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Abstract

The development of reconfigurable, integrated all-optical
signal processors on will enable low-cost and accessible
platforms for key technologies such as bio-medical imag-
ing, telecommunications and quantum optics. We demon-
strate, that simple, user-friendly, programmable integrated
circuits in combination with evolutionary optimization al-
gorithms can constitute an essential pillar in the field of
smart-photonics.

1 Introduction

The fusion of guided optimization techniques and photonic
systems is an emerging and increasingly popular research
field at the interface to machine-learning (dubbed ’smart’-
photonics) with the goal of offering high customizability
and advanced device functionality[1]. Towards this aim,
there are several key ’ingredients’ such systems require
to find use: i) the implementation of adaptive and pro-
grammable elements to control the system output, ii) the
adaption of algorithms from computer science, and iii) fast,
efficient and reliable detection schemes for the feedback
signals.
Until now, the majority of implementations make use of
free-space or fiber-based approaches utilizing, for exam-
ple, spatial-light modulators or electronic polarization con-
trollers to alter the system dynamics[2]. In order to boost
device compactness, environmental robustness, and pro-
cessing speeds, photonic integrated circuits (PICs) are ap-
pealing for achieving cutting-edge performance in a small
footprint with the potential for mass-production and scala-
bility. Lately, PICs have allowed progress in reconfigurable
‘smart’-devices, such as photonic field programmable gate
arrays[3] or intelligent telecommunications processors[4].
Here, we demonstrate that integrated, reconfigurable cir-
cuits can be an essential cornerstone in the field of smart-

photonics, by enabling advanced device functionalities be-
yond single-application uses. In detail, we show that a sim-
ple cascaded Mach-Zehnder interferometer design can be
utilized towards different applications such as on-demand
tailoring of broadband light sources and reconfigurable pi-
cosecond pulse shaping.

2 Results

The key element in our implementation is a chip-integrated
pulse splitter consisting of concatenated balanced and un-
balanced Mach-Zehnder interferometers. The platform is
based on a silicon-oxy-nitride glass that offers exception-
ally low linear (< 0.06 dB/cm) and negligible nonlinear
losses[12], and is fiber-coupled to standard single-mode
fibers for ease of use. The unbalanced interferometers of
our chip features bit-wise increasing delays (i.e., 2n for
n=0...7) from 1 ps up to 255 ps. The individual delays can
be accessed and controlled over a micro-controller which
drives the pulse splitting via on-chip electric heaters.

The short delays of our chip sample allows to maintain fem-
tosecond pulse widths in order to drive adjacent highly non-
linear processes in highly-nonlinear fibers such as super-
continuum generation[5]. Indeed, supercontinuum spectra
with hundreds of nanometer bandwidth are a sought-after
sources for spectroscopy and bio-medical imaging applica-
tions. However, such sources are generally static in their
spectral energy distribution, i.e., the spectrum is defined
by the pump laser and fiber parameters[10]. In our im-
plementation, the integrated pulse-splitter is used to split a
femtosecond pulse into several pulse copies of varying de-
lays and amplitudes. During the propagation inside a highly
nonlinear fiber (HNLF), these pulse copies can experience
different inter- and intra-pulse interactions, depending on
their splitting ratios, which can lead to drastically changed
output spectra. The experimental setup is shown in Fig. 1.



Figure 1. Experimental setup for customized supercon-
tinuum generation. EDFA = erbium-doped fiber amplifier,
HNLF = highly nonlinear fiber, OSA = optical spectrum an-
alyzer.

By employing a guided optimization algorithm in the form
of the popular genetic algorithm (GA), the process of su-
percontinuum generation can be altered towards a specific
target output (e.g., maximizing the intensity in one or more
wavelength bands). Specifically, the spectrum is readout
using an optical spectrum analyzer, and subsequently eval-
uated for a targeted performance via a loss function met-
ric. Then, the settings for the amplitude splitting are up-
dated until a specific termination criterion for the feedback
loop is met. Fig. 2 shows the results for such optimiza-
tion towards maximal optical power in different wavelength
bands, which is especially important for applications that
require high power densities in specific spectral domains.
From the results, it is evident that for a single pulse the
method significantly outperforms the control experiment
(dashed spectra).

Another application that can benefit from this kind of recon-
figurability and optimization is picosecond pulse-shaping,
which is important for controlling nonlinear dynamics[6] or
for information encoding in telecommunications[7]. How-
ever, to date, the narrow linewidth of sub-nanosecond
sources has inhibited any demonstration of an efficient and
adaptable scheme.
In our work[8], we demonstrate that the same inte-
grated pulse-splitter can be repurposed towards reconfig-
urable picosecond pulse-shaping using temporal coher-
ence synthesis[11]. In detail, a picosecond input pulse
(here ≈22 ps) will experience self-interference in the pulse-
splitter. By adjusting the individual amplitude ratios be-
tween the interfering pulse splittings, customized output
waveforms can be obtained. The experimental setup is
shown in Fig.3.

In order to efficiently and unambiguously monitor the out-
put waveform, we implemented an all-optical sampling
scheme based on seeded degenerate four-wave mixing in
a HNLF[9]. The measured sampling signal is then evalu-
ated on a computer using a Hilbert transform for envelope
retrieval. The cosine-similarity between the retrieved and
a targeted waveform is used as a loss function. In contrast
to the customized supercontinuum generation experiment,
here we utilized a nature-inspired particle swarm optimiza-

Figure 2. Results of the customized supercontinuum gen-
eration. a-c Intensity maximation at 1600 nm, 1700 nm and
1800 nm, respectively. The blue bar indicates the target
wavelength window. The insets show the autocorrelation
trace for each case.

Figure 3. Setup for an autonomous pulse-shaper using an
integrated pulse-splitter and an all-optical sampling scheme
(a). The shaped and sampled signal is detected by an oscil-
loscope (b), and a computer mediates the evaluation and
optimization of the integrated pulse-splitter. SDL = split-
and-delayline, FM = Faraday mirror, MLL = mode-locked
laser, TBPF = tunable bandpass filter, OFC = optical fiber
coupler, PD = photodiode



tion algorithm (PSO) for the optimization, which turned out
to converge significantly faster for this particular applica-
tion than the GA. The obtained results for different wave-
forms (square, triangle or sawtooths) are depicted in Fig. 4,
which are of relevance to the telecommunications sector.

Figure 4. Experimental results for the reconfigurable pi-
cosecond pulse-shaper. a Triangular b Positive sawtooth, c
Negative sawtooth, d Flattop waveform. The target wave-
form is shown in pink, the measured sampling signal and
retrieved envelope are solid blue and black lines, respec-
tively. The blue dashed line in a depicts the input pulse.

3 Conclusion

We demonstrate that the time and length scales accessible in
integrated photonics play an enabling role towards the next
generation of optical signal processing. Making use of a
reconfigurable interferometer network, we demonstrate its
utility towards signal optimization in both the spectral (i.e.,
custom supercontinuum generation) and temporal (i.e., cus-
tom temporal waveform generation) domains. GA and PSO
algorithms are broadly able to guide the reconfiguration of
the circuit towards the application cases, when coupled with
effective readout methods. Moreover, the results demon-
strate the unprecedented capabilities of machine learning
approaches for repurposing existing photonic hardware, ul-
timately reducing the need for time consuming and finan-
cially expensive photonic device fabrication. Our work sug-
gests that development into such combinations of recon-
figurable circuits, optimization, and fast readout may play
a pivotal role in enhancing signal processing capabilities
while maintaining user friendliness, low setup complexities
and footprints, and costs.
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