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Triple photon generation (TPG) is based on a third-order nonlinear optical interaction, which is
the most direct way to produce pure quantum three-photon states. These states can exhibit three-
body quantum correlations and their statistics cannot be reproduced by any Gaussian statistics of
coherent sources or optical parametric twin-photon generator, making them potentially useful for
quantum information processing tasks such as quantum state distillation, quantum error-correction
and universal quantum computing. Furthermore, the generation of entangled photon pairs heralded
by the detection of a third photon can be used in advanced quantum communication protocols.
We made the first experimental demonstration of TPG in 2004 using a bi-stimulation scheme in
a bulk KTP crystal, followed by the quantum theory. The new challenges are now to achieve a
spontaneous TPG and the corresponding quantum experiments and protocols using oriented ridge
KTP waveguides, which ensures both birefringence phase-matching and light confinement. The
waveguides are cut by a precision dicing saw. We recently performed their characterization using
third-harmonic generation measurements, which showed their good quality. A rate of about 5 triplets
per second is expected when pumping a 5-cm long waveguide with a 5-W 532 nm beam in the CW
regime. Such a spontaneous TPG exhibits low rate of triple photons, which makes the certification
of quantum features hard. In this article, we review our theoretical and experimental work on TPG
and the associated quantum modeling. We also develop theoretical tools for the certification of
quantum features of spontaneous triple photon states.
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I. INTRODUCTION

Twin photons have deeply influenced the history of nonlinear and quantum optics by their wide range of applications
and the paradigmatic place they stand in generating new quantum states of light [1]. As regards triple photon
generation (TPG), the story is only starting. TPG is based on the third-order optical non-linearity, i.e. the third-
order electric susceptibility χ(3) [2, 3]: it is a process which can directly generate a 3-photon (3P) state. During
TPG, three highly correlated photons at energies ℏω1, ℏω2 and ℏω3 are created in a nonlinear medium from the
annihilation of a higher energy photon at ℏω0, with the energy conservation being fulfilled: ℏω0 = ℏω1 + ℏω2 + ℏω3.
Four configurations are possible regarding the level of stimulation of TPG: a stimulated TPG over three, two or one
modes of the triplet that has to be generated, or the spontaneous TPG, where there is no stimulation at all. Figure 1
shows the three last cases. In the two stimulated cases, the generated photons come from the triplets as well as from
the residual photons of the stimulation, as shown in Fig. 1 (a)-(b).
At the opposite, the spontaneous scheme shown in Fig. 1 (c) allows to generate a pure 3P state, which corresponds to
the third-order Spontaneous Parametric Down Conversion (SPDC). These three configurations are all interesting from
the quantum point of view regarding the context of continuous or discrete variables. Indeed, these three configurations
will all generate states which exhibit quantum features such as entanglement.
In 2004, we made the first experimental demonstration of a TPG. We considered a two-photon stimulation scheme,
as shown in Fig.1 (a), using a phase-matched bulk KTiOPO4 crystal [4]. More recently, we proposed a waveguide
approach to boost the generation efficiency [5, 6]. TPG has also been an active field of research for many groups
around the world [7–15]. This new corpus has thus opened new exciting opportunities in quantum optics.
Now we wish to overcome a new obstacle by aiming at experimentally generating the 3P state of light by mono-
stimulated or spontaneous TPG. This is a real tour de force given both the low efficiency of these two configurations
and the fact that the efficiency, contrary to the second-order nonlinear process, increases with the injection intensity.
From this step, it will be then possible to open new avenues in quantum information. Indeed, TPG can provide a new
powerful resource for advanced quantum information protocols. For example, spontaneous TPG can be considered to
generate heralded two photons states, which can be used in a qubit amplifier or in a device independent quantum key
distribution protocol [16]. Our choice for the pump and 3P wavelengths is directly conditioned by this application
context: λ0 = 532 nm, which corresponds to the second harmonic of the Nd:YAG laser, and λ1, λ2, λ3 ranging from
1500 nm to 1600 nm, that is to say in the telecom range.
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FIG. 1: The three schemes of generation of a 3-photon state at energies ℏω1, ℏω2 and ℏω3 in a third-order nonlinear medium
pumped at ℏω0 : (a) stimulation over two modes, at ℏω2 and ℏω3 for example; (b) stimulation over one mode, at ℏω1 for
example ; (c) no stimulation. The energy levels are described by continuous lines for the matter and a dashed line for the
electromagnetic field.

This article is organised as follows: we first review our theoretical and experimental work on TPG in section II going
from bulk to waveguided configurations, followed by the review of the quantum modeling of TPG in section III where
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we additionally implement an easily accessible numerical solution to this problem that has not known analytical
solution. Finally, we propose new tools in order to characterize quantum features of TPG in section IV, a difficult
and important problem under active investigation in several international teams.

II. TRIPLE PHOTONS GENERATION

A. Classical Description

1. Theory

We are considering a practical case where the four interacting waves propagate in the same direction. The

corresponding wave vectors are then written k⃗i = kis⃗, i =(0,1,2,3), with ki =
2π
λi
n(λi) where n(λi) is the refractive

index of the wave at λi in the considered direction s⃗. The electric fields are taken linearly polarized and are expressed

as E⃗i = e⃗iEi(Z)exp(kiZ) where e⃗i is the unit vector, namely the light polarization, Ei(Z) the complex amplitude,
and Z the spatial coordinate of the laboratory frame along s⃗.

The resolution of Maxwell equations written at each angular frequency ωi leads to the following coupled amplitude
equations [17]:



∂E0(Z)

∂Z
= j · π

n (λ0)λ0 cos2 (ρ0)
χ
(3)
effE1(Z)E2(Z)E3(Z) exp(−j∆kZ)

∂E1(Z)

∂Z
= j · π

n (λ1)λ1 cos2 (ρ1)
χ
(3)
effE0(Z)E

∗
2 (Z)E

∗
3 (Z) exp(j∆kZ)

∂E2(Z)

∂Z
= j · π

n (λ2)λ2 cos2 (ρ2)
χ
(3)
effE0(Z)E

∗
1 (Z)E

∗
3 (Z) exp(j∆kZ)

∂E3(Z)

∂Z
= j · π

n (λ3)λ3 cos2 (ρ3)
χ
(3)
effE0(Z)E

∗
1 (Z)E

∗
2 (Z) exp(j∆kZ).

(1)

The parameter ρi, with i=(0,1,2,3), is the spatial walk-off angle in the considered direction of propagation [18]. χ
(3)
eff

is the effective nonlinear coefficient expressed as χ
(3)
eff = χ(3) (ω0 = ω1 + ω2 + ω3) ::

−→e0 ⊗−→e1 ⊗−→e2 ⊗−→e3 where :: stands

for the four-rank contracted product. The parameter ∆k is defined by ∆k = k0 − (k1 + k2 + k3) : this spatial phase
term corresponds to the phase-mismatch between the third-order nonlinear polarization and the radiated field.
In order to maximize the derivatives ∂Ei/∂Z in Eq. (1), which corresponds to the maximization of energy exchange

between the four waves, it is necessary to maximize the amplitude of χ
(3)
eff and to get ∆k = 0, i.e.:

∆k = 2π

[
n (λ0)

λ0
−
(
n (λ1)

λ1
+
n (λ2)

λ2
+
n (λ3)

λ3

)]
= 0. (2)

Equation 2 is called the phase-matching relation that ensures a constructive interference between the nonlinear
polarization and the radiated field over the full interacting length Z. This condition also corresponds to the full
momentum conservation of the photons in the quantum picture.

Then the design of an optimal TPG requires to find a material with a high effective nonlinear coefficient, low spatial
walk-off angles, and allowing phase-matching at the targeted wavelengths. We identified the biaxial crystal KTiOPO4

(KTP) as the good platform, under two different technologies: a bulk crystal [4] and a ridge optical waveguide crystal
[6]. Then the strategy is to perform a birefringence phase-matching in both cases.

The phase-matching properties are calculated from the refractive indices over the full transparency range of the
crystal. For bulk KTP, the best dispersion equations in the visible and near infrared of the principal refractive indices
nj(λ), with respect to the dielectric axes, are [19]:
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nj(λ) =

√
Aj +

Bj

λ2 − Cj
−Djλ2. (3)

The dispersion coefficients are given in Table I for λ given in [µm].

j Aj Bj Cj Dj

x 3.0065 0.03901 0.04251 0.01327

y 3.0333 0.04154 0.04547 0.01408

z 3.3134 0.05694 0.05658 0.01682

TABLE I: Dispersion coefficients of bulk KTP crystal at room temperature [19]. The indices x, y and z stand for the dielectric
axes of the crystal.

From Eq. (3) and Table I, we identified that angle non-critical phase-matching, i.e. ρ0 = ρ1 = ρ2 = ρ3 = 0, is
possible at a pump wavelength λ0 = 532 nm when the four interacting waves propagate along the x-axis of the

dielectric frame (O,x,y,z), i.e. s⃗//O⃗x. According to Eq. 2, it means that the principle refractive indices verify
ny(λ0)

λ0
−

(
nz(λ1)

λ1
+

ny(λ2)
λ2

+ nz(λ3)
λ3

)
= 0. The corresponding phase-matching curve is given in Fig.2: it shows that

the triplet (λ1, λ2, λ3) is spread over a broad continuum, from 1000 nm to 4500 nm, that is to say up to the infrared
cutoff of KTP. This specific feature of TPG is due to the fact that there are only two coupled relations, the energy
and momentum conservations, for the determination of three unknown values. Note that it is completely different
from twin photon generation for which there is a unique couple of solutions for the signal and idler wavelengths once
the pump wavelength and the direction of propagation are fixed. Actually, in this well known case of second-order
SPDC, there are the same number of equations as solutions to be determined. An alternative to avoid any wavelength
spreading, and so any energy spreading, is to fix the value of the wavelength of at least one photon of the triplet: that
can be done by stimulating at one or two of the three wavelengths, as in Figs. 1 (b) and 1 (a) respectively. Concerning
the later scheme, Fig. 2 shows that there exists a partially degenerate scenario where the two injection wavelengths
are equal, i.e. λ2 = λ3 = 1681 nm for λ1 = 1449 nm, which can be interesting from the experimental point of
view as it will be seen in the next section. Note that it is also obviously possible to stimulate over the three wavelengths.

