE IV
PERFORMANCES IN RWFOREST.

Although a challenging test using much more complex

images than those used for training, our proposed solution still

performs very well. The DRL & MIDAS adapted 360° FOV

estimated depth reaches almost 85% success. This proves the

robustness of our proposed solution to domain change despite

the increase in observational complexity.

The MIDAS network also proves its stability in predicting

consistent depth estimation in various environments without

additional training. Despite its small size, it is reliable enough

to build a DRL navigation solution with performance close to

ground truth modalities.

VI. CONCLUSION

This paper presented a point-goal navigation solution for

drones in forests using monocular omnidirectional images.

We have shown that this equirectangular solution outperforms

its perspective reference. Indeed, thanks to a larger FOV, the

drone has a better understanding of its environment, resulting

in fewer collisions and better trajectory optimization.



In parallel, we have studied a DRL solution using monocular

estimated depth as visual input and compared it to ground

truth depth and RGB. Despite significant spherical distortions,

the MIDAS network trained on perspective images provides

reliable and accurate depth prediction, sufficient to outperform

a DRL solution using only RGB.

Furthermore, we have presented a fast and elegant spherical

adaptation that aims to maintain local pixel coherence dur-

ing convolution operations without additional training. Again,

the point-goal navigation task has been further improved by

implementing this adaptation in the Actor-Critic network and

MIDAS. Finally, even when tested in a new and more complex

environment, our solutions showed high robustness to domain

shift.

Our code implementation will be open-source and available

on GitHub at https://github.com/COATZ/OMNI-DRL.
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APPENDIX

LAYER TYPE NB PARAMS

Visual capture (Ik)

C1 CONV2D(8, K=3, S=2, P=1) 80

C2 CONV2D(8, K=3, S=2, P=1) 584

C3 CONV2D(8, K=3, S=2, P=1) 584

C4 CONV2D(8, K=3, S=2, P=1) 584

FC1 FC(8*7*7, 64) 25152

FC2 FC(64, 32) 2080

+ Goal state (dk, θk)

RFC1 FC(34,64) 2172

RFC2 FC(64,128) 8320

RFC3 FC(128,128) 16512

RFC4 FC(128,37) 4773

TABLE V
CUSTOMCNN

Total: 60814 parameters.

Hyperparameter Value

learning rate 0.0003

number of steps 2048

batch size 64

number of epochs 10

gamma 0.99

∆t 200 ms

Nb 37 actions

TABLE VI
SIMULATION HYPERPARAMETERS