FIG. 2: TPG phase-matching curve in a bulk x-cut KTP crystal pumped at λ0 = 532nm. The indices x, y and z stand for the
dielectric axes of the crystal, and λ1, λ2 and λ3 for the triplet wavelengths.

The same kind of calculations can be done in the case of ridge KTP crystals, knowing that in that case the refractive
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index has to be replaced by the effective index of the optical modes. For a given dimension of the square waveguide
(d×d), the effective index of the fundamental guided mode is calculated using Comsol for x-, y- and z-polarized light,
by considering wavelengths varying between 500 to 3000 nm. Dispersion equations giving the effective indices are re-
trieved by fitting those numerical data assuming a Sellmeier-like form. The best equation we found is expressed as [20]

(neff )i =

(
Ai × λBi +

Ci

10−6 × λDi − Ei
− Fi × 10−6 × λGi

)Hi

+ Ii, (4)

where the wavelength λ is expressed in nanometer [nm]. The dispersion coefficients depend on the transverse dimension
of the optical waveguide, and are given in Table II for d× d = 6× 6 µm2.

j Aj Bj Cj Dj Ej Fj Gj Hj Ij

x 0.4488 0.01948 0.5288 2.277 0.4939 0.88 1.615 0.07128 0.7808

y 1.017 0.004481 1.47 2.323 0.6407 1.242 1.653 0.07207 0.7373

z 2.236 0.006506 0.8399 2.14 0.1814 0.5619 1.811 0.1125 0.7183

TABLE II: Dispersion coefficients at room temperature of a ridge KTP crystal with a transverse dimension d× d = 6 × 6 µm2

[20]. The indices x, y and z stand for the dielectric axes of the crystal.

The phase-matching curves of Fig. 3 are calculated using Eq. (4) and Table II . The infrared limit of 3000 nm is fixed
by the range of validity of Eq. (4).
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FIG. 3: TPG phase-matching curve in a ridge y-cut KTP crystal pumped at 532 nm with transverse dimension d×d = 6×6µm2.
The indices x, y and z stand for the dielectric axes of the crystal.

Figure 3 shows that phase-matching is possible from 1000 nm to 3000 nm for the three triplet wavelengths. But
we can expect to have a wider range, up to 4500 nm, as it is the case in Fig.2 for bulk KTP, when using proper
dispersion equations beyond 3000 nm. Figure 3 also shows that the partially degenerated configuration (λ1 = 1550 nm,
λ2 =λ3 = 1619 nm) is allowed in this ridge. It is important to notice that the walk-off angles are nil along the y-axis,
which ensures a perfect spatial overlap between the interacting waves.
The phase-matching curves calculated for other values of transverse section (d × d) have all the same shapes and
extensions. They mainly differ by the location of the intersection point corresponding to the partial degeneracy, e.g.
(λ1 = 938 nm, λ2 = 2457 nm) for d× d = 4× 4µm2 and (λ1 = 2456 nm, λ2 = λ3 = 1345 nm) for d× d = 16× 16µm2,
as it is shown in Fig 4 where it also appears that the full degeneracy (λ1 = λ2 = λ3 = 1596 nm) is possible for
d× d = 6.12× 6.12µm2. Figure 4 shows well that the geometry of the waveguide is a fine parameter of tunability.
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FIG. 4: Partially degenerated (λ1 ̸= λ2 = λ3) and fully degenerated (λ1 = λ2 = λ3) TPG phase-matching curve as a function
of the transverse dimension of a ridge y-cut KTP crystal pumped at 532 nm. The indices x, y and z stand for the dielectric
axes of the crystal.

The system described by Eq. 1 can be analytically solved using the sn(u|m) and cn(u|m) Jacobi elliptic functions
[21, 22]. Given the boundary conditions in terms of energy at the entrance of the nonlinear medium (Z=0), this
resolution is only feasible if there is a stimulation at the three wavelengths of the triplet, or at two wavelengths as in
the scheme described by Fig. 1(a). In this latter case, the boundary conditions are: E0(Z = 0) ̸= 0, E1(Z = 0) =

0, E2(Z = 0) ̸= 0 and E3(Z = 0) ̸= 0. Knowing that the intensity is expressed as Ii(Z) =
n(λi)

2

√
ε0
µ0

|Ei(Z)|2, it comes

for the four intensities at the exit of the nonlinear medium of length Z = L:

I0(L) =
I0(0) [γ3 + γ0] cn

2(aL | 1−m)

γ3msn2(aL | 1−m) + [γ3 + γ0] cn2(aL | 1−m)

I1(L) =
γ3γ0sn

2(aL | 1−m)

γ3msn2(aL | 1−m) + [γ3 + γ0] cn2(aL | 1−m)

I2(L) =
I2(0) [γ3 + γ0] (sn

2(aL | 1−m) + cn2(aL | 1−m)

γ3msn2(aL | 1−m) + [γ3 + γ0] cn2(aL | 1−m)

I3(L) =
I3(0) [γ3 + γ0] (m sn2(aL | 1−m) + cn2(aL | 1−m))

γ3msn2(aL | 1−m) + [γ3 + γ0] cn2(aL | 1−m)
,

(5)

with

a =
Λ

2

√
γ3 (γ0 + γ2)

Λ =

√
µ0

ε0

4πχ
(3)
eff√

n (λ0)n (λ1)n (λ2)n (λ3)

√
λ1

λ0λ2λ3

γ0 =
λ0
λ1
I0(0) γ2 =

λ2
λ1
I2(0) γ3 =

λ3
λ1
I3(0)

m =
γ2 (γ0 + γ3)

γ3 (γ0 + γ2)
.

(6)

Figure 5 gives the corresponding curves for a propagation along the x-axis of a bulk KTP crystal pumped at λ0 =
532 nm. The point of partial degeneracy shown in Fig.2, i.e. (λ1 = 1449 nm, λ2 = λ3 = 1681 nm) is taken for the
calculation. In that case, the numerical values of the refractive indices are n(λ0) = ny(λ0) = 1.7902, n(λ1) = nz(λ1) =
1.8182, n(λ2) = ny(λ2) = 1.7345 and n(λ3) = nz(λ3) = 1.8128 from Eq.3 and Table I; the third-order nonlinear
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effective coefficient is χ
(3)
eff = 9.0 × 10−22 m2V−2 using Miller’s rule from the magnitude of the third-order electric

susceptibility coefficient χ
(3)
yzyz given in Ref.[23]. The incident intensities that are used are: I0(0) = 250GW/cm2 and

I2(0) = I3(0) = 3.25GW/cm2. These values correspond to the intensities considered in the experiments described in
section 2.1.2.
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FIG. 5: Intensities of phase-matched TPG, pumped at λ0 and stimulated at λ2 and λ3, as a function of the crystal length L of
a bulk x-cut KTP crystal pumped at 532 nm.

Figure 5 shows well the periodic character of Jacobi elliptic functions, with several values of the crystal length
for which there is the full pump depletion, i.e. I0(L) = 0. It is then sufficient to consider the first value, i.e.
L = 1.27 cm, for fixing the optimal crystal length, which is suited for an experiment leading to the extremum
I1(L = 1.27 cm) = 91.7GW/cm2.
The generation at λ1 as well the amplification at λ2 and λ3 are due to the generation of 3P states. Then from the
knowledge of I1 assuming a Gaussian spatial and temporal shapes under the parallel beam assumption, it is easy to
access to N3P that is the number of triple photons,

N3P (L) =
1

ℏω1

[
I1(L)

(π
2

)3/2 τ1
2
(w1)

2

]
, (7)

where τ1 and w1 are the full-width pulse duration and radius at 1/e2, respectively. In the example of bulk KTP, by
taking τ1 = 88ps and w1 = 66µm for example, we obtain N3P = 2.57× 1015 triplets/pulse.

When the TPG efficiency is so weak that the pump and stimulation fields can be considered as constant over L, i.e.
E0(Z) ≃ E0(0) ̸= 0, E2(Z) ≃ E2(0) ̸= 0 and E3(Z) ≃ E3(0) ̸= 0, the integration of Eqs.1 is immediate. For
∆k = 0, it leads to:

I0(L) ≃ I0(0) I2(L) ≃ I2(0) I3(L) ≃ I3(0)

I1(L) ≃
µ0

ε0

(
2π

λ1

)2

(
χ
(3)
effL

)2

n (λ0)n (λ1)n (λ2)n (λ3)
I0(0)I2(0)I3(0).

(8)

The comparison of the behavior of I1(L) given in Fig. 5 with that calculated from Eq. 8 using the same boundary
conditions is shown in Fig. 6.
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FIG. 6: Intensity generated at λ1 by phase-matched TPG in a bulk x-cut KTP crystal pumped at 532 nm using the general
modeling (red curve of Fig. 5) and the undepleted pump and stimulation approximation.

It appears that the undepleted pump and stimulation approximation is valid below a crystal length of about 5mm,
but it underestimates the generated intensity at the level of the first maximum of the Jacobi elliptic function and it
overestimates the intensity at longer interacting lengths.

B. Experimental demonstration of bi-stimulated triple photon generation

An example of experimental set up of a TPG stimulated over two modes is shown in Fig. 7 [22]. The nonlinear medium
was a 2-cm-long bulk KTP crystal cut along the x-axis. In order to minimize the number of stimulation beams, we
choose the partially-degenerated case, i.e. λ2 = λ3, the two corresponding waves being orthogonally polarized.
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Nd:YAG laser 
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Energy & spectral 
measurement

Triple 
Photon
Generation
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(Temporal adjustment)
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Glan-Taylor 
    Prism

Half-wave Plate Half-wave Plate

FIG. 7: Experimental setup of a phase-matched TPG in a bulk x-cut KTP crystal pumped at 532 nm and stimulated at
λ2 = λ3 = 1665 nm with orthogonal polarizations in the picosecond regime. The dashed lines with double arrows stand for the
direction of polarization of the different interacting beams. The values of pulse durations (τ) and waist radius (w) are taken
at 1/e2.



9

It was necessary to use very intense pump and stimulation beams, typically several GW/cm2 because of the weakness
of the amplitude of the third-order non-linearity. This is why we used the picosecond regime. The pump beam at
λ0=532 nm was the second-harmonic of a 5Hz picosecond Ekspla SL312-P Nd:YAG laser. The stimulation beam at
λ2 = λ3 was generated by a home-made Optical Parametric Oscillator emitting at 1665 nm, which exactly corresponds
to the experimental phase-matching, i.e. (λ1 = 1474 nm, λ2 = λ3 = 1665 nm), that had been determined before
from the pioneer experiment thanks to a tunable source for the stimulation beam at λ2 = λ3 [4]. Note that these
experimental phase-matching wavelengths are very close to the calculated values, i.e. (λ1 = 1449 nm, λ2 = λ3 =
1681 nm) according to Fig.2, the differences being due to a small inaccuracy of the refractive indices that are used
for the calculation. Using a pump intensity I0(L = 0) = 250GW/cm2 and a stimulation intensities I2(L = 0) =
I3(L = 0) = 3.25GW/cm2, which corresponds to the intensity values taken for plotting the curves of Figs.5-6, we
obtained I1(L = 2cm) = 0.85GW/cm2 at λ1 = 1474 nm, which corresponds to N3P = 3.7× 1013 triplets/s according
to Eq.(7) [22]. The calculation using 5 at L = 2 cm gives N3P = 6.16 × 1013 triplets/s. This small difference with
the measurement has been explained by the Kerr effect due to the high intensities that are used [24]. Note also that
according to Figs. 5-6, a crystal with the optimal length L = 1.27 cm would lead to I1(L = 1.27 cm) = 91.7GW/cm2

at λ1 = 1474 nm and so to N3P = 2.57 × 1015 triplets/s. The triplets are mixed with residual photons at λ2 and
λ3, their numbers corresponding simply to those at the entrance of the KTP crystal, i.e. N2(L = 0) = N3(L = 0) =
4.25× 1014 photons/s, the number of incident pump photons being N0(L = 0) = 6.15× 1015 photons/s.
The use of bulk KTP as described above allows the beams to be strongly confined over a limited length ranging around
the centimeter. Actually, it corresponds to the typical value of the Rayleigh length associated to the focusing conditions
that are considered. In order to overcome this limitation, which is a crucial point in the case of a spontaneous TPG, we
proposed in 2018 to explore the feasibility of a new technology taking advantage of both birefringence phase-matching
and confinement. The idea is to use ridge waveguides where the direction of propagation is along a phase-matching
direction of a KTP crystal. By this way, the pump and triplet waves can exhibit the same propagation modes so that
the overlap will be optimal. KTP ridge waveguides are fabricated using a technique based on precise diamond blade
dicing [6]. A picture of such a waveguide is shown in Fig.8.
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Gold
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FIG. 8: Electron microscopy image of a KTP ridge waveguide obtained using diamond blade dicing. (x, y, z) is the dielectric
frame of KTP. The total length along the y-axis is equal to 8.6 mm.

It is then a step index waveguide, the upper and side faces being in contact with the air and the lower face being
coated with a Silica layer. The transverse average section was found to be of about 38µm2, non-constant along the
ridge axis: it corresponds to an average square waveguide of side d = 6.17µm. We performed a preliminary validation
of this technology by achieving high efficiency third-harmonic generation (THG: ω + ω + ω → 3ω) in the waveguide
depicted in Fig.8 [6]. THG is particularly interesting since it is the exact reverse of TPG that is degenerated in energy,
i.e. 3ω → ω + ω + ω. As a consequence, their phase-matching properties are exactly the same. But the advantage of
THG is that the conversion efficiency is higher by several orders of magnitude, leading to a much easier way to study
phase-matching of TPG. The experiments were carried out using a TOPAS Optical Parametric Generator to deliver
the pump beam, with a pulse duration of 15 ps, a repetition rate of 10Hz, and a wavelength that is tunable around
1600 nm. By measuring the Third-Harmonic (TH) intensity as a function of the fundamental wavelength, we found
that the phase-matching was achieved at λω = 1594 nm [6]. The calculated value is λω = 1594.2 nm from Eq.(2),
with λ0 = λ3ω and λ1 = λ2 = λ3 = λω , and using Eq.(4) and Table I. These two values are very close and assuredly
within the accuracy of measurement that is at ±1 nm. In these phase-matching conditions, we found that the TH
energy conversion efficiency was E3ω

Eω
= 3.4% when the fundamental energy is Eω = 2µJ [6]. The calculation gives
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2.6%, which is a little bit lower than the measurement, but the two values are sufficiently close for a validation of

the magnitude of the nonlinear coefficient that is excited here, i.e. χ
(3)
xzxz(1594 nm/3) = 8.0× 10−22 m2V−2 [6]. Thus,

these preliminary measurements of THG allows us to prepare at best the design of spontaneous TPG experiments in
KTP ridge waveguides thanks to the validation of the dispersion equations of both the effective index and third-order
nonlinear coefficient. The waveguides of the current generation are 3 cm long.

III. QUANTUM DESCRIPTION

The starting point of the quantum description of triple photon generation is the interaction Hamiltonian describing
the nonlinear process, given by

Ĥnl = iℏκ(â0â†1â
†
2â

†
3 − â†0â1â2â3). (9)

where â†1, â
†
2 and â†3 refer to the creation operators corresponding to the three modes and â†0 the creation operator of

the pump mode. The nonlinear coefficient κ is proportional to the effective third-order nonlinear susceptibility. The
evolution of the quantum system is given in the Heisenberg picture, where the operators follow

dâl
dt

=
i

ℏ
[Ĥnl, âl], (10)

which reduces to

dâl
dt

= κâ0â
†
mâ

†
n, (11)

using the Hamiltonian described by Eq. (9). This set of equations is equivalent to the classical ones given in Eq. (1).
However, from the quantum mechanics point of view, they have no known analytical solution. We have instead
considered numerical methods using the QuTiP package [25, 26]. This approach is convenient as long as a small
number of photons are considered in order to keep the computation time reasonable, due to the representation of
the states and the operators in the Hilbert space of Fock states. To have a significant effect, it is thus necessary to
compensate the low pumping field with a higher nonlinear interaction efficiency κ. Indeed, considering the results
obtained in [23] and reported in section B, we can infer κ|α0| ∼ 1.75× 10−6 ≪ 1, a rather negligible value. As we are
limited in the photon number used in the quantum approach, the expected effects during the interaction described
by Eq. (10) will not be observed. In our approach and to gain insights on the quantum properties of TPG, we will
instead consider κ = 0.02, corresponding to χ(3) ∼ 1× 10−18 m2V−2, a value far above the third-order non-linearities
we can reach in present materials. With this value, a pump field with in average 100 photons is sufficient to observe
significant evolution of the quantum system. In the following, we will thus consider TPG evolution under Hamiltonian
given by Eq. (9) with a pump field in a coherent state |α0⟩, where |α0|2 = ⟨n0⟩ = 100. Such a coherent state has
a Poisson distribution and can be expanded in the Fock-basis up to 200 with very good fidelity. As the generated
modes are far weaker, we have used a Fock representation with an expansion up to 50, keeping the calculation times
reasonable.
We start our analysis with the double seeding configuration, where two of the triplet modes are excited with a coherent
state containing in average ⟨n⟩ = |α0|2 = 5. The quantum system is then in the initial state |ψin⟩ = |α0, 0, α, α⟩.
Next, we consider the single seeding configuration |ψin⟩ = |α0, 0, 0, α⟩, and finally the spontaneous triple photon
generation for which the initial state is |ψin⟩ = |α0, 0, 0, 0⟩. Before proceeding further, it is worth noting here that the
double stimulation case describes indeed a displacement operator acting on the mode which is initially in vacuum,
under the assumption of a classical undepleted pump in the Hamiltonian Eq. (9). In the single stimulation case and
under the classical pump approximation too, the Hamiltonian Eq. (9) reduces to the one describing the well-known
spontaneous-parametric down conversion.
Figure 9 shows the evolution of the different modes computed numerically considering the three initial states. In the
travelling wave configuration, the space evolution can be inferred from the time evolution of Eq. (10) by multiplying
the time by the speed v of the propagating modes in the nonlinear material. For simplicity, we considered in our
analysis that v = 1 and we integrated Eq. (10) up to t = 1. It is very interesting to notice that the amplification
of the mode which is initially in vacuum depends on the number of seeded modes. Indeed in the case of the double
seeding configuration, at t = 1, the mean photon number for mode 1 is ⟨n⟩ = 1.76, whereas it is lower, ⟨n⟩ = 0.27, for
modes 1 and 2 in the single seeding regime. These values represent the number of triple photons generated during
the interaction. Indeed, we have checked that for the excited modes, the added photon number is exactly ∆n = 1.76
at modes 2 and 3 for the double seeded case, and ∆n = 0.27 at mode 3 for the single seeded interaction.
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FIG. 9: Top: Evolution of the average photon number of the different modes under TPG. Bottom : Corresponding quadrature
variances. For this analysis, κ = 0.02, |α0|2 = 100, and |α|2 = 5.

A similar analysis with a weaker seeding, |α|2 = 1, shows that the generated mean photon numbers are even smaller,
indicating that the generation rate of triple photons depends not only on the strength of the pumping excitation, but
also on the number and strength of the modes excited prior to the interaction. This is unlike the behaviour of optical
twin-photon parametric amplification. In the spontaneous configuration, the mean photon number generated is about
⟨n⟩ ≃ 0.04, even lower, and it obviously only depends on the pump intensity and the nonlinear coefficient κ. This
is the reason why, despite the fact that more than 1014 triplets are generated in the double seeded configuration as
observed in [22], the spontaneous TPG emission has not yet been reported.
Figure 9 shows also the associated quantum fluctuations of the different triple photon modes. For each mode, we have
calculated the variances ⟨∆q̂2⟩ and ⟨∆p̂2⟩ of the two quadratures q̂ = (â+ â†) and p̂ = i(â− â†). For coherent states
and vacuum, which are at the shot noise limit, the variances are ⟨∆q̂2⟩ = ⟨∆p̂2⟩ = 1. Our analysis shows that in the
case of TPG, the three modes have excess noise and all the variances are greater than unity. Moreover, in the case
of the double seeded interaction, the quantum fluctuations are not equally distributed, being larger along the q̂ than
the p̂ quadrature.
Now, we consider the case of a triple seeded configuration where the three modes are excited by a coherent state
with a mean photon number |α|2 = 5. In this particular situation, we should also consider the relative phase between
the pump and the triple modes given by ∆ϕ = |ψ1 + ψ2 + ψ3 − ψ0|. For sake of simplicity, we take ϕ0 = 0 and
ϕ1 = ϕ2 = ϕ3 = ϕ. Our analysis reveals two interesting situations: an amplification for ϕ = π/2, 7π/6 and 11π/6,
where the pump photons are converted into triplets; an attenuation for ϕ = π/6, 5π/6 and 3π/2, which corresponds to
a regime where the triple photons are converted back into pump photons. These behaviors are depicted in Fig. (10),
representing in the left plot the evolution of mean photon number for ϕ = π/2 (blue) and for ϕ = π/6 (red). The
inset is the mean photon number at t = 1 as a function of the phase in a polar plot. In the plot on the right, we
have reported the quantum fluctuations of the two conjugate quadratures q̂ and p̂. The blue curves represent the
variances in the case of amplification and the red ones correspond to the attenuation case. Like in the partially seeded
configurations, the quantum fluctuations are always above the shot noise limit. Moreover, as depicted in the contour
plot, they exhibit a phase dependence, similar to the one of the mean photon number. The behaviour of the fully
seeded TPG is comparable to the phase sensitive twin-photon parametric interaction. It has a phase dependency
to the relative phase between the pump and the generated modes and it exhibits noisy modes, which makes them
robust against optical losses. The differences between the twin-photon and triple-photon states are related to the
dependence on the seeding intensity, and more importantly to the non Gaussian nature of their statistics. This point
will be addressed in the next section.
The generation of triple photons fulfills two conditions: the energy and momentum conservations, as explained in
section II. In the case of spontaneous emission, where only the pump is fixed through its optical frequency ω0 and its
k0 wave-vector, we end up with two equations with three unknown parameters: ω1, ω2 and ω3. The system has thus
an infinity of triplet solutions as already mentioned in section II.
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FIG. 10: Left: Evolution of the average photon number of the different modes under TPG interaction when all modes are seeded
and when the phase of the seeding is π/2 (blue) and π/6 (red). For this analysis, κ = 0.02, |α0|2 = 100, and |α|2 = 5. The
horizontal dashed black line indicates the initial mean photon number |α|2 = 5. The inset shows ⟨n⟩ at t = 1 in a parametric
plot as a function of the seeding phase ψ. The dashed black circle indicates once more the initial mean photon number |α|2 = 5.
Right: The corresponding quadrature variances for the same seeding phase. The horizontal dashed black line shows the shot
noise. The inset is the q̂ and p̂ variances at t = 1 as a function of the phase of the seeding. The shot noise is highlighted by
the black dashed circle.

We should thus reconsider our quantum approach by taking into account this broadband generation. A more suitable
approach in this case is to consider the space evolution under the nonlinear momentum

Ĝnl = ℏ
∫ ∫ ∫

dω0dω1dω2Γ(ω0, ω1, ω2)â
†
0â1â2â3e

−i∆kz +H.c, (12)

where

Γ(ω0, ω1, ω2) =
ℏχ(3)

4ϵ0c2S

√
ω0ω1ω2(ω0 − ω1 − ω2)

n(ω0)n(ω1)n(ω2)n(ω0 − ω1 − ω2)
, (13)

and ∆k = k(ω0)− k(ω1)− k(ω2)− k(ω0 − ω1 − ω2), where we have replaced the frequency ω3 of the third photon by
ω3 = ω0 − ω1 − ω2 using the energy conservation condition. In the following, a reasonable assumption is to consider
that the pump spectral bandwidth is very narrow in comparison with the bandwidth of the triple photons, especially
if a CW laser is used. We can also consider that the pump is strong and undepleted and can be treated as a complex
classical amplitude. We obtain the following evolution equations

∂âl(ω)

∂z
= −i

∫
dωtΓ(ω0, ω, ωt)A0â

†
m(ωt)â

†
n(ω0 − ω − ωt)e

+i∆kz, (14)

where A0 is the real amplitude of the pump electric field. Moreover, considering a weak interaction, which is reasonable
for spontaneous TPG, we can solve Eq.(14) to the first order of the Baker-Hausdorff expansion, which gives

âl(ω, z) = âl(ω, 0)− i

∫
dωtψ(ω0, ω, ωt)â

†
m(ωt, 0)â

†
n(ω0 − ω − ωt, 0), (15)

where ψ = Γ(ω0, ω, ωt)LA0sinc(∆kL/2)e
+i∆kL/2.

It is now easier to calculate the mean photon number defined as ⟨n⟩ = ⟨ψin| â†â |ψin⟩. With the initial state in
vacuum, |ψin⟩ = |0, 0, 0⟩, we obtain:

⟨ni(ω,L)⟩ =
∫
dωt|ψ(ω0, ω, ωt)|2. (16)

This indicates that the mean photon number at mode i = 1, 2, 3 at frequency ω is the integral over all the contributions
of triple photons that fulfill the phase-matching condition and the energy conservation. For example, in the KTP
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waveguides, these two conditions are fulfilled over almost the full transparency window of the nonlinear crystal as
shown in Fig. 3. Figure 11 shows the spectral density distribution |ψ(ω0, ω, ωt)|2 as a function of λ1 and λ2. It is
obtained for the KTP waveguide considered in Fig. 3 and using the corresponding dispersion relations of the effective
index Eq. 4.
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FIG. 11: Spectral density distribution |ψ(ω0, ω, ωt)|2 as a function of the phase-matching wavelengths λ1 and λ2.

Integrating |ψ(ω0, ω, ωt)|2 over λ2-axis, we obtain the mean photon number ⟨n1(ω,L)⟩ per second as a function of λ1.
Similar calculations can be hold to compute ⟨n2(ω,L)⟩ and ⟨n3(ω,L)⟩. The expected mean photon number is higher
than the one calculated by the single mode model described by the Hamiltonian given by Eq. (9). The total mean
photon number that we expect is further estimated by integrating Eq. (16) over the full spectrum, i.e.:

N3P (L) =

∫
dω⟨ni(ω,L)⟩. (17)

Indeed, considering the full phase-matching bandwidth of the KTP ridge waveguide as shown in Fig.3, i.e. from
1 to 3µm, and a CW pump power of 5W at 532 nm, we estimate N3P (L = 5cm) ≃ 4.9 triplets/s. Such a pump
level is a reasonable target regarding the expected improvements of the losses and surface quality of the waveguides.
Note that the rate of triplets remains the same in the pulsed regime than in the CW regime if the average power is
kept at the same value. But the number of triplets per pulse will depend on both the pulse duration and repetition
rate. For example a pump of 5W at 532 nm with a pulse duration of 11.3 ps and a repetition rate of 88MHz, gives
N3P (L = 5cm) = 4.9 triplets/s, corresponding to 5.6× 10−8 triplets/pulse.

IV. NON CLASSICAL FEATURES OF TPG

We now focus on spontaneous TPG, and we consider the non degenerate case where the Hamiltonian is

Ĥnd = iξ(â†1â
†
2â

†
3 − â1â2â3) (18)

and the degenerate case characterized by the following Hamiltonian:

Ĥd = iξ(â†3 − â3). (19)

In both cases, we consider a pump with a high photon number so that it can be treated as a classical state. We also
define ξ = κα0 where |α0| is the amplitude of the pump.
The generation of TPG quantum states has been performed in the double seeded configuration in [24], and in the
single seeded and spontaneous cases in [15]. In those experiments, the authors show strong evidence that the states
are generated by a TPG, however the experimental demonstration of quantum features for such states remains, up to
our knowledge, to be done. In this section, we develop the theoretical tools that allow to demonstrate the different
quantum features of the states generated by all the possible configurations of TPG, i.e. stimulation over one, two or
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three modes, as well as no stimulation. We first note that all quantum features can be inferred from the density matrix
of the state or equivalently from a phase space distribution. In the present case, we expect 4.9 triplets per second,
which makes a full quantum tomography totally out of reach. We thus focus on tools which require a minimum
information about the state but are still able to conclude about quantum features. In the first part, we focus on
the states generated by the Hamiltonian (18) and propose tools to demonstrate genuine multipartite entanglement
(GME) of such states using homodyne measurement. We then focus on the state generated by the Hamiltonian (19)
and build tools in order to demonstrate non classical features of such states.

A. Entanglement

A state is said to be GME if it can not be written as a biseparable state for any bipartition. A general biseparable
state is a mixture of states that are product states for some bipartition, i.e. a partition of all modes into two groups.
Formally, it is given by:

ϱbisep =
∑

G1|G2

p(G1|G2) ρG1|G2
. (20)

Here, the sum runs over all 3 partitions G1|G2 of the 3 parties where G1 ∪ G2 = {1, 2, 3} and G1 ∩ G2 = ∅. The
probabilities of different partitions sum up to one,

∑
G1|G2

p(G1|G2) = 1, and ρG1|G2
is a separable state with respect

to the partition G1|G2. We aim to demonstrate entanglement using homodyne detection, so that we define a general

homodyne measurement on the mode i as X̂θ
i = (â†eiθ + âe−iθ)/2 and write X̂

π/2
i = p̂i and X̂0

i = q̂i. Our first
attempt to describe the quantum properties of triple photons, especially their three body quantum entanglement was
in 2018 [27] using the existing tools dedicated to characterize the inseparability of multi-body quantum states. Our
analysis is based on P. van Loock and A. Furusawa non-separability criterion S [28], relying on the evaluation of the
quantum fluctuation of the generalized quadratures

û =

3∑
i=1

hip̂i, v̂ =

3∑
i=1

giq̂i, (21)

where hi and gi are arbitrary real numbers. Thus, the non-separability criterion is easily accessible experimentally
using standard balanced homodyne detections. The criterion is defined as S = ⟨∆û2⟩+⟨∆v̂2⟩. We can show that when
S < 2min(|hkgk|+ |hlgl + hmgm|) for any permutation of k, l,m = 1, 2, 3, the triplets exhibit genuine entanglement.
However when S > 2 (|hkgk| + |hlgl| + |hmgm|), the system is completely separable. Surprisingly, we found that the
spontaneous triple photons do not exhibit three-body quantum entanglement in the continuous variable (CV) regime,
always fulfilling the last inequality. Entanglement has only been predicted in the different seeded cases as depicted in
Fig. 12. The different results are obtained following the analysis reported in our work [27].
In fact, TPG is a third-order nonlinear process with non-Gaussian statistics. This statement is obvious in the
degenerate case when â1 = â2 = â3 and the Hamiltonian 18 becomes 19. It will be shown hereafter in Fig. 16 that
the Wigner function exhibits interferences and negativities, which is a clear signature of the non-Gaussian nature of
the triple photon mode a. In the non degenerate case, (Hamiltonian 18), we have recently shown that even though
the Wigner function associated with each mode looks Gaussian, the quadrature probability distribution is super-
Gaussian [29]. The S criterion is thus not anymore a relevant parameter to analyse and reveal the entanglement
properties of the triple-photon states. Indeed the S criterion is based on the second-order moments, i.e. variances,
which are sufficient to describe a Gaussian distribution. When at least one of the triplet modes is seeded, the
statistics becomes again Gaussian, and hence using Furusawa and Van Loock criterion S is sufficient. The failure
of the S criterion to describe the entanglement in the case of spontaneous TPG due to its super-Gaussian nature,
pushed us to further explore the entanglement nature of the triplet, in order to claim that the triple photons are indeed
entangled despite the results based on S. Hence, we have used the logarithmic negativity defined as EN = ln ||ρTi ||,
where ρ is the density matrix of the triple photons and ρTi is its partial transpose over mode i = 1, 2 or 3 [29, 30].
A quantum system is said to be entangled whenever EN > 1. Figure 13 shows the calculated EN in the case of
spontaneous TPG, starting from the Hamiltonian Eq. (9) and using a numerical approach to solve the Heisenberg
equation. For this simulation, we considered a coherent pump field with a mean photon number ⟨n0⟩ = 10. The
Logarithmic Negativity EN increases with the nonlinear parameter κ|α0|, reaching EN ≃ 2 for κ|α0| = 1, which
clearly demonstrates the three-body entanglement of the triple photons. In the same figure, we have also reported
the evolution of ⟨n0⟩ and ⟨n3P ⟩, respectively the pump and triplets mean photon numbers.
Even though the logarithmic negativity has the ability to reveal the entanglement of a quantum system, it is very
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FIG. 12: Evolution of the entanglement criterion S for different interactions TPG configurations. Red: fully seed TPG with a
relative phase of π/2. Blue: double-seed TPG. Green: One mode seeding configuration and S calculated for the two unseeded
modes. |α|2 is the mean photon number per second of each seeding beam.

FIG. 13: Red: Logarithmic Negativity of the spontaneous TPG excited by a coherent pump with a mean photon number
|α0|2 = 10. Black: Evolution of the pump mean photon number. Blue: Evolution of the mean photon number of the generated
triplets.

hard to measure in practice, as it requires a full tomography of the state. One instead can use a witness of genuine
entanglement, i.e. an observable Ô such that ⟨Ô⟩ ≤ 0 for all biseparable state. As stated before, the state |ψ3⟩
associated with non degenerate TPG has non-Gaussian entanglement, which implies that a witness of entanglement
(or GME) for the state |ψ3⟩ requires at least a third-order field operator. The authors of [31] derive a non Gaussian
witness of GME, which allows the demonstration of genuine entanglement for the state |ψ3⟩. Moreover, their witness
failed to detect entanglement in the seeded configuration which highlights the difference between the two states. We
briefly review their witness. The authors of [31] show that any biseparable state satisfies

|⟨â1â2â3⟩| ≤
√
⟨n̂1⟩⟨n̂2n̂3⟩+

√
⟨n̂2⟩⟨n̂1n̂3⟩+

√
⟨n̂3⟩⟨n̂2n̂1⟩ (22)

where n̂i is the number operator for mode i. The state |ψ3⟩ does not satisfy (22) and is thus GME. We want to
formulate a relaxation of this witness only in terms of local homodyne measurement. In order to formulate our
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relaxation, we first note that (22) implies that any biseparable state satisfies:

|⟨â†1â
†
2â

†
3⟩| ≤

√
⟨n̂1⟩⟨n̂2n̂3⟩+

√
⟨n̂2⟩⟨n̂1n̂3⟩+

√
⟨n̂3⟩⟨n̂2n̂1⟩. (23)

By summing (22) and (23) and using the triangular inequality, we end up with

|⟨â†1â
†
2â

†
3⟩+ ⟨â1â2â3⟩|

2
≤

√
⟨n̂1⟩⟨n̂2n̂3⟩+

√
⟨n̂2⟩⟨n̂1n̂3⟩+

√
⟨n̂3⟩⟨n̂2n̂1⟩ (24)

which holds for all biseparable states. Interestingly, the left-hand side of this previous equality can be measured using
local homodyne measurement , i.e.:

â†1â
†
2â

†
3 + â1â2â3 = − 2(X̂

π
2
1 X̂

π
2
2 X̂

0
3 + X̂0

1 X̂
π
2
2 X̂

π
2
3 + X̂

π
2
1 X̂

0
2 X̂

π
2
3 − X̂0

1 X̂
0
2 X̂

0
3 ).

The terms n̂in̂j being hard to measure experimentally, we bound them according to

∀{i, j} ∈ {1, 3} ⟨n̂in̂j⟩ ≤
1

2
(⟨n̂2i ⟩+ ⟨n̂2j ⟩) (25)

where ⟨n̂2i ⟩ can be measured locally by combining second- and fourth-order moments of phase average field quadrature,
that is to say:

n̂2i =
16

6
(

∫
1

2π
dθ (X̂θ

i )
4 − 1

2

∫
1

2π
dθ (X̂θ

i )
2). (26)

We define the quantity

Ci,j,k =

√
⟨n̂i⟩ρTPG(η)(

1

2
(⟨n̂2j ⟩ρTPG(η) + ⟨n̂2k⟩ρTPG(η)) (27)

where ⟨.⟩ρTPG(η) is the expectation value of ”.” on the state ρTPG. We can certify the presence of GME for the state
ρTPG if the quantity

w =
|⟨â†1â

†
2â

†
3⟩ρTPG(η) + ⟨â1â2â3⟩ρTPG(η)|

2
− (C1,2,3 + C2,1,3 + C3,2,1) (28)

is positive. We plot in Fig 14 w with respect to the efficiency η. We see a violation even for low efficiency, which
makes the detection of GME for the state ρTPG robust against losses when homodyne detection is used.
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FIG. 14: GME certification parameter w with respect to the efficiency η for ϵ = ξtint = 10−2.

B. A hierarchy of quantum features for single mode of light

We focus on the degenerate state |ψ⟩, which we take to be the outcoming state created by the process associated to
the Hamiltonian of Eq.(19), and which we assume to be single mode. There exists a hierarchy of quantum features
for a single mode of light 15:

FIG. 15: Hierarchy of quantum features for single mode state of light.

The first layer of quantum features is the non-classicality, which is defined using the Glauber-Sudarshan (GS) or P
distribution [32, 33]. Any state ρ can be written in terms of coherent states |α⟩ as follows:

ρ =

∫
dα2P (α) |α⟩ ⟨α| . (29)

A state is classical if its GS distribution P (α) can be interpreted as a classical probability distribution [34]. Non-
classicality is a necessary feature for a state to exhibit any quantum advantage, for example in quantum metrology
where any advantage over classical metrology requires non-classicality.
The second layer of quantum features is quantum non-Gaussianity (QNG). A Gaussian state is by definition a state
with a Gaussian Wigner function. Hudson’s theorem [35] stipulates that all non-Gaussian pure states are Wigner
negative; nevertheless it is not the case for mixed states. Any pure Gaussian state can be generated by the action

of the squeezing operator Ŝ(s) = eâ
2s∗−â†2s following by displacement operator D(α) = eαâ

†−α∗â on the vacuum :
|s, α⟩ = S(s)D(α) |0⟩ . Also, any state can be written in terms of Gaussian states, i.e.:

ρ =

∫
p(α, s) |s, α⟩ ⟨s, α| . (30)
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A state is Gaussian if p(α, s) can be interpreted as a probability distribution. Non-Gaussian quantum states are
essential to a variety of quantum information processing tasks such as quantum state distillation [36] , quantum
error-correction[37] or quantum computational speedup [38] .
The third layer of quantum features is Wigner negativity. The Wigner function is a representation of a single mode
state ρ in terms of the a quasi-probability distribution given as [39]:

Wρ(α) =
2

π
Tr(D(α)(−1)a

†aD(α)† ρ). (31)

Wigner negativity is arguably the strongest form of quantum feature for a single mode state, and is a necessary
condition to perform efficient quantum computing using CV states [40]. We plot in Fig. 16 the Wigner function of
state |ψ⟩ as a function of its canonical quadratures q and p.

FIG. 16: Wigner Function W of the state |ψ⟩ as a function of the canonical quadratures q and p. The positivity plane (colored
in lighter color) divides the Wigner Function axis between positive and negative values.

We can observe different areas of negativities in the Wigner function, which implies that the TPG state is Wigner
negative, non-Gaussian and non-classical. We note that this function is not phase-invariant, and as a consequence the
presence of such negativities can not be detected by only photon counting strategies. The reconstruction of the Wigner
function requires a high number of experimental runs, which is not available in the present experiment. Witnesses of
Wigner negativity can be systematically derived using hierarchy of semi definite programs [41], but those witnesses
require again a number of measurement runs that is much higher than the one available in our case, and for those
reasons we proceed by focusing on non-classicality and non-Gaussianity only.

C. Witnessing Non-Classicality of the degenerate state |ψ⟩

A witness of non-classicality can be represented by an observable Ŵ together with the maximum expectation value
of Ŵ on a classical state. The most widely used witness of non-classicality is probably the second-order correlation
function g2(0) [42] together with its classical bound 1. Several criteria which analyze matrices of moments of annihi-
lation and creation operators have also been derived [43–45]. In this section, we focus on the setup of Fig.(17) and
derive a witness tailored to the state |ψ⟩ and that is based on photodetection events. We consider a single mode case
for sake of clarity. The results are holding in the multimode case and, since i) the detector cannot distinguish between
different modes and ii) the setup in Fig. (17) does not allow us to acquire information about the coherence terms of
|ψ⟩ , then we can consider a single mode state with the same number of photons than that of the expected multimode
state in order to correctly model our experiment (see Appendix A).
In Fig.(17), an input state ρi of the ith experimental run is split into four spatially separated modes using three
balanced beam splitters and sent to four non photon number resolving (NPNR) detectors. We do not want to make
assumptions about the efficiency of the NPNR detectors, so we consider perfect detection and that any inefficiencies
can be mapped into the input states ρi. A NPNR detector with unit efficiency can be modeled by a two element
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positive operator-valued measure (POVM) as the set {E•, E◦} = {1−|0⟩⟨0|, |0⟩⟨0|}, corresponding to the single detector
events click and no click respectively.

FIG. 17: Experimental setup consisting of three balanced beam-splitters (t = r = 1/2) and four detectors D1-4.

The set of non-classical states is convex (29), so that the set of the different probabilities of clicks achieved by classical
states is also convex, by linearity of the trace. We can thus consider a linear combination of probability operators
corresponding to the events of click and no click on the detector arrangement,

Ŵ (θ) =
∑

ciP̂i, (32)

where P̂i are the POVM elements of the arrangement which correspond to the event where i detectors click while the

others do not click, as for example: P̂4 = E
(1)
• E

(2)
• E

(3)
• E

(4)
• = (1 − |0⟩⟨0|)⊗4, and represent an event where all four

detectors click. The coefficients ci are parametrized such that the vector c(θ) is normalized:

c(θ) =


sin θ1

sin θ2 cos θ1
sin θ3 cos θ2 cos θ1
cos θ3 cos θ2 cos θ1,

 . (33)

The next step is to compute the maximum expectation value of the observable constructed in Eq.(32) that any classical
state can achieve, i.e.:

wc(θ) = max
∀ ρc

(Tr
(
Ŵ (θ)ρc

)
). (34)

We note that Tr
(
Ŵ (θ)ρc

)
is linear in ρc, and since any arbitrary classical state can be written as a mixture of pure

classical states according to Eq.(29), we find that:

Tr
(
Ŵ (θ)ρc

)
= Tr

(
Ŵ (θ)

∫
dα2P (α) |α⟩ ⟨α|

)
(35)

=
∫
dα2P (α)Tr

(
Ŵ (θ) |α⟩ ⟨α|

)
≤

( ∫
dα2P (α)

)
maxα(Tr

(
Ŵ (θ) |α⟩ ⟨α|

)
)

= maxα(Tr
(
Ŵ (θ) |α⟩ ⟨α|

)
).

Therefore, we can conclude that the maximum of the RHS of (34) is achieved by a pure coherent state. With this
simplification, we have that

wc(θ) = max
∀ |α⟩

(⟨α| Ŵ (θ) |α⟩). (36)
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We find that this maximization equivalent to a problem of finding the roots of a third-order polynomial (see Appendix

A), and can thus be simply performed analytically. The vector θ̂ = (θ1, θ2, θ3) is associated to the weights of the

different events defined by the operators P̂i on the witness Ŵ . The witness is now arranged such that if for a

given state ρ, it exists one vector θ̂ for which Tr(Ŵ (θ)ρ) > wc(θ), then the non-classicality of the state ρ can be
demonstrated using the setup of Fig 17.

In practice, the state |ψ⟩ will experience losses; we then define the state

ρTPG(η) = TrB(Uη |ψ⟩ ⟨ψ| ⊗ |0⟩⟨0|BU†
η), (37)

where Uη is a unitary corresponding to a beam-splitter with transmitivity η, referring to the efficiency, and the

quantity q(θ) = Tr(ρTPG(η)Ŵ(θ))−wc(θ), that will be positive when the witness can detect non-classicality for the
lossy state ρTPG(η). In order to find the optimal witness of the state for a given efficiency, we can compute:

qopt = max
θ

(q(θ)). (38)

We plot in Fig.(18) qopt with respect to the overall efficiency η of the setup for ϵ = ξt = 0.01. We find that, in
the present case, the optimal q is always found when wc(θ) = 0. We also find a positive qopt for the range of all
efficiencies, which proves the detection of non-classicality of the state |ψ⟩ using the setup of Fig.(17) to be robust
against losses.

In the last part of this section, we turn to give an estimation of the number of experimental runs that would be
necessary to estimate the quantity Ws = Tr(ρTPG(η)Ŵ (θ)). We assume that the POVM elements P̂i are independent

quantities that are measured N times. At each run, we evaluate a random variable Xi, associated to P̂i, that takes
the value 1 when i detectors click and i − 4 do not click, and the value 0 otherwise. An unbiased estimator of Ws

after N runs is given by:

W̄s =

N∑
k=1

4∑
i=1

ci
Xk

i

N
. (39)

We bound the standard deviation of W̄s as follows:

σWs
=

∑
i=1

|ci|
σXi

N
, (40)

where σXi =
√

⟨Xi⟩(1− ⟨Xi⟩) is the standard deviation of a binary variable. The number of runs that is needed to
estimate the value of the witness, with a precision 3 times smaller than the distance to the classical bound, can thus
be estimated by finding the number of runs Nopt such that:

qopt = 3σWs . (41)

We plot Nopt with respect to the efficiency in the inset of Fig 19. With 4.9 triplets/s and a 5 W laser at 88 MHz, we
find that 18 seconds of experiment are enough to certify the non-classicality of the state for an efficiency of 50%.

D. Demonstrating Non-Gaussianity of the degenerate state |ψ⟩

A witness operator Ŵ in the same general form of Eqs.(32-33) associated to the linear optical setup of Fig.(17) proves
to be useful to the demonstration of the non-Gaussianity of the one-mode state |ψ⟩ as well, meaning that, by analyzing
the mean value of this operator on this state, we can assert that |ψ⟩ cannot be written as a convex mixture of pure
Gaussian states. Witnesses of non-Gaussianity for arbitrary Fock states using linear optics have been derived in [46].
The aim of this section is to derive a witness of non-Gaussianity tailored to the state |ψ⟩ where the full knowledge
of the probabilities distributions of each detector is used, and not only of two as in [46]. In order to witness such
non-Gaussianity, we again need to specialize the witness over the free parameters of the coefficients c(θ). A first step
is defining and computing the maximum mean value wg of the witness operator over all Gaussian states, i.e.:

wg(θ) = max
∀ ρG

(Tr
(
Ŵ (θ)ρG

)
). (42)
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FIG. 18: Optimized mean values of qopt. The optimization is performed numerically over the set of parameter coefficients θ for
a range of efficiencies η for ϵ = 10−2. Inset: Number of experimental runs Nopt necessary for certification.

We note one more time that this expression is linear in ρG, and thus we can conclude in the same manner that its
maximum is achieved by a pure state, and that it is then sufficient to perform the optimization over the set of pure
Gaussian states. In this case, as opposed to the witnessing of non-classicality via wc(θ), the expression for wg(θ) is
more intricated and the optimization was performed numerically over all states of the form

ρG = ŜsD̂α |0⟩ , (43)

i.e. squeezed coherent states, in which D̂α and Ŝs are the canonical displacement and squeezing operators. More
details can be found in Appendix B. The second and last step is performing a further optimization, now over the set
of the coefficient parameters θ, of the difference

g(θ) = Tr(ρTPG(η)Ŵ(θ))−wg(θ), (44)

where ρTPG is the lossy state given by Eq.(37), in order to find gopt = maxθ(g(θ)). Finding a positive value of gopt
certifies that the mean value of the witness in state ρTPG breaks the Gaussian bound, and thus that the state |ψ⟩
cannot be represented by a mixture of states of the form of Eq.(43), meaning that this state is non-Gaussian.
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FIG. 19: Optimized mean values of gopt. The optimization is performed numerically over the set of parameter coefficients θ for
a range of efficiencies η and for ϵ = 10−2. In the upper inset we plot the expected minimum number of runs Nopt necessary for
non-Gaussianity certification. In the lower inset we zoom in on the region of efficiency η from 0 to 45%, showing that we find
positive values of gopt for all efficiencies.

Figure(19) shows the values of gopt obtained by numerical optimizations performed over a range of efficiencies η of the
setup. We find that a violation of the Gaussian bound can be witnessed by the auto-correlation witness of the form
of Eq.(32) over the range of all efficiencies, which again demonstrates the robustness of the method against photon
losses. In order to estimate the number Nopt of experimental runs needed for the certification we one more time set

gopt = 3σWs , (45)

where σWs
is given by Eq.(39), but now using the coefficients ci optimized for the Non-Gaussianity witness. This

estimation is plotted in the upper inset Fig.(19) for the range of efficiencies η.

V. DISCUSSION AND CONCLUSION

In this article, we have reviewed our past work, both experimental and theoretical, from bulk crystal to KTP waveguide
and from a simplistic quantum analysis extrapolated from second-order nonlinear process, to a deep understanding
of peculiarities of quantum behavior introduced by the third-order nonlinear interaction. We thus highlighted these
differences, such as the dependence of the classical and quantum behavior on the seeding intensity, and the emergence
and constraints induced by the non-Gaussianity. Then we presented original theoretical results, and fixed one of the
remaining important problems: how to experimentally conclude at the quantumness and the non-Gaussianity of the
generated triple photon states engaging a minimal ressource budget. We have thus introduced quantum witnesses
using the minimum number of photocounting detectors, optimizing thus losses and complexity. The spontaneous
generation of triple photon statistics by the third-order nonlinear interaction is still elusive, but we feel now closer.
The following step is to demonstrate the ability of these states to exhibit stronger form of quantum correlation such
as Wigner negativity or non locality. It is then possible to use these behaviors in quantum information protocols. The
ability of generating heralded pairs of photons can be used in quantum repeater protocols. Moreover, using photon
detectors preceded by displacement operation on one of the three modes of the state |ψ⟩3, it is then possible to herald
a state of the form |00⟩ + ϵ |11⟩ that has the ability to violate Bell inequalities [47]. Time-bin genuine entanglement
and non-locality can be demonstrated on the state |ψ⟩3 using Franson-type measurement. Indeed, all the photons
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can be sent to a single imbalanced interferometer and look at 3-fold coincidences at the outputs of the interferometer.
Then, if the arm length difference of the interferometers is smaller than the coherence length of the pump, it is by
principle impossible to tell if all three photons have taken the short or the long arm, effectively generating a 3-mode
GreenbergerâHorneâZeilinger state (GHZ state). The long term aim is to add TPG process to the quantum optics
toolbox for quantum communication and computation.

Appendix A: Non-classicallity Witness

A pure coherent state can be written in the Fock or number state basis as

|α⟩ = exp(−|α|2

2
)

∞∑
n=0

αn

√
n!

|n⟩ , (A1)

where α is a parameter defining the specific state. The action of balanced beam-splitters at coherent states given
by Eq.(A1) is straightforwardly computable. Actually, after a beam splitting, the state is represented by two pure

coherent states attenuated as α
′ → α/

√
2 at each output path, so that the probabilities Pi of observing i clicks at the

detectors of Fig.(17) can be written as

Pi =

(
4

4− i

)
(exp(−|α|2

4
))i(1− exp(−|α|2

4
))i, (A2)

for i = 1, 2, 3, 4. The non-classicality witness will then simply be given by the summation

W (θ) =

4∑
i=1

ci(θ)Pi, (A3)

with ci(θ) defined by Eq.(33), and the maximization of wc(θ) of Eq.(34) will consist of a maximization over the sole

parameter α. If we first define the change of parameters x = exp(− |α|2
4 ), the value of α which maximizes Eq.(A3)

can be found by computing the roots of

∂W (θ)

∂x
=

4∑
i=1

ci(θ)
∂Pi

∂x
= 0, (A4)

so that αopt will be given by ±
√

−4 ln(x), with x adequately picked among the found roots of Eq.(A4). As can easily
be seen, due to the form of the Pi, Eq.(A4) is, in turn, a third-order polynomial in the new variable x, and thus its
roots can be routinely found. By computing the value of W (θ) at values α associated to each of the found roots,

and verifying which of those points consist of W (θ) maxima (∂
2W (θ)
∂2α < 0), the maximization of Eq.(34) can thus be

completely computed analytically.
Let us focus on the multimode case, since we cannot have access to the coherence on the setup. A general multimode
classical state can be written as

ρm =
∑
λ

p(λ) ϱλ =
∑
λ

p(λ)
⊗
k

ρ
[k]
λ (A5)

where ρ
[k]
λ = |αk⟩⟨αk|. The POVM associated with the event ”i detector click and 4-i does not clicks” can be written

as:

P̂im =

(
4

i

)
(1−

⊗
k

P̂0)
⊗i ⊗ (

⊗
k

P̂0)
⊗(4−i) (A6)

The maximum of Tr(W (θ)ρm) is achieved by pure multimode states for which we have

Tr(P̂im|αk⟩⟨αk|⊗k) =
(
4
i

)
(1−

∏k
i=1 e

− |αk|2
4 )i(

∏k
i=1 e

− |αk|2
4 )(4−i) (A7)

=
(
4
i

)
(1− e−

∑k
i=1 |αk|2

4 )i(e−
∑k

i=1 |αk|2

4 )(4−i) (A8)
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which is the same expression than (A2) if we take |α| =
√∑k

i=1 |αk|2. Thus the bound for single mode holds for the

multimode case.

Appendix B: Non-Gaussianity Witness

The expectation value of the probability Pi of observing i out of 4 detectors clicking is associated to the projector
operator P̂i of Eq. (32) acting on the state after the unitary evolution U representing the beam-splitters, and for a
general pure Gaussian state |G⟩ arriving in the setup of Fig.(17) this can be written as

Pi = ⟨G|U†P̂iU |G⟩ = (B1)

⟨0| D̂†
αŜ

†
sU

†P̂iUŜsD̂α |0⟩
= ⟨α| Ŝ†

sU
†P̂iUŜs |α⟩ ,

where D̂α and Ŝs are the canonical displacement and squeezing operators, with displacement and squeezing parameters
equal to α and s respectively, and with P̂i given by

P̂i =

(
4

i

)
(Î− P̂0)

i(P̂0)
(4−i), (B2)

where P̂0 = |0⟩⟨0| is the projector onto vacuum at each detector. We use the fact that any Gaussian state |G⟩ can
be written as a squeezed coherent state and, without loss of generality, we can choose s to be real while keeping α
generally complex.
Alternatively, and for convenience of calculation, we can reinterpret Eq.(B1) as a reverse evolution U† acting on the

P̂i operators, and compute the expectation value of U†P̂iU in the incoming general pure Gaussian state |G⟩. In

accordance to Eq.(B2), this can be performed by deriving all the operators of the form U†(P̂0)
k(Î)4−kU , each of those

associated to having 0 clicks at k detectors without mention of what is observed at the other 4 − k detectors. This
can be done as follows.
For a Fock state |n⟩, the probability of detecting a vacuum state (no click) at a detector placed after two balanced
beam-splitters, without mention to what is observed at any remaining detectors, can be written as:

P0,n = (
1

2
)n

n∑
k=0

(
n

k

)
(
1

2
)k = (

3

4
)n. (B3)

For any convex combination of Fock states |n⟩, the associated projector onto vacuum at this detector (U†(P̂0)
1(Î)3U)

can then be written in therms of the number operator a†a as:

P̂0,n = (
3

4
)a

†a. (B4)

The operators associated to the detection of two or three vaccum states after the beam-splitters can be derived in the
same manner, and are given respectively by:

P̂00,n = (
1

2
)a

†a,

P̂000,n = (
1

4
)a

†a. (B5)

Finally, the operator associated to all four detections not clicking (P̂0000,n = U†(P̂0)
4U) will just be the vacuum

operator |0⟩⟨0|, with associated probability being the modulus squared of the overlap of the incoming Gaussian state
with the vaccum, that is ⟨G| 0⟩⟨0 |G⟩ = |⟨0 |G⟩ |2. As derived in ref.[48], we have that:

⟨0 |G⟩ = ⟨0| ŜsD̂α |0⟩ = exp(−1

2
|α|2 + 1

2
α2 tanh (s)). (B6)

Again, instead of directly computing the expectation value of such projection operators in a general Gaussian state, in
accordance to Eq.(B1), we can apply the reversed squeezing operator to these projectors and compute their expectation
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values on a coherent state |α⟩. Following the result in Eq.(9) of ref.[49], and the fact that e(ka
†a) =: e((e

k−1)a†a) :,
where :: represents normal ordering, we have

Ŝ†
se

ka†aŜs = e−
k
2 (e

Ts
2 ( e2k

C2
s−S2

se2k
−1)a†2

× (B7)

: e(e
− lnFs−1)a†a : ×e

Ts
2 ( e2k

C2
s−S2

se2k
−1)a2

)/
√
Fs,

where Ss = sinh (s), Cs = cosh (s), Ts = tanh (s) and Fs = e−kC2
s − ekS2

s , and, to be consistent with ref.[49] results,
we have to take s to −s. By taking values for the parameter k in accordance with each of the projectors of Eqs.(B4)

and (B5), we will have all needed terms of the form S†(s)U†(P̂0)
k(Î)4−kUS(s), and we are ready to compute their

expectation values on the coherent state |α⟩: as Eq.(B7) is normal ordered in the field operators, it can be directly
applied between ⟨α| and |α⟩ in Eq.(B1) using ⟨α| a†2 |α⟩ = α∗2, ⟨α| a2 |α⟩ = α2 and ⟨α| a†a |α⟩ = |α|2.
The witness of Eq.(32) of a Gaussian state can then be readily computed by summing the results as:

⟨G| ˆW (θ) |G⟩ =
4∑

i=1

ci ⟨G| P̂i |G⟩ (B8)

Finally, we witness non-Gaussianity of state |ψ⟩ whenever we find θ so that:

g(θ) = ⟨ψ| Ŵ (θ) |ψ⟩ − max
∀ α,s

(⟨G(α, s)| Ŵ (θ) |G(α, s)⟩) > 0. (B9)

Moreover, we can optimize the witness by computing gopt = maxθ(g(θ)).
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[6] Augustin Vernay, Véronique Boutou, Corinne Félix, David Jegouso, Florent Bassignot, Mathieu Chauvet, and Benoit

Boulanger. Birefringence phase-matched direct third-harmonic generation in a ridge optical waveguide based on a ktiopo4
single crystal. Opt. Express, 29(14):22266–22274, Jul 2021. doi: 10.1364/OE.432636. URL http://opg.optica.org/oe/

abstract.cfm?URI=oe-29-14-22266.
[7] Thomas Jennewein, Christoph Simon, Gregor Weihs, Harald Weinfurter, and Anton Zeilinger. Quantum cryptography

with entangled photons. Phys. Rev. Lett., 84:4729–4732, May 2000. doi: 10.1103/PhysRevLett.84.4729. URL https:

//link.aps.org/doi/10.1103/PhysRevLett.84.4729.
[8] Alex Hayat and Meir Orenstein. Photon conversion processes in dispersive microcavities: Quantum-field model. Phys.

Rev. A, 77:013830, Jan 2008. doi: 10.1103/PhysRevA.77.013830. URL https://link.aps.org/doi/10.1103/PhysRevA.

77.013830.
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[20] Véronique Boutou, Augustin Vernay, Corinne Félix, Florent Bassignot, Mathieu Chauvet, Dominique Lupinski, and

Benoit Boulanger. Phase-matched second-harmonic generation in a flux grown ktp crystal ridge optical waveguide. Opt.
Lett., 43(15):3770–3773, Aug 2018. doi: 10.1364/OL.43.003770. URL http://opg.optica.org/ol/abstract.cfm?URI=

ol-43-15-3770.
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[22] Fabien Gravier and Benôıt Boulanger. Triple-photon generation: comparison between theory and experiment. J. Opt. Soc.

Am. B, 25(1):98–102, Jan 2008. doi: 10.1364/JOSAB.25.000098. URL http://opg.optica.org/josab/abstract.cfm?

URI=josab-25-1-98.
[23] B Boulanger, I Rousseau, and G Marnier. Cubic optical nonlinearity of ktiop04. Journal of Physics B: Atomic, Molecular

and Optical Physics, 32(2):475–488, jan 1999. doi: 10.1088/0953-4075/32/2/026. URL https://doi.org/10.1088/

0953-4075/32/2/026.
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[37] Julien Niset, Jaromı́r Fiurášek, and Nicolas J. Cerf. No-go theorem for gaussian quantum error correction. Phys. Rev. Lett.,

102:120501, Mar 2009. doi: 10.1103/PhysRevLett.102.120501. URL https://link.aps.org/doi/10.1103/PhysRevLett.

102.120501.
[38] Stephen D. Bartlett, Barry C. Sanders, Samuel L. Braunstein, and Kae Nemoto. Efficient classical simulation of continuous

variable quantum information processes. Phys. Rev. Lett., 88:097904, Feb 2002. doi: 10.1103/PhysRevLett.88.097904. URL
https://link.aps.org/doi/10.1103/PhysRevLett.88.097904.

[39] Antoine Royer. Wigner function as the expectation value of a parity operator. Phys. Rev. A, 15:449–450, Feb 1977. doi:
10.1103/PhysRevA.15.449. URL https://link.aps.org/doi/10.1103/PhysRevA.15.449.

[40] A. Mari and J. Eisert. Positive wigner functions render classical simulation of quantum computation efficient. Phys.
Rev. Lett., 109:230503, Dec 2012. doi: 10.1103/PhysRevLett.109.230503. URL https://link.aps.org/doi/10.1103/

PhysRevLett.109.230503.
[41] U. Chabaud, PE. Emeriau, and F. Grosshans. Witnessing wigner negativity. Quantum, 471:230503, Jun 2021. doi:

https://doi.org/10.22331/q-2021-06-08-471. URL https://quantum-journal.org/papers/q-2021-06-08-471/.
[42] D. F. Walls and Gerard J. Milburn. Quantum Optics. Springer, Berlin, Heidelberg, 2 edition, 2008. ISBN 978-3-540-

28574-8.

http://opg.optica.org/ol/abstract.cfm?URI=ol-43-15-3770
http://opg.optica.org/ol/abstract.cfm?URI=ol-43-15-3770
https://link.aps.org/doi/10.1103/PhysRevA.66.063817
https://link.aps.org/doi/10.1103/PhysRevA.66.063817
http://opg.optica.org/josab/abstract.cfm?URI=josab-25-1-98
http://opg.optica.org/josab/abstract.cfm?URI=josab-25-1-98
https://doi.org/10.1088/0953-4075/32/2/026
https://doi.org/10.1088/0953-4075/32/2/026
http://opg.optica.org/ol/abstract.cfm?URI=ol-37-12-2334
https://link.aps.org/doi/10.1103/PhysRevLett.120.043601
https://link.aps.org/doi/10.1103/PhysRevA.67.052315
https://link.aps.org/doi/10.1103/PhysRevA.65.032314
https://link.aps.org/doi/10.1103/PhysRevLett.125.020502
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.10.277
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.10.277
https://journals.aps.org/pr/abstract/10.1103/PhysRev.130.2529
https://link.aps.org/doi/10.1103/PhysRev.140.B676
https://www.sciencedirect.com/science/article/pii/003448777490007X
https://www.sciencedirect.com/science/article/pii/003448777490007X
https://link.aps.org/doi/10.1103/PhysRevA.66.032316
https://link.aps.org/doi/10.1103/PhysRevA.66.032316
https://link.aps.org/doi/10.1103/PhysRevLett.102.120501
https://link.aps.org/doi/10.1103/PhysRevLett.102.120501
https://link.aps.org/doi/10.1103/PhysRevLett.88.097904
https://link.aps.org/doi/10.1103/PhysRevA.15.449
https://link.aps.org/doi/10.1103/PhysRevLett.109.230503
https://link.aps.org/doi/10.1103/PhysRevLett.109.230503
https://quantum-journal.org/papers/q-2021-06-08-471/


28

[43] Adam Miranowicz, Monika Bartkowiak, Xiaoguang Wang, Yu-xi Liu, and Franco Nori. Testing nonclassicality in multimode
fields: A unified derivation of classical inequalities. Phys. Rev. A, 82:013824, Jul 2010. doi: 10.1103/PhysRevA.82.013824.
URL https://link.aps.org/doi/10.1103/PhysRevA.82.013824.

[44] Th. Richter and W. Vogel. Nonclassicality of quantum states: A hierarchy of observable conditions. Phys. Rev. Lett.,
89:283601, Dec 2002. doi: 10.1103/PhysRevLett.89.283601. URL https://link.aps.org/doi/10.1103/PhysRevLett.89.

283601.
[45] E. Shchukin, Th. Richter, and W. Vogel. Nonclassicality criteria in terms of moments. Phys. Rev. A, 71:011802, Jan 2005.

doi: 10.1103/PhysRevA.71.011802. URL https://link.aps.org/doi/10.1103/PhysRevA.71.011802.
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Quantum non-gaussian multiphoton light. npj Quantum Information, 4:13, Jan 2018. doi: https://doi.org/10.1038/
s41534-017-0054-y. URL https://www.nature.com/articles/s41534-017-0054-y#Bib1.

[47] V Caprara Vivoli, P Sekatski, J-D Bancal, C C W Lim, A Martin, R T Thew, H Zbinden, N Gisin, and N Sangouard.
Comparing different approaches for generating random numbers device-independently using a photon pair source. New
Journal of Physics, 17(2):023023, feb 2015. doi: 10.1088/1367-2630/17/2/023023. URL https://doi.org/10.1088/

1367-2630/17/2/023023.
[48] J. J. Gong. Expansion coefficients of a squeezed coherent state in the number state basis. American Journal of Physics,

58(10):1003, 1990. doi: https://doi.org/10.1119/1.16337.
[49] Pavel Sekatski, Bruno Sanguinetti, Enrico Pomarico, Nicolas Gisin, and Christoph Simon. Cloning entangled photons to

scales one can see. Phys. Rev. A, 82:053814, Nov 2010. doi: 10.1103/PhysRevA.82.053814. URL https://link.aps.org/

doi/10.1103/PhysRevA.82.053814.

https://link.aps.org/doi/10.1103/PhysRevA.82.013824
https://link.aps.org/doi/10.1103/PhysRevLett.89.283601
https://link.aps.org/doi/10.1103/PhysRevLett.89.283601
https://link.aps.org/doi/10.1103/PhysRevA.71.011802
https://www.nature.com/articles/s41534-017-0054-y#Bib1
https://doi.org/10.1088/1367-2630/17/2/023023
https://doi.org/10.1088/1367-2630/17/2/023023
https://link.aps.org/doi/10.1103/PhysRevA.82.053814
https://link.aps.org/doi/10.1103/PhysRevA.82.053814

	Introduction
	Triple photons generation
	Classical Description
	Theory

	Experimental demonstration of bi-stimulated triple photon generation

	Quantum Description
	Non classical features of TPG
	Entanglement
	A hierarchy of quantum features for single mode of light
	Witnessing Non-Classicality of the degenerate state |
	Demonstrating Non-Gaussianity of the degenerate state |

	Discussion and conclusion
	 Non-classicallity Witness
	Non-Gaussianity Witness
	Author contribution statement
	Acknowledgments
	Competing interests
	Data Availability Statement

	References

